Summary of Day 22

William Gunther

June 20, 2014

1 Objectives

• Explore Abstract Vector Spaces

2 Summary

- This semester we have explored the vector space \mathbb{R}^n and subspaces of \mathbb{R}^n . We now move on to more abstract vector spaces whose geometric nature is either more subtle or perhaps absent all together.
- It's important to note that almost everything we did with \mathbb{R}^n will carry over to talking about abstract vector spaces. We'll talk about which things won't. The worst things that won't will be the idea of a matrix representing a linear transformation in an infinite dimensional vector space.
- First, let's define what a vector space is. First, we have to define what a field is.
 A field is an algebraic structure over a set F equipped with an addition operation + and a multiplication operation · such that:
 - The operations are complete; you can add and multiply any two elements in the field to get another element in the field.
 - The addition and multiplication operations are commutative and associative.
 - The multiplication operation distributes over the addition operation.
 - There is an additive identity, which we call 0. Similarly, there is a multiplicative identity, which we call 1. 1 and 0 must be different.
 - For every element a there is an additive inverse, which we call -a. (a+(-a)=(-a)+a=0)
 - For every element a except for the additive identity this is a multiplictive inverse, which we call a^{-1} . $(a \cdot a^{-1} = a^{-1} \cdot a = 1)$

Example The following are fields:

- $-\mathbb{Q}$
- $-\mathbb{R}$
- _ (
- $-\mathbb{Z}_p$ (integers modulo a prime).

 Vector spaces are always vector spaces over some field. We can now define what a vector space is:

A vector space is a set V equipped with an binary operation of addition +, a field F which is called the **scalar field**, and a binary operation \cdot between elements of F and V called scalar multiplication. Elements from V are called vectors. The operations must satisfy the following:

- The operations are complete; meaning adding two vectors or multiplying a vector by a scalar results in a vector from V.
- The addition operation is commutative and associative.
- There is an additive identity, which we call **0**.
- For ever vector **a** there is an additive inverse -**a**. $(\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0})$.
- The operations of the scalar field respect that of the vector space, and viceversa. That is to say:
 - $* c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
 - $* (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
 - $* c(d\mathbf{u}) = (cd)\mathbf{u}$
 - $* 1\mathbf{u} = \mathbf{u}$
- We will now explore some examples of vector spaces.

Example

- 1. \mathbb{R}^n : *n*-tuples of real numbers with operations of coordinate-wise addition and scalar multiplication with scalar field \mathbb{R} . This is actually an instance of a more general phenomenon we will soon explore.
- 2. \mathbb{C}^n : n-tuples of complex numbers defined in the same way, with scalar field \mathbb{C} .
- 3. \mathbb{Z}^n : n-tuples of integers modulo n defined in the same way, with scalar field \mathbb{Z}_n .
- 4. The above are all examples of **coordinate spaces**. They are: take a field, and consider *n*-tuples defined by coordinate-wise.
- 5. Polynomials of of degree $\leq n$ with coefficients from some field F with the usual addition and scalar multiplication.

6. The set of polynomials with coefficients from some field F with the usual addition and scalar multiplication.

7. The set of functions $f: \mathbb{R} \to \mathbb{R}$ with scalar field \mathbb{R} (you can change \mathbb{R} to any field F, but this is a particularly useful example) with the usual addition and scalar multiplication.

8. The set of continuous function $f: \mathbb{R} \to \mathbb{R}$ with scalar field \mathbb{R} with the usual addition and scalar multiplication.

9. The set of differentiable function $f: \mathbb{R} \to \mathbb{R}$ with scalar field \mathbb{R} with the usual addition and scalar multiplication.

10. Here's an odd one: real valued $m \times n$ matrices over $\mathbb R$ with the usual addition and scalar multiplication.

• It's also useful to see some non-examples.

1. The following is not a vector space: \mathbb{R}^2 with usual addition, but scalar multiplication as:

 $c \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cx \\ 0 \end{pmatrix}$

2. $m \times n$ invertible real values matrices over $\mathbb R$ with usual operations are not a subspace

• Studying vector spaces gives us a change to make very broad theorems above a large class of structures. We will see that a lot of theorems we have already done carry over to all vector spaces. For now, here are some:

Theorem Let V be any vector space, \mathbf{u} a vector and c a scalar. Then:

1. $0\mathbf{u} = \mathbf{0}$

2	aΩ	_	1
<i>Z</i> .	$c\mathbf{v}$	=	ι

3.
$$(-1)u = -u$$

4. If
$$c\mathbf{u} = \mathbf{0}$$
 then $c = 0$ or $\mathbf{u} = \mathbf{0}$.

Proof.

• We can also generalize the notion of a subspace: W is a subspace of V if W is a subset of V and W is itself a vector space with the same operations as V.

To check something is a subspace, it really amounts to checking closure since V was alreay known to be a subspace:

<u>Theorem</u> W is a subspace of V if W is closed under addition (i.e. $\mathbf{u} + \mathbf{v} \in W$ if $\mathbf{u}, \mathbf{v} \in W$) and scalar multiplication (i.e. $c\mathbf{u} \in W$ if c is a scalar and $\mathbf{u} \in W$).

Example $m \times n$ symmetric (real) matrices are a subspace of the space of $m \times n$ (real) matrices.

Example Integrable functions is a subspace of the space of real valued function on \mathbb{R} .

Example The set of solutions to the differential equation

$$f'' + f = 0$$

is a subspace of the differentiable function.