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1 Objectives

• Explore Abstract Vector Spaces

2 Summary

• This semester we have explored the vector space Rn and subspaces of Rn. We now
move on to more abstract vector spaces whose geometric nature is either more subtle
or perhaps absent all together.

• It’s important to note that almost everything we did with Rn will carry over to talk-
ing about abstract vector spaces. We’ll talk about which things won’t. The worst
things that won’t will be the idea of a matrix representing a linear transformation
in an infinite dimensional vector space.

• First, let’s define what a vector space is. First, we have to define what a field is.

A field is an algebraic structure over a set F equipped with an addition operation
+ and a multiplication operation · such that:

– The operations are complete; you can add and multiply any two elements in
the field to get another element in the field.

– The addition and multiplication operations are commutative and associative.

– The multiplication operation distributes over the addition operation.

– There is an additive identity, which we call 0. Similarly, there is a multiplicative
identity, which we call 1. 1 and 0 must be different.

– For every element a there is an additive inverse, which we call −a. (a+(−a) =
(−a) + a = 0)

– For every element a except for the additive identity this is a multiplictive in-
verse, which we call a−1. (a · a−1 = a−1 · a = 1)

Example The following are fields:

– Q
– R
– C
– Zp (integers modulo a prime).
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• Vector spaces are always vector spaces over some field. We can now define what a
vector space is:

A vector space is a set V equipped with an binary operation of addition +, a
field F which is called the scalar field, and a binary operation · between elements
of F and V called scalar multiplication. Elements from V are called vectors. The
operations must satisfy the following:

– The operations are complete; meaning adding two vectors or multiplying a
vector by a scalar results in a vector from V .

– The addition operation is commutative and associative.

– There is an additive identity, which we call 0.

– For ever vector a there is an additive inverse −a. (a + (−a) = (−a) + a = 0).

– The operations of the scalar field respect that of the vector space, and vice-
versa. That is to say:

∗ c(u + v) = cu + cv

∗ (c + d)u = cu + du

∗ c(du) = (cd)u

∗ 1u = u

• We will now explore some examples of vector spaces.

Example

1. Rn: n-tuples of real numbers with operations of coordinate-wise addition and
scalar multiplication with scalar field R. This is actually an instance of a more
general phenomenon we will soon explore.

2. Cn: n-tuples of complex numbers defined in the same way, with scalar field C.

3. Zn: n-tuples of integers modulo n defined in the same way, with scalar field
Zn.

4. The above are all examples of coordinate spaces. They are: take a field,
and consider n-tuples defined by coordinate-wise.

5. Polynomials of of degree ≤ n with coefficients from some field F with the usual
addition and scalar multiplication.

6. The set of polynomials with coefficents from some field F with the usual ad-
dition and scalar multiplication.
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7. The set of functions f : R → R with scalar field R (you can change R to any
field F , but this is a particularly useful example) with the usual addition and
scalar multiplication.

8. The set of continuous function f : R → R with scalar field R with the usual
addition and scalar multiplication.

9. The set of differentiable function f : R→ R with scalar field R with the usual
addition and scalar multiplication.

10. Here’s an odd one: real valued m× n matrices over R with the usual addition
and scalar multiplication.

• It’s also useful to see some non-examples.

1. The following is not a vector space: R2 with usual addition, but scalar multi-
plication as:

c

(
x
y

)
=

(
cx
0

)

2. m × n invertible real values matrices over R with usual operations are not a
subspace

• Studying vector spaces gives us a change to make very broad theorems above a large
class of structures. We will see that a lot of theorems we have already done carry
over to all vector spaces. For now, here are some:

Theorem Let V be any vector space, u a vector and c a scalar. Then:

1. 0u = 0
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2. c0 = 0

3. (−1)u = −u

4. If cu = 0 then c = 0 or u = 0.

Proof.

• We can also generalize the notion of a subspace: W is a subspace of V if W is a
subset of V and W is itself a vector space with the same operations as V .

To check something is a subspace, it really amounts to checking closure since V was
alreay known to be a subspace:

Theorem W is a subspace of V if W is closed under addition (i.e. u + v ∈ W if
u,v ∈W ) and scalar multiplication (i.e. cu ∈W if c is a scalar and u ∈W ).

Example m × n symmetric (real) matrices are a subspace of the space of m × n
(real) matrices.

Example Integrable functions is a subspace of the space of real valued function on
R.

Example The set of solutions to the differential equation

f ′′ + f = 0

is a subspace of the differentiable function.
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