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1 Objectives

e Explore Abstract Vector Spaces

2 Summary

e This semester we have explored the vector space R™ and subspaces of R™. We now
move on to more abstract vector spaces whose geometric nature is either more subtle
or perhaps absent all together.

e It’s important to note that almost everything we did with R™ will carry over to talk-
ing about abstract vector spaces. We'll talk about which things won’t. The worst
things that won’t will be the idea of a matrix representing a linear transformation
in an infinite dimensional vector space.

e First, let’s define what a vector space is. First, we have to define what a field is.
A field is an algebraic structure over a set F' equipped with an addition operation
+ and a multiplication operation - such that:

— The operations are complete; you can add and multiply any two elements in
the field to get another element in the field.

— The addition and multiplication operations are commutative and associative.

— The multiplication operation distributes over the addition operation.

— There is an additive identity, which we call 0. Similarly, there is a multiplicative
identity, which we call 1. 1 and 0 must be different.

— For every element a there is an additive inverse, which we call —a. (a+(—a) =
(—a)+a=0)

— For every element a except for the additive identity this is a multiplictive in-
verse, which we call a™1. (a-a ' =a"1-a=1)

Example The following are fields:

-Q

-R

-C

— Z, (integers modulo a prime).



e Vector spaces are always vector spaces over some field. We can now define what a
vector space is:

A vector space is a set V equipped with an binary operation of addition +, a
field F' which is called the scalar field, and a binary operation - between elements
of F and V called scalar multiplication. Elements from V are called vectors. The
operations must satisfy the following:

— The operations are complete; meaning adding two vectors or multiplying a
vector by a scalar results in a vector from V.

The addition operation is commutative and associative.

There is an additive identity, which we call 0.

For ever vector a there is an additive inverse —a. (a+ (—a) = (—a) + a =0).

— The operations of the scalar field respect that of the vector space, and vice-
versa. That is to say:

x c(lu+v)=cu+cv
* (c+d)u=cu+du
* c(du) = (ed)u
* lu=u
e We will now explore some examples of vector spaces.
Example
1. R™: n-tuples of real numbers with operations of coordinate-wise addition and

scalar multiplication with scalar field R. This is actually an instance of a more
general phenomenon we will soon explore.

2. C™: n-tuples of complex numbers defined in the same way, with scalar field C.

3. Z™: n-tuples of integers modulo n defined in the same way, with scalar field
Ly,

4. The above are all examples of coordinate spaces. They are: take a field,
and consider n-tuples defined by coordinate-wise.

5. Polynomials of of degree < n with coefficients from some field F' with the usual
addition and scalar multiplication.

6. The set of polynomials with coefficents from some field F' with the usual ad-
dition and scalar multiplication.



7. The set of functions f : R — R with scalar field R (you can change R to any
field F', but this is a particularly useful example) with the usual addition and
scalar multiplication.

8. The set of continuous function f : R — R with scalar field R with the usual
addition and scalar multiplication.

9. The set of differentiable function f : R — R with scalar field R with the usual
addition and scalar multiplication.

10. Here’s an odd one: real valued m x n matrices over R with the usual addition
and scalar multiplication.

e It’s also useful to see some non-examples.

1. The following is not a vector space: R? with usual addition, but scalar multi-

plication as:
o(®) = (e
y) \O

2. m x n invertible real values matrices over R with usual operations are not a
subspace

e Studying vector spaces gives us a change to make very broad theorems above a large
class of structures. We will see that a lot of theorems we have already done carry
over to all vector spaces. For now, here are some:

Theorem Let V' be any vector space, u a vector and c a scalar. Then:

1. Ou=0



2.¢c0=0
3. (-)u=—u
4. If cu=0thenc=0o0or u=0.

Proof.

O
e We can also generalize the notion of a subspace: W is a subspace of V if W is a
subset of V' and W is itself a vector space with the same operations as V.

To check something is a subspace, it really amounts to checking closure since V' was
alreay known to be a subspace:

Theorem W is a subspace of V' if W is closed under addition (i.e. u+v € W if
u,v € W) and scalar multiplication (i.e. cu € W if ¢ is a scalar and u € W).

Example m x n symmetric (real) matrices are a subspace of the space of m x n
(real) matrices.

Example Integrable functions is a subspace of the space of real valued function on
R.

Example The set of solutions to the differential equation
f"+f=0

is a subspace of the differentiable function.



