Summary of Day 21

William Gunther

June 19, 2014

1 Objectives

 Look at projections between two vectors, and generalize to projection of a vector on a space.

2 Summary

• In another class you might have explored the idea of a projection of one vector onto another. Let us explore that idea

• We can see the projection of \mathbf{v} onto \mathbf{u} is given by:

$$\operatorname{proj}_{\mathbf{u}} \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2}\right) \mathbf{u}$$

• We can extent this idea to the projection of a vector onto a space.

Let **v** be a vector of \mathbb{R}^n and W a subspace and $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal basis for W then we say the **orthogonal projection of v onto** W is defined to be:

$$\operatorname{proj}_W(\mathbf{v}) = \operatorname{proj}_{\mathbf{u_1}}(\mathbf{v}) + \dots + \operatorname{proj}_{\mathbf{u_k}}(\mathbf{v})$$

A worry, of course, is that this might depend on the basis. We will see that it does not.

Further we define the **component of v orthogonal to** W as:

$$\operatorname{perp}_{W}(\mathbf{v}) = \mathbf{v} - \operatorname{proj}_{W}(\mathbf{v})$$

Example Let W be a plane in \mathbb{R}^3 given by the following orthogonal basis:

$$\mathbf{u_1} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \qquad \mathbf{u_2} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$

1

Let

$$\mathbf{v} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$

Find the orthogonal projection of ${\bf v}$ onto W and the component of ${\bf v}$ orthogonal to W.

• Notice that $\operatorname{proj}_W(\mathbf{v}) + \operatorname{perp}_W(\mathbf{v}) = \mathbf{v}$. That is, there is a decomposition of \mathbf{v} in terms of a vector on the subspace W and some other vector.

<u>Theorem</u> (Orthogonal Decomposition Theorem) If W is a subspace of \mathbb{R}^n and \mathbf{v} is a vector of \mathbb{R}^n then there are **unique** vectors \mathbf{w} and $\mathbf{w}^{\perp} \in W^{\perp}$ such that

$$\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$$

Proof.

<u>Remark</u> There is a problem with this proof that we'll have to fix later. Do you see what it is?

This gives us the following as well:

Theorem Let W be a subspace of \mathbb{R}^n . Then:

$$\dim(W) + \dim(W^{\perp}) = n$$

Proof.

- The above actually gives a quite short proof of the rank nullity theorem since $(\text{row}(A))^{\perp} = (A)$.
- We will now try to fix the problem presented in the last section: we don't know how
 to find orthogonal bases for spaces. We actually don't even know if it is in principle
 always to find them.
- Idea: We want to be able to take a basis for some subspace W of \mathbb{R}^n and transform it to an orthogonal set of vectors. We will do this using an algorithm called **The Gram-Schmidt process**.

The Gram-Schmidt process is iterative. We will construct our vectors one at a time. The input to our algorithm is a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$. The output of our algorithm will be a list of k (why k?) many vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$. Here's how it goes:

- 1. First choose $\mathbf{v}_1 := x_1$. Note: $\operatorname{span}(\mathbf{v}_1) = \operatorname{span}(\mathbf{x}_1)$. Set $W_1 := \{\mathbf{x}_1\}$.
- 2. For choose \mathbf{v}_2 we choose it as follows:

$$\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{\mathbf{v}_1}(\mathbf{x}_2) = \operatorname{perp}_{\mathbf{v}_1}(\mathbf{x}_2)$$

Note: $span(\mathbf{v}_1, \mathbf{v}_2) = span(\mathbf{x}_1, \mathbf{x}_2) \text{ Set } W_2 := {\mathbf{x}_1, \mathbf{x}_2}$

3. Iterating... Choose \mathbf{v}_i as follows:

$$\mathbf{v}_i = \mathbf{x}_i - \sum_{j=1}^{i-1} \operatorname{proj}_{\mathbf{v}_j}(\mathbf{x}_i)$$
$$= \mathbf{x}_i - \operatorname{proj}_{W_{i-1}}(x_i)$$
$$= \operatorname{perp}_{W_{i-1}}(x_i)$$

<u>Theorem</u> Grahm-Schmidt is correct; meaning, the set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a orthogonal basis.

Proof. (this will be a more informal argument)

Example Use Grahm-Schmidt to construct an orthonormal basis for the span of:

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \qquad \mathbf{x}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \qquad \mathbf{x}_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$