
Summary of Day 15

1 Objectives

• Do some examples of calculating determinants.

• Use determinants to calculate eigenvalues, eigenvectors, find eigenspaces.

• Define and begin to explore algebraic and geometric multiplicity.

2 Summary

• We left off yesterday by discussing the determinant and explaining that if we do
operations to the row (and even columns) of A then and get a reduced matrix we
can calculate easily calculate the original matrix’s determinant if we do proper book
keeping on which row operations we perform. Let’s do an exmaple.

Example Calculate the determinant of: 2 3 −1
0 5 3
−4 −6 2



Example Calculate the determinant of:1 2 3
2 3 1
3 1 2



• It’s also nice to note that elementary matrices are particular to easy to analyze the
matrices of. Since det I = 1 and all elementary matrices are either 1) a nonzero
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scalar times a row, 2) interchanging two rows, or 3) adding a multiple of one row
to another, we know that an elementary matrix always has nonzero determinant.

Further, multiplying an elementary matrix on the left of a matrix B corresponds to
doing a row operation which does whatever action was done to obtain the elementary
matrix and which called the same change to the determinant. Therefore:

Lemma If E is a square, elementary matrix, and B is a matrix of the same size
then:

det(EB) = det(E) det(B)

• This lemma can be used to prove the follow very important purpose for determi-
nants:

Theorem A square matrix is invertible if and only if detA 6= 0.

Proof.

Thus we can add another equivalence to the Fundamental Theorem of Invertible
Matrices!

• You may ask how the determinant is affected by the operations that we typically
do to matrices:

Theorem Let A and B be n× n matrices.

(a) det(AB) = det(A) det(B)

(b) det(kA) = kn det(A)

(c) det(AT ) = det(A)

(d) If A is invertible then det(A−1) = 1
detA

Proof.

• We can also now find eigenvalues more efficiently.

Theorem λ is an eigenvalue of A if and only if det(A− λI) = 0
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• Now, let’s look back at the calculation of eigenvalues and eigenvectors. We will
usually find the eigenvalues in the following way:

(a) Calculate the characteristic polynomial: det(A− λI).

(b) The eigenvalues correspond to the zeros of this polynomial.

(c) Calculate the null space of A − λI for each eigenvalue. These are the corre-
sponding eigenvectors for each eigenvalue.

(d) Because there are ∞-many eigenvectors associated with each eigenvalue, we
will always find a basis for the eigenspace.

Example Find the eigenvalues and a basis for each eigenspace of:

A =

(
1 3
−2 6

)

Example Find the eigenvalues and a basis for each eigenspace of:

B =

 1 2 0
−1 −1 1
0 1 1



• It’s easy to see now that there are at most n eigenvalues of a n× n matrix since a
degree n polynomial could not have more than n roots. There are some conditions
that would make < n eigenvalues. There is a very important theorem called the
Fundamental Theorem of Algebra which says that any degree n polynomial has n
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roots over the complex numbers. Over the real numbers, polynomials have no such
guarantee. For example, if the characteristic polynomials was λ2 + 1 it would have
no real eigenvalues.

• Apart from that though, the fact that a degree n polynomial has n roots counts
multiplicity. That is, (λ− 1)2 has only one distinct root (λ = 1) but that roots has
multiplicity two.

• We define the alegbraic multiplicity of an eigenvalue to be it’s multiplicity in
the characteristic polynomial. It’s geometric multiplicity is the dimension of it’s
eigenspace. We will compare these two notions soon, but they are not in general
the same.

Example Determine the algebraic and geometric multiplicity for the two matrices
in the above examples.

• Question: What does it mean to have an eigenvalue of 0?

• We can read of the eigenvalues of some matrices that come from simple operations
on others from the eigenvalues of the others (that wasn’t the best way to say this).
You’ll see what I mean:

Theorem If A is a n× n matrix with eigenvalue λ with corresponding eigenvector
x then

(a) λm is an eigenvalue of Am with corresponding eigenvector x.

(b) 1/λ is an eigenvalue of A−1 with corresponding eigenvector x (assuming A is
invertible)

• A useful application for eigenvalues is the aid in doing some calculations that would
be otherwise infeasible to do. We’ll revisit this kind of application more when we
talk about diagonalization, but here’s a taste:

Example Compute: (
0 1
2 1

)10(
5
1

)
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