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1 Objectives

• Define dimension, and give geometric interpretation.

• Be able to write a vector in a different coordinate system relative to a different basis.

• Begin talking about linear transformations.

2 Summary

• So, matrices are (as I’ve said repeatedly) a special type of function. Let’s unlock exactly what that
means. First we need to review what a function is:

A function f is a mapping from a domain A to a codomain B. A function has a few guarantees,
namely:

– Every element from A gets mapped to somewhere.

– Every element gets mapped somewhere in B.

– There is only one thing in B that each element of A gets mapped to.

The last condition actually implies the rest, but it’s nice to say them all separately.

The range of the function is the stuff in the codomain that actually gets hit.

Example f : R→ R defined by f(x) = x2 has domain R, codomain R, and range {x ∈ R | x ≥ 0 }

• T : Rn → Rm is called a linear transformation if:

– T (u + v) = T (u) + T (v) for all vectors u,v ∈ Rn.

– T (cu) = cT (u) for all scalars u and all vectors u ∈ Rm.

As with subspaces, we can abbreviate this to say:

– T (0) = 0

– T (u + cv) = T (u) + cT (v) for all u,v ∈ Rn and all scalars c.

Or simply to

– T (du + cv) = dT (u) + cT (v) for all u,v ∈ Rn and all scalars c, d.

Example Consider the function T : R2 → R3 defined by:

T

(
x
y

)
=

 x
2x− y
3x + 4y


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This is a linear transformation. It is between two vectors spaces, and we can verify:

T

((
x
y

)
+

(
w
z

))
= T

((
x + w
y + z

))
=

 x + w
2(x + w)− (y + z)
3(x + w) + 4(y + z)


=

 x + w
2x− y + 2w − z

3x + 4y + 3w + 4z


=

 x
2x− y
3x + 4y

+

 w
2w − z
3w + 4z

 = T

(
x
y

)
+ T

(
w
z

)

• Matrices are important because. . .

Theorem Let A be a m× n matrix. Defined TA : Rn → Rm by:

TA(x) = Ax

this is a linear transformation.

Proof. Because of the way distributivity and scalar multiplication work with matrices and matrix
multiplication.

• As vectors can represent the points of Rn (and give those points certain arithmetic properties) we can
think of a linear transformation as a transformation of space. So it in the plane, it can distort, stretch,
shrink, reflect, rotate, etc space (as long as it dones so linearly).

For example, consider the linear transformation that arises from a 90 degree rotation around the origin.
This transformation looks like:

R

(
x
y

)
=

(
−y
x

)
We can see this can actually be represented as a matrix, under matrix multiplication. To see this, let’s
look at where the standard basis goes:

R

(
1
0

)
=

(
0
1

)
R

(
0
1

)
=

(
−1
0

)
As every element of space can be written as a linear transformation of these vectors in the following
way:

a

(
1
0

)
+ b

(
0
1

)
=

(
a
b

)
We can exploit the linearity and try to find a matrix with these two properties:

A

(
1
0

)
=

(
0
1

)
A

(
0
1

)
=

(
−1
0

)

But, our hands are completely tied. Why? Well, what is the result of the matrix multiplication A

(
1
0

)
?

I know it has to be

(
0
1

)
, but at the same time it has to be the first column of the matrix. Same for(

0
1

)
and

(
−1
0

)
. Therefore, the matrix has to look like:

A

(
0 −1
1 0

)
This behaves correctly on the standard basis, and therefore, it will work correctly on all vectors because
of linearity!

A

(
a
b

)
=

(
−b
a

)
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Theorem If T : Rn → Rm is a linear transformation then T can be represented by a matrix. Moreover,
the matrix is constructed as follows: let u1 = Te1, . . . ,un = Ten, where ei is the ith standard basis
element. Then AT = (u1 . . .un), i.e. a matrix with the ui as the columns of the matrix.

Proof. The above example illustrates the principle.

Example The 90 degree rotation transformation is a specific case of a general rotation. Let’s say we
want to rotate the plane by 90 degrees. How should we do it?

• When we have two function f : A→ B and g : B → C we can take the composition of f and g to get
a function:

g ◦ f : A→ C

Defined by: (g ◦ f)(x) = g(f(x)) (first do f then do g to the result).

This can be done with linear transformations, and with matrices, you just multiply the two matrices
to compose the linear transformation they represent!

Example What should you get when you multiply the 45 degree rotation matrix with itself? Or the
45 degree rotation matrix with the −45 degree rotation matrix?

• (This is not in the book for whatever reason as far as I can tell, so pay extra attention here) What does
the column space and null space represent?

The column space is the set of vectors you can write as a linear combination of the columns remember.
When we perform the action of ‘plugging’ a vector into a linear transformation representing by a matrix
then we are actually writing some matrix (the output) as a linear combination of the columns (think
about the standard basis elements first to get a visual)

Therefore, the column space corresponds to the range of the linear transformation. That is the stuff
that you can write as linear combinations is exactly the stuff that you can get as output for the linear
transformation.

The null space is the stuff that when you ‘plug in’ to the matrix you get the 0. In his guise (when
viewing matrices as linear transformations) the null space is usually called the kernel.

Therefore the rank theorem tells us that the dimension of the range (which is the rank) plus the
dimension of the kernel is equal to the dimension of the domain! In a way this is a like a ‘preservation
of matter’-type theorem. You have a n-dimensional space of vectors that your function is mapping out
of. Some of it goes to 0, the rest of it doesn’t, but both of those parts create subspaces. The sum of
the dimension of these two parts is equal to the whole.

• We can also define an inverse linear transformation. If T is a linear transformation on Rn and there
exists a R a linear transformation on Rn such that T ◦ R = R ◦ T = id where id is the identity on Rn

then we say T is invertible. Inverses are unique (you can prove it) and we write T−1 = R.

This exactly parallels matrices because matrices and linear transformations are the same thing!!
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