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1 Objectives

• Talk about relationship between homogeneous equations and linear independence/dependence and prove
some theorems.

• Discover another way to approach linear independence with row vectors in a matrix.

• Begin looking at matrices as objects, and operations on matrices.

• Connect matrix multiplication with systems of equations.

2 Summary

• As we’ve discussed, there are non-trivial solutions to a homogeneous system where the columns are the
vectors from a set S if and only if the vectors in S are linearly dependent.

Example Determine if S = {[3, 1, 4], [−2, 1,−1]} are linearly independent or linearly dependent.

Solution. First we set up a matrix where the columns are the vectors. Note: we are used to setting up
an augmented matrix, but since the augmented part of the matrix with be 0 we will omit it because it
really won’t contribute anything to our analysis; any row operations will preserve that column.3 −2

1 1
4 −1

→
1 0

0 1
0 0


This tells us that there is a unique solution; namely, 0. Therefore, the vectors are linearly independent.

Example Consider the vectors S = {[1, 3], [1, 6], [−1, 2]}. Determine if they are linearly independent
or linearly dependent.

Solution. To determine if they are linearly dependent we put them in a matrix as columns.(
1 1 −1
3 6 2

)
This matrix is consistent, and has rank ≤ 2. Therefore, there is at least on free variable, so there
are infinitely many solutions. Therefore, there are nontrivial solutions, and so the vectors are linearly
dependent.

• We can actually say quite a lot just from the number of vectors on whether they are linearly dependent.

Theorem Any set of m vectors from Rn is linearly dependent.

Proof. Let S be a set of m vectors. Consider a matrix A consisting of columns of column vectors from
S. Recall that a homogeneous system has infinitely many solutions if there are more equations than
unknowns; that is the case here. Therefore, there is infinitely many solutions, and therefore nontrivial
solutions. So S is linearly dependent.

Remark This would have allowed us to easily decide linear dependence in the second example above
since there were 3 vectors in R2.

Remark The above is not an if and only if. The converse fails; can you find a set of ≤ n vectors which
is linearly dependent? Bonus points for finding the smallest set.
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• We have thus far always answered questions about vectors in terms of equations by putting the vectors
as columns of a matrix which we viewed as the coefficient matrix of a system of equations. Now let’s
briefly discuss another view which is to put the vectors as the rows of a matrix. It’s best to illustrate
this with an example Here we do a little book-keeping with our elementary row operations as we go

Example Consider the vectors [1, 2, 0], [1, 1,−1], [1, 4, 2]. We will put them as the rows in a matrix and
then row reduce.

R1

R2

R3

1 2 0
1 1 −1
1 4 2

 →
R1

R2 −R1

R3 −R1

1 2 0
0 −1 −1
0 2 2


→

R1

R2 −R1

R3 −R1 + 2(R2 −R1)

1 2 0
0 −1 −1
0 0 0


Note, what we have is the third row is now 0 and is equal to R3−R1 + 2(R2−R1) = −3R1 + 2R2 +R3

of the original matrix; which tells us:

0 = −3

1
2
0

+ 2

 1
1
−1

+

1
4
2


which tells us that these vectors are linearly dependent!

• The task above was to row reduce so that we could get a row of all 0’s. Getting a row of all 0’s depends
on the rank of the matrix.

Theorem If A is a matrix with m rows then rank(A) < m if and only if A is row equivalent to a matrix
with a row of 0’s.

Proof. (⇒) The rank is the number of leading entries in the matrix. If the number of leading entries
is less than the number of rows, then there must be a row without a leading entry. A row lacking a
leading entry must be all 0’s.

(⇐) Conversely, suppose A row reduced to a matrix with a row of all 0’s. Then the number of leading
entries must be less than the number of rows and this particular row does not have a leading entry.

Remark We can see that we could have defined the rank to be the number of nonzero rows in the
reduced row echelon form of a matrix (or row echelon form) as each nonzero row in ref has exactly one
leading entry, and all zero rows have no leading entries, so they are the same.

Theorem Let S = {v1, . . . ,vm} ⊆ Rn. Let

A =

 v1
...
vm


i.e., it is a matrix with rows from S. Then S is linearly dependent if and only if rank(A) < m.

Proof. (⇐) By the above theorem, we can row reduce the matrix to get a row with 0. As in the example
above, this gives us a linear combination of vectors from S which equal 0.

(⇒) We know there are c1v1 + · · ·+ cmvm = 0 where not all ci are nonzero. Remove all vectors from
this list with 0 coefficient. This tells us what row operations to do to get a 0 in the matrix; i.e. first
scale R1 by c1, R2 by c2, etc, and then perform the row sums.

• We now see that properties of matrices can tell us a lot about properties of systems of equations and
sets of vectors. For much of the remainder of the course we will study matrices by themselves; we still
have not unlocked the secret of what a matrix is, and won’t for a few days. For now though, we will
explore the algebra of matrices.

• As before, a m× n matrix is a grid of real numbers with m rows and n columns. All definitions and
algorithms carry over, but we not exclusively be using matrices as a way to represent systems. For
a matrix A we write aij to denote the entry in the ith row and the jth column. We say a matrix is
square if m = n.

2



• There are some matrices of particular interest; a m× 1 matrix is called a column matrix or column
vector; a 1 × n matrix is called a row matrix or row matrix. The diagonal entries are a matrix
are the aii entries. A diagonal matrix is a square one where all non-diagonal entries are zero. A
scalar matrix is a diagonal matrix where all diagonal entries are the same. A identity matrix is a
scalar matrix where the diagonal is 1.

• We denote the identity matrix which is n×n by In, or when the size of the matrix is clear from context
we just say I.

• Matrices are equal only when they are equal in all entries and have the same size.

• We define two operations on entries which should mirror our operations on vectors: addition and scalar
multiplication.

We define matrix addition between two m×n matrices A and B by their entires: let C denote A+B.
Then cij = aij + bij ; that is, the addition is just entrywise.

Example (
1 3
0 0

)
+

(
1 −3
1 1

)
=

(
2 0
1 1

)
• Similarly, we define scalar multiplication of A by the entry: let C denote kA. Then cij = kaij .

Example

3

(
2 0
1 1

)
=

(
6 0
3 3

)
• The zero matrix is the matrix with all zeros (so it is a scalar matrix where the diagonal entries are 0,

if that helps, but it probably doesn’t; the first description was probably good enough). To denote this
matrix we write O (which is the letter, not the number), and if we want to emphasize the size we write
Om×n.

Theorem For any m× n matrix A we have

A + O = O + A = A

(Note: I didn’t specify the size of O because it’s clear from context).

• We will view the set of matrices algebraically. Om×n is then the additive identity of the set of m×n
matrices. We have additive closure in the set of m × n matrices; this means that if you add two
m × n matrices you get an m × n matrix. It’s also true that additive inverses exist for matrices;
namely, A + (−A) = O. Therefore, the set of m× n matrices forms a special algebraic structure called
a group. We won’t talk about groups in this course, but if you’ve seen groups, or will see groups, this
will give you another example!

• Addition and scalar multiplication are two important operations on matrices, but the one that really
reveals the ‘true nature’ of a matrix is the operation of matrix multiplication. This one is a bit
difficult to explain, so we’ll go about it careful.

If A if a m × n matrix and B is a n × r matrix (note: the sizes here are very important; read them
again) then we the product (under matrix multiplication) of A and B as C = AB. We define C by it’s
entries:

cij =

n∑
k=1

aikbkj

Remark Does this make sense? No, it really shouldn’t. But, knowing the dot product it can be slightly
rephrased: what it says is that the ijth entry is the dot product of the ith row of the left matrix and
the jth row of the right matrix.

Example Calculate: (
1 3 0
0 1 1

)1 0 0
1 2 0
0 0 −1


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Solution. I really don’t know how to ‘show’ work for this, so I’ll do it on the chalkboard. The answer
is: (

4 6 −1
1 2 −1

)
Remark Matrix multiplication is not commutative. In fact, it often doesn’t even make sense to switch
the order because of the size constraints!

• We can rephrase linear systems into this language of matrix multiplication. This will allow us when we
see the true nature of matrices to prove/use a lot of the theorems we said about systems of equations
using a completely different way of thinking about systems than we were capable of.

Example Consider the system

x−2y+3z =0

2x+ y− z =4

Recall we can phrase this as an augmented matrix:(
1 −2 3 0
2 1 −1 4

)
We could also phrase it in this way:

(
1 −2 3
2 1 −1

)x
y
z

 =

(
0
4

)

Remark Very important!! Now, notice, asking whether there is a solution to a system can be rephrased as
‘is there anything that I can multiply this matrix by (on the right) to give me this vector as a solution’
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