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1 Objectives

• Explore more geometric properties of Rn by looking at dot products to capture the notions of lengths
and angles.

• Calculate dot products and norms of vectors.

• Write parametric and normal equations for lines and planes in R2 and R3.

• Understand the connection between lines/planes and linear combinations of vectors.

• Define span and the geometric intuition.

2 Summary

• Recall: In R2 a vector can be viewed as a directed line segmented. We can ask two questions about
that line segment:

– What is the length?

– What is the angle it makes (with another vector, for instance)?

• We define a type of multiplication between vectors called the dot product (or scalar product) which
is an operation:

Rn × Rn → R

That is, it is an operation between vectors of Rn that returns a scalar in R (hence the name scalar
product). It is define as follows:

If v,w ∈ Rn were:

v =


v1
v2
...
vn

 w =


w1

w2

...
wn


Then we define:

v ·w := v1w1 + v2w2 + · · ·+ vnwn =

n∑
i=1

viwi

• This type of product will be generalized to other vector spaces; in an abstract vector space, this type
of operation is called a inner product. Inner products are traditionally written as 〈u,v〉 instead of
u · v. We’ll use the latter notation because it is more specific: it is the dot product, which happens to
be an inner product.

• There are some properties of the dot product we’d like to write down and prove.

Theorem Let u,v ∈ Rn and c ∈ R. Then :

1. u · v = v · u.

2. u · (v + w) = (u · v) + (u ·w).
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3. (cu) · v = c(u · v).

4. u · u ≥ 0 and u · u = 0 if and only if u = 0.

Proof. We will prove just property 4, because it’s a little important for something we are about to
define.

There are two things we must show, so we will be begin by proving that u · u ≥ 0. We first can write
down what u is as it is a vector in Rn therefore we can write it in the following form:

u = [u1, . . . , un]

Therefore, by the definition of the dot product:

u · u = u1u1 + · · ·unun = u21 + · · ·+ u2n =

n∑
i=1

u2i

It is true that for every real number c we have that c2 ≥ 0; therefore, the above is the sum of n
non-negative numbers, therefore itself is non-negative. Thus u · u ≥ 0 which is what we wanted.

Now we need to show the next condition: u · u = 0 if and only if u = 0. For this, as it is an ‘if and
only if’ we must show two direction: that the left implies thr right, and the right implies the left.

We begin by showing that the left implies the right. So we assume that u · u = 0 and hope to show
that u = 0. Let u be as above, and then, as above, u ·u =

∑n
i=1 u

2
i . Suppose, for sake of contradiction

that this quantity was non-zero. Then it must be that at least one of the things in the sum is non-zero;
so u2i 6= 0. This holds only when ui 6= 0, which means that u 6= 0 as the ith component is nonzero.

Next we show the right implies the left. This direction is easier; we need only show that 0 · 0 = 0,
which it does as

∑n
i=0(0)(0) = 0

• We now define a norm on a the vector space on Rn; we write the norm of vector v as ||v|| and define
it as:

||v|| :=
√
v · v

Note that this makes sense; v · v is always a real number, and by property 4 above it is always non-
negative, so it has a square root.

• The norm of a vector is suppose to give a measurement of length. We already know from geometry
was the length of one of these line segments is in R2 and R3; we can check that this notion of length
coincides with out expectations:

Example ||[v1, v2]|| =
√
v21 + v22 , which is what we’d expect from the Pythagorean Theorem.

• The norm has several properties that we’d like to pick out an identify.

Theorem Let v ∈ Rn and c ∈ R. Then:

1. ||v|| = 0 if and only if v = 0.

2. ||cv|| = c ||v||.

Proof. You should try to write out a formal proof, but these follow pretty straightforwardly from the
inner product properties 3 and 4 above, and the definition of the norm.

• There are two fundamental properties involving norms and inner products: the Triangle inequality
and the Cauchy-Schwarz inequality. We will prove the former using the latter, and revisit Cauchy-
Schwarz later in the course.

Theorem (The Cauchy Schwarz inequality)

u · v ≤ ||u|| ||v||

Theorem (The Triangle inequality)
||u + v|| ≤ ||u|| ||v||
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Proof. (of Triangle inequality).

||u + v||2 = (u + v) · (u + v) by dfn of norm

= (u + v) · u + (u + v) · v dot product property

= u · u + v · u + u · v + v · v same property

= ||u||2 + 2(v · u) + ||v||2 communitivity of dot product and dfn of norm

= ||u||2 + 2|v · u|+ ||v||2 |x| ≥ x for all x ∈ R

≤ ||u||2 + 2 ||v|| ||u||+ ||v||2 Cauchy-Schwarz

= (||u||+ ||v||)2 factor

Therefore, ||u + v||2 ≤ (||u||+ ||v||)2. As all quantities are positive, we can conclude that:

||u + v|| ≤ ||u||+ ||v||

• We can also measure the length between two vectors using the norm:

The distance between the tips of the vectors v and u is ||v − u||.

• We can also measure angles with the dot product

You can use the law of cosines to get the following formula for θ

cos(θ) =
u · v
||u|| ||v||

• The most important part of the above calculation is we can now describe what it means for 2 angles
to be orthogonal to each other. Two vectors v and u are orthogonal if u · v = 0.

This is the definition of orthogonal; you can see it coincides with what you’d expect. Namely u · v = 0
if and only if the angle between them is 90 degrees.

• We can also use vectors to describe lines and planes in Rn (but in particular, we’ll stick to R2 and R3

because those are the only ones that we mere mortals can easily visualize).

• Recall (from earlier math classes) that a line in R2 is given by the equation ax+ by = c (or sometimes
y = mx+ b).

It is the set of all points that go through a particular point (which we can describe by the vector p
pointing at the point) with a particular slope (which we can describe by a vector d parallel to the slope
of the line).

Let x signify a point on the line. What relationship should hold between x, p and d? Well, it should
be the case that if you move the line to the origin (by subtracting p) you should be able to stretch d
by some quantity to hit the point. That is:

x− p = td

t in this instance is called the parameter; we can imagine t varying and as it does it ‘draws’ the line
in R2. Solving for x you get the following equation (which should look like y = mx+ b):

x = td + p

• We could also describe a line by finding a vector v which is orthogonal to the line. Let’s call n a vector
which is orthogonal to the line (this is called a normal vector to the line). Then we want that if you
dot n with a vector pointing at point on the line offset by the point p you should get 0; that is:

n · (x− p) = 0

This should look like ax+ bx = c; particular if you move the constants to the right hand side:

n · x = n · p
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• The last equation actually would describe a plane in R3; there is a vector n which is orthogonal to
all points on a place. Therefore, if you knew this vector and a point on the plane, the above would
describe all such points.

Given two vector u and v on the plane (non-parallel), you could find a vector n which is orthogonal to
both (using perhaps the cross product, which we will not talk about this his course; you could also
use the dot product and solve some equations) and you’d get the following parametric equation:

x− p = su + tv

Here, s and t are both parameters. If you fix one of the parameters then you can see that you are
drawing a line. As both vary though, you are drawing a plane.

• This last section is really to help you build geometric intuition for Rn. It is a useful skill to be able to
visualize particular sets of points as geometric objects, like lines and planes.

Example Consider a system where this is the augmented matrix:(
1 3 1
0 0 0

)
The only restriction for the solution is that x+ 3y = 1. This is a linear in R2.

• We define the span of a set of vectors as the set of all linear combinations of these vectors.
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