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1 Complete Graphs

Theorem 1. The most number of edges a (simple) graph can have is
(
n
2

)
where n is the number of vertices.

Proof. An edge is exactly determined for by its vertices. So every two vertices determines an edge, and there
are

(
n
2

)
ways to pick two vertices.

Corollary 1. There are 2(n
2) graphs on n vertices.

Definition 1. There complete graph on n vertices is a graph with n where every edge is present. (So
it has

(
n
2

)
edges). We notate this Kn

Example 1. Here are the first 5 complete graphs.

K1 K2 K3 K4 K5

Definition 2. We say two graphs are isomorphic if there is a bijective function between the two sets of
vertices which preserves edge relation.

More formally: G with vertex set V and edge relation E is isomorphic to G′ with vertex set V ′ and edge
relation E′ if and only if there is a bijection f : V → V ′ such that for every v, w ∈ V if vEw then f(v)Ef(w).

Remark 1. The idea is an isomorphism spans every area of math. Two structures are isomorphic if they are
“identical” with respect to the structure.

Example 2. The following two graphs are isomorphic; can you see the isomorphism?

v1

v2v3

v4
a b

c d

Definition 3. A subgraph of a graph which is isomorphic to Km is called a m-clique. That is, a set of m
vertices for which every pair of vertices is connected.

Example 3. A 3-clique is also called a triangle since that is what it looks like graphically.
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2 Coloring

Definition 4. A (vertex) n-coloring of a graphG with vertex V and edge relation E is function f : V → [n]
that has the property that for every v, v′ if vEv′ then f(v) 6= f(v′). That is, adjacent vertices are colored
different colors. In this context, elements on [n] are called colors.

The minimum number n for which there is an n-coloring of G is called the (vertex) chromatic number
for G. We notate this χ(G)

Why is this an important idea?

Example 4. Suppost that you had a list of job J1, J2, J3, . . . , Jn and you wanted to assign them to different
time slots, but perhaps all jobs cannot be done at the same time. Maybe J1 and J2, for instance, both need
to be done my Paul, and Paul cannot multi-task them. In this case, we say the jobs have a conflict.

We represent this by a graph where the vertices are the jobs, and two vertices are connected if the jobs
they represent are in conflict. This is called a conflict graph. A coloring of this graph represents an
assignment of the jobs to time slots in a valid way (ie. so that no conflict occurs). Therefore, the chromatic
number of a conflict represents the minimial length of time necessary to complete your task.

Now with some idea about what this is important, let’s prove some basic properties of it.

Theorem 2. If G has at least one edge then χ(G) > 1.

Theorem 3. If G has n vertices then χ(G) ≤ n.

Proof. This is obvious; a valid color of G would be to assign every vertex a different color.

Is it possible to prove this bound? We need a way of coloring a graph with a valid coloring. We look at
the following algorithm:

Definition 5 (Greedy Coloring Algorithm). We do recursion on the number of vertices to color the graph.
If there is one vertex, just color it 1.

Otherwise, we proceed by induction. Pick a vertex v, and remove it. We are left with a graph on n− 1
vertices, which our alogirthm colors. Then color v the minimum color that is valid; that is, look at the
neights of v, and color v the smallest color which is not used.

Theorem 4. Let G be a graph, and let d be the maximum degree of a vertex of G. Then χ(G) ≤ d+ 1.

Proof. We claim that the Greedy Coloring Algorithm uses only colors in [d+ 1]. It is clear in the base case
(when there is 1 vertex).

Otherwise, we picked a vertex v and removed it, and the Greedy algorithm gave us a valid coloring the
the graph G using only colors in [d + 1]. When we put back in v, as it’s degree is at most d, there are at
most d vertices that v is adjacent to. And thus, there is only d many colors that cannot be used to color v.
Thus we can find a color in [d+ 1] to color v.

Is it possible to improve upon this result in general for all graphs? Or, are there some graphs that require
exactly this many colors?

Theorem 5.
χ(Kn) = n

Proof. We need to show two parts: We need to show χ(Kn) ≤ n and χ(Kn) ≥ n. The first part is easy, as
we can just assign every vertex a different color (and it is implied by the last two theorems).

To show the other part, suppose that we colored the graph with n−1 colors. By pigeon-hole, two vertices
must have the same color. As the graph is complete, they are adjacent. Thus the color is not valid.

This actually proves that any graph with a m clique has chromatic number at least m

Theorem 6. If T is a tree with at least two vertices then χ(T ) = 2

Proof. This is an exam technique question; since it is a result about trees, how do you think you should
prove it?
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Theorem 7. If G contains a cycle with n vertices, where n > 1, then χ(G) ≥ 2 if n is even, and χ(G) ≥ 3
if n is odd.

Proof. This we leave as an exercise; the idea however is to show that a cycle requires the given number of
colors. Name a vertex on the cycle, and say that without loss of generality this has color 1 (you can make
it so by renaming the colors of the graph). Then you immediately get the result for n is even. Continue
for n is odd by contradiction, and you will see a contradiction when you have only one vertex remaining to
color.

2.1 Edge Coloring

An edge coloring is similar to a vertex coloring except where we color the edges instead. We can impose
restrictions similar to the above (no edges connected to the same vertex are assigned the same color) and
define a concept similar to the chromatic number called the edge chromatic number.

Instead though, we will go a different way and prove the following:

Theorem 8. In any group of 5 people, assuming friendship is symmetric, there is either a group of 3 people
where all are friends with each other, or 3 people who all are not.
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