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Abstract

We investigate a model corresponding to the experiments for a two-dimensional rotating
Bose–Einstein condensate. It consists in minimizing a Gross–Pitaevskii functional defined in R2

under the unit mass constraint. We estimate the critical rotational speed �1 for vortex existence
in the bulk of the condensate and we give some fundamental energy estimates for velocities
close to �1.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The phenomenon of Bose–Einstein condensation has given rise to an intense research,
both experimentally and theoretically, since its first realization in alkali gases in 1995.
One of the most beautiful experiments was carried out by the ENS group and consisted
in rotating the trap holding the atoms [18,19] (see also [1]). Since a Bose–Einstein
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condensate (BEC) is a quantum gas, it can be described by a single complex-valued
wave function (order parameter) and it rotates as a superfluid: above a critical velocity,
it rotates through the existence of vortices, i.e., zeroes of the wave function around
which there is a circulation of phase. In an experiment, where a harmonic trap strongly
confines the atoms in the direction of the rotation axis, the mathematical analysis
becomes two-dimensional by the decoupling of the wave function (see [10,11,24]).
We restrict our study to this two-dimensional model used in [10,11]. After the non-
dimensionalization of the energy (see [3]), the wave function uε minimizes the Gross–
Pitaevskii energy

∫
R2

{
1

2
|∇u|2 + 1

2ε2 V (x)|u|2 + 1

4ε2 |u|4 − � x⊥·(iu, ∇u)

}
dx (1.1)

under the constraint

∫
R2

|u|2 = 1, (1.2)

where ε>0 is small and represents a ratio of two characteristic lengths and � = �(ε)�0
denotes the rotational velocity. We consider here the harmonic trapping case, that is,
V (x) = |x|2� := x2

1 + �2x2
2 for a fixed parameter 0 < ��1. In [11], the equilibrium

configurations are studied by looking for the minimizers in a reduced class of functions
and some numerical simulations are presented.

Our aim is to estimate the critical velocity above which the wave function has
vortices, and in a future work [14] to analyze in more details the vortex patterns in the
bulk of the condensate. According to numerical and theoretical predictions (see [3,11]),
we expect to find the critical speed in the regime � = O(| ln ε|) so that we restrict our
study to this situation.

Due to constraint (1.2), we may rewrite the energy in the equivalent form

Fε(u) =
∫

R2

{
1

2
|∇u|2 + 1

4ε2

[
(|u|2 − a(x))2 − (a−(x))2]− �x⊥ · (iu, ∇u)

}
dx, (1.3)

where a(x) = a0 − |x|2� and a0 is determined by
∫

R2 a+(x) = 1 so that a0 = √2�/� .
Here a+ and a− represent, respectively, the positive and the negative part of a. Then,
we consider the wave function uε as a solution of the variational problem

Min
{
Fε(u) : u ∈ H, ‖u‖

L2(R2)
= 1
}
,

where

H =
{
u ∈ H 1(R2, C) :

∫
R2

|x|2|u|2 < +∞
}

.
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In the limit ε → 0, the minimization of Fε strongly forces |uε|2 to be close to a+
which means that the resulting density is asymptotically localized in the ellipsoidal
region

D := {x ∈ R2 : a(x) > 0
} = {(x1, x2) ∈ R2 : x2

1 + �2x2
2 < a0

}
.

We will also see that |uε| decays exponentially fast outside D. Actually, the domain
D represents the region occupied by the condensate and consequently, vortices will be
sought inside D.

The main tools for studying vortices were developed by Bethuel et al. [7] for
“Ginzburg–Landau type” problems. We also refer to Sandier [20] and Sandier and
Serfaty [21–23] for complementary techniques. In the case a(x) ≡ 1 and for a disc
in R2, Serfaty proved the existence of local minimizers having vortices for different
ranges of rotational velocity (see [25]). In [3], Aftalion and Du follow the strategy in
[25] for the study of global minimizers of the Gross–Pitaevskii energy (1.3), where
R2 is replaced by D. In [2], Aftalion et al. analyze the global minimizers of (1.3) for
potentials of different nature leading to an annular region of confinement. We finally
refer to [4,5,15] for mathematical studies on 3D models.

We emphasize that we tackle here the problem which corresponds exactly to the
physical model. In particular, we minimize Fε under the unit mass constraint and
the admissible configurations are defined in the whole space R2. Several difficulties
arise, especially in the proof of the existence results and the construction of test func-
tions. We point out that we do not assume any implicit bound on the number of
vortices. The singular and degenerate behavior of

√
a+ near �D induces a cost of

order | ln ε| in the energy and requires specific tools to detect vortices in the boundary
region. Therefore, we shall restrict our analysis to vortices lying down in the interior
domain

Dε = {x ∈ D : a(x) > �ε| ln ε|−3/2}, (1.4)

where �ε is a chosen parameter in the interval (1, 2) (see Proposition 4.1).
We now start to describe our main results. We prove that

�1 := �2 + 1

a0
| ln ε| =

√
�(�2 + 1)√

2�
| ln ε|

is the asymptotic estimate as ε → 0 of the critical angular speed for nucleation of
vortices in D. The critical angular velocity �1 coincides with the one found in [3,11].
We observe that a very stretched condensate, i.e., �>1, yields a very large value of
�1 and that the smallest �1 is reached for � = 1/

√
3 (and surprisingly not for the

symmetric case, i.e., � = 1). For subcritical velocities, we will see that uε behaves as
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the “vortex-free’’ profile �̃εe
i�S , where �̃ε is the positive minimizer of

Eε(u) =
∫

R2

{
1

2
|∇u|2 + 1

4ε2

[
(|u|2 − a(x))2 − (a−(x))2]} dx

under constraint (1.2) and the phase S is given by

S(x) = �2 − 1

�2 + 1
x1x2. (1.5)

For rotational speeds larger than �1, we show the existenceof vortices close to theorigin.
We also give some fundamental energy estimates in the regime � = �1 + O(ln | ln ε|)
which will allow us to study the precise vortex structure of uε in [14].

Theorem 1.1. Let uε be any minimizer of Fε in H under the mass constraint (1.2).
(i) There exists a constant ��

1 < 0, such that if ���1 + �1 ln | ln ε| with �1 < ��
1

then |uε| → √
a+ in L∞

loc(R
2 \ �D) as ε → 0. Moreover,

Fε(uε) = Fε

(
�̃εe

i�S
)+ o(1) (1.6)

and for any sequence εn → 0, there exists a subsequence (still denoted by εn) and
� ∈ C with |�| = 1, such that uεne

−i�S → �
√

a+ in H 1
loc(D) as n → +∞.

(ii) If there exists some constant � > 0, such that �1 + � ln | ln ε|���O(| ln ε|),
then uε has at least one vortex xε ∈ D, such that dist(xε, �D)�C > 0 with C
independent of ε. If in addition, ���1 + O(ln | ln ε|), then xε remains close to
the origin, i.e., |xε|�O(| ln ε|−1/6).

(iii) Set vε = uε/(�̃εe
i�S) and assume that ���1 +�1 ln | ln ε| for some �1 > 0. Then

there exist two positive constants M1 and M2 depending only on �1, such that

∫
Dε

a(x)|∇vε|2 + a2(x)

ε2 (|vε|2 − 1)2 �M1| ln ε|,

∫
Dε\{|x|�<2| ln ε|−1/6}

a(x)|∇vε|2 + a2(x)

ε2 (|vε|2 − 1)2 �M2 ln | ln ε|.

From the estimates in (iii) in Theorem 1.1, we are going to determine in [14] the
number and the location of vortices in function of the angular speed � as ε → 0. More
precisely, we will compute the asymptotic expansion of the energy Fε(uε) in order to
estimate the critical velocity �d for having d vortices in the bulk and to exhibit the
configuration of vortices by a certain renormalized energy. We also mention that the
techniques used in [14] will permit to prove that the best constant in (i) in Theorem 1.1
is ��

1 = 0. The proof will rely mostly on the study of “bad discs” in [7].
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1.1. Sketch of the proof

We now describe briefly the content of this paper.
Section 2 is devoted to the study of the density profile �̃ε. We first introduce the

real positive minimizer �ε of Eε, i.e.,

Eε(�ε) = Min
{
Eε(�) : � ∈ H

}
. (1.7)

We show the existence and uniqueness of �ε (see Theorem 2.1) and we have that
Eε(�ε)�C| ln ε| and �ε → √

a+ in L∞(R2)∩C1
loc(D) as ε → 0 (see Proposition 2.1).

Then we prove that there is a unique positive solution of the problem

Min
{
Eε(�) : � ∈ H, ‖�‖

L2(R2)
= 1
}

(1.8)

called �̃ε, which can be obtained from �ε by a change of scale (see Theorem 2.2). This
relationship yields an important estimate on the Lagrange multiplier kε associated to
�̃ε : |kε|�O(| ln ε|), as well as the asymptotic properties of �̃ε from those of �ε (see
Proposition 2.2). In particular, we have �̃ε → √

a+ in L∞(R2) ∩ C1
loc(D) as ε → 0.

In Section 3, we prove the existence of minimizers uε under the mass constraint (1.2)
(see Proposition 3.1) and some general results about their behavior: Eε(uε)�C| ln ε|2,
uε decreases exponentially quickly to 0 outside D, |∇uε|�CKε−1 and |uε|�

√
a+

in any compact K ⊂ D (see Proposition 3.2). Using a method introduced by Lassoued
and Mironescu [16], we show that Fε(uε) splits into two-independent pieces (see
Lemma 3.2): the energy of the “vortex-free’’ profile Fε(�̃εe

i�S) and the reduced energy
of vε = uε/(�̃εe

i�S):

Fε(uε) = Fε(�̃εe
i�S) + F̃ε(vε) + T̃ε(vε), (1.9)

where

F̃ε(vε)= Ẽε(vε) + R̃ε(vε), (1.10)

Ẽε(vε)=
∫

R2

�̃2
ε

2
|∇vε|2 + �̃4

ε

4ε2 (|vε|2 − 1)2, R̃ε(vε)= �

�2 + 1

∫
R2

�̃2
ε∇⊥a · (ivε, ∇vε),

(1.11)

T̃ε(vε) = 1

2

∫
R2

(
�2|∇S|2 − 2�2x⊥ · ∇S + kε

)
�̃2
ε(|vε|2 − 1). (1.12)

The motivation of S is explained in [3]: S satisfies div
(
a+(∇S − x⊥)

) = 0 in R2 and
corresponds to the limit as ε → 0 of the phase (globally defined in R2) divided by �,
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of any solution of Min
{
Fε(u) : u = �ei� ∈ H, � > 0

}
. The existence of the global

limiting phase S is new in this type of variational problems related to the “Ginzburg–
Landau” energy. We point out that the anisotropy carried by the phase S, leads to a
negative term of order �2 for � ∈ (0, 1) in the energy (see Remark 3.2)

Fε

(
�̃εe

i�S
) = Eε(�̃ε) −

√
2(1 − �2)2

12
√

�(1 + �2)�3/2 �2 + o(1).

We will prove that |T̃ε(vε)| = O(ε| ln ε|3). Thus, we may focus on the reduced energy
F̃ε(vε). We study the vortex structure of uε via the map vε applying the Ginzburg–
Landau techniques to the weighted energy Ẽε(vε); the difficulty will arise in the region
where �̃ε is small. We notice that vε inherits from uε and �̃ε, the following properties
(see Proposition 3.3): Ẽε(vε)�C| ln ε|2, |∇vε|�CKε−1 and |vε|�1 in any compact
K ⊂ D. Using �̃εe

i�S as a test function and (1.9), we obtain in Proposition 3.4, a
crucial upper bound of the reduced energy inside Dε:

F̃ε(vε, Dε)�o(1). (1.13)

Motivated by the behavior �̃2
ε ∼ a+ (see (3.32) and (3.33)), we will use in the sequel

the energies Fε, Eε and Rε in the interior of D (see Notations below).
In Section 4, we compute a first lower bound of Eε(vε) using a method due to

Sandier and Serfaty (see [21,23]). We start with the construction of small disjoint balls
{B(pi, ri)}i∈Iε

in the domain Dε (given by (1.4)): outside these balls |vε| is close to
1, so that vε carries a degree di on �B(pi, ri) (see Proposition 4.1) and

Eε(vε, Dε)�
∑
i∈Iε

Eε(vε, B(pi, ri))��
∑
i∈Iε

a(pi)|di | | ln ε|. (1.14)

Then, we prove an asymptotic expansion of the rotational energy (see Proposition 4.2),

Rε

(
vε, Dε

) ≈ − ��

�2 + 1

∑
i∈Iε

a2(pi) di . (1.15)

The presence of a2(pi) is due to the harmonic type of the potential. In fact, for slightly
more general potentials a(x), we compute the solution � of the problem (see [3])

div

(
1

a
∇�

)
= −2 in D and � = 0 on �D (1.16)

and the rotational energy will exhibit the terms �(pi) in (1.15). For our harmonic
potential a(x), an easy computation leads to � = a2

2(�2+1)
. By (1.14) and (1.15), the
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first term in the lower expansion of the energy is

�
∑
i∈Iε

a(pi)

(
|di || ln ε| − di�

2�(pi)

a(pi)

)
. (1.17)

For having a vortex ball Bi with non-zero degree, � has to be larger than

�1 = 1+�2

a0
| ln ε|, pi maximizes �/a and di is positive. Indeed, we obtain the sub-

critical case (i) in Theorem 1.1 matching (1.13) with (1.17). For velocities larger than
�1, we use an improvement of the upper estimate (1.13) using a test function hav-
ing a single vortex at the origin. From here, we deduce (ii) in Theorem 1.1. We
also prove that for ���1 + O(ln | ln ε|), the number of vortex balls with non-zero
degree is uniformly bounded in ε and they appear close to the origin (see Propo-
sition 4.4). We conclude by the two fundamental energy estimates stated in (iii) in
Theorem 1.1.

Our analysis deals with vortices inside D. However, we believe that for � small
(� = O(1)), the solution should not have any vortices in R2. For � larger (� ∼ �1),
vortices may exist in the region where uε is small. The study of the vortex structure
in the region, where |uε| is small requires the development of other tools than energy
estimates.

We recall that the choice of the harmonic potential is motivated by the physical
experiments. For some other potentials a, such that �/a has a unique maximum point
at the origin, our method can be applied and the critical speed is given by

�1 = a(0)

2�(0)
| ln ε|.

If the set of maximum points of �
a

is not finite (it can be a curve, see Remark 4.1),
the techniques are different and it will be the topic of a future work.

Notations: Throughout the paper, we denote by C a positive constant independent of
ε and we use the subscript to point out a possible dependence on the argument. For
x = (x1, x2) ∈ R2, we write

x⊥ = (−x2, x1), |x|� =
√

x2
1 + �2x2

2 and B�
R = {x ∈ R2 : |x|� < R

}

and for A ⊂ R2,

Ẽε(v, A) =
∫
A

1

2
�̃2
ε |∇v|2 + �̃4

ε

4ε2 (1 − |v|2)2,

Eε(v, A) =
∫
A

1

2
a|∇v|2 + a2

4ε2 (1 − |v|2)2,
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R̃ε(v, A) = �

1 + �2

∫
A

�̃2
ε∇⊥a · (iv, ∇v), Rε(v, A) = �

1 + �2

∫
A

a∇⊥a · (iv, ∇v),

F̃ε(v, A) = Ẽε(v, A) + R̃ε(v, A), Fε(v, A) = Eε(v, A) + Rε(v, A). (1.18)

We do not write the dependence on A when A = R2.

2. Analysis of the density profiles

In this section, we establish some preliminary results on �ε and �̃ε defined, respec-
tively, by (1.7) and (1.8). We will show that the shapes of �ε and �̃ε are similar.

We notice that the space H in which we perform the minimization, is exactly the
set of finiteness for Eε. In the sequel, we endow H with the scalar product

〈u, v〉H =
∫

R2
∇u · ∇v + (1 + |x|2)(u · v) for u, v ∈ H;

obviously, (H, 〈·, ·〉H) is a Hilbert space.

2.1. The free profile

We start by proving the existence and uniqueness for small ε of �ε defined as the
real positive solution of (1.7). Hence, �ε has to satisfy the associated Euler–Lagrange
equation

{
ε2��ε + (a(x) − �2

ε)�ε = 0 in R2,

�ε > 0 in R2.
(2.1)

We denote by 	, the first eigenvalue of the elliptic operator −� + |x|2� in R2, i.e.,

	 = Inf

{∫
R2

|∇
|2 + |x|2�|
|2 : 
 ∈ H , ‖
‖
L2(R2)

= 1

}
.

We have the following result:

Theorem 2.1. If 0 < ε < a0
	 , there exists a unique classical solution �ε of (2.1).

Moreover, �ε �√
a0 and �ε is the unique minimizer of Eε in H up to a complex

multiplier of modulus one. If ε� a0
	 , then zero is the unique critical point of Eε in H.

The method that we use for solving (2.1) involves several classical arguments generally
used for a bounded domain. The main difficulty here is due to the fact that the equation
is posed in the entire space R2 without any condition at infinity. We start with the
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construction of the minimal solution: we consider the solution �R,� of the same equation
posed in a ball of large radius R with homogeneous Dirichlet boundary condition (see
(2.3)) and then we pass to the limit in R. We prove the uniqueness by estimating the
ratio between the constructed solution and any other solution. A crucial point in the
proof is an L∞-bound of any weak solution.

Before proving Theorem 2.1, we present the asymptotic properties of �ε as ε → 0.
We show that �ε decays exponentially fast outside D and that �2

ε tends uniformly to
a+. The following estimates will be essential at several steps of our analysis.

Proposition 2.1. For ε sufficiently small, we have

(2.1a) Eε(�ε)�C| ln ε|,
(2.1b) 0 < �ε(x)�Cε1/3 exp

(
a(x)

4ε2/3

)
in R2 \ D,

(2.1c) 0�
√

a(x) − �ε(x)�Cε1/3√a(x) for x ∈ D with |x|� <
√

a0 − ε1/3,
(2.1d) ‖∇�ε‖L∞(R2)

�Cε−1,

(2.1e) ‖�ε − √
a ‖C1(K) �CKε2 for any compact subset K ⊂ D.

Remark 2.1. We observe that (2.1a) in Proposition 2.1 implies∫
R2\D

|�ε|4 + 2a−(x)|�ε|2 +
∫
D

(a(x) − |�ε|2)2 �Cε2| ln ε|. (2.2)

Proof of Theorem 2.1. Step 1: Existence for 0 < ε < a0
	 : For R > 0, we consider the

following: ⎧⎨
⎩

ε2��R + (a(x) − �2
R)�R = 0 in BR ,

�R > 0 in BR ,
�R = 0 on �BR .

(2.3)

By a result of Brezis and Oswald (see [9]), we have the existence and uniqueness of
weak solutions of (2.3) if and only if the following first eigenvalue condition holds:

Inf

{∫
BR

|∇
|2 − a(x)|
|2
ε2 : 
 ∈ H 1

0 (BR), ‖
‖L2(BR) = 1

}
< 0, i.e.,

	1(Lε, BR) = Inf

{∫
BR

|∇
|2 + |x|2�|
|2
ε2 : 
 ∈ H 1

0 (BR), ‖
‖L2(BR) = 1

}
<

a0

ε2 ,

(2.4)

where we denoted the elliptic operator Lε = −�+ |x|2�
ε2 . We claim that for R sufficiently

large, (2.4) is fulfilled. Indeed, let � be an eigenfunction of Lε in R2 associated to
the first eigenvalue 	1(Lε, R2) with ‖�‖

L2(R2)
= 1 (the existence of � is a direct

consequence of the compact embedding H ↪→ L2(R2) proved in Lemma 2.1). For any
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integer n�1, set �n(x) = cn �
( |x|

n

)
�(x), where � : R → R is the “cut-off’’-type-

function given by

�(t) =

⎧⎪⎨
⎪⎩

1 if t �1,

2 − t if t ∈ (1, 2),

0 if t �2

(2.5)

and the constant cn is chosen such that ‖�n‖L2(R2)
= 1. We easily check that

	1(Lε, B2n)�
∫

B2n

(
|∇�n|2+

|x|2�
ε2 |�n|2

)
−→

n→+∞

∫
R2

(
|∇�|2+|x|2�

ε2 |�|2
)

=	1(Lε, R2)

and we deduce that the sequence
{
	1(Lε, BR)

}
R>0 (which is decreasing in R) tends to

	1(Lε, R2) as R → ∞. Since

	1(Lε, R2) = 	

ε
,

we conclude that there exists Rε > 0 such that for every R > Rε, the condition (2.4)
is fulfilled and Eq. (2.3) admits a unique weak solution �R,�.

By standard methods, it results that �R,� is a smooth classical solution of (2.3). We
notice that, for any Rε < R < R̃, �R̃,ε is a supersolution of (2.3) in BR and thus
�R,� ��R̃,ε in BR by the uniqueness of �R,�. By the maximum principle, we infer that
�R,� �√

a0 in R2. For every R > Rε, we extend �R,� by 0 in R2 \ BR . Since the
function R → �R,�(x) is non-decreasing for any x ∈ R2, we may define for x ∈ R2,
�ε(x) = lim

R→+∞ �R,�(x). It results that �ε satisfies 0 < �ε �√
a0 and

ε2��ε + (a(x) − |�|2ε)�ε = 0 in D′(R2). (2.6)

Since �ε ∈ L∞(R2), we derive by standard methods that �ε is a smooth classical
solution of (2.1).

Step 2: L∞-bound for solutions of (2.1): The method we use in this step is due to
Farina (see [12]) and relies on a result of Brezis (see [8]). We present the proof for
convenience. Let � be any weak solution of (2.1) in L3

loc(R
2). We claim that

��√
a0 a.e. in R2.

Indeed, if we consider w = ε−1(� − √
a0), then w ∈ L3

loc(R
2) and since � satisfies

(2.1), we infer that �w ∈ L1
loc(R

2). By Kato’s inequality, we have

�(w+) � sgn+(w)�w� sgn+(w)

ε3 (�2 − a0)� = 1

ε2 w+(εw + 2
√

a0)(εw + √
a0)

� (w+)3.
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Therefore w+ ∈ L3
loc(R

2) and w+ satisfies

−�(w+) + (w+)3 �0 in D′(R2).

By Lemma 2 in [8], it leads to w+ �0 a.e. in R2 and thus, w+ ≡ 0.
Step 3: Uniqueness for 0 < ε < a0

	 : Let �ε be the solution constructed at Step 1 and
let � be any weak solution of (2.1) in L3

loc(R
2). By the previous step, � ∈ L∞(R2) and

using standard arguments, we derive that � is smooth and defines a classical solution
of (2.1). We observe that � is a supersolution of (2.3) for every R > Rε. Since �R,�
is extended by 0 outside BR , �R,� �� in R2. Passing to the limit in R, we get that
0 < �ε �� in R2. Hence, the function 
 : R2 → R defined by 
 = �ε/� is smooth and
takes values in (0, 1]. We easily check that 
 satisfies

div(�2∇
) + �4

ε2 (1 − 
2)
 = 0 in R2. (2.7)

For every integer n�1, we set �n(x) = �
(
n−1|x|), where � is given by (2.5). Multi-

plying (2.7) by (1 − 
)�2
n and integrating by parts, we derive∫

R2

(
�4

ε2 
(1 − 
)2(1 + 
)�2
n + �2�2

n|∇
|2
)

= 2
∫

R2
�2(1 − 
)�n(∇
 · ∇�n). (2.8)

Since 
 is bounded, the Cauchy–Schwarz inequality yields∫
R2

�2(1 − 
)�n(∇
 · ∇�n) =
∫

B2n\Bn

�2(1 − 
)�n(∇
 · ∇�n)

�
(∫

B2n

�2(1 − 
)2|∇�n|2
)1/2 (∫

B2n\Bn

�2�2
n|∇
|2

)1/2

� 2
√

� ‖�‖
L∞(R2)

(∫
R2\Bn

�2�2
n|∇
|2

)1/2

.

Using (2.8) and the L∞-bound on � obtained in Step 2, we infer that∫
R2

�2�2
n|∇
|2 �4

√
�a0

(∫
R2\Bn

�2�2
n|∇
|2

)1/2

. (2.9)

It follows

16�a0 �
∫

R2
�2�2

n|∇
|2 −→
n→+∞

∫
R2

�2|∇
|2

by monotone convergence. Since �2|∇
|2 ∈ L1(R2), the right-hand side in (2.9) tends
to 0 as n → +∞ and we finally deduce that

∫
R2 �2|∇
|2 = 0. Hence, 
 is constant in

R2 and by (2.8), we necessarily have 
 = 1, i.e., � = �ε.
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Step 4: End of the proof: The existence of a minimizer � of Eε in H is standard.
Since Eε(|�̂|)�Eε(�̂) for any �̂ ∈ H, we infer that �̂ := |�| is also a minimizer and
therefore �̂ satisfies the following:{

ε2��̂ + (a(x) − �̂2
)�̂ = 0 in R2,

�̂�0 in R2.
(2.10)

By the maximum principle, it follows that either �̂ > 0 in R2 or �̂ ≡ 0.
If 0 < ε < a0

	 , we claim that �̂ > 0. Indeed, for R > 0 sufficiently large, we consider
the unique solution �R,� of (2.3). By Brezis and Oswald [9], �R,� is the unique non-
negative minimizer of Eε(·, BR) in H 1

0 (BR, R). Since �R,� is extended by 0 outside
BR , we have

Eε(�̂)�Eε(�R,�) = Eε(�R,�, BR) < Eε(0, BR) = Eε(0)

which implies that �̂ is not identically equal to 0. Then �̂ solves (2.1) and by Step 3,
we conclude that |�| = �̂ = �ε. From the equality Eε(|�|) = Eε(�), we easily deduce
that there exists a real constant � such that � = |�|ei� = �εe

i�.
If ε� a0

	 , we prove that �̂ ≡ 0. Multiplying (2.10) by �̂, it results

∫
R2

|∇�̂|2 + |x|2�
ε2 �̂2 + 1

ε2 �̂4 = a0

ε2

∫
R2

�̂2 � 	

ε

∫
R2

�̂2
.

On the other hand,

∫
R2

|∇�̂|2 + |x|2�
ε2 �̂2 �	1(Lε, R2)

∫
R2

�̂2 = 	

ε

∫
R2

�̂2
.

It follows that
∫

R2 �̂4 = 0, i.e., �̂ ≡ 0. Thus, in this range of ε, zero is the unique
minimizer of Eε.

Now it remains to show that zero is the unique critical point of Eε when ε� a0
	 .

Indeed, let �̃ be any critical point of Eε in H, i.e., �̃ satisfies Eq. (2.6). Then∫
R2

|∇�̃|2 = 1

ε2

∫
R2

a(x)|�̃|2 − |�̃|4. (2.11)

Since zero is the global minimizer, we have that Eε(�̃)�Eε(0), so that∫
R2

|∇�̃|2 + 1

2ε2

∫
R2

|�̃|4 − 2a(x)|�̃|2 �0. (2.12)

Combining (2.11) and (2.12), we derive that
∫

R2 |�̃|4 = 0, i.e., �̃ ≡ 0. �

We recall the following classical result:
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Lemma 2.1. The embedding H ↪→ L2(R2, C) is compact.

Proof. Let un ⇀ 0 weakly in H as n → ∞. Extracting a subsequence if necessary, by
the Sobolev embedding theorem, we may assume that un → 0 strongly in L2

loc(R
2).

Obviously,
∫

R2 |x|2|un|2 �C. For any R > 0, we have

R2 lim sup
n→∞

∫
R2\BR

|un|2 � lim sup
n→∞

∫
R2

|x|2|un|2 �C.

Letting R → +∞ in this inequality, we conclude that un → 0 strongly in L2(R2). �

Remark 2.2. We emphasize that from the proof of Theorem 2.1, it follows that any
smooth function � satisfying{

−ε2���(a(x) − |�|2)� in R2,

� > 0 in R2,

verifies ���ε in R2.

Proof of Proposition 2.1. Proof of (2.1a): We construct an explicit test function
� ∈ H 1(R2) such that Eε(�)�C| ln ε|. Since �ε minimizes Eε, we deduce
Eε(�ε)�Eε(�)�C| ln ε|. The function � is defined as in [15]: let

�(s) =
⎧⎨
⎩

√
s if s�ε2/3,
s

ε1/3 otherwise

and set �(x) = �(a+(x)) for x ∈ R2. It results that∫
R2

|∇�|2 �C| ln ε| and
∫

R2
(a+ − �2)2 �Cε2 (2.13)

for a positive constant C independent of ε.
Proof of (2.1b): We construct a supersolution � of (2.1) of the form

�(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
a(x) if |x|� �

√
a0 − �,

−|x|�
√

a0 − � + a0√
�

if
√

a0 − �� |x|� �r�,

� exp(−|x|2�/2�) otherwise,

(2.14)

where � > 0 will be determined later,

r� = a0

2
√

a0 − �
+

√
a0

2
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and �, � are chosen, such that � ∈ C1(R2), i.e.,

� = a0 − √
a0(a0 − �)

2
√

�
exp(r2

�/2�) and � = a0�

4(a0 − �)
.

A straightforward computation shows that for � = 4a
1/3
0 ε2/3, � is a supersolution of

(2.1) and we also have

r� − √
a0 = O(ε2/3), � = O(ε2/3) and � = O(ε1/3ea0/2�).

By Remark 2.2, it results that �ε �� in R2 which leads to (2.1b). We can see that we
also obtain

{
�ε(x)�

√
a(x) for |x|� �

√
a0 − � ,

�ε(x)�Cε1/3 for
√

a0 − �� |x|� �√
a0 .

(2.15)

Proof of (2.1c): The estimate (2.1c) follows exactly as in Proposition 2.1 in [2] and
we shall omit it.

Proof of (2.1d): Taking x0 ∈ R2 arbitrarily, it suffices to show that |∇�ε|�Cε−1

in B(x0, ε) with a constant C independent of x0. We define the re-scaled function

ε : B2(0) → R by 
ε(y) = �ε(x0 + εy). From estimates (2.1b) and (2.1c), we derive

that |�
ε| = |
(
a(x0 + εy) − 
2

ε

)

ε|�C in B2(0) for a constant C independent of

x0. By elliptic regularity, we deduce that for any 1�p < ∞, ‖
ε‖W 2,p(B1(0)) �Cp

for a constant Cp independent of ε and x0. Taking some p > 2, it implies that
‖∇
ε‖L∞(B1(0)) �C for a constant C independent of ε and x0 which yields the
result.

Proof of (2.1e): The idea of the proof is due to Shafrir [26]. First we prove that
|∇�ε| remains bounded with respect to ε in any compact set K ⊂ D. We choose some
radii 0 < r < R <

√
a0 such that K ⊂ B�

r ⊂ B�
R ⊂ D. We claim that

|�ε − √
a |�CR ε2 in B�

r . (2.16)

Indeed, we infer from (2.1) that

−ε2�(
√

a − �ε) + �ε(�ε + √
a )(

√
a − �ε) = −ε2�(

√
a ) = O(ε2) in B�

R .

By estimate (2.1c), we have |√a−�ε|�
√

a
2 in B�

R for ε small. Thus �ε(�ε+
√

a)�AR>0
in B�

R for some positive constant AR which only depends on R. Then (2.16) follows
from Lemma 2.2 below (which is a slight modification of Lemma 2 in [6]).
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Lemma 2.2. Assume that A > 0 and 0 < r < R. Let wε be a smooth function
satisfying

{
−ε2�wε + Awε �Bε2 in B�

R ,

wε �1 on �B�
R ,

for some constant B ∈ R. Then wε �Cε2 in B�
r with C = C(R, r, A, B).

Proof of (2.1e) completed: By (2.1) and (2.16), we deduce that �ε is uniformly
bounded in W 2,p(B�

r ) for any 1�p < ∞. In particular, it implies

‖∇�ε‖L∞(K) �CK. (2.17)

We repeat the above argument with the functions zε = ��ε

�xj
and z0 = �

√
a

�xj
, j = 1, 2.

Obviously, we can assume that (2.16) and (2.17) hold in B�
R . Using (2.16), we easily

check that

−ε2�(zε − z0) + (3�2
ε − a)(zε − z0) = O(ε2).

By (2.17), we can apply Lemma 2.2 which yields the announced result. �

We now state a result that we will require in Section 2.2. We follow here a technique
introduced by Struwe (see [27]).

Lemma 2.3. Let I : (0, ∞) �→ R+ defined by

I (ε) = Min
{
Eε(�) : � ∈ H

}
. (2.18)

Then I (·) is locally Lipschitz continuous and nonincreasing in (0, ∞). Moreover,

|I ′(ε)|�C

( | ln ε|
ε

+ 1

)
for almost every ε ∈ (0, ∞). (2.19)

Proof. For every ε� a0
	 , we know by Theorem 2.1 that I (ε) = Eε(0) = C

ε2 and

|I ′(ε)| = C
ε3 . Hence, it remains to prove that the conclusion holds for 0 < ε < a0

	 + 1.
By convention, we set �ε ≡ 0 if ε� a0

	 . Naturally, we have

I (ε) = Eε(�ε)�Eε(0) = C

ε2 for every ε > 0. (2.20)
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If ε is small, we infer from (2.1b) in Proposition 2.1 that we can find some radius

R >
√

a0
� , such that

∫
R2\BR

|�ε|4 + 2a−(x)|�ε|2 �Cε3. (2.21)

Using (2.20), we deduce that (2.21) holds for 0 < ε < a0
	 + 1. Let us now fix some

ε0 ∈ (0, a0
	 + 1) and 0 < h>1. We have

Eε0+h(�ε0+h) = I (ε0 + h)�Eε0+h(�ε0−h)�Eε0−h(�ε0−h) = I (ε0 − h)�Eε0−h(�ε0+h).

Hence, I is a non-increasing function and

Eε0−h(�ε0−h) − Eε0+h(�ε0−h) � I (ε0 − h) − I (ε0 + h)

� Eε0−h(�ε0+h) − Eε0+h(�ε0+h).

By (2.21), it leads to

I (ε0 + h) − I (ε0 − h)

2h
� −ε0

2(ε0 + h)2(ε0 − h)2

(∫
BR

(a(x) − |�ε0+h|2)2 − (a−(x))2
)

−C (2.22)

and

I (ε0 + h) − I (ε0 − h)

2h
� −ε0

2(ε0 + h)2(ε0 − h)2

∫
BR

[
(a(x) − |�ε0−h|2)2 − (a−(x))2]

(2.23)

which proves with (2.20) that I (·) is locally Lipschitz continuous in (0, a0
	 +1). There-

fore, I (·) is differentiable almost everywhere in (0, a0
	 + 1). We easily check using

standard arguments that �ε0−h → �ε0
and �ε0+h → �ε0

in L4(BR) as h → 0. Assuming
that ε0 is a point of differentiability of I (·), we obtain letting h → 0 in (2.22) and
(2.23),

I ′(ε0) = −1

2ε3
0

∫
BR

[
(a(x) − |�ε0

|2)2 − (a−(x))2
]

+ O(1). (2.24)

Then we deduce (2.19) combining (2.2) and (2.24). �
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2.2. The profile under the mass constraint

In this section, we study the minimization problem (1.8). The motivation is to define
the “vortex-free’’ profile

�̃εe
i�S (2.25)

and to construct admissible test functions for the model. Existence and uniqueness
results for general potentials a are also presented in [17]. Our contribution consists in
proving the identity (2.27) between �ε and �̃ε. By this formula, we obtain a precise
information about the asymptotic behavior of the profile �̃ε.

Theorem 2.2. For every ε > 0, problem (1.8) admits a unique solution �̃ε up to a
complex multiplier of modulus one. Moreover, there exists kε ∈ R, such that

−��̃ε = 1

ε2 (a(x) − |�̃ε|2)�̃ε + kε�̃ε in R2 (2.26)

and �̃ε is characterized by

�̃ε(x) =
√

a0 + kεε2
√

a0
�ε̃

( √
a0 x√

a0 + kεε2

)
with ε̃ = a0ε

a0 + kεε2 ∈
(

0,
a0

	

)
. (2.27)

In addition, for small ε > 0,

|kε|�C| ln ε| (2.28)

and

∣∣Eε(�̃ε) − Eε(�ε)
∣∣�Cε2| ln ε|2. (2.29)

Identity (2.27) gives us automatically the asymptotic properties of �̃ε from those of
�ε by a change of scale and hence we obtain the analog of Proposition 2.1 for �̃ε:

Proposition 2.2. For ε sufficiently small, we have

(2.2a) Eε(�̃ε)�C| ln ε|,
(2.2b) 0 < �̃ε(x)�Cε1/3 exp

(
a(x)

4ε2/3

)
for |x|� �√

a0 + ε,

(2.2c)
∣∣√a(x) − �̃ε(x)

∣∣�Cε1/3√a(x) for x ∈ D with |x|� <
√

a0 − 2ε1/3,
(2.2d) ‖∇�̃ε‖L∞(R2)

�Cε−1,

(2.2e) ‖�̃ε − √
a ‖C1(K) �CKε2| ln ε| for any compact subset K ⊂ D.
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Remark 2.3. We observe that (2.2a) in Proposition 2.2 implies for small ε > 0,

∫
R2\D

|�̃ε|4 + 2a−(x)|�̃ε|2 +
∫
D

(a(x) − |�̃ε|2)2 �Cε2| ln ε| (2.30)

Proof of Theorem 2.2. Step 1: Existence: Let (�n)n∈N be a minimizing sequence for
(1.8). Extracting a subsequence if necessary, by Lemma 2.1, we may assume that �n ⇀

�̃ε weakly in H and strongly in L2(R2) as n → ∞. Then we derive that ‖�̃ε‖L2(R2)
= 1.

We easily check that Eε is lower semi-continuous on H with respect to the weak H-
topology and therefore Eε(�̃ε)� lim infn→∞ Eε(�n), i.e., �̃ε is a minimizer of (1.8).
Since Eε(|�̃ε|) = Eε(�̃ε), we infer that �̃ε = |�̃ε|ei� for some constant �. Hence we
may assume that �̃ε �0 in R2.

Step 2: Proof of (2.27): Let �̃ε be a solution of (1.8). As in Step 1, we may assume
that �̃ε �0. Since �̃ε is a minimizer of Eε under the constraint ‖�̃ε‖L2(R2)

= 1, there

exists kε ∈ R, such that �̃ε satisfies (2.26) and we necessarily have �̃ε > 0 in R2 by
the maximum principle. We rewrite Eq. (2.26) as

−��̃ε = 1

ε2 (aε(x) − |�̃ε|2)�̃ε in R2 (2.31)

with

aε(x) = a0 + kεε
2 − |x|2�. (2.32)

Multiplying (2.31) by �̃ε, integrating by parts and using that
∫

R2 |�̃ε|2 = 1, we obtain
that

a0 + kεε
2

ε2 =
∫

R2
|∇�̃ε|2 + |x|2�

ε2 |�̃ε|2 + 1

ε2 |�̃ε|4 > 	1(Lε, R2) = 	

ε

and therefore, ε̃ = a0ε

a0+kεε2 ∈ (0, a0
	

)
. Setting

ϑε(x) =
√

a0√
a0 + kεε2

�̃ε

(√
a0 + kεε2 x√

a0

)
, (2.33)

a straightforward computation shows that

{
−ε̃2�ϑε = (a(x) − |ϑε|2)ϑε in R2,

ϑε > 0 in R2.
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By Theorem 2.1, it leads to

ϑε ≡ �ε̃ . (2.34)

Combining this identity with (2.33) we obtain (2.27).
Step 3: Uniqueness: Let �̂ε be another solution of (1.8). As for �̃ε, we may assume

that �̂ε is a real positive function. Let k̂ε be the Lagrange multiplier associated to �̂ε,
i.e., �̂ε satisfies

−��̂ε = 1

ε2 (a(x) − |�̂ε|2)�̂ε + k̂ε�̂ε in R2.

By Step 2, the solution �̂ε is characterized by

�̂ε(x) =
√

a0 + k̂εε2

√
a0

�ε̂

⎛
⎜⎝ √

a0 x√
a0 + k̂εε2

⎞
⎟⎠ with ε̂ = a0ε

a0 + k̂εε2
∈
(

0,
a0

	

)
.

Hence it suffices to prove that k̂ε = kε. We proceed by contradiction. Assume for
instance that kε < k̂ε. Then �̂ε satisfies

−��̂ε � 1

ε2 (a(x) − |�̂ε|2)�̂ε + kε�̂ε in R2. (2.35)

We consider the function

ϑ̂ε(x) =
√

a0√
a0 + kεε2

�̂ε

(√
a0 + kεε2 x√

a0

)
, (2.36)

which satisfies by (2.35),{
−ε̃2�ϑ̂ε �(a(x) − |ϑ̂ε|2)ϑ̂ε in R2,

ϑ̂ε > 0 in R2.

Therefore ϑ̂ε is a supersolution of (2.1) with ε̃ instead of ε. By Remark 2.2 we infer
that ϑ̂ε ��ε̃ in R2. By (2.27) and (2.36), it leads to �̂ε � �̃ε in R2. Since ‖�̂ε‖L2(R2)

=
‖�̃ε‖L2(R2)

= 1, we conclude that �̂ε ≡ �̃ε and hence kε = k̂ε, contradiction.
Step 4: Energy bound for small ε > 0: We now prove that for small ε > 0,

Eε(�̃ε)�C| ln ε|. (2.37)

Let � be the test function constructed in the proof of (2.1a) in Proposition 2.1. Setting
�̂ = ‖�‖−1

L2(R2)
�, it suffices to check that Eε(�̂)�C| ln ε| by the minimizing property
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of �̃ε. First, we show that ‖�‖
L2(R2)

remains close to 1 as ε → 0. Since
∫

R2 a+ = 1,

we have
∫

R2 |�|2 = 1 + ∫D(|�|2 − a+(x)) and by (2.13),

∫
D

∣∣|�|2 − a+(x)
∣∣�C

(∫
D

(|�|2 − a+(x))2
)1/2

�Cε.

Hence ‖�‖2
L2(R2)

= 1 + O(ε). Then we derive from (2.13),

∫
R2

|∇�̂|2 = ‖�‖−2
L2(R2)

∫
R2

|∇�|2 �
∫

R2
|∇�|2 + Cε| ln ε|�C| ln ε|

and

1

ε2

∫
D

(a(x) − |�̂|2)2 = 1

ε2

∫
D

(a(x) − |�|2)2 +
2(1 − ‖�‖−2

L2(R2)
)

ε2

∫
D

(a(x) − |�|2)|�|2

+
(1 − ‖�‖−2

L2(R2)
)2

ε2

∫
D

|�|4

� C + C

(
1

ε2

∫
D

(a − |�|2)2
)1/2

�C.

Therefore Eε(�̂)�C| ln ε| and (2.37) holds.
Step 5: First bound on the Lagrange multiplier for small ε > 0. Let �̃ε be the

positive solution of (1.8) and let kε ∈ R be such that �̃ε satisfies (2.26). Multiplying
(2.26) by �̃ε, integrating by parts and using that

∫
R2 |�̃ε|2 = 1, we obtain that

kε =
∫

R2
|∇�̃ε|2 + 1

ε2

∫
R2

(|�̃ε|2 − a(x)
)|�̃ε|2. (2.38)

From (2.37) we derive

∣∣∣∣
∫

R2
|∇�̃ε|2 + 1

ε2

∫
R2\D

(|�̃ε|2 − a(x)
)|�̃ε|2

∣∣∣∣ �C| ln ε|

and

∣∣∣∣ 1

ε2

∫
D

(|�̃ε|2 − a(x))|�̃ε|2
∣∣∣∣ � 1

ε2

∫
D

(|�̃ε|2 − a(x))2 + 1

ε2

∫
D

a(x)
∣∣|�̃ε|2 − a(x)

∣∣
� C| ln ε| + C

ε2

(∫
D

(|�̃ε|2 − a(x))2
)1/2

�Cε−1| ln ε|1/2.
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Hence, by (2.38), we have

|kε|�Cε−1| ln ε|1/2. (2.39)

Step 6: Proof of (2.28): We define the functional Ẽε : H → R by

Ẽε(u) = 1

2

∫
R2

|∇u|2 + 1

4ε2

∫
R2

(aε(x) − |u|2)2 − (a−
ε (x))2, (2.40)

where aε(x) is given by (2.32). Then, by (2.27), we get

Ẽε(�̃ε) = a0 + kεε
2

a0
Eε̃(�ε̃) = a0 + kεε

2

a0
I (ε̃). (2.41)

Since ‖�̃ε‖L2(R2)
= 1, we have

Ẽε(�̃ε) = Eε(�̃ε) − kε

2
+ 1

4ε2

∫
R2

(a+
ε (x))2 − (a+(x))2 (2.42)

� I (ε) − kε

2
+ 1

4ε2

∫
R2

(a+
ε (x))2 − (a+(x))2. (2.43)

Using the fact that
∫

R2 a+ = 1, a simple computation leads to

−kε

2
+ 1

4ε2

∫
R2

(a+
ε (x))2 − (a+(x))2 = �a0k

2
ε ε

2

4�
+ �k3

ε ε
4

12�
. (2.44)

Combining (2.41), (2.43) and (2.44), we infer that

�a0k
2
ε ε

2

4�
� |I (ε̃) − I (ε)| + |kε|ε2

a0
I (ε̃) + �|kε|3ε4

12�
. (2.45)

For small ε > 0, we obtain using (2.19), (2.39) and (2.1a) in Proposition 2.1,

∣∣I (ε̃) − I (ε)
∣∣�Cε−1| ln ε||ε̃ − ε|�C|kε|ε2| ln ε| (2.46)

and

|kε|ε2

a0
I (ε̃)�C|kε|ε2| ln ε|, �|kε|3ε4

12
�C|kε|ε2| ln ε|.

Inserting this estimates in (2.45), we deduce that |kε|�C| ln ε|.
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Step 7: Proof of (2.29): From (2.28), (2.41), (2.46) and (2.1a) in Proposition 2.1,
we derive that Ẽε(�̃ε) = Eε(�ε) + O(ε2| ln ε|2). On the other hand, (2.28), (2.42) and
(2.44) yield Ẽε(�̃ε) = Eε(�̃ε) + O(ε2| ln ε|2) and (2.29) follows. �

3. Minimizing F� under the mass constraint

Our aim in this section is to make a first description of minimizers uε of Fε under
the unit mass constraint. We prove the existence of uε and some asymptotic properties
of uε (in particular, we show that |uε| is concentrated in D). We also present some
tools that we will require in the sequel, in particular the splitting of energy (1.9).

3.1. Existence and first properties of minimizers

First, we seek minimizers uε of Fε under the constraint ‖uε‖L2(R2)
= 1. We perform

the minimization in H and we shall see that Fε is well defined on H.

Lemma 3.1. For any u ∈ H, � > 0 and R >
√

a0 , we have

∣∣∣∣�
∫

R2
x⊥ · (iu, ∇u)

∣∣∣∣ � �
∫

R2
|∇u|2 + �2R2

8�2�(R2 − a0)

∫
R2

[
(a(x) − |u|2)2 − (a−(x))2]

+CR,� �2.

In particular, the functional Fε is well defined on H.

Proposition 3.1. Assume that � < �ε−1. Then there exists at least one minimizer uε

of Fε in
{
u ∈ H : ‖u‖

L2(R2)
= 1

}
. Moreover, uε is smooth and there exists �ε ∈ R,

such that uε satisfies

−�uε + 2i�x⊥ · ∇uε = 1

ε2 (a(x) − |uε|2)uε + �εuε in R2. (3.1)

We emphasize that the result is stated for an angular velocity � strictly less than
�/ε but we only consider in this paper the case of an rotational speed � at most of
order | ln ε|, i.e.,

���0| ln ε| (3.2)

for some positive constant �0.
Before proving Lemma 3.1 and Proposition 3.1, we present some basic properties of

any minimizer uε. We point out that the exponential decay of |uε| outside the domain
D (see (3.2c) in Proposition 3.2) shows that almost all the mass of uε is concentrated
in D.
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Proposition 3.2. Assume that (3.2) holds for some �0 > 0. For ε sufficiently small,
we have

(3.2a) Eε(uε)�C�0 | ln ε|2,
(3.2b) |�ε|�C�0 ε−1| ln ε|,
(3.2c) |uε(x)|�C�0 ε1/3| ln ε|1/2 exp

(
a(x)

4ε2/3

)
for x ∈ R2\D with |x|� �

√
a0 + 2ε1/3,

(3.2d) |uε(x)|�
√

a(x) + |�ε|ε2 + ε2�2|x|2 for x ∈ D with |x|� �√
a0 − ε1/8,

(3.2e) |uε|�√
a0 + C�0 ε| ln ε| in R2,

(3.2f) ‖∇uε‖L∞(K) �C�0,K ε−1 for any compact set K ⊂ R2.

Remark 3.1. We observe that (3.2a) in Proposition 3.2 implies

∫
R2\D

(
|uε|4 + 2a−(x)|uε|2

)
+
∫
D

(|uε|2 − a(x))2 �C�0 ε2| ln ε|2. (3.3)

Proof of Lemma 3.1. Let u ∈ H and � ∈ (0, 1). We have

4�

∣∣∣∣�
∫

R2
x⊥ · (iu, ∇u)

∣∣∣∣ � 4�2
∫

R2
|∇u|2+�2

∫
R2

|x|2|u|2

�4�2
∫

R2
|∇u|2 + �2

�2

∫
R2

|x|2�|u|2.

For R >
√

a0 , we easily check that |x|2� � − R2

R2−a0
a(x) whenever |x|� �R. Then we

derive

4�

∣∣∣∣�
∫

R2
x⊥ · (iu, ∇u)

∣∣∣∣ � 4�2
∫

R2
|∇u|2 − �2R2

2�2(R2 − a0)

∫
R2\B�

R

2a(x)|u|2

+�2

�2

∫
B�

R

|x|2�|u|2. (3.4)

Now, we can see that

∫
B�

R

|x|2�|u|2 = R2

2(R2−a0)

∫
B�

R

−2a(x)|u|2− a0

R2 − a0

∫
B�

R

|x|2�|u|2+ a0R
2

R2 − a0

∫
B�

R

|u|2

� R2

2(R2 − a0)

∫
B�

R

−2a(x)|u|2 + R2

2(R2 − a0)

∫
B�

R

|u|4 + �R4a2
0

2�(R2 − a0)
.
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Inserting this estimate in (3.4), we obtain∣∣∣∣�
∫

R2
x⊥ · (iu, ∇u)

∣∣∣∣ � �
∫

R2
|∇u|2 + �2R2

8�2�(R2 − a0)

∫
R2

[
(a(x) − |u|2)2 − (a−(x))2

]

+ ��2R4a2
0

8�3�(R2 − a0)

and the proof is complete. �
Proof of Proposition 3.1. Since � < �ε−1, we can find 0 < � < 1, such that
����ε−1. Taking in Lemma 3.1,

� = �2 + 1

4
and R =

√
2(1 + �2)a0

1 − �2 ,

we infer that for any u ∈ H,

1 − �2

4
Eε(u) − C� �2 �Fε(u)�2 Eε(u) + C� �2. (3.5)

We easily check that Eε is coercive in H (i.e., there exists a positive constant C
such that Eε(u)�C(‖u‖2

H − 1) for any u ∈ H) and by (3.5), Fε is coercive, too. Let
(un)n∈N ⊂ H be a minimizing sequence of Fε in

{
u ∈ H : ‖u‖

L2(R2)
= 1
}
. From the

coerciveness of Fε, we get that (un)n∈N is bounded in H and therefore, there exists
uε ∈ H, such that up to a subsequence,

un ⇀ uε weakly in H and un → uε in L4
loc(R

2). (3.6)

By Lemma 2.1, it results that un → uε in L2(R2) and consequently, ‖uε‖L2(R2)
= 1.

We write for u ∈ H,

Fε(u) = 1

2

∫
R2

∣∣∣(∇ − i�x⊥)u

∣∣∣2

+ 1

2ε2

∫
{a−(x)��2ε2|x|2}

[
1

2
|u|4 +

(
a−(x) − ε2�2|x|2

)
|u|2
]

+ 1

4ε2

∫
{a−(x)��2ε2|x|2}

[
(a(x) − |u|2)2 − (a−(x))2 − 2�2ε2|x|2 |u|2

]
.

We observe that the functional

u ∈ H �→ 1

2

∫
R2

∣∣∣(∇ − i�x⊥)u

∣∣∣2

+ 1

2ε2

∫
{a−(x)��2ε2|x|2}

[
1

2
|u|4 + (a−(x) − ε2�2|x|2) |u|2

]
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is convex continuous on H for the strong topology. Then from (3.6), it follows that
Fε(uε)� lim infn→∞ Fε(un). Hence, uε minimizes Fε in

{
u ∈ H : ‖u‖

L2(R2)
= 1

}
and by the Lagrange multiplier rule, there exists �ε ∈ R, such that (3.1) holds. By
standard elliptic regularity, we deduce that uε is smooth in R2. �

Proof of Proposition 3.2. Proof of (3.2a): Let �̃ε be the positive real minimizer of Eε

under the constraint ‖�̃ε‖L2(R2)
= 1. Since �̃ε is real-valued, we have (i�̃ε, ∇�̃ε) ≡ 0

and we derive from (2.37),

Fε(uε)�Fε(�̃ε) = Eε(�̃ε)�C| ln ε|. (3.7)

By (3.5) (with � = 1√
2

), we infer that for ε small enough,

1
8 Eε(uε) − C�2 �Fε(uε). (3.8)

Combining (3.2), (3.7) and (3.8), we obtain (3.2a).
Proof of (3.2b): Multiplying Eq. (3.1) by uε and using

∫
R2 |uε|2 = 1, we infer that

�ε =
∫

R2
|∇uε|2 − 2�

∫
R2

x⊥ · (iuε, ∇uε) + 1

ε2

∫
R2

(|uε|2 − a(x))|uε|2. (3.9)

From (3.2a) and Lemma 3.1, we derive∣∣∣∣
∫

R2
|∇uε|2 − 2�

∫
R2

x⊥ · (iuε, ∇uε) + 1

ε2

∫
R2\D

(|uε|2 − a(x))|uε|2
∣∣∣∣

�C�0 | ln ε|2 (3.10)

and arguing as in the proof of (2.39), we obtain by (3.3),

∣∣∣∣ 1

ε2

∫
D

(|uε|2 − a(x))|uε|2
∣∣∣∣ �C�0 ε−1| ln ε|. (3.11)

Using (3.9)–(3.11), we conclude that |�ε|�C�0ε
−1| ln ε|.

Proof of (3.2c): We argue as in [2], Proposition 2.5. Setting Uε := |uε|2, we deduce
from Eq. (3.1),

1

2
�Uε = |∇uε|2 − 2� x⊥ · (iuε, ∇uε) − 1

ε2 (a(x) − Uε)Uε − �εUε

and hence

�Uε � 2

ε2

(
Uε − (a(x) + ε2|�ε| + ε2�2|x|2)

)
Uε in R2. (3.12)
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Let �ε = {x ∈ R2 \ D : a−(x) > 2(ε2|�ε| + ε2�2|x|2)}. From (3.12), we infer that

�Uε � 1

ε2 a−(x)Uε �0 in �ε (3.13)

and thus Uε is subharmonic in �ε ⊂ R2 \ D. Note that by (3.3),

∫
R2\D

U2
ε �C�0ε

2| ln ε|2. (3.14)

By (3.2b), for ε small enough we have ��ε ⊂ {
x ∈ R2 : |x|2� �a0 + ε1/3

2

}
. Consider

now for rε = √a0 + ε1/3, the set �ε = R2 \ B�
rε

= {x ∈ R2 : |x|2� > a0 + ε1/3
} ⊂ �ε.

Then for ε small and any x0 ∈ �ε, we have B(x0,
ε1/3

2 ) ⊂ �ε. We infer from the
subharmonicity of Uε in �ε and (3.14),

0�Uε(x0) � 4

�ε2/3

∫
B(x0,

ε1/3
2 )

Uε � C

ε1/3

(∫
B(x0,

ε1/3
2 )

U2
ε

)1/2

� C�
�0

ε2/3| ln ε| for x0 ∈ �ε

with a constant C�
�0

independent of x0. Hence, we conclude that Uε→0 locally uniformly

in R2 \ D as ε → 0. It also follows that uε ∈ L∞(R2) and then Uε ∈ H 1(R2).

By (3.13), Uε is a subsolution of

{
−ε2�w + a−(x)w = 0 in �ε,

w = C�
�0

ε2/3| ln ε| on ��ε.
(3.15)

We easily check that for ε small enough,

vout(x) = C�
�0

ε2/3| ln ε| exp

(
a0 + ε1/3 − |x|2�

ε2/3

)

is a supersolution of (3.15). Therefore

Uε(x) = |uε(x)|2 �vout(x)�C�
�0

ε2/3| ln ε| exp

(
a0 − |x|2�

2ε2/3

)
for |x|2� �a0 + 2ε1/3.
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Proof of (3.2d) and (3.2e): We set r̃ε = √
a0 − ε1/8 (recall that rε = √

a0 + ε1/3 ).
We define in B�

rε
, the function

vin(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(x) + |�ε|ε2 + ε2�2

�2 |x|2� if |x|� � r̃ε,

a0 −
(

1 − ε2�2

�2

)
r̃ε(2|x|� − r̃ε) + |�ε|ε2 if r̃ε � |x|� �rε.

We easily verify that for ε sufficiently small, vin satisfies

{−ε2�vin �2
(
a(x) + |�ε|ε2 + ε2�2|x|2 − vin

)
vin in B�

rε
,

vin(x)�C�
�0

ε2/3| ln ε| on �B�
rε

(3.16)

and

vin(x)�a(x) + |�ε|ε2 + ε2�2|x|2 > 0 in B�
rε

.

Setting Vε = Uε − vin, we deduce from (3.12) and (3.16),

{
−ε2�Vε + b(x)Vε �0 in B�

rε
,

Vε �0 on �B�
rε

with

b(x) = 2
(
Uε + vin − (a(x) + |�ε|ε2 + ε2�2|x|2))�0 in B�

rε
.

Hence Vε �0 which gives us (3.2d). Then estimate (3.2e) directly follows from the
construction of vin and vout and from (3.2b).

Proof of (3.2f): Without loss of generality, we may assume that K = BR with R > 0.
Consider the re-scaled function ũε(x) = uε(εx) defined for x ∈ B3+Rε−1 . From (3.1),
we obtain

−�ũε = (a(εx) − |ũε|2)ũε − 2i�ε2x⊥ · ∇ũε + �εε
2ũε in B3+Rε−1 .

Taking an arbitrary x0 ∈ BRε−1 , it suffices to prove that exists a constant CR > 0
independent of x0 and ε such that

‖∇ũε‖L∞(B(x0,1)) �C�0,R. (3.17)
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By (3.2c), we know that a(x)uε is uniformly bounded in R2. Using (3.2a), (3.2b) and
(3.2e), we derive that

‖�ũε‖L2(B(x0,3)) � C
(‖(a(x) + �εε

2 − |uε|2)uε‖L∞(R2)
+ �ε2‖x⊥ · ∇ũε‖L2(B(x0,3))

)
� C�0(1 + �ε‖x⊥ · ∇uε‖L2(BR+1)

)�C�0,R.

Since ‖ũε‖L∞(B(x0,3)) �C�0 by (3.2e), it follows that ‖ũε‖H 2(B(x0,2)) �C�0,R . From
Sobolev imbedding, we deduce that ‖∇ũε‖L4(B(x0,2)) �C�0,R . We now repeat the above
argument and it follows ‖�ũε‖L4(B(x0,2)) �C�0,R(1 + �ε3/2‖∇ũε‖L4(B(x0,2)))�C�0,R .
It finally yields ‖ũε‖W 2,4(B(x0,1)) �C�0,R which implies (3.17) by Sobolev imbed-
ding. �

3.2. Splitting the energy

In this section, we prove the splitting of the energy (1.9). The splitting technique
has been introduced by Lassoued and Mironescu in [16]. The goal is to decouple the
energy Fε(u) into two independent parts: the energy of the “vortex-free’’ profile �̃εe

i�S

and the reduced energy of u/(�̃εe
i�S) where the function S is defined in (1.5). For

ε > 0, we introduce the class

Gε =
{
v ∈ H 1

loc(R
2, C) :

∫
R2

�̃2
ε |∇v|2 + �̃4

ε(1 − |v|2)2 < +∞
}

.

We have the following result (valid for any rotational speed �):

Lemma 3.2. Let u ∈ H and ε > 0. Then v = u/(�̃εe
i�S) is well defined, belongs to

Gε and

Fε(u) = Fε(�̃εe
i�S) + F̃ε(v) + T̃ε(v) (3.18)

where the functionals F̃ε and T̃ε are defined in (1.10) and (1.12).

Before proving Lemma 3.2, we are going to translate some of the properties of the
map uε to uε/(�̃εe

i�S). To this aim, we define the subclass G̃ε ⊂ Gε by

G̃ε = {v ∈ Gε : �̃εv ∈ H and ‖�̃εv‖
L2(R2)

= 1
}
.

Proposition 3.3. Assume that (3.2) holds for some �0 > 0. Let uε be a minimizer
of Fε in

{
u ∈ H : ‖u‖

L2(R2)
= 1

}
. Then vε = uε/(�̃εe

i�S) minimizes the functional
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F̃ε + T̃ε in G̃ε. Moreover, for ε > 0 sufficiently small, we have

(3.3a) Ẽε(vε)�C�0 | ln ε|2,
(3.3b)

∣∣T̃ε(vε)
∣∣�C�0 ε| ln ε|3,

(3.3c) |vε(x)|�1 + C�0 ε1/3 for x ∈ D with |x|� �√
a0 − ε1/8,

(3.3d) ‖∇vε‖L∞(K) �C�0,K ε−1 for any compact subset K ⊂ D.

Proof of Lemma 3.2. Step 1: For u ∈ H, we set ṽ = u/�̃ε ∈ H 1
loc(R

2). We want to
prove that ṽ ∈ Gε and

Eε(u) = Eε(�̃ε) + Ẽε(ṽ) + kε

2

∫
R2

�̃2
ε(|ṽ|2 − 1). (3.19)

We consider the sequence (un)n∈N ⊂ H defined by un(x) = �
(
n−1|x|) u(x), where �

is the “cut-off’’ type function defined in (2.5). We easily check that un → u a.e. and
∇un → ∇u a.e. in R2. Setting ṽn = un/�̃ε, then we have ṽn → ṽ a.e. and ∇ṽn → ∇ṽ

a.e. in R2. Since un has a compact support, we get that ṽn ∈ Gε for any n ∈ N. We
have

|∇un|2 = |∇�̃ε|2 + �̃2
ε |∇ṽn|2 + (|ṽn|2 − 1)|∇�̃ε|2 + �̃ε∇�̃ε · ∇(|ṽn|2 − 1),

and therefore,

Eε(un) = Eε(�̃ε) + 1

2

∫
R2

(
�̃2
ε |∇ṽn|2 + �̃4

ε

2ε2 (|ṽn|2 − 1)2

)

+1

2

∫
R2

(
(|ṽn|2 − 1)|∇�̃ε|2 + �̃ε∇�̃ε · ∇(|ṽn|2 − 1)

+ 1

ε2 �̃2
ε(|ṽn|2 − 1)(�̃2

ε − a(x))

)
.

As in [16], the main idea is to multiply Eq. (2.26) by �̃ε(|ṽn|2 −1) and then to integrate
by parts. It leads to

∫
R2

{
(|ṽn|2 − 1)|∇�̃ε|2 + �̃ε∇�̃ε∇(|ṽn|2 − 1) + �̃2

ε

ε2 (|ṽn|2 − 1)(�̃2
ε − a(x))

}

= kε

∫
R2

�̃2
ε(|ṽn|2 − 1)

and we conclude that for every n ∈ N,

Eε(un) = Eε(�̃ε) + Ẽε(ṽn) + kε

2

∫
R2

�̃2
ε(|ṽn|2 − 1).
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Now we observe that

|un|� |u| and |∇un|� |∇u| + |u| a.e. in R2 (3.20)

and by the dominated convergence theorem, it results that Eε(un) → Eε(u) and

kε

2

∫
R2

�̃2
ε(|ṽn|2 − 1) = kε

2

∫
R2

(|un|2 − �̃2
ε) −→ kε

2

∫
R2

(|u|2 − �̃2
ε) = kε

2

∫
R2

�̃2
ε(|ṽ|2 − 1).

Applying Fatou’s lemma, we obtain

Ẽε(ṽ)� lim
n→+∞ Ẽε(ṽn) = lim

n→+∞

{
Eε(un) − Eε(�̃ε) − kε

2

∫
R2

(|un|2 − �̃2
ε)

}

= Eε(u) − Eε(�̃ε) − kε

2

∫
R2

�̃2
ε(|ṽ|2 − 1) < +∞,

and we conclude that ṽ ∈ Gε. Since |ṽn||∇�̃ε|� |∇u| + �̃ε|∇ṽ| , we infer from (3.20)
that �̃2

ε |∇ṽn|2 �C(|∇u|2 + |u|2 + �̃2
ε |∇ṽ|2) and �̃4

ε(|ṽn|2 − 1)2 �2(|u|4 + �̃4
ε). By the

dominated convergence theorem, we finally get that

Ẽε(ṽ) = lim
n→+∞ Ẽε(ṽn) = Eε(u) − Eε(�̃ε) − kε

2

∫
R2

�̃2
ε(|ṽ|2 − 1).

Step 2: Consider now ũ = u/ei�S . Then ũ ∈ H and we have the decomposition

Fε(u) = Eε(ũ) + �

1 + �2

∫
R2

∇⊥a · (iũ, ∇ũ) + �2

2

∫
R2

(|∇S|2 − 2x⊥ · ∇S
)|ũ|2. (3.21)

Indeed, we use that

|∇u|2 − 2�x⊥ · (iu, ∇u) = |∇ũ|2 + 2�

1 + �2 ∇⊥a · (iũ, ∇ũ)

+�2(|∇S|2 − 2x⊥ · ∇S
)|ũ|2 a.e. in R2.

Since |∇S|�C|x|, |∇a|�C|x|, we infer that (3.21) holds.
Step 3: We show that (3.18) takes place. Let u ∈ H. Set ũ = u/ei�S and v = ũ/�̃ε.

By Step 1 and Step 2, it results that ũ ∈ H and v ∈ Gε. By (3.19), we have

Eε(ũ) = Eε(�̃ε) + Ẽε(v) + kε

2

∫
R2

�̃2
ε(|v|2 − 1). (3.22)
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Since ∇⊥a · (iũ, ∇ũ) = �̃2
ε∇⊥a · (iv, ∇v) and |ũ|2 = �̃2

ε |v|2 a.e. in R2, we infer from
(3.21) and (3.22) that

Fε(u) = Eε(�̃ε) + Ẽε(v) + R̃ε(v) + �2

2

∫
R2

(|∇S|2 − 2x⊥ · ∇S
)
�̃2
ε |v|2

+kε

2

∫
R2

�̃2
ε(|v|2 − 1). (3.23)

On the other hand, (3.21) yields

Fε(�̃εe
i�S) = Eε(�̃ε) + �2

2

∫
R2

(|∇S|2 − 2x⊥ · ∇S
)
�̃2
ε (3.24)

and the conclusion follows combining (3.23) and (3.24). �

Remark 3.2. The energy of the “vortex-free’’ profile is given by

Fε(�̃εe
i�S) = Eε(�̃ε) − �a3

0(1 − �2)2

24(1 + �2)�3 �2 + o(1). (3.25)

It directly follows from (3.24) and Proposition 2.2.

Proof of Proposition 3.3. The minimizing property of vε follows directly from Propo-
sition 3.1 and Lemma 3.2.

Proof of (3.3a) and (3.3b): Since uε minimizes Fε in
{
u ∈ H : ‖u‖

L2(R2)
= 1
}
, we

have using Lemma 3.2,

Fε(uε) = Fε(�̃εe
i�S) + Ẽε(vε) + R̃ε(vε) + T̃ε(vε)�Fε(�̃εe

i�S),

and it yields

Ẽε(vε)� |R̃ε(vε)| + |T̃ε(vε)|. (3.26)

Arguing as in the proof of Lemma 3.1 with � = 1/4 and R = √
2a0 , we infer from

(3.2e) in Proposition 3.2 and (3.3),∣∣∣R̃ε(vε)

∣∣∣ � 1

4

∫
R2

�̃2
ε |∇vε|2 + 4�2

(�2 + 1)2

∫
R2

|x|2�|uε|2

� 1

4

∫
R2

�̃2
ε |∇vε|2 + 4�2

(�2 + 1)2

∫
R2\B�√

2a0

2a−(x)|uε|2

+ 8a0�2

(�2 + 1)2

∫
B�√

2a0

|uε|2

� 1

2
Ẽε(vε) + C�0 | ln ε|2. (3.27)
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We obtain from (2.28), (2.30) and (3.3) that

|T̃ε(vε)| = ∣∣1
2

∫
R2

(
�2|∇S|2 − 2�2x⊥ · ∇S + kε

)
(|uε|2 − �̃2

ε)
∣∣

� C�0 | ln ε|2
[ ∫

R2\B�√
2a0

2a−(x)(|uε|2 + �̃2
ε)

+
(∫

B�√
2a0

(|uε|2 − a+)2 + (�̃2
ε − a+)2

)1/2]

� C�0 ε| ln ε|3. (3.28)

According to (3.26), (3.27) and (3.28), we conclude that Ẽε(vε)�C�0 | ln ε|2.
Proof of (3.3c): From (2.2c) in Proposition 2.2, (3.2b) and (3.2d), we infer that

|vε(x)| = |uε(x)|
�̃ε(x)

�

√
a(x) + |�ε|ε2 + ε2�2|x|2

(1 − Cε1/3)
√

a(x)
�1 + C�0ε

1/3 for x ∈ B�√
a0−ε1/8 .

Proof of (3.3d): Let K ⊂ B�√
a0

be any compact set. We denote ṽε = ei�Svε = uε

�̃ε
.

By (2.2c) in Proposition 2.2, we know that there exists CK > 0 independent of ε

such that �̃ε �(1 − Cε1/3)
√

a�CK in K. Since ∇ṽε = �̃−1
ε ∇uε − (�̃−2

ε ∇�̃ε)uε, using
Propositions 2.2 and 3.2, it follows ‖∇ṽε‖L∞(K) �C�0,Kε−1. Hence we deduce (using
(3.3c)) that

‖∇vε‖L∞(K) �‖∇ṽε‖L∞(K) + �‖ṽε∇S‖L∞(K) �C�0,K ε−1

and the proof is complete. �

3.3. Splitting the domain

The main goal in this section is to show that we can excise the region of R2

where the density |uε| is very small (which corresponds to the exterior of D) without
modifying the relevant part in the energy.

Proposition 3.4. Assume that (3.2) holds. For small ε > 0 and � ∈ [1, 2], we set
D�

ε = {x ∈ R2 : a(x) > �| ln ε|−3/2
}
. We have

F̃ε(vε, D�
ε)�C�0 | ln ε|−1.

Proof. Since uε minimizes Fε on
{
u ∈ H : ‖u‖

L2(R2)
= 1
}
, we have for ε sufficiently

small that Fε(uε)�Fε

(
�̃εe

i�S
)
. Then Lemma 3.2 yields F̃ε(vε) + T̃ε(vε)�0 and we
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derive from (3.3b) in Proposition 3.3,

F̃ε(vε)�C�0ε| ln ε|3. (3.29)

We now set N �
ε = R2 \ D�

ε . From the previous inequality, it suffices to prove that

F̃ε(vε, N �
ε )� − C�0 | ln ε|−1 (3.30)

for a constant C�0 > 0 independent of ε and �. Arguing as in the proof of Lemma 3.1
with � = 1/4 and R = √

2a0 , we infer from (3.3),

∣∣∣R̃ε(vε, N �
ε )

∣∣∣ � 1

4

∫
N �

ε

�̃2
ε |∇vε|2 + 4�2

(1 + �2)2

∫
N �

ε

|x|2�|uε|2

� 1

4

∫
N �

ε

�̃2
ε |∇vε|2 + 4�2

(1 + �2)2

∫
R2\B�√

2a0

2a−(x)|uε|2

+ 8a0�2

(1 + �2)2

∫
B�√

2a0
\D�

ε

|uε|2

� 1

4

∫
N �

ε

�̃2
ε |∇vε|2 + 8a0�2

(1 + �2)2

∫
B�√

2a0
\D�

ε

|uε|2 + C�0ε
2| ln ε|4.

By (3.3), we may also estimate

∫
B�√

2a0
\D�

ε

|uε|2 =
∫

B�√
2a0

\B�√
a0

|uε|2 +
∫

B�√
a0

\D�
ε

(|uε|2 − a(x)) +
∫

B�√
a0

\D�
ε

a(x)

� C
( ∫

B�√
2a0

\B�√
a0

|uε|4
)1/2 + C

( ∫
B�√

a0
\D�

ε

(|uε|2 − a(x))2
)1/2

+C| ln ε|−3

� C�0(| ln ε|−3 + ε| ln ε|).

Then it follows that

|R̃ε(vε, N �
ε )|� 1

2
Ẽε(vε, N �

ε ) + C�0 | ln ε|−1 (3.31)

which leads to (3.30). �
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For some technical reasons, it will be easier to deal with a+ instead of �̃2
ε in the

energies. To replace �̃2
ε by a+, we shall prove that the energy estimates inside D�

ε

remain unchanged.

Proposition 3.5. Assume that (3.2) holds for some �0 > 0. We have

Eε(vε, D�
ε)�C�0 | ln ε|2 and Fε(vε, D�

ε)�C�0 | ln ε|−1,

where Eε and Fε are defined in (1.18).

Proof. From (2.2c) in Proposition 2.2, we infer that∥∥∥∥∥a − �̃2
ε

�̃2
ε

∥∥∥∥∥
L∞(D�

ε)

�Cε1/3 and

∥∥∥∥∥a2 − �̃4
ε

�̃4
ε

∥∥∥∥∥
L∞(D�

ε)

�Cε1/3

and then (3.3a) in Proposition 3.3 yields∣∣∣Eε(vε, D�
ε) − Ẽε(vε, D�

ε)

∣∣∣ �Cε1/3 Ẽε(vε, D�
ε)�C�0ε

1/3| ln ε|2. (3.32)

Using (3.2a) and (3.2e) in Proposition 3.2, we derive

∣∣∣Rε(vε, D�
ε) − R̃ε(vε, D�

ε)

∣∣∣ � �
∫
D�

ε

a − �̃2
ε

�̃2
ε

|uε| |∇uε|�Cε1/3�(Eε(uε, D�
ε))

1/2

� C�0ε
1/3| ln ε|2.

Therefore, it follows that

∣∣∣Fε(vε, D�
ε) − F̃ε(vε, D�

ε)

∣∣∣ �C�0ε
1/3| ln ε|2. (3.33)

Then the conclusion comes immediately from (3.3a) in Propositions 3.3 and 3.4. �

4. Energy and degree estimates

This section is devoted to the proof of Theorem 1.1. The method we use is inspired
from [21,23] and provides some information about the location and the number of
vortices inside D.

4.1. Construction of vortex balls and expansion of the rotation energy

We start with the construction of vortex balls by a method due to Sandier [20] and
Sandier and Serfaty [22]; it permits to localize the vorticity set of vε.
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Proposition 4.1. Assume that (3.2) holds for some �0 > 0. Then there exists a positive
constant K�0 such that for ε sufficiently small, there exist �ε ∈ (1, 2) and a finite
collection of disjoint balls

{
Bi

}
i∈Iε

:= {B(pi, ri)
}
i∈Iε

satisfying the conditions:

(i) for every i ∈ Iε, Bi ⊂⊂ Dε = {x ∈ R2 : a(x) > �ε| ln ε|−3/2},
(ii)

{
x ∈ Dε : |vε(x)| < 1 − | ln ε|−5} ⊂ ∪i∈IεBi ,

(iii)
∑
i∈Iε

ri � | ln ε|−10,

(iv)
1

2

∫
Bi

a(x)|∇vε|2 ��a(pi)|di |
(| ln ε| − K�0 ln | ln ε|),

where di = deg

(
vε

|vε| , �Bi

)
for every i ∈ Iε.

Proof. According to the technique presented in [20,22], we construct as in [2] (using
Proposition 3.5 with �=1) a finite collection of disjoint balls

{
Bi

}
i∈Ĩε

={B(pi, ri)
}
i∈Ĩε

,
such that

{
x ∈ D : a(x) > | ln ε|−3/2 and |vε(x)| < 1 − | ln ε|−5} ⊂ ∪

i∈Ĩε
Bi,

(iii) is fulfilled and

∫
Bi

a(x)

2
|(∇ − i�x⊥)vε|2 ��a(pi)|di |

(| ln ε| − K�0 ln | ln ε|) for each i ∈ Ĩε.

By (iii), we can find �ε∈(1, 2), such that �
{
x∈D : a(x) > �ε| ln ε|−3/2

}∩ ∪
i∈Ĩε

Bi=∅.

By cancelling the balls Bi that are not included in
{
x ∈ D : a(x) > �ε| ln ε|−3/2

}
,

it remains a finite collection
{
Bi

}
i∈Iε

that satisfies (i)–(iii). We can see that now (iv)
takes place since we have

�2
∫

Bi

a(x)

2
|x|2|vε|2 ��2

∫
Bi

|x|2|uε|2 �C�0 | ln ε|2r2
i ,

∣∣∣∣�
∫

Bi

a(x)x⊥ · (ivε, ∇vε)

∣∣∣∣ � C�
∫

Bi

a(x)

�̃ε

|uε| |∇vε|�C�‖√a∇vε‖L2(Bi)
ri

� C�0 | ln ε|2ri (4.1)

(here we used Proposition 3.5). Hence these terms can be absorbed by K�0 ln | ln ε|
(up to a different constant K�0 + 1). �

We are now in a position to compute an asymptotic expansion of the rotation energy
according to the center of each vortex ball Bi and the associated degree di :
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Proposition 4.2. Assume that (3.2) holds for some �0 > 0. For ε sufficiently small,
we have

Rε

(
vε, Dε

) = −��

1 + �2

∑
i∈Iε

(a2(pi) − �2
ε | ln ε|−3) di + o(| ln ε|−5).

Proof. By Proposition 4.1, Dε \ ∪i∈IεBi ⊂ Dε \ {|vε| < 1/2} whenever ε is small
enough. For x ∈ Dε such that |vε(x)|�1/2, we set

wε(x) = vε(x)

|vε(x)| .

Since (ivε, ∇vε) = |vε|2(iwε, ∇wε) in Dε \ {|vε| < 1/2}, we have

Rε

(
vε, Dε \ ∪i∈IεBi

)= �

1 + �2

∫
Dε\∪i∈Iε Bi

a(x)∇⊥a · (iwε, ∇wε)

+ �

1 + �2

∫
Dε\∪i∈Iε Bi

a(x)(|vε|2 − 1)∇⊥a · (iwε, ∇wε).

(4.2)

Then we estimate using Proposition 3.5,∣∣∣∣∣
∫
Dε\∪i∈Iε Bi

a(x)(|vε|2 − 1) ∇⊥a · (iwε, ∇wε)

∣∣∣∣∣
� Cε (Eε(vε, Dε))

1/2 ‖∇wε‖L2(Dε\{|vε |<1/2})
� Cε| ln ε|‖∇wε‖L2(Dε\{|vε |<1/2}). (4.3)

In Dε \ {|vε| < 1/2}, we have |∇wε|�2(|∇vε| + |∇|vε||)�4|∇vε|. We deduce that∫
Dε\{|vε |<1/2}

|∇wε|2 �16
∫
Dε

|∇vε|2 �16| ln ε|3/2
∫
Dε

a(x)|∇vε|2 �C| ln ε|7/2 (4.4)

and hence we obtain combining (4.2)–(4.4),

Rε

(
vε, Dε \ ∪i∈IεBi

) = �

1 + �2

∫
Dε\∪i∈Iε Bi

a(x)∇⊥a · (iwε, ∇wε) + O(ε| ln ε|4). (4.5)

Since (iwε, ∇wε) = wε ∧ ∇wε and a(x)∇⊥a = ∇⊥Pε(x) with

Pε(x) = a2(x) − �2
ε | ln ε|−3

2
, (4.6)
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we derive that∫
Dε\∪i∈Iε Bi

a(x)∇⊥a · (iwε, ∇wε) =
∫
Dε\∪i∈Iε Bi

∇⊥Pε(x) · (wε ∧ ∇wε)

= −
∑
i∈Iε

∫
�Bi

Pε(x)

(
wε ∧ �wε

��

)
,

where � denotes the counterclockwise oriented unit tangent vector to �Bi . The smooth-
ness of vε implies the existence of �ε ∈ ( 1

2 , 2
3 ) such that U = {x ∈ R2 : |vε| < �ε

}
is

a smooth open set. Then we set for i ∈ Iε, Ui = Bi ∩U (notice that by Proposition 4.1,
Ui ⊂⊂ Bi for small ε). Using (4.4), we derive∣∣∣∣

∫
�Bi

Pε(x)

(
wε ∧ �wε

��

)
−
∫
�Ui

Pε(x)

(
wε ∧ �wε

��

)∣∣∣∣
=
∣∣∣∣
∫

Bi\Ui

∇⊥Pε(x) · (wε ∧ ∇wε)

∣∣∣∣
�Cri ‖∇wε‖L2(Dε\{|vε |<1/2})
�Cri | ln ε|7/4

and since |vε|��ε in Ui and |Pε(x) − Pε(pi)|�ri‖∇Pε‖L∞(D), ∀x ∈ B(pi, ri), it
results from Proposition 3.5,∣∣∣∣

∫
�Ui

(Pε(x) − Pε(pi))

(
wε ∧ �wε

��

)∣∣∣∣
= �−2

ε

∣∣∣∣
∫
�Ui

(Pε(x) − Pε(pi))

(
vε ∧ �vε

��

)∣∣∣∣
� �−2

ε

∣∣∣∣
∫
Ui

a(x)∇⊥a · (ivε, ∇vε)

∣∣∣∣
+2�−2

ε

∣∣∣∣
∫
Ui

(Pε(x) − Pε(pi)) det(∇vε)

∣∣∣∣
� C (ri ‖√a ∇vε‖L2(Dε)

+ ri | ln ε|3/2 ‖√a ∇vε‖2
L2(Ui )

)

� Cri | ln ε|7/2.

Therefore we conclude by (iii) in Proposition 4.1 that

Rε

(
vε, Dε \ ∪i∈IεBi

)= −�

1 + �2

∑
i∈Iε

Pε(pi)

∫
�Ui

wε ∧ �wε

��
+ o(| ln ε|−5)

= −2��

1 + �2

∑
i∈Iε

Pε(pi) di + o(| ln ε|−5).
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On the other hand, we infer from (4.1) and (iii) in Proposition 4.1 that∣∣Rε(vε, ∪i∈IεBi)
∣∣�C| ln ε|2

∑
i∈Iε

ri �C| ln ε|−8.

According to (4.6), the proof is completed. �
4.2. Asymptotic behavior for subcritical velocities. Proof of (i) in Theorem 1.1

In this section, we prove (i) in Theorem 1.1. We will distinguish different types of
vortex balls through the partition Iε = I0 ∪ I∗ ∪ I− where

I0 = {i ∈ Iε : di �0 and |pi |� < | ln ε|−1/6},
I∗ = {i ∈ Iε : di �0 and |pi |� � | ln ε|−1/6},
I− = {i ∈ Iε : di < 0

}
in order to improve the lower bound for Fε(vε, Dε) (see (4.12)). In the sequel, we
assume that

���1 + �1 ln | ln ε| (4.7)

for some constant �1 ∈ R. Therefore, if ε is small, we have �� 3
a0

| ln ε| and we will

use the constant K 3
a0

given by Proposition 4.1. In fact, one can choose instead of 3
a0

any other constant �0, such that �0 > 1+�2

a0
. First, we show the following:

Proposition 4.3. Assume that (4.7) holds with �1 < ��
1 :=

−(1+�2)K 3
a0

a0
. Then for ε

sufficiently small, we have
∑

i∈Iε
|di | = 0 and

|vε| → 1 in L∞
loc(D) as ε → 0. (4.8)

Moreover,

F̃ε(vε) = o(1) and Ẽε(vε) = o(1). (4.9)

Proof. From Proposition 3.5 and Proposition 4.1, we get that

O(| ln ε|−1) � Fε(vε, Dε)�
1

2

∫
Dε\∪i∈Iε Bi

a(x)|∇vε|2 + 1

4ε2

∫
Dε

a2(x)(1 − |vε|2)2

+�
∑
i∈Iε

a(pi)|di |
(

| ln ε| − K 3
a0

ln | ln ε|
)

+ Rε(vε, Dε). (4.10)
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Combining Proposition 4.2 and (4.7), it results that

Rε (vε, Dε) � −�a0�

1 + �2

∑
i∈I0

a(pi)|di | − �(a0 − | ln ε|−1/3)�

1 + �2

∑
i∈I∗

a(pi)|di | + o(| ln ε|−5)

� −�
∑

i∈I0∪I∗
a(pi)|di || ln ε| − �a0�1

1 + �2

∑
i∈I0

a(pi)|di | ln | ln ε|

+ �

2a0

∑
i∈I∗

a(pi)|di || ln ε|2/3 + o(| ln ε|−5) (4.11)

(here we used that

(a0 − | ln ε|−1/3)�

1 + �2 � | ln ε| − 1

a0
| ln ε|2/3 + a0�1

1 + �2 ln | ln ε|� | ln ε| − 1

2a0
| ln ε|2/3

for ε small). Then we deduce from (4.10) and (4.11) that for ε small enough,

1

2

∫
Dε\∪i∈Iε Bi

a(x)|∇vε|2 +
∫
Dε

a2(x)

4ε2 (1 − |vε|2)2

−�

(
a0�1

1 + �2 + K 3
a0

)∑
i∈I0

a(pi)|di | ln | ln ε|

+ �

4a0

∑
i∈I∗

a(pi)|di || ln ε|2/3 + �

2

∑
i∈I−

a(pi)|di || ln ε| + o(| ln ε|−5)

�Fε(vε, Dε)�O(| ln ε|−1). (4.12)

Since a0�1

1+�2 < −K 3
a0

and a(pi)�a0/2 for i ∈ I0, we derive from (4.12) that∑
i∈I0

|di | = o(| ln ε|−1). Now since a(pi)� | ln ε|−3/2 in Dε, we also obtain from (4.12)
that

∑
i∈I∗ |di | = O(| ln ε|−1/6) and

∑
i∈I− |di | = O(| ln ε|−1/2). Hence∑

i∈Iε
|di | ≡ 0 for ε sufficiently small. Coming back to (4.12), we infer that for

any 0 < R <
√

a0,

1

ε2

∫
B�

R

(1 − |vε|2)2 � CR

ε2

∫
Dε

a2(x)(1 − |vε|2)2 �o(1). (4.13)

Then the proof of (4.8) follows as in [6] using the estimate (3.3d) in Proposition 3.3
on |∇vε|.

Since
∑

i∈Iε
|di | = 0, we derive from Proposition 4.2 that Rε(vε, Dε) = o(1). Us-

ing that Fε(vε, Dε)�o(1), we deduce that Eε(vε, Dε) = o(1) and hence we have
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Fε(vε, Dε) = o(1). By (3.32) and (3.33), it leads to

Ẽε(vε, Dε) = o(1) (4.14)

and F̃ε(vε, Dε) = o(1). Using (3.29) and (3.30), we obtain that

o(1)�F̃ε(vε, N �ε
ε )� − F̃ε(vε, Dε) + o(1)�o(1) (4.15)

and therefore F̃ε(vε) = o(1). By (3.31), we have

F̃ε(vε, N �ε
ε ) = Ẽε(vε, N �ε

ε ) + R̃ε(vε, N �ε
ε )� 1

2
Ẽε(vε, N �ε

ε ) + o(1)

and it results from (4.15) that Ẽε(vε, N �ε
ε ) = o(1). By (4.14), we conclude that

Ẽε(vε) = o(1). �

Proof of (i) in Theorem 1.1. By (2.2c) in Proposition 2.2 and (4.8), it follows that
|uε| → √

a+ in L∞
loc(D). According to (3.2c) in Proposition 3.2, it turns out that

|uε| → √
a+ in L∞

loc(R
2 \ �D). Moreover, by (4.9), for any sequence εn → 0 we

can extract a subsequence (still denoted (εn)) such that vεn → � in H 1
loc(D) for

some constant � ∈ S1. We obtain that uεne
−i�S → �

√
a+ in H 1

loc(D) by (2.2e) in
Proposition 2.2. By Lemma 3.2 (3.3b) in Proposition 3.3 and (4.9), we conclude that
(1.6) holds. �

4.3. Vortex existence near the critical velocity: Proof of (ii) in Theorem 1.1

We now prove (ii) in Theorem 1.1. We will use an appropriate test function in order
to improve the upper bound of the energy Fε(uε).

Proof of (ii) in Theorem 1.1. Step 1: Construction of a test function. Assume that

�1 + � ln | ln ε|����0| ln ε| for some positive constants � and �0 (thus, �0 > �2+1
a0

).
We consider the map ṽε defined by

ṽε(x) =

⎧⎪⎨
⎪⎩

x

|x| if |x|�ε,

x

ε
otherwise

and we set ûε = �̃εe
i�Sṽε. We easily check that ûε ∈ H. Lemma 3.2 yields

Fε(ûε) = Fε(�̃εe
i�S) + F̃ε(ṽε) + T̃ε(ṽε).
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Then we estimate

∣∣T̃ε(ṽε)
∣∣� 1

2

∫
Bε

∣∣∣∣�2|∇S|2 − 2�2x⊥ · ∇S + kε

∣∣∣∣�̃2
ε(1 − |ṽε|2) = o(1).

A straightforward computation (using Proposition 2.2) leads to

F̃ε(ṽε)� − �a2
0�

1 + �2 ln | ln ε| + O(1)

and consequently

Fε(ûε)�Fε(�̃εe
i�S) − �a2

0�

1 + �2 ln | ln ε| + O(1). (4.16)

We now set ũε = m−1
ε ûε with mε = ‖ûε‖L2(R2)

(so that ‖ũε‖L2(R2)
= 1). Since

‖�̃ε‖L2(R2)
= 1, we have

m2
ε =

∫
R2

�̃2
ε |ṽε|2 = 1 +

∫
Bε

�̃2
ε(|ṽε|2 − 1) = 1 + O(ε2).

From this estimate, we easily check that

Fε(ũε) = Fε(ûε) + o(1). (4.17)

Step 2: By the minimizing property of uε, we know that Fε(uε)�Fε(ũε). In view
of (3.3b) in Proposition 3.3, (4.16) and (4.17), it yields

F̃ε(vε)� − �a2
0�

1 + �2 ln | ln ε| + O(1).

Using (3.30) and then (3.33), we derive that

Fε(vε, Dε)� − �a2
0�

1 + �2 ln | ln ε| + O(1). (4.18)

On the other hand, by Proposition 4.2, we have

Rε(vε, Dε) � − ��0

1 + �2

∑
i∈Iε, di>0

a2(pi) di | ln ε| + o(1)

� −��0 a0

1 + �2

∑
i∈Îε, di>0

a(pi) di | ln ε| − �

2

∑
i∈Iε\Îε, di>0

a(pi) di | ln ε| + o(1)
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where we denoted

Îε =
{

i ∈ Iε : a(pi)�
�2 + 1

2�0

}
.

Then, by Proposition 4.1, we deduce that

Fε(vε, Dε)�Eε(vε, ∪i∈IεBi) + Rε(vε, Dε)� − C�0

∑
i∈Îε, di>0

a(pi) di | ln ε| + o(1)

for some constant C�0 > 0. Therefore, by (4.18), it results that for small ε > 0,

∑
i∈Îε, di>0

di > 0.

We conclude that there exists i0 ∈ Îε, such that di0 > 0, so that there exists at least
one vortex inside the bulk D which remains at a positive distance (independent of ε)
from �D. If in addition, (4.7) holds, we claim that uε has at least one vortex close to
the origin. Indeed, by (4.12) and (4.18), we obtain

−�

(
a0�1

1 + �2 + K 3
a0

)∑
i∈I0

a(pi)|di | ln | ln ε|� − �a2
0�

1 + �2 ln | ln ε| + O(1)

which implies for ε small enough that
∑

i∈I0
|di |�C > 0 for a constant C independent

of ε. Hence, for ε small, there exists a ball Bj0 (j0 ∈ I0) that carries a vortex xε with
|xε|�O(| ln ε|−1/6). �

4.4. Energy estimates near the critical velocity. Proof of (iii) in Theorem 1.1

In this section, we prove the energy estimates stated in (iii) in Theorem 1.1 in the
regime (4.7). First, we shall prove that the number of vortex balls with non-zero degree
lying in a slightly smaller domain than Dε, is bounded.

Proposition 4.4. Assume that (4.7) holds. Then

N0 :=
∑
i∈I0

|di |�C�1 (4.19)

and setting Bε = {x ∈ R2 : a(x)� | ln ε|−1/2
}
, we have for ε sufficiently small,

∑
i∈I∗∪I−, pi∈Bε

|di | = 0. (4.20)
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Proof. Arguing as for (4.12), we derive that for ε small enough,

∫
Dε\∪i∈Iε Bi

a(x)|∇vε|2 +
∑
i∈I∗

a(pi)|di || ln ε|2/3 +
∑
i∈I−

a(pi)|di || ln ε|

�C

∣∣∣∣ a0�1

1 + �2 + K 3
a0

∣∣∣∣∑
i∈I0

a(pi)|di | ln | ln ε| + O(| ln ε|−1)

�C0N0 ln | ln ε| + O(| ln ε|−1) (4.21)

for some positive constant C0 independent of ε. We set

Ĩ∗ = {i ∈ I∗ : pi ∈ Bε} , N∗ =
∑
i∈Ĩ∗

|di |

and

Ĩ− = {i ∈ I− : pi ∈ Bε} , N− =
∑
i∈Ĩ−

|di |.

Since a(pi)� | ln ε|−1/2 for any i ∈ Ĩ∗ ∪ Ĩ− , we obtain from (4.21),

∫
Dε\∪i∈Iε Bi

a(x)|∇vε|2 + N∗| ln ε|1/6 + N−| ln ε|1/2

�C0N0 ln | ln ε| + O(| ln ε|−1) (4.22)

which implies in particular that

max{N∗, N−}� N0

2
(4.23)

for ε sufficiently small. We now show that N0 is uniformly bounded in ε. Consider
the sets

Iε =
[
| ln ε|−1/6,

√
a0

2

]
and Jε =

{
r ∈ Iε : �B�

r ∩ (∪i∈IεBi) = ∅
}

.

We can see that Jε is a finite union of intervals verifying |Iε \ Jε| � | ln ε|−10. For
r ∈ Jε and ε small, we have |vε|� 1

2 on �B�
r and therefore, we can define

D(r) = deg

(
vε

|vε| , �B�
r

)
.
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By (4.23), we obtain that for small ε,

|D(r)| =
∣∣∣∣∣∣
∑

|pi |�<r

di

∣∣∣∣∣∣ �N0 − N− � N0

2
for any r ∈ Jε.

We have (using elliptic coordinates x1 = r cos �, x2 = �−1r sin �)

∫
B�√

a0
2

\∪i∈Iε Bi

a(x)|∇vε|2 � 3a0

4�

∫
Jε

(∫ 2�

0
|∇vε|2r d�

)
dr

� C

∫
Jε

1

r

(∫ 2�

0

∣∣∣∣vε ∧ �vε

��

∣∣∣∣
2

r2 d�

)
dr.

We set wε = vε|vε | in B�√
a0
2

\∪i∈IεBi . Since |vε ∧ �vε

��
| = |vε|2|wε ∧ �wε

��
|� 1

4
|wε ∧ �wε

��
|

in B�√
a0
2

\ ∪i∈IεBi , we infer that

∫
B�√

a0
2

\∪i∈Iε Bi

a(x)|∇vε|2 � C

∫
Jε

1

r

(∫ 2�

0

∣∣∣∣wε ∧ �wε

��

∣∣∣∣
2

r2 d�

)
dr

� C

∫
Jε

1

r

(∫ 2�

0
wε ∧ �wε

��
r d�

)2

dr �C

∫
Jε

D(r)2

r
dr

� CN2
0

∫
Jε

dr

r
.

We can see that

∣∣∣∣
∫
Iε

dr

r
−
∫
Jε

dr

r

∣∣∣∣� | ln ε|1/6|Iε \ Jε| = o(1)

and since
∫
Iε

dr

r
= C ln | ln ε| + O(1), we finally get that

∫
B�√

a0
2

\∪i∈Iε Bi

a(x)|∇vε|2 �C1 ln | ln ε|N2
0

for some positive constant C1 independent of ε. From (4.22), we derive

(
C1N

2
0 − C0N0

)
ln | ln ε|�O(| ln ε|−1)
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which implies that N0 is uniformly bounded in ε. Then it follows by (4.22) that

N∗ �O
(

ln | ln ε|
| ln ε|1/6

)
and N− �O

(
ln | ln ε|
| ln ε|1/2

)
.

Therefore, N− = N∗ = 0 for ε sufficiently small. �

Proof of (iii) in Theorem 1.1. From Proposition 4.2, (4.7) and (4.20), we infer that
for ε small,

Rε

(
vε, Dε

)
� −�a0�

1 + �2

∑
i∈I0

a(pi)|di | − ��

1 + �2 | ln ε|−1/2
∑

i∈I∗\Ĩ∗

a(pi)|di | + o(| ln ε|−5)

� −�
∑
i∈I0

a(pi)|di |
(

| ln ε| + a0�1

1 + �2 ln | ln ε|
)

−2�

a0

∑
i∈I∗

a(pi)|di || ln ε|1/2 + o(| ln ε|−5).

We now inject this estimate in (4.10) to derive that
∑

i∈I∗a(pi)|di ||ln ε|�CN0ln|lnε|+o(1)

and hence, by (4.19),
∑

i∈I∗ a(pi)|di || ln ε|1/2 = o(1). It yields

Rε(vε, Dε) = Rε

(
vε, Dε \ ∪i∈IεBi

)+ o(1)

� −�
∑
i∈I0

a(pi)|di |
(

| ln ε| + a0�1

1 + �2 ln | ln ε|
)

+ o(1).

Since Fε(vε, Dε) = Eε(vε, Dε) + Rε(vε, Dε)�O(| ln ε|−1), it follows:

Eε(vε, Dε) � �
∑
i∈I0

a(pi)|di |
(

| ln ε| + a0�1

1 + �2 ln | ln ε|
)

+ o(1)

� C�1N0| ln ε| + o(1)�C�1 | ln ε|. (4.24)

Set Aε = Dε \ B�
2| ln ε|−1/6 . Matching (iv) in Proposition 4.1 with (4.24), we finally

obtain

Eε(vε, Aε)�Eε(vε, Dε \ ∪i∈I0Bi) � �

(
a0�1

1 + �2 + K 3
a0

)∑
i∈I0

a(pi)|di | ln | ln ε| + o(1)

� C�1N0 ln | ln ε|�C�1 ln | ln ε|

and the proof is complete. �
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Remark 4.1. For general potentials a(x), the analysis becomes rather delicate when
the set of maximum points of the quotient �

a
in D = {x ∈ R2 : a(x) > 0} is not

finite. Recall that � is the solution of the problem (1.16). An example is given by the
following perturbation at the origin of the harmonic potential 1 − |x|2:

a(x) =
⎧⎨
⎩

1
5+|x|2 if |x| < 1,

4−|x|
18 if 1 < |x| < 4.

Here, the set of maximum points of the quotient �
a

is a circle centered in the origin.
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