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Introduction

1 Avant-propos

Cette thése est une exposition des différents travaux de recherche effectués par 'auteur
au cours de son doctorat. Chaque chapitre pourra donc étre considéré indépendamment
des autres. Nous avons toutefois décidé de regrouper les références bibliographiques par
soucis de présentation. Les chapitres [1, 2 et [5 sont respectivement extraits de [70], [71]
et [48]. Les résultats du chapitre 3l sont annoncés dans [60].

2 Présentation de la thése

2.1 Energie avec poids des applications a valeurs dans S? et sin-
gularités prescrites

Dans le premier chapitre, nous étudions un probléme variationnel inspiré d’un célébre
article de H. Brezis, J.M. Coron et E.H. Lieb [30].

Pour N points distincts ay, . . . , ay dans un domaine borné régulier Q C R? (ou Q = R?)
et N entiers non nuls dy, ..., dy tels que > d; = 0, nous considérons la classe

&= {u cC! (ﬁ\ Ui{a;}, SQ), u = constante sur 02,

/ |Vu(r)|*de < +o0, deg(u,a;) =d; pouri=1,..., N}
Q

(sans condition au bord si Q = R3). La condition Y d; = 0 nous assure ici que £ # )
(ce qui n’est pas le cas dans I'hypothése inverse, voir [30]). On se donne une fonction
mesurable w : {2 — R satisfaisant

0<A<w<A presque partout dans €2 (1)

pour deux constantes A et A. Notre objectif est de déterminer une formule (explicite si
possible) nous permettant de calculer

B, (a0 d)Y,) = Tnf / V() Pw(e)da 2)

ix



X Introduction

Dans [30], H. Brezis, J.M. Coron et E.H. Lieb ont étudi¢ le cas w = 1 et ont montré
que
E1 (((Ii, dl)zj\il) = 87TL1

ot Ly désigne la longueur d’une connexion minimale associée a la configuration (a;, d;)N.,
et a la distance géodésique euclidienne dg sur Q. Le probléme était motivé par des ques-
tions se rattachant a la théorie des cristaux liquides (cf. [43, [50]). Peu aprés, F. Bethuel,
H. Brezis et J.M. Coron ont mis en évidence I'importance de la notion de connexion mi-
nimale en ce qui concerne I’approximation pour la topologie forte de H' des applications
de H'(Q,S?) par des applications régulieres (cf. [16, 18]). Plus récemment, cette notion
s’est révélée trés utile pour I'étude des applications a valeurs dans S! en liaison avec la
minimisation de la fonctionnelle de Ginzburg-Landau tridimensionnelle (voir J. Bourgain,
H. Brezis et P. Mironescu [23] et H. Brezis, P. Mironescu et A.C. Ponce [32]). En étudiant
le probléme (2), nous chercherons & définir une notion de connexion minimale adaptée
aux problémes posés dans des milieux inhomogeénes discontinus lorsque 'inhomogénéité
peut étre modélisée par une fonction de densité w.

Rappelons briévement la définition générale de longueur d’une connexion minimale.
Dans un espace métrique M muni d’une distance D et pour une configuration donnée
(a;, di)N, € MY x (Z*)N telle que > d; = 0, nous assignons le signe de d; a chaque point
a; que nous écrivons |d;| fois. Nous obtenons alors une liste de points positifs (p1, ..., px)
et une liste de points négatifs (nq,...,nk) (ces deux listes ont le méme nombre d’éléments
puisque Y d; = 0). La longueur Lp d’une connexion minimale associée a (a;, d;)Y, est

définie par la formule :
K

LD = }r\é[g; — D(pj7no(j))
]:

ou Sk est 'ensemble des permutations de K indices.

Dans la situation dite du dipdle, c’est a dire pour une configuration prescrite de la
forme ((a, +1), (b, —1)), la valeur de L; est simplement donnée par dg(a,b). Lorsque la
fonction w est réguliere, nous verrons que B, ((a,+1), (b, —1)) = 87d,(a, b) ou &, désigne
la distance (riemannienne) sur €2 définie par

Sula.t) = [ w50 (3)

Iinfimum étant pris sur toutes les courbes lipschitziennes 7 : [0,1] — Q satisfaisant
v(0) = a et y(1) = b. Pour une fonction mesurable w, nous observons que la formule
(3) n’a plus de sens puisque w n’est pas bien définie sur les courbes qui sont des objets
de mesure nulle. Nous démontrons que pour toute fonction mesurable w, la quantité
(1/87)Ey((a,+1), (b, —1)) définit une distance sur € notée d,,(a,b) qui est équivalente a
la distance géodésique euclidienne. De plus, nous établissons le caractére géodésique de
cette distance : la distance géodésique associée a d,, coincide avec d,,.
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Dans le cas d’une configuration générale, nous montrons que
Ew ((ai, dz)lj\il) = 87TLw

ot L, désigne la longueur d’une connexion minimale associée a (a;, d;)¥; et a la dis-
tance d,,. Nous présentons ensuite quelques propriétés de stabilité et d’approximation par
rapport & w de (2) ainsi que des résultats partiels concernant une version anisotrope de (2)
(le probléme général restant ouvert).

2.2 Energie relaxée des applications a valeurs dans S? et poids
mesurables

Comme application des résultats que nous venons de présenter, nous étudions un
probléme de relaxation rattaché au phénomeéne de non densité des fonctions réguliéres
dans H'(€, S?) muni de sa topologie forte (voir [22]).

Etant donnés un domaine borné régulier Q C R3, une fonction mesurable w : Q2 — R
satisfaisant la condition (1)), et une application réguliére g : 9Q — S? de degré topologique
nul, nous chercherons a expliciter la fonctionnelle

By, (u)=Inf{ lim inf/Q |V, (z)*w(z)dz, unEHgl(Q, S*YNCH (), u, — u dans H' faible}

n——+o00
définie pour u € H,(Q,5?).
Dans [18], F. Bethuel, H. Brezis et J.M. Coron ont montré que pour w = 1,

Ei(u) = /Q \Vu(z)|*dx + 87 Ly (u),

ou Li(u) désigne la longueur d’une connexion minimale relative a la distance géodésique
Euclidienne dg sur € connectant les singularités topologiques de w. Plus précisément,
Lq(u) est définie par la formule

1 _
Ly(u) = yy Sup {(T(u), (), ¢ : 2 — R 1-Lipschitz par rapport a dg}, (4)

T'(u) désignant la distribution
Tw.¢) = [ D) V¢ - [ (Dw)-v)¢
Q G

ou D(u) = (u < Oquu N\ Osu, u - O3u A Oyu, u - Oyu A 82u). Lorsque 'application u a un nombre
fini de singularités ay, ..., ay dans Q, T'(u) s’écrit sous la forme (voir [30])

N

T(u) = 47TZdZ‘ a,;

=1
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ou d; = deg(u, a;). Dans cette situation, L;(u) coincide avec la longueur d’une connexion
minimale associée a la configuration (a;,d;)Y, et a la distance dg.
Nous montrons que pour tout u € Hj (9, 5?),

Fu(u) = /Q V() Pw(z)de + 87 L (w),

ou
1 _
Ly(u) = yy Sup {(T(u), (), ¢ :  — R 1-Lipschitz par rapport a dw}.
™

Nous étudions comme pour le probléme (2)), certaines propriétés de stabilité et d’ap-
proximation par rapport a w de la fonctionnelle F,,. Le cas d’une fonctionnelle sans donnée
prescrite sur le bord est également traité.

2.3 Tourbillons dans un condensat de Bose-Einstein bidimension-
nel en rotation (en collaboration avec R. Ignat)

Le phénomeéne de condensation de Bose-Einstein a donné lieu a une recherche intense
depuis sa premiére réalisation dans des gaz alcalins en 1995. Un condensat de Bose-
Einstein (BEC) est un gaz quantique pouvant étre décrit par une seule fonction d’onde
complexe. La présence de tourbillons est une particularité majeure de ces systémes, ils
sont définis comme les zéros de la fonction d’onde autour desquels il y a une circulation
de phase. Expérimentalement, ces tourbillons peuvent étre obtenus par la rotation du
piége regroupant les atomes (voir [1, 168, [69]). Les premiers tourbillons sont observés a
partir d’une certaine vitesse de rotation, puis leur nombre croit progressivement quand la
vitesse augmente. Les tourbillons se répartissent alors réguliérement autour du centre du
condensat.

Un modéle bidimensionnel de BEC en rotation a été utilisé par Y. Castin et R. Dum [40)].
Ce modéle correspond & un piége confinant fortement les atomes dans la direction de I'axe
de rotation. Dans le cas axisymétrique, la fonction d’onde u. minimise I’énergie de Gross-
Pitaevskii

sous la contrainte de masse

ul* =1
R2

ol £ >0 est un petit parameétre d’échelle, Q = Q(e) >0 désigne la vitesse de rotation et
a(z) = ao — |z[* avec ay determinée par [y, a*(z) = 1 (ie. ap = \/2/7), représente le
potentiel de piégeage.

Notre but est d’étudier le nombre et la position des tourbillons en fonction de la
vitesse angulaire €2(g) quand € — 0. Nous nous plagons dans la situation ou 2 est au plus
de Tordre de |In¢|, ce qui correspond au régime critique pour I'existence de tourbillons.
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Lorsque € — 0, la minimisation de F; force |u.| & se rapprocher de va*. La densité de
masse est donc asymptotiquement localisée dans

D:={z € R* a(z) > 0} = B(0,/ag ).

Nous montrons également que |u.| décroit exponentiellement vers 0 en dehors de D. Nous
limitons la recherche des tourbillons au disque D. Un développement asymptotique de
F.(u.) nous permet d’estimer la vitesse critique €; pour laquelle le diéme tourbillon
devient énergétiquement favorable et aussi de calculer I’ énergie renormalisée (i.e. 1'énergie
d’interaction) gouvernant la position des tourbillons.

2.4 Sur une énergie de Ginzburg-Landau avec un poids dépen-
dant de ¢

Le quatriéme chapitre est consacré a I’étude des minimiseurs u. de la fonctionnelle de
type Ginzburg-Landau avec poids

E.(u) = %/G|Vu(x)’2d:p—|—4ig2 [ a1 = (@) e

définie pour u € H, (G, S") ot G C R? est un domaine borné régulier simplement connexe,
g : 0G — S! est une donnée réguliére de degré topologique d > 0 et € >0 est un petit
paramétre. La fonction de poids a.(z) que nous considérons est de la forme

a.(z) =e* st € GT et a(z)=1s1 z€ G,

ol o est une constante strictement positive, G et G~ sont deux ouverts disjoints de G
tels que GT UG~ = G et ¥ = G* N G- définisse une courbe réguliére.

Lorsque a.(x) = 1, F. Bethuel, H. Brezis et F. Hélein [20] ont montré que pour toute
suite £, — 0, il existe une sous-suite (¢, ) et d points ay, ..., aq € G tels que U, converge
dans certaines topologies vers I'application harmonique uy donnée par

up(2) = ’z — Zil é - ZZ’ ) dans G\ {ai,..., a4}
ou
Ap =0 dans G,
{ ug =g sur O0G.
Il est également montré dans [20] que les singularités limites aq, . .., ag peuvent étre loca-

lisées dans G comme une configuration minimisante d’une certaine énergie renormalisée
W (-) associée a la fonction g.

Dans notre situation, nous obtenons un résultat de convergence similaire et nous mon-
trons que toutes les singularités limites se situent dans G~ U X, celles-ci pouvant étre
localisées au moyen de 1'énergie renormalisée W (-) restreinte a 'ensemble G~ U X.
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2.5 Stabilisation en temps fini pour un systéme d’oscillateurs
amortis (en collaboration avec J.I. Diaz)

Dans le dernier chapitre, nous présentons des résultats obtenus en collaboration avec
J.I. Diaz [48]. Dans cette étude, nous avons cherché a déterminer certaines conditions
entrainant I'arrét en temps fini de processus ol interagissent les phénomeénes de frottement
de Coulomb (ou frottement solide) et d’oscillation. De telles situations se présentent dans
de nombreuses formulations allant de la plus élémentaire, correspondant au mouvement
d’un oscillateur harmonique soumis & un amortissement solide et visqueux

mi(t) + 2kz(t) + psB(E(t)) + peg((t)) 2 0,

a celle plus complexe d'une corde vibrante amortie occupant un intervalle borné €}

Uy — Ugg + Mﬁﬂ(ut) + :ugg(ut) > 0.

Dans chaque cas, 3 désigne le graphe maximal monotone de R? associé & la fonction signe

{1} sir >0,
B(r)=<¢[-1,1 sir=0,
{-=1} sir<0,

g désigne une fonction lipschitzienne satisfaisant certaines conditions auxiliaires et les
parametres m, k, pig et p, sont supposés strictement positifs.

Nous nous intéressons principalement au cas intermédiaire a N degrés de liberté
(1 < N < 400) se présentant lors de la discrétisation spaciale par différences finies de
la corde vibrante et lors de I’étude de N oscillateurs couplés amortis. Un systéme modéle,
admettant de nombreuses variantes, peut étre formulé de la facon suivante

mi;(t) + k(=21 (t) + 225(t) — 21 (t)) + ppB(E:(1)) + pgg(E:(t)) 3 0,
(PN) xz(o) = Up,i)
JZz(O) = V-

)

L’objectif principal de notre analyse est de montrer que la présence de la fonction ¢
peut générer deux types d’orbite qualitativement distincts : en fonction des données ini-
tiales, I’état du systéme atteint un état d’équilibre soit en temps fini soit de fagon asymp-
totique (lorsque ¢t — +00). Cette dichotomie constraste avec le phénomeéne d’eztinction
en temps fint pour les équations paraboliques non linéaires de premier ordre en temps.



Chapitre 1

Energy with weight for S-valued maps
with prescribed singularities

1.1 Introduction and main results

Let Q be a smooth bounded and connected open set of R? or Q = R3and let w: Q — R
be a measurable function such that

0< A< w<A aein® (1.1)

for some constant A and A. We consider N distinct points aq,...,ay in 2 and we define
the following class of S?-valued maps

£ = {u € C'(Q\ U{a;}, 5%), u = const on 99,
/ |Vu(x)|?dr < +o0, deg(u,a;) =d; fori=1,..., N}
Q

(without boundary condition if = R?) where the d;’s are given in Z \ {0} and such that
> d; = 0 (which is a necessary and sufficient condition for £ to be non-empty, see [30]).
Our goal is to establish a formula for

Bu (@, d)) = Int [ [Vua) Pute)ds (12)

In [30], H. Brezis, J.M. Coron and E.H. Lieb have proved that for w = 1 this quantity is
equal to 8w L where L is the length of a minimal connection associated to the configuration
(a;,d;)N, and the Euclidean geodesic distance dg on Q (see also [8, 27, 28, 53]). The
first motivation for studying such a problem comes from the theory of liquid crystals
(see [43, 50]). Later F. Bethuel, H. Brezis and J.M. Coron have shown that the notion
of minimal connection is very useful when dealing with questions of approximation of
S%-maps by smooth S%maps in the strong H!'-topology (see [16, 18]). We also refer to
the results of J. Bourgain, H. Brezis, P. Mironescu [23| and H. Brezis, P. Mironescu, A.C.

1



2 Chapitre 1. Energy with weight for S*-valued maps with prescribed singularities

Ponce [32] for some similar problems involving S'-valued maps. In the dipole case, namely
when we have two prescribed points P and N of degree +1 and —1 respectively, the value
of L is equal to dq(P, N). When w is continuous, we prove that F,, (P, N) = 8wd, (P, N)

where d,, denotes the Riemannian distance on € defined by

%@M=M4wmmwwa (1.3)

where the infimum is taken over all curves v € Lipp ([0, 1],5). Here Lipp v ([0, 1],5)
denotes the set of all Lipschitz maps 7 from [0, 1] with values into 2 such that v(0) = P
and (1) = N. For a general measurable function w, we prove that E, (P, N) induces a
geodesic distance on Q (in the sense defined in Section [1.2.1). We call the attention of the
reader to the fact that, in the measurable case, there is no way to define a distance by
a formula like (1.3) since w is not well defined on curves which are sets of null Lebesgue
measure. To overcome this difficulty, we construct a kind of “length structure” in which
the general idea is to thicken the curves. We proceed as follows. For two points x and y
in €2, we consider the class P(z,y) of all finite collections of segments F = ([ay, ﬁk])zg)
such that B = g1, a1 = @, By = y and [ag, k] C Q. We define “the length” of an
element F € P(z,y) by

e—0F E([ak,B),)NQ

where Z ([ag, Bi],€) = {€ € R3, dist (€, [ax, Br]) < €} and then we consider the function
dy Q) x Q — R, defined by

dp(z,y) = Inf £,(F).
(,y) = Inf lu(F)

In Section 1.2, we extend d,, to Q x Q and we prove the metric and geodesic character
of d,,. We also show that d,, agrees with 9,, whenever w is continuous. In Section [1.3, we
give the proof of the following result.

Theorem 1.1. We have
By ((a;,d;)} ) = 87Ly,

where Ly, is the length of a minimal connection associated to the configuration (a;, d;)N,
and the distance d, on €.

The geodesic character of the distance d,, implies that d,, coincides with the distance
induced by the length functional associated to the Finsler metric ¢,, obtained by diffe-
rentiation of d,, (cf. Section 1.2.2). More precisely, for every P and N in §, we prove that

dﬂRMsz{éwuwmwmﬁmemwquﬁ&- (1.4
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Formula (1.4) shows that, for a non-smooth w, the quantity F, ((ai, dz’)i]L) is still given
in terms of shortest paths between the a;’s but the metric we compute the lengths with
might be non-isotropic (a metric ¢ is said to be isotropic if ¢(x,v) = p(z)|v| for some
positive function p).

We recall that the length L,, of a minimal connection is computed as follows (see [30]).
We relabel the points a;, taking into account their multiplicity |d;|, as two lists of positive
and negative points say (p1,...,px) and (ny,...,ng) (note that this two lists have the
same number of elements since > d; = 0). Then we have

K
Ly = Min » du(pj; ne() (1.5)
j=1
where Sk denotes the set of all permutations of K indices. Another way to compute L,
is to use the following formula (see [30]),
K
L, =Max » ((p;) — ¢(ny), (1.6)
j=1
where the supremum is taken over all functions ¢ : Q — R which are 1-Lipschitz with
respect to d, i.e., |((z) —((y)| < dw(z,y) for any z,y € Q. In Section 1.2.3, we give a cha-
racterization of 1-Lipschitz functions for the distance d,,. Combining this characterization
with formula (1.6)), we obtain the lower bound of the energy following the approach in [30].
The upper bound is obtained using explicit test functions based on a dipole construction.

Section [1.4.1] concerns a stability property of problem (1.2). We investigate the fol-

lowing question. Given an arbitrary sequence (w,,),en of real measurable functions, un-

der which condition on (w,)nen, can we conclude that {E,, ((a;,d;),)} converges

neN
to Ew((ai,di)fil) ? From Theorem (1.1, we infer that the convergence of the sequence

{Ewn ( (a;, di)fil) }neN is strictly related to the convergence of the variational problems

vin { [ pun (1(0),3(0) dt, 7 € Lippy (0 1.9}

where P, N € () and ¢,,, denotes the Finsler metric derived from w,. The same ques-
tion involving the class Lippy ([0,1],€) instead of the class Lippy (0,1],€2) has been
studied in [34] by G. Buttazzo, L. De Pascale and I. Fragala in the I'-convergence frame-
work. Adapting their result to our setting, we give a necessary and sufficient condition
on (wy)nen under which {E,, ((ai,di)ﬁil)}neN converges to E,, ((a;, d;)~;). In Section
4.2, we concentrate on the approximation procedure by smooth weights. If one requires
that w, is continuous and converges to w uniformly in € then we get easily the conver-
gence using formula (1.3) but such an assumption implies that w is continuous and this
is quite restrictive in our setting. On the other hand if one assumes that w,, — w almost
everywhere in €2, we show that the convergence of the problems does not hold in gene-
ral (c.f. Remark [1.4). However, we prove that E, ((a;,d;)~,) is the limit of a sequence
{Euw, ((ai,d)X,)}, <y Where w, obtained from w by a regularization procedure.
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In the last section, we present a partial result on a similar problem involving a matrix
field M = (my)} ,—, instead of a weight :

En ((az‘, di)i]\il) - 52% /Q Z mkl(m)a_xk O o
k=

Throughout this chapter, a sequence of smooth mollifiers means any sequence (p,)nen
satisfying

pn € C(R* R), Suppp, C Bi/,(0), / pn=1 p,>0 on R
R3

1.2 Preliminary results : Metric properties of d,

1.2.1 Metric and geodesic character of d,

First of all we recall that for any metric space (M, d), we may associate the length
functional Ly defined by

m—1
La(v) = SUP{Zd(’V(tk)a’Y(tkH))’ O=ty<ti<...<lpm=1me N}
k=1
where « : [0,1] — M is any continuous curve. Note that L, is lower semicontinuous on
C9([0, 1], M) endowed with the topology of the uniform convergence on [0, 1].

Definition 1.1. A distance d is said to be geodesic on M if for any x,y € M,
d(.ﬁlﬁ, y) = Inf Ld(’y)

where the infimum is taken over all continuous curves v : [0, 1] — M such that v(0) = z

and y(1) = y.

Proposition 1.1. d,, defines a geodesic distance on Q which is equivalent to the Euclidean
geodesic distance dq and d,, agrees with 0., whenever w is continuous.

Proof. Step 1. Let x,y € Q and let F = ([ay, 1], .- -, [@n, Bn]) be an element of P(x,y).
From assumption (1.1)), we get that
)= ) lim — d§ =AY |a — B > Ada(z,y). (1.7)
Z e—0F 7T€2 E([ok, Bk ,e)N02 kz:;
By the definition of d,, and (1.1), for any F = ([ay, 1], ..., [am, Bn]) in P(x,y), we have

™

|
o
+
3
™

[N}
[l

w(T,y) <A2hm — dszZ|ak—ﬁk|.
([akvgk]ve)mﬂ k=1
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Taking the infimum over all F € P(x,y), we infer that

dy(z,y) < Ada(z,y). (1.8)

From (1.7) and (1.8), we deduce that d,(z,y) = 0 if and only if + = y. Now let us
now prove that d,, is symmetric. Let z,y € Q and § > 0 arbitrary small. We can find

Fs = (la, Bal, - - -, [, Bn]) in P(z,y) satisfying
Cu (Fs) < du(w,y) + 0.
Then for F; = ([, anl,- - -, [B1, cu]) € P(y, z), we have
du(y, @) < by (F5) = bw (F5) < du(z,y) +0.

Since 0§ is arbitrary, we obtain d,,(y, x) < d,(z,y) and we conclude that d,(y, z) = d,(x,y)
inverting the roles of x and y. The triangle inequality is immediate since the juxtaposition
of 71 € P(x,z) with F» € P(z,y) is an element of P(z,y). Hence d,, defines a distance
on {2 verifying

Mo (z,y) < dw(z,y) < Adq(z,y) for any =,y € Q. (1.9)

Therefore distance d,, extends uniquely to  x Q into a distance function that we still
denote by d,,. By continuity, d,, satisfies (1.9) on Q.
If w is continuous, it is easy to see that for a segment [a, ] C §2 we have

1
lim — w(&)dE = w(s)ds,
0" T J5(fa g )0 o)
and we obtain for F = ([aq, £1], ..., [an, Bn]) € P(z,y) and z,y € Q,
by (F) = / w(s)ds. (1.10)
Uzzﬂakvﬁk}

Since w is continuous, the infimum in (1.3) can be taken over all piecewise affine curves
v :[0,1] — € such that 4(0) = x and (1) = y and we infer from (1.10) that

dw(z,y) = dp(x,y).

Then d,, = 6, on Q x Q which implies that the equality holds on Q x Q by continuity.
Step 2. We prove the geodesic character of d, on Q. Since d,, is equivalent to dg, Q
endowed with d,, remains complete. By Theorem 1.8 in [55], it suffices to prove that for
any z,y € Q and any § > 0, we can find a point z € Q verifying

max(dy(z, 2), dw(z,y)) < = dy(z,y) + 9.

DN | —
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We fix 2,y € Q and then #,§ € € such that dy(x,%) + dy(y, ) < §/2. We choose
some F = ([ag, 1], ..., [an, Ba]) in P(Z,7) satisfying £,(F) < d,(Z,9) + §/2. For every
1 <m <n, weset F, = ([a1, 1], -, [am, Bm]). We consider n, € N defined by

Max {m, 2 <m < n, by, (Fno1) < 3 0u(F)} if £y (F1) < 5 Lw(F),
Ny =
1 otherwise,
and s € (0, 1) defined by
lw(F) =20y (Fn,—1)

if n, > 1,

B 2Ly ([an, ; Bn,])

B Cuw(F) .
ifn, =1.

2y (o, Bn,])
Let e, — 07 as k — 400 such that
. 1
Ew([an*vﬁn*]) = lim —5 w(g)dé

k=20 €} 2 (0, Bn, L)
For each k € N, we choose z; € [ay,, (,,] verifying

1
1 w(e)de = = / w(€)de + Ofey),
E([an*7ﬂ'n*]76k)m9

2 2
7€k JE(lany 2kl e1)NQ2 e

and 1 1
-5
1 w(€)de = / w(£)dE + O(ex).
27} J2(an, on, ] )2

2
ﬂ-gk E([zkugn*]afk)mQ

Extracting a subsequence if necessary, we may assume that z, — 2z with z € |a,,, O, ]

k——+o0
Then we have
1 S
— w(E)de = / w(E)de + O(ey) + Oz — =),
T JE([an, ,2]e)N02 TEL JE([any Bu]ex)NO
and
1 1—s
) w(§)d§ = 522 w(§)d€ + O(ex) + O(|z — 2)).
TEk JE([2,8n,) 1) TEl JE(jany Bn, er)N02

Taking the liminf in k, we derive

w(lan,, 2]) < stu([am,, Bn,]) and Lu([z, Gn.]) < (1 = 8)lw([an,, Bn.]).

Hence we deduce that the elements F; = ([ov, 1], .., [an,.2]) € P(Z,2) and F; =
([z, 8] - - Lo, Ba]) € P(z2,7) verity

1 1

1 1
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and we conclude that

0o 1 30
max(dy (2, 2), du(y, ) < max(dy(F, 2), dulf 2)) + 5 < 5 dulB9) +
1
< 5 dw(xa y) + 57
i.e., the point z meets the requirement. |

Remark 1.1. The geodesic character of d,, implies that two arbitrary points of (ﬁ, dw)
can be linked by a minimizing geodesic. We mean by a minimizing geodesic any curve
v : I — Q such that

dy(y(),y(t) = |t =t'| forany ¢,t' €1,

where I is some interval of R. In particular we obtain the existence for any x,y € Q of a
curve ., € Lip, , ([0,1],9) satisfying

duy (Yay (1), Yay (1)) = L, ()|t — | for any ¢, € [0, 1]

(and then d,(z,y) = La, (72y))- Indeed, (ﬁ, dw) defines a complete and locally compact
metric space and since d,, is of geodesic type, the existence of a minimizing geodesic is
ensured by the Hopf-Rinow Theorem (see [55], Chapter 1). Moreover we deduce from
(1.9) that any minimizing geodesic for the distance d,, is a A\~!-Lipschitz curve for the
Euclidean geodesic distance.

1.2.2 Integral representation of the length functional

In this section, we show that d, is actually induced by a Finsler metric in the sense
defined below.

Definition 1.2. A Borel measurable function ¢ : Q xR? — [0, +-00) is said to be a Finsler
metric if p(z,-) is positively 1-homogeneous for every = € Q and convex for almost every
r € Q.

Proposition 1.2. There exists a Finsler metric o, : Q x R® — [0, 4+00) such that for
any Lipschitz curve « : [0,1] — Q,

La, () = /01 pw (7(1),7(1)) dt. (1.11)

Moreover, for any x,y € Q we have

du(z,y) = Min { / e (1), 4(1)) dt, 5 € Lip,,, ([0, M)} - (1.12)
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Proof. Step 1. First, we assume that 2 = R3. To distance d,, we associate the function
¢ : R3 x R® — [0, +00) defined by

dy(z,z+1
Yw(z,v) = lim sup M
t—0t t
In [83], it is proved that ¢, defines a Finsler metric and the proof of (1.11) is given in
[42], Theorem 2.5. Then (1.12) directly follows from Remark 1.1l

Step 2. Assume that € is a smooth bounded and connected open set of R3. For § > 0,
we consider Qs = {z € R3, dist(z,Q) < ¢} where "dist" denotes the usual Euclidean
distance on R?. We choose § sufficiently small for the projection Iz of x € Q5 on Q to
be well defined and smooth. Setting x; = x — [Iz for x € s, we define the function
dw75 Qs X Qs — [0, —I—OO) by

dw,d(‘ray) = dw(Hx7Hy) + |xl - yl|

We easily check that d,, s defines a distance on {25. Then we consider for z,y € {2,

dw,é('ra y) = Inf de,é (/y))

where the infimum is taken over all v € C° ([0, 1],Qs) satisfying v(0) = z and (1) = y.
We also easily verify that Ewﬁ defines a distance on 25 and it follows from Proposition 1.6
in [55] that

Ly, = La,, on C°([0,1],Q%). (1.13)

Therefore 8w,5 (x,y) is a geodesic distance on Q5. Moreover we infer from (1.9) that C_ZW; is
equivalent to the Euclidean geodesic distance on Qs. We consider p,, 5 : Qs xR* — [0, +-00)
defined by

dw’g(l', X + tu)

Yuws(x,v) = lim sup
t—0t+ 13

By the results in [83], ¢, s is Borel measurable, positively 1-homogeneous in v for every
x € Qs and convex in v for almost every x € 5. By Theorem 2.5 in [42], we have for any
Lipschitz curve v : [0, 1] — Qs,

1
L) = [ s (1(0)5(0) de. (1.14)
0
Since d,, 5 = d,, on Q, we deduce that
La, , = Lag, on C°([0,1],92). (1.15)

If we denote by ¢, the restriction of ¢, 5 to Q x R, we obtain (1.11) combining (1.13),
(1.14) and (1.15). Then (1.12) follows from Remark [1.1. |
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Remark 1.2. If we assume that w is continuous in €2, we have
(T, V) = w(x)|v| for any (z,v) € Q x R®.
Indeed, fix (z,v) € Q x R3\ {0}, ¢ > 0 such that B(x,2tA\"'|v|) C Q and consider a

sequence v, € Lip([0, 1], ) verifying

/0 0 (10(5)) [ (8)[ds — dup(z, 7+ t1) a8 1 — +00.

Since d,, > Adg, we infer that 7, ([0,1]) C B(x,2tA"!v|) and therefore

/ 0 (30(9)) Pra(9)]ds > w() / ias)lds — oft) > w(z)tlv] — oft).
Letting n — +o00, we obtain
WlBZEW) 5 u(a)lo] — o),
But we trivially have

d, ) 1"
M < ;/ w(a + sv)|v|ds = w(z)|v] + o(1).
0

We derive the result from these two last inequalities letting ¢ — 0.

1.2.3 Characterization of 1-Lipschitz functions

Proposition 1.3. Assume that (1.1) holds. Then for any ( : Q — R, the following
properties are equivalent :

i) |¢(x) = ()| < du(@,y)  for any z,y € Q.
i) ¢ is Lipschitz continuous and |V{(z)| < w(z) for a.e. x € Q.

Proof. i) = ii). Let ¢ : Q — R satisfying i). From Proposition [I.1, we infer that ¢
is Lipschitz continuous. Fix zy € Q and R > 0 such that Bsg(zg) C Q. Let (pn)nen
be a sequence of smooth mollifiers and consider, for n > 1/R, the smooth function
Cn = pn * C 2 Br(zo) — R. We write

G) = [ (=)t + 2
Bl/n
and then for any x,y € Bgr(zo),

[Gn () = Culy)] < pn(=2) [C(z + 2) = C(y + 2)| d=

T

Bl/n

VAN
T

pn(—=2)dy(z + 2,y + 2)dz
Bl/n

pn(—2) by ([x + 2,y + 2]) dz.

VAN
o

Bl/n
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Taking an arbitrary sequence ¢, — 07 as k — 400 and using Fatou’s lemma, we get that

6@ -Gl < [ ) (nm inf L w(@dg) "

k=too e Ja(lotzy+alen)n

< lim inf —/ / n(—z)w(g)dfdz.
h—+oo ER g, Ja(urayraenn

For k € N sufficiently large, we have = ([z + 2,y + 2], ex) C Bsr(xo) and accordingly

/ / £)dedz = / / (=2 w(E + 2)dzde
Bl/n = w—l—zy—f—z] Ek) a:y €k) Bl/n

_ / oo+ w(E)dE.
E([muy} 7‘5k)

Since p, * w is smooth, we obtain as in the proof of Proposition [1.1]
1
— Pn * w(E)dE — pn *w(s)ds as k — +oo.
Tk J2(lwy)er) 9]

Thus for each z,y € Bgr(xg) we have

Gal2) = Guly)] < /[ ]pn * w(s)ds.

Then for z € Bg(zg), h € S? fixed and § > 0 small, we derive

< = —
d Y x,2+0h] pn w(S)dS 6—0T P 'LU(l’)

and we conclude, letting 6 — 0, that |V, (z) - h| < p, * w(x) for each © € Br(xy) and
h € S? which implies that |V(,| < p, * w on Br(xy). Since V¢, — V¢ and p, x w — w
a.e. on Br(xg) as n — 400, we deduce that |V({| < w a.e. on Bg(x). Since zy is arbitrary
in €2, we get the result.

i) = i) The reverse implication follows from the lemma below.

Lemma 1.1. Let ¢ : Q — R be a Lipschitz continuous function. For any a,b € Q with
[a,b] C Q and all € > 0 sufficiently small, we have

1
@ OISz [V 2 9

me?

Proof of i) = i) completed. Indeed, let  be a Lipschitz continuous function satisfying 4i).
We deduce from Lemma 1.1 and (1.1) that for any F = ([a1, B1], - - ., [, Bn]) € P(x,y)
and any parameters €1, ...,¢&, > 0 sufficiently small, we have

- d Aey | .
)= < D 16(6) - ak|<z<mk [ wtera)
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Taking successively the liminf in €, — 0 for each parameter ¢, we get that

C(x) = Cy)| < 4w (F).

We obtain the result for z,y € Q taking the infimum over all F € P(z,y). We conclude
that 4) holds in all Q by continuity. [ |

Proof of Lemma '1.1. First note that we just have to prove the inequality for smooth
functions (, the general case follows by a density argument. Let ( be a smooth real valued
function. Without loss of generality, we may assume that a = (0,0,0) and b = (0,0, R).
Then for any € > 0 such that the 3D-cylinder BE(Q)(O) x [0, R] is included in 2, and any
(x1,29) € B§2)(0), we have

|C<b) - g(a)| < |C(0707 R) - C($1,$2, R)’ + K(‘rl?x?? R) - <($1,x270)‘
+ ’C(-xlam%o) - C(0,0,0)‘

R
S/ |VC(ZL‘1,ZL’2,$3)|CZ&73—|—2€||V€||Oo .
0

Integrating the last inequality in (z1,x2) € BéQ)(O) yields

me? |¢(b) — ((a)| < / IV (21, 2o, 23)| doydzodas + 27e° | V(]| o -
B (0)x[0.R]
Dividing by me?, we get the result since B§2)(O) x [0, R] C Z([a,b],e) NS |

Remark 1.3. In 38|, F. Camilli and A. Siconolfi study the Hamilton-Jacobi equation
H(z,Vu)=0 a.e.in

where the Hamiltonian H(z,v) is measurable in x, continuous and quasiconvexe in v.
They construct the optical length function L? : Q x Q giving a class of “fundamental
solutions”. They show that for every yo € Q, L%(yo, -) is the maximal element of the set

C(yo) = {v € WH°(QLR), H(z,Vv) < 0a.ein Q, v(yy) = 0}.
In the case H(z,v) = |v| — w(z), Proposition 1.3 shows that d,, and the optical length
function L coincide i.e., dy(z,y) = L%(z,y) for any x,y € Q.
1.3 Emnergy estimates - Proof of Theorem 1.1

Theorem [1.1] follows from the combination of Lemma (1.2 and Lemma [1.5 below. In
Section [1.3.2) we give an explicit dipole construction.
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1.3.1 Lower bound of the energy
Lemma 1.2. For any u € £, we have
/Q \Vul|?w(z)dz > 87 L,.
Proof. The proof is essentially the same as in [30] once we have the results of Section 1.2l

We introduce for each u € £ the vector field D defined by

D (4 8u/\8u " E)u/\f)u " 8u/\8u
N 8x2 8x3 ’ 8%3 axl ’ 89@1 8%2 )

As in [30], we have 2|D| < |Vu|? and D € L*(Q) defines a distribution which satisfies

(1.16)

N
divD =4r ) " did,, in D'(Q). (1.17)
i=1
Relabelling the points (a;) as positive and negative points taking into account their mul-
tiplicity |d;|, we get a list (p;) of positive points and a list (n;) of negative points. Since
> d; = 0, we have as many positive points as negative points. Then we write (1.17) as

K
divD =47 " 5, — b, (1.18)
j=1

From Proposition 1.3 and the properties of D, we deduce that for any function ¢ : Q — R
which is 1-Lipschitz with respect to d,,,

/Q]Vu|2w(:z:)d:c > 2/Q|D]w(9c)d9c > —2/QD«V§. (1.19)

Using (1.18), we get that

/Q\Vu\zw(x)div > 8w (ZC(I%‘) - C(nj)) — 8w /m(D -n)Cdo

without the boundary term if Q = R?. On 99, we have D-n = Jacs(u/g0) where 7 denotes
the outward normal and Jacy(u/sn) denotes the 2 x 2 Jacobian determinant of u restricted
to 0f). Since each u € & is constant on 0f2, we have D -1 = 0 on 02 and therefore we
derive

/Q Ve = $tMax 3 (o) — ()

where the maximum is taken over all functions ¢ which 1-Lipschitz with respect to d,,.
By (1.6) we conclude that

/ \Vul?w(z)dz > 87 L,
Q

for any map u € £ which completes the proof of the lower bound. [ |
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1.3.2 The dipole construction

Lemma 1.3. Let P, N be two distinct points in . For any 6 > 0, there exists a map
us € C* (Q\ {P, N}, S?) such that deg(us, P) = +1, deg(us, N) = —1 and

/ \Vus|*w(z)dr < 87dy (P, N) + 4.
Q

Moreover us is constant outside a small neighborhood of a polygonal curve running between
P and N.

Proof. For € > 0, we consider the map w, : R? — S? defined by

( 2¢? :
g4 42 (z,y, —”) if r<e
we(x,y) = § (A(r) cos 8, A(r)sin,C(r)) if e <r < 2 (1.20)
(0,0,1) if 2 <7

where (z,y) = (rcos6,rsinf) and

—2¢? 4e3
A(r) = - r+ sl C(r)y=1/1- (A(r))Q.

According to the results in [29], w. is Lipschitz continuous and degw. = +1 when one
identifies R? U {oo} with S?. As in [30], the map w. will be the main ingredient in our

construction. First we define the following objects. For two distinct points «, 8 € €2 with
[, B] C €, we denote by p,s(x) the projection of z € R? on the straight line passing by
«a and (§ and

Ta,ﬂ($) = dist (Iv [av 6}) ) haﬂ(l’) = dist (paﬁ<x>7 {Oé, 6}) )

where “dist” denotes the Euclidean distance in R3. For some small o > 0, we consider the
following sets :

Co(a, B) = {z € R?, po(z) €], B], ora5(x) < hap(z), 0 < hop(z) < 0c},
TS (e, B) = {:L‘ € R®, pas() € [, B], rap(z) <€, haps(r) > 05},
Vi(e, B) = {x € R?, pas() € [, 8], rap(z) < el

We choose ¢ small enough such that C§_(a, B)UTy (o, B)UVae (v, ) C 2. We fix § > 0 and
we consider F = ([a, B1], - .., [@n, Bn]) € P(P, N) such that the curve v = Ug[ay, Ok] has
no self-intersection points. Then for each k € {1,...,n}, we fix two unit vectors i;, and jy
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in the orthogonal plane to [, — ak such that (i, jg, é’ii’;') defines a direct orthonormal

basis of R? and we consider u*) : Q — 52 defined by

we (Xg(z), Yi(x)) if x € C_(ou, Br),

ugk)(x) =\ We ((x_pakﬂk (l’)) U (x_pakﬂk (ZL‘)) ]k) ifz € T205<ak’ ﬁk)v

(0,0,1) otherwise
with
Xu(#) = 2@ = Py (8)) ik Yi(®) = (2 = pay () -]
) = (T — Pay, g, k(T) = ——F—(T — Pa,, Ik -
hoék Bk (ZE) Pk hoék B (l’) Pk

We check that uf® e W™ (Q\ {ak,ﬁk} 52, deg(u® o) = +1, deg(u™, B) = —1.

loc

Using coordinates in the basis (i, jk, Iﬁ—) some classical computations (see [27]) lead

ag|

to
(k) 2 40’252 2 . o
[Vul® (2)]? < (14-Ce? )hg—() [Vwe (Xi(2), Yi(2))]"  in CF (ax, Br)- (1.21)
ag,Bk
By the results in [29], we have
/ IVw.]* =0(e), / |Vw,|* = 87 + O(e) (1.22)
B2:(0)\B:(0) B.(0)
and therefore
/ V(P (@) s (7= P (2) ) e =0(e),  (1.23)
(TFN\TE ) (a:Bk)
40252 2
W |Vwe (Xg(x), Ye(2))|” de = O(e). (1.24)
(ar,Be) "o, B :L‘)

We infer from (1.2141.24)) that
/ Vul Pu(z)de <
Q
<[ V@) e o))l O,
7 (ak,Pk

Since we have

8et
2
|Vwe(z,y)|* = EETEEwr for (z,y) € B-(0),
we conclude that
4
/ VU [2w(z)dz < 8/ (@) ~dz + O(c). (1.25)
Q Velar i) (2412 5 (7))
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Then we set
n

ly (F) = hmmfl/ () dx. (1.26)

2
k=1 e—07 (akvﬁk) (64 + Tak ﬁk (x))

By (1.25) and (1.26), we can choose €1, ...,&, > 0 arbitrarily small to have

Z/|Vu z)dz < 87ly, (F) + Z (1.27)

We choose o and then each ¢, for {C9, (a, Br) U T,

2eg

(ak,ﬁk)}zzl to define a family of
disjoint sets (which is possible since the curve 7 has no self intersection points) and such
that (1.27) holds. Then we consider the map s : 2 — S? defined by

uly) if v € CF_ (aw, Br) U TS, (o, Br),

(07 07 ]-) if z ¢ Uk025k (aka ﬁk) 25k (Q{k, ﬁk)

us(z) =

By construction, we have us € WloO(Q \ {P, as,... ,an,N},SQ) and deg(us, P) = 1,

loc

deg(as, N) = —1, deg(tus, ) = 0 for k =2,...,n. From (1.27), we derive that
~ o ~ J
\Vis|“w(z)dx < 8wty (F) + 1
Q

Since deg(us, o) = 0 for k = 2,...,n, we can smoothen @5 around ~, using the result
in [16], in order to obtain a new map us € Cl_ (2 \ {P, N}, 5?) verifying deg(us, P) = 1,
deg(us, N) = —1 and

)
/ Vs |*w(x)de < 8nly, (F) + 5 (1.28)
Now we recall that the collection F = ([aq, 5], ..., [an, Ba]) € P(P,N) such that the

curve v = Ug|ay, G| has no self-intersection points, can be chosen for the construction of
us. From Lemma (1.4 below, we can find F such that

by (F) < d, (PN)-I—i

167
and according to (1.28), the map us satisfies the required properties. [
Lemma 1.4. Forx,y € Q, let P'(x,y) be the class of elements F = ([aq, f1], - - -, [an, Bn])

in P(x,y) such that the curve v = Ug[ag, Bx] has no self intersection points. Then

dy, = Inf {,(F)<dylzvy),
(z,9) et (F) < duw(z,y)

where Uy(F) is defined in (1.26).
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Proof. Step 1. First we prove that d,, defines a distance. As for distance d,, we in-
fer that a?w(a;,y) = 0 if and only if # = y and d, is symmetric. Then we just have
to check the triangle inequality. We remark that the juxtaposition of F; € P'(z,z2)
with F» € P’(z,y) is not an element of P'(x,y) in general and we can’t proceed as
for d,. Let x,y,z be three distinct points in (2. We consider two arbitrary elements
Fi= (0d, Bl 0h BL)) € P/w.2). o = (02 G- [02,.82,)) € P(z,y), and
the curves v = Ug[ag, 5] and vy = Ug[ai, 32]. We have to prove that we can construct
Fs € P'(z,y) such that £,,(F3) < ly(F1) + Lu(F).

First Case : If the curve 73 U 72 has no self intersection points then we take F3 =

(a1, A1), - o, Br ) [od, B, ..o o2, B2,]) € P'(x,y) and we have

Cw(Fs) = Lu(F1) + Lu(Fa).
Second Case : If v1 U7, has self intersection points then we rewrite the curves v, and v,
as 7 = UM a4, B1] and ~, = U2, [@2, 52] such that
a) (aj)i, C (G})p, fori=1,2,
b) if S is a connected component of v; N7y, then one of the following cases holds :
b1) S < (UiLi {a, A 0 (UL, {6k, 673).
02) S e {la1, b1, [an,, 8L 1} n {2, 571 - Az, 62,

¢) Fr= (a1, A, (a5, 0L)) € P'(x,2),
d) Fo= (a3, 51, ..., [a2,, ) € P'(z,y).
By construction, we can write for every k=1,...,n; and i = 1,2,
. . m/ILc . ~ . .
o, 8] = |4, Bj]  for some mj, € N.
=1

Since we have _
Ve(ay, B) = U4 Ve(ag, 8)),
we get that

%

.1 etw(x) d etw(x)
lim 1£1f — o 5 dr > lim 1£1f — 5 dx
e—0 ™ Ve(ad,B81) (84 + 7” g (l’) = e—0 Vs(al ﬁl) <€4 + 7"~Z ﬁ ($)>

k k l

and we conclude that ll,(]é) < ly(F;) for i = 1,2. In the collection

([a1, 81, - - (65, 43,0, 163, B7), .. (63, 2,)),

we just have to delete some segments in order to obtain a new element F3 € P'(z,y)
which then satisfies £, (F3) < Ly(F1) 4 Luw(Fo) < Lo(F1) + Lu(F).
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From these constructions, we conclude that dy(z,y) < €y(Fy) + €u(F,). Taking the
infimum over all F; € P'(z, z) and all F, € P'(z,y), we derive the triangle inequality.

Step 2. We fix two arbitrary points zy and yy in 2 and we consider ¢ : {2 — R defined by

((x) = Jw(.r,yo).

From the triangle inequality, we get that ( is 1-Lipschitz with respect to distance dy.
Let zp € Q and R > 0 such that Bsg(z) C Q and let (p,)n,en be a sequence of smooth
mollifiers. For n > 1/R, we consider (, = p, * ( : Br(z9) — R. For any x,y € Bgr(z) we
have

2= G < [ pul=Ca+2) — Cy+ )z
Bi/n
< n(—2 cwa—l—z, + z)dz
/B A+ 2+ 2)
§/B pn(—z)gw([x—i—z,yjtz])dz.

We remark that V.(z + 2,y + 2) = z + V.(z,y) and that for any £ € V.(x,y), we have

Toy(§) = Torzyr=(§ +2).

Then we obtain for any z € B ,(0),

) o ctw(€ +2)
l , = lim fnf = "
([z + 2,y +2]) ot /v;(a: Y) (84 + T:%,y(Q)Q 5

Taking an arbitrary sequence ¢, — 07 and using Fatou’s lemma, we get that

- 5kpn 2)w(& + 2)
CRREE LY B A ey i

e}
<hm1nf—/ k pn xw(€) dE.
00 T vy e (o +72,(6))”

Without loss of generality we may assume that [z,y] = {(0,0)} x [=R, R]. Then we have

‘/;('Tvy) = {(51762763) S Rga ‘£5| S R7 \/6% +€§ S 5}

and r, (&) = /& + & for € € V.(z,y). Therefore we can write

€ P x w(E) €p pn x W (€)
d¢ = d
/vskcr,y) (et +72,(6))° ¢ /ng(ow[—R,R] (et +&+8)° :
/ ex (pn*w(0,0,&) 4+ On(er))
Be, (0)x[~R.F] (et +&+8)

dg,
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where O, (¢;) denotes a quantity which tends to 0 as g, — 0 for n fixed. Since we have

4
€k
df =7+ O(é‘k),
/B%<O> (et + €2+ £3)°

it follows that

R

Ca(@) — Calw)] < / pn+ 0(0,0.60)ds = /[ e w(s)ds

As in the proof of Proposition [1.3, we conclude that |V({| < w a.e. in Bgr(zp) and since z
is arbitrary in 2, we get that |V(| < w a.e. in Q. According to Proposition [1.3, it implies
that for any =,y € Q,

() = C)| < du(z,y)
which leads to Jw(mo, Yo) < dy(x0,y0) taking x = xy and y = yp. [ |

1.3.3 Upper bound of the energy

Lemma 1.5. For any 0 > 0, there exists a map us € £ such that
/ |Vus|*w(z)de < 87L, + 6.
Q

Proof. We relabel the list (a;);; as a list of positive points (p;)_, and a list of negative
points (n;)1, and we may assume that > dw(pj;n;) = Ly We will construct dipoles
between each pair (p;,n;) which do not intersect each other. We claim that we can find
Fi=(lag, 5], .-, lab,, Bh,]) € P'(p1,n1) such that

(A.1) v = Uglay, 5] does not contain any p; # p1 and any n; # ny,
(A.2) Ly(F) < dw(pron) + 5=
Indeed if we define for z,y € Q4 = Q\ {p;, n;| p; # p1.nj # n},

DA (x,y) = Inf £,,(F)

where the infimum is taken over all F = ([aq, (1], ..., [om, Bm]) € P'(z,y) such that
Uk[ak, Bk] C 24 then we prove, using the arguments in the proof of Lemma 1.4 that

DAMa,y) < dula,y) for any 2,y € Q.

Since py,ny € Qa, we obtain DA (py,n1) < dyw(p1,n1) and by the definition of D7, we draw
the existence of Fy € P'(p1,n1) satisfying (A.1) and (A.2).

Now we will show that we can find some F, = ([of, 57], ..., [02,,,
such that

o)) i P (p2, o)
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(B.1) 79 = Uiz, B7] does not contain any p; # pp and any n; # ny and does not
intersect 71 \ {p1,m1},

(B.2) Uo(Fa) < du(pa,na) + g

As previously we define

Qp = Q\ ({pj, njlpj # p2,ny #n2t U (0 \ {p1.m1}))

and
DB(z,y) = Inf 0,(F) for z,y € Qp

where the infimum is taken over all F = ([aq, (1], ..., [@m, Bm]) € P'(z,y) such that
Uk[ak, Bk] C 2p. In the same way we infer that for any =,y € Q,

DE(x,y) < dy(z,y)

and the existence of Fy € P'(pa, n2) satisfying (B.1) and (B.2) follows.
[terating this process, we finally reach the existence of K elements

f.j = ([a{aﬁ{]v R [afnjaﬂzzj]) € Pl(pjanj)

such that

gw("fj) < dw(pj>nj) + SKn

and y; = Uk[ai, ﬁi] and v; = Ug[at, 3¢] do not intersect except maybe at their extremities
for i # 7.

From the dipole construction in Lemma 1.3, we construct K maps u} in CL_ (Q\
{pj,n;}, 52) constant outside an arbitrary small open neighborhood N of v; and such
that deg(u}, p;) = +1, deg(u},n;) = —1 and

, )
/ |Vuf;|2w(a:)da: < 8ndy(pj,nj) + —.
Q K

By construction of the F;’s, we can choose the N; sufficiently small for A; and N; to not
intersect whenever j # i. Then the map

uh(z)  ifz e N,
(0,0,1) if x & UN;,

us(z) =

is well defined and satisfies the required properties. [ |
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1.4 Some stability and approximation results

1.4.1 Stability results

The stability result below is based on Theorem 3.1 in [34]. It relies on the I'-convergence
of the length functionals (we refer to [41] for the notion of I'-convergence). In the sequel,
we denote by Lip ([0, 1],5) the class of all Lipschitz map from [0, 1] into Q and we endow
Lip ([0, 1],5) with the topology of the uniform convergence on [0, 1].

Theorem 1.2. Let (w,)nen be a sequence of measurable real functions such that
0<cy<w, <Cy a.ceinfl

for some constants cq and Cy independent of n € N. The following properties are equiva-
lent :

(i) By, ((ai, di)fvzl) Tl E, ((ai, di)fil) for any configuration (a;, d;),,
(ii) the functionals Ly, I'-converge to Lq, in Lip ([O, 1],@).
In the proof of Theorem 1.2, we will make use of the following lemma.

Lemma 1.6. Let (d,)nen be a sequence of geodesic distances on Q2 such that

for some positive constants ¢y and Cy independent of n € N. Then there exits a subsequence
ni)ken and a geodesic distance d' on Q such that d,, — d' as k — +oo uniformly on
g & Y
every compact subset of Q x Q0.

Proof. For (x1, 1), (72,12) € Q x Q we have

A, (1, T2) + du, (T2, Y1) — duw, (T2, Y2)
dwn (ZL’l, 1}2) + dwn (yh yQ)
Co (da(x1, x2) + da(y1,y2)) -

dwn (xla yl) - dwn ($27 y?)

VAR VAN VAN

Inverting the roles of (z1,y;1) and (22, y2) we infer that

|dwn (1‘1791) - dIUn<x2ﬂ y2)| < Cy (dQ(‘rlv $2) + dQ(iUh?ﬂ)) .

Thus d,, is Cy-Lipschitz on Q x Q for every n € N and we conclude by Ascoli’s theorem
that we can find a subsequence (n)ren and a Lipschitz function d’ on Q x Q such that
d,, — d' as k — oo uniformly on every compact subset of Q x Q. We easily check that
d’' defines a distance on  and it remains to prove that d’ is geodesic. Since d’ satisfies
(1.29) as the pointwise limit of (d,,, Jxen, 2 endowed with d’ is a complete metric space. By
Theorem 1.8 in [55], it suffices to prove that for any z,y € Q and § > 0 there exists z €
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such that max (d'(z,2),d'(z,y)) < 3 d'(z,y) + 6. We fix 2,y € Q and § > 0. Since d,,, is
of geodesic type, we can find 2z, € Q such that max (d,, (2, 2), dy, (2, y)) < 3 du, (@,y) + 6.
Then the sequence (z) is bounded and we may assume that z; — z € Q. Since d,,, — d’
uniformly on every compact subset of Q x Q, we deduce that d,, (v, z,) — d'(x,z) and
dn, (26, y) — d'(2,y). Letting kK — +o0 in the last inequality we draw that z satisfies the
requirement. [ |

Proof of Theorem[1.2. Step 1. We prove (i) = (i7). From (i) we derive that
E,,(P,N)— E,(P,N)

in the dipole case for any distinct points P, N € ). By Theorem 1.1/ we conclude that
dy,, — d,, pointwise on 2. As in the proof of Proposition 1.1 we have cydg < d,,, < Codg
in Q. By Lemma 1.6/ and the uniqueness of the limit we get that d,,, — d,, uniformly on
every compact subset of 0 x 2. Using the arguments of the proof of i) = 4i) Theorem 3.1

in [34], we infer that Ly, 5 Ly, in Lip ([0,1],Q).

Step 2. We prove (i) = (i). Since we have cydgq < dy, < Cody,, in Q we draw from
Lemma 1.6/ that we can find a subsequence (ny)ren and a geodesic distance d’ on Q such
that d,,, — d’ uniformly on every compact subset of Q x Q. As in the previous step, we
obtain using the method in [34] that denk LLd/ in Lip ([0, 1],5). Then we conclude by
assumption (i) that Ly = Lg, on Lip ([0,1],€2). Since codq < d' < Codg as the pointwise
limit of (d
exists a curve vy € Lip ([O, 1],5) such that d'(z,y) = Ly (7). Since the same property holds

wnk) wen, we can proceed as in Remark 1.1/ to prove that for any z,y € Q there

for d,, we finally get that d’ = d,,. The uniqueness of the limit implies the convergence of
the full sequence. Then (i) follows by Theorem [1.1. |

In the next proposition, we give some sufficient conditions on a sequence (wy)nen
converging pointwise to w for Property (i) in Theorem (1.2 to hold.

Proposition 1.4. Let (w,),en be a sequence of measurable functions such that
0<cy<w, <Cy a.ceinf)

for some constants ¢y and Cy independent of n € N. Assume that one of the following
conditions holds :

(a) w, > w and w, — w a.e. in S,
(b) w, — w in L=().
Then Property (i) in Theorem [1.2 holds.

Proof. Step 1. Assume that (a) holds. Since w < w,, a.e. in € we infer that

Ew ((ai, dz)iil) S Ewn (((Ii, dl)z]\il) for any n < N
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and therefore
By ((a;, d;)) < lim inf E,, ((as, d)iLy) - (1.30)

Fix some u € &. Since w, < Cy and w,, — w a.e. on {2, we obtain by dominated
convergence that

/|Vu|2wn(x)d:p — /|Vu|2w(x)dx.
Q notee Jg

Then we derive
fimsup Eu, (0, d)2) < [ [Vulu(o)ds
Q

n—-+0o0o

and since u is arbitrary we conclude

limsup E,, ((a;,d;)~X,) < By ((ai, di)iY,) - (1.31)

n—-+4o0o
Finally, the announced result follows from (1.30) and (1.31).
Step 2. Assume that (b) holds. We set 6,, =|| w, —w ||~(q) and

~ ~1
Wy, = (14 ¢y 0p)wy,.
By construction we have w,, > w and w,, — w a.e. in 2. From the previous case we deduce

lim Eﬁ,n ((ai, dz)f\il) = Ew ((CLi, dl)i\il) y

n—-+o00

which yields the result since
Eg, ((ai, di)iLy) = (1+ ¢50n) Bu,, (@i, di)}%,)

and 1+ cy'6, — 1 as n — +oo0. |

Remark 1.4. The conclusion of Proposition 1.4/ case (b) may fail if the sequence {w, }
converges to w almost everywhere in Q. Indeed, if one considers a sequence (wy,)nen Of
smooth functions on 2 = B (0) satisfying

1 if |z3] > 1/n,

wp(z) =

1/2 if |x3| =0,
and 1/2 < w, <1 in Q, one can easily check that w,, — 1 in LP(Q2) for any 1 < p < +o0.
Now if we choose two distinct points P, N € {(z1,z2,0) €Q}, we obtain in the dipole case
Ey, (P,N)=1/2|P—N| for any n € N and E(P, N) = |P — N|. Note that if we consider
the sequence of variational problems

P, = Min {/Q V() Pwn(x)de, u € H;(Q,R>} :

where g denotes some given function in H'/2(99,R), then it follows by classical results
(see [41] for instance) that

P, — Min {/ \Vu(x)|*dz, u € H;(Q,R)}.
Q

n—-4oo
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1.4.2 Approximation result

In this section, we give an approximation procedure by smooth weights.

Theorem 1.3. Let (p,)nen be a sequence of smooth mollifiers. Extending w outside 2 by
a sufficiently large positive constant and taking w, = p, * w, we have

Ey, ((a’iﬂdi>i]\;1) — Fy ((az‘,di)fil) as n — +00.

Proof. Step 1. Assume that = R3. Let (p,)nen be a sequence of smooth mollifiers. Fix
any function ¢ which is 1-Lipschitz with respect to d,,. Using the arguments in the proof
of Proposition [1.3, we obtain that the function (, = p, *  satisfies |V(,| < pn * w on R3.
Then we conclude that (, is 1-Lipschitz with respect to the distance 9, .,,. Relabelling
the a;’s as a list of positive and negative points (p;, n;)%,, we get from formula (1.6) and

Theorem 1.1,

Jj=b

K

87D 6ulps) = Guly) < B (01, d)1L1)

j=1
Taking the liminf as n — 400, we obtain
K
87TZC(pj) —((n;) <liminf E, ., ((ai,di)ﬁil) .

n—-+o0o
Jj=1

Since ( is arbitrary, we deduce from (1.6) and Theorem 1.1/ that

Ey ((a;,d;)X) < liminf B, . ((a;,d;)Y,) - (1.32)

n—-+o0o

Since p, * w < A, we obtain by dominated convergence that for any u € &,

/|Vu|2pn>kw Ydz — /|Vu|2
Q n—+00
and therefore

limsup Ey, 0 ((ai,d;) ) < / |Vu|?w(z)dx
Q

n—-+o00

Since u is arbitrary, we infer that

limsup B, ((ai,di)y) < By (a5, d)iL) (1.33)

n—-4oo

and the result follows from (1.32) and (1.33)).

Step 2 : Assume that €2 is a smooth bounded and connected open set. We extend w by
setting w = M in R?\ € for a large positive constant M that we will choose later. We fix
some § > 0 small enough and consider

= {z € R?, dist(z,Q) < d}.



24 Chapitre 1. Energy with weight for S?-valued maps with prescribed singularities

We extend to 25 any function ¢ which is 1-Lipschitz with respect to d,, by setting
((z) = ((Ilz) for x € Q4

where IIz denotes the projection of z € Qs on Q. By construction, such a ¢ is Lipschitz
continuous on s and |V({| < C(Q,0,A) a.e. on Q5 \ Q and |[V({] < w a.e. on . Then we
choose M > C(€,6,A). Setting ¢, : © € Q — p,*x((z) for n > 1/§, we have |V(,| < pp*w
on 2. Then ¢, is 1-Lipschitz with respect to the distance 6., and we can proceed as in
Step 1. [ |

Remark 1.5. If (w,),en denotes the sequence constructed in Theorem 1.3 the previous
results show that d,,, — d,, uniformly on every compact subset of Qx and the functionals
Ly, I-converge to Ly, in Lip ([0, 1],9).

1.5 Emergy involving a matrix field

In this section, we consider M = (mkl)%,zﬂ a continuous map from Q onto the set of
real symmetric 3 x 3 matrices such that

MNEP < M(z)é-€ < AE)* forany € € R3 and 2 € Q

(here “ - " denotes the Euclidean scalar product on R?) and we investigate on the problem
3
ou Ou
E 5 d)Y,) = Inf — . —dx.
(o)) = . [ 3 mula)g o de

Under the continuity assumption above, we show that E, ((ai, di)ij\il) can also be com-
puted in terms of minimal connections relative to some geodesic distance on 2.

In order to state the result we introduce the following objects. For z € Q, we denote
by cof(M(x)) the cofactor matrix of M (z). For any Lipschitz curve v : [0,1] — Q, we
define the length Ly, (7y) by

1
Lur7) = [ /oot MG (0))3(0) - 5(0)
0
and we construct from L, the Riemannian distance dy; on Q defined by

dur(,5) = Tnf Loy(7)
where the infimum is taken over all curves v € Lip,, ([0,1],€).

Theorem 1.4. We have
En ((ai,d;)y) = 8mLy

where Ly is the length of a minimal connection associated to the configuration (a;, d;)N,
and the distance dy; on Q.
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Remark 1.6. One can slightly relax the continuity assumption on M. For example, we
can assume that

Mi(z) ifx € Qq,

VEES

MQ (SL’) Zf T e Qg,
where €27 and €2y are two open sets of () with piecewise smooth boundaries such that
QUQy = Q, and * — M;(x) is continuous on Q; for j = 1,2. Hence M is possibly
discontinuous on the surface ¥ = Q; N Q. Then the conclusion of Theorem [1.4 holds with
the geodesic distance d,; constructed from the length Ly, defined by

Las(y) = / o (1), 4(8)) dt for v € Lip (0,1, 7).

where

Veof (M(z)v-v ifreQ\X,

(z,v) =
7 min{\/cof(Ml(x))z/-y, \/cof(Mg(q;))V~V} if v € 2.

Open Problem . Assuming that the coefficients of M are only in L>(£2), is the conclusion
of Theorem 1.4 still valid for a certain distance ?

Sketch of the Proof of Theorem 3. The Lower Bound. We follow the strategy in Sec-
tion [1.3.1. For any u € &£, we have

8u ou
1/2
2[cof(M)D - D]*/= < k% 1mkl 92, Om a.e. on 2 (1.34)

where D is the vector field defined by (1.16)). Next we infer that

)
/szkl( )a_:: a—xldx> 2/D vg—nggpj (1.35)

for any Lipschitz function ¢ : Q — R such that

[cof (M)~ V(¢ - V(] Y2 <1 ae in Q. (1.36)
Since a function ( satisfies (1.30) if and only if ¢ is 1-Lipschitz with respect to the distance
dpr, we conclude from (1.35) that

K
Ey ((ai,di)[y) > 87 Max Y ((py) — ((n;) = 87Ly

j=1
where the maximum is taken over all functions ¢ which are 1-Lipschitz with respect to
distance d,,.

The Upper Bound. The proof relies on the dipole construction.
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Lemma 1.7. For any distinct points P, N € Q, any smooth simple curve v C €2 running
between P and N and § > 0, there exists a map us in C! (ﬁ\ {P, N},SQ) such that
deg(us, P) = +1, deg(us, N) = —1 and

3 6U5 8u5

- . < 8Ly (P, N . 1.
L;g;n%m@axk &mdx_8ﬁ v(P,N)+6 (1.37)

Moreover us is constant outside an arbitrary small neighborhood of .

We may assume that > da(pj,n;) = Ly Then we choose K smooth simple curves ;
running between p; and n; which do not intersect except at their endpoints and such that
La(pj,n;) < dup(pj, ;) + 6. By Lemma [1.7, we construct K maps u; constant outside
a small neighborhood Nj of v; and N; N N; = 0 if j # i. Letting us = u; on N for
j=1,...,K and us = (0,0, 1) outside U;N;, we have us € £ and

3
8u5 Gu(s
En ((a;, d)Yy) < — . " dx < 87Ly + C6.
M((a, )1_1) > Q,;lmkl(x)axk oz, T < 8wl +
Since 4 is arbitrary, we obtain that Ey ((a;, di)~,) < 87Lyy. [

Sketch of the Proof of Lemma!1.7. Since we can approximate the coefficients of M locally
uniformly by smooth coefficients, we just have to prove Lemma 1.7 for M with smooth
entries. We construct as in [8] a smooth diffeomorphism & from a small neighborhood V
of v into a small neighborhood of {(0,0)} x [—|v|/2, |y|/2] such that

@(7) ={(0,0)} x [=1/2,[71/2]

(here || denotes the Euclidean length of ) and ®71(0,0,-) : [—|]v|/2,|v]/2] — R3
defines a normal parametrization of ~ orientating v from N to P. Then we set for

ys € [=71/2,17/21,
B(ys) = (bk,l(yii))i,l:l = [VO1(0,0,y3)] "' M(®7(0,0,y3)) VP (0,0, y3),
and

Blys) = (bk,l(y3))i,l:1'

For small € > 0 and n € N large, we consider the map @, : ®(V) — S? defined by

n

B7(y3) - (1, y2)>

ﬂ’ﬂ(ylvy%yii) = We (W—Q
Y3

where w, is given by (1.20). Then we take

(1) = U (P(z)) ifze),
" 10,0,1) itz e V.
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Following the computations in [27] and using the properties of ®, we easily check that
u, € Wi (Q\ {P, N}, 5%, deg(uy,, P) = +1, deg(uy,, N) = —1. Choosing n sufficiently

loc
large and smoothening u,, around ~ by the procedure in [16], we get a new map us € &

which satisfies (1.37). |
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Chapitre 2

The relaxed energy for S%-valued maps
and measurable weights

2.1 Introduction and main results

Let © be a smooth bounded and connected open set of R? and let w : @ — R be a
measurable function such that

0< A< w<A aein® (2.1)

for some constant A and A. We set H; (€, 5%) = {u € H'(Q,5%), u = g on 00}, where
g : 00 — S? is a given smooth boundary data such that deg(g) = 0. Our main goal in
this chapter is to obtain an explicit formula for the relaxed functional

n—-+o0o

E,(u)= Inf {lim inf/Q |V, (z)[*w(z)dz, unEHgl(Q, S*)NCY(Q), u, — u weakly in H'}

defined for u € H}(€,S?%). By a result of F. Bethuel (see [16]), H}(2,5%) N C'(Q) is
sequentially dense for the weak topology in H gl(Q, S?) and then the functional E,, is well
defined.

In [18], F. Bethuel, H. Brezis and J.M. Coron have proved that for w =1,

Ei(u) = /Q Vu(e)Pde + 87 L(u),

where L(u) denotes the length of a minimal connection relative to the Euclidean geodesic
distance dg in Q connecting the singularities of u (see also M. Giaquinta, G. Modica,
J. Soucek [53]). If u € H}(,5?) is smooth on € except at a finite number of points
in €2, the length of a minimal connection relative to dg connecting the singularities of u
is given by

TESK <

K
L(w) = Min > " da(Pi, No)
=1

29
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where (Py,...,Px) and (Ny,...,Nk) are respectively the singularities of positive and
negative degree counted according to their multiplicity (since deg(g) = 0, the number
of positive singularities is equal to the number of negative ones) and Sk denotes the
set of all permutations of K indices. For the definition of L(u) when wu is arbitrary in
H,;(€,5%), we refer to (2.6)-(2.7) below. The notion of length of a minimal connection
between singularities has its origin in [30]. We also refer to the results of J. Bourgain,
H. Brezis, P. Mironescu [23] and H. Brezis, P. Mironescu, A.C. Ponce [32] for similar
problems involving S'-valued maps.
For v € H* (€, 5?), the vector field D(u) first introduced in [30] and defined by

ou  Ou ou  Ou ou  Ou > (2.2)

D(U) B (U 8ZEQ /\61’37,”. 8:703 " E)xl’u' 61’1 A 61’2

plays a crucial role. Indeed, if u is smooth except at a finite number of points (P;, N;)E
in €, then (see [30], Appendix B)

K

divD(u) = 47> (dp, —dy,) in D'(Q) (2.3)

i=1
and if in addition ujpq = g, we have (since deg(g) = 0, see [30], Section IV)
K
L(u) = Sup {Z(C(R) - C(Ni))} (2.4)
i=1

where the supremum is taken over all functions ¢ :  — R which are 1-Lipschitz with
respect to distance dg i.e., |((x) — ((y)| < da(x,y). Note that for any real Lipschitz

function ¢,
= 1 1 1
> cR) = ) = 4 [ divD@ ¢ =~ [ D¢+ - [ (D@ n)¢ 25)

=1

where v denotes the outward normal to 0€2. We recall that D(u) - v is equal to the 2 x 2

Jacobian determinant of u restricted to 0§ and then it only depends on g. In view of (2.4)
and (2.5), L(u) has been defined in [18] for u € H}(Q, S?) by

1 —
L(u) = yp Sup {(T'(u),¢), ¢ : 2 — R 1-Lipschitz with respect to dg } (2.6)

where T'(u) € D'(2) denotes the distribution defined by its action on real Lipschitz
functions through the formula :

r.0 = [ D¢ - [ (b e, 27)
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In Chapter [1, we have studied the following variational problem : given two distinct
points P and N in (2,

E,(P,N) Inf{/|VU r)dz, v € E(P,N)}

where

E(P,N)={ve H(Q,5)NC"(Q\ {P,N}),v = const on 9,
T(v) =4n(6p — 0y) in D'(Q) }.

In the case w = 1, H. Brezis, J.M. Coron and E. Lieb have shown that (see [30])
Ey(P,N) =8ndg(P,N).

For an arbitrary function w, we have proved (see Chapter 1) that E,(-, ) defines a distance
function satisfying

8nAda(-, ) < Ey(-,-) < 8rAda(-,-). (2.8)
From (2.8), we infer that E,, extends to Q x Q into a distance on . In what follows, we
set for z,y € (,

1
du(z,y) = & Ey(z,y).

When w is continuous, we also have shown that the distance d,, can be characterized in
the following way : for any z,y € €,

du(r, ) = Min / w(y () (0]t

where the minimum is taken over all Lipschitz curve 7 : [0, 1] — Q verifying v(0) = z and
~(1) = y. For an arbitrary measurable function w, the previous formula is meaningless
since w is not well defined on curves but a similar characterization of d,, actually holds.
We refer to Chapter 1] for more details. We also recall the general result in Chapter [1!:

Theorem 2.1. Let (P)K | and (N;)X, be two lists of points in Q and consider
E((PN)iZy) = {ve H(Q 52)001(9\{(}7@,]\[% 1),

v = const on I and T'(v) = 4%251:2. — by, in D'(Q)}.

=1

Then we have
Inf {/ |\Vou(z x)dxr,v e & ((PZ-,NZ-)ZKI)} = 8L,

where L, is the length of a minimal connection relative to distance d,, connecting the
points (P;) and (N;), i.e.,
K
Ly = Min > " dy(P;, Nogy).

oeS
Kzt
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By analogy with the case w = 1, we define for u € H;(Q, S?),
1 _
Ly,(u) = yp Sup {(T'(u),¢), ¢ : Q — R 1-Lipschitz with respect to d,, }
T

(note that any real function ¢ which is 1-Lipschitz with respect to d,, is a Lipschitz
function with respect to dq, since d,, is strongly equivalent to dg and then (T'(u), ¢) is well
defined). When u is smooth except at a finite number of points (B2, N;)X , in Q, it follows
as in [30] that L, (u) is equal to the length of a minimal connection relative to distance
d,, connecting the points (F;) and (N;). Our main result is the following.

Theorem 2.2. For any u € H,(Q,5%), we have

E,(u) = /Q |Vu(x))*w(z)dr + 87 Ly, (u) .

The proof of Theorem 2.2/ is presented in Section 3 and is based on a method similar
to the one used in [18] and on a Dipole Removing Technique exposed in the next section.
This technique is mostly inspired from [16] but involves some tools developed in Chapter 1
in order to treat the problem for a non smooth function w.

In Section 4, we prove a stability property of E,,. More precisely, we give some condi-
tions on a sequence (wy, ey under which one can conclude that the sequence of functionals
(Euw, Jnen converges pointwise to £, on H; (€, 5?). The results are obtained using previous
ones in Chapter [1. In Section 5, we present similar results for a relaxed type functional
in which we do not prescribed any boundary data.

Throughout this chapter, a sequence of smooth mollifiers means any sequence (p,)nen
satisfying

pn € C(R* R), Suppp, C By, / pn =1, pp>0on R
R3

2.2 The dipole removing technique

In this section, we first give a technical result which will be used for the dipole removing
technique in Section 2.2.2 .

2.2.1 Preliminaries

Let a and S be two distinct points in Q. We denote by p,. g (€) the projection of £ € R?
on the straight line passing by o and § and r, g (§) = dist (z, [, §]) , where “dist” denotes
the Euclidean distance in R3. For m € N*, we set

af |Oé—ﬁ|
m m

[0}

a and sj’ﬂ:jagf for j=0,...,m.
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For £ € R? such that p, g (€) € [a, 3], we define

B (€) = min |lpas () —al = 557,

and we set

O ([, B]) = {€ € R?, pas (§) € lav, B and ra 5 (§) < ap"h37 (€)}

For two points = and y in €2, we consider the class Q(z,y) of all finite collections of

segments F = ([ak,ﬁk])z(fl) such that B = i1, a1 = @, Bur) = ¥, [0, k] C Q and

ay # Pr. We define the “length” of an element F € Q(x,y) by

- o1 m
by (F) = lim inf —/ a5, Qw (§) dE
1 Om ([ag,Bk])NS2

with ) A
(g ())* a)

((hﬁfﬂk ©) (ase) 02, <£>>2 |

We shall use the following Lemma.

522,5,9 &) =

Lemma 2.1. Let P be a finite collection of distinct points in € or P = (). For any distinct
points xg,yo i L\ P and § >0, there exists Fs = ([on, B1], - .-, [an, Bn]) € Q(z0,yo) such
that (P U {yo}) N (UpZ1 ok, Bl U [, Ba]) = 0 and

by (F) < dy(wo, y0) + 6.

Proof. Step 1. Assume that w is smooth on (2. We are going to prove that for every element
F = (a1, 5], ..., (o, Bn]) € Qx,y), we have

by (F) = / w(s)ds.
Uzzl[akvﬁk}

It suffices to prove that for any distinct points «, 5 € €,

1
1i — m d¢ = ds. 2.9
im / P S IICE: /[aﬂ]uxs) s (2.9)

m—-+oo T

Without loss of generality, we may assume that [«, 8] = {(0,0)} x [0, R] and we drop the
indices a and ( for simplicity. We set for j =0,...,m — 1,

C?’.nJr = {f = (51752753) € @m ([aaﬁ])a 53 € :Sjasj + CL?m: } )

and for j =1,...,m,

o = {e= @88 conlla . e [5 -2}
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For £ € C2F U CY, we have hy, (§) = | — s;| and we get that for m large enough,

m—1 m

[ a@u@a=Ynredn (210)
O ([, B])NO =0 =
with
_ s 24
]f,fz/‘ S S;| @t (§) 5d{ forj=0,....,m—1,
it (1€ — 51" ad, + 72 ()
.24
I’;jn:/‘ &5 82]| @t (§) sd¢ forj=1,...,m.
(16 — 851" afy +12(€))
Using the change of variable z; = @, 2y = Kffzs‘ and z3 = &3, we derive that
]73;- _ /sj"r;n (/ aizw (’2’3 —4 Sj’212, ‘23 2—;]"22, Zg) d21d22) ng
sj Ba,, (0) (ap, + 21 + 23)

am

sj+—5+ a4
= 0,0,23) + O(an, / o dzd d
[ w0 o (f | ot

J

am

sjT5"
= 7r/ w(0,0, z3)dzs + O(a).

By similar computations we get that

IZ,; = 7T/ ’LU(O, 0, Z3)d23 + (’)(afn)

J 2

Combining this equalities with (2.10), we obtain that

R
/ (€ w(€)de = 7 / (0,0, 2)dz + Oan)
Om ([o,8])NQ 0

which ends the proof of (2.9).

Step 2. We fix two distinct points xg, yo € Q \ P. For any points x,y in Q\ (PU {yo}), let
Q'(z,y) be the class of elements F = ([aq, 1], ..., [an, Bn]) € Q(x,y) such that

Urzilaw, Bk € @\ (P U {yo}).
We consider the function D, : Q\ (PU{yo}) x Q\ (PU{yo}) — R, defined by

Dy(z,y) = Inf ¢(F).
(ey) =, 1ol 0(F)

We are going to show that D,, defines a distance function which can be extended to £ x Q.
Let z,y € Q\ (PU{y}) and let F = ([aq, B1], ..., [an, Bn]) be an element of Q'(x,y).

Assumption (2.1) and similar computations to those in Step 1 lead to

A e = Bel < 0w (F) <A oy — Bel.
k=1 k=1
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Taking the infimum over all F € Q'(z,y), we infer that

From (2.11), we deduce that D, (z,y) = 0 if and only if = y. Let us now prove that D,
is symmetric. Let z,y € Q\ (P U {yo}) and § > 0 arbitrary small. By definition, we can
find F5 = (o, Bo] .. [an, Bu)) in Q'(z, ) satisfying

Ly (Fs) < Dyley) 6
Then for F; = ([Bn, @), - - -, [B1, 1)) € Q'(y, x), we have
Du(y, 2) < Ly (F5) = L (F5) < Dul(2,y) + 6.

Since ¢ is arbitrary, we obtain D, (y,z) < D,(z,y) and then, inverting the roles of x
and y, we conclude that D, (y, ) = Dy (x,y). The triangle inequality is immediate since
the juxtaposition of F; € Q'(z,2) with F, € Q'(2,y) is an element of Q'(x,y). Hence
D,, defines a distance on 2\ (P U {yo}) verifying (2.11). Therefore distance D,, extends
uniquely to Q x  into a distance function that we still denote by D,,. By continuity, D,,
satisfies (2.11) for any z,y € Q.

Step 3. We consider the function ¢ : Q — R defined by

((x) = Dy(x, x0).

Note that function ( is 1-Lipschitz with respect to distance D,, and therefore A-Lipschitz
with respect to the Euclidean geodesic distance on Q by (2.11). We fix an arbitrary
point zg € Q\ (P U {yo}) and some R > 0 such that Bsg(z0) C Q\ (P U {yo}). Let
(Pn)nen be a sequence of smooth mollifiers. For n>1/R | we consider the smooth function
Co = pn * (2 Br(z0) — R. We write

n = n\" d
) /Bw'“ (=)o + 2)dz
and therefore for any x,y € Bg(20),

|Gn (@) — Galy)] p(=2) [C(z + 2) = C(y + 2)| dz

pn(_z) ,Z)w(gj +z2,y+ Z)dZ

< / oD Talle+ ) b

We remark that ©,, ([v + 2,y + z]) = z + O,, ([x,y]). Whenever m is large enough, we
have z 4+ O,, ([z,y]) C Bsgr(z) and then

Entagrz (E+2) =2, (§)  for any vector £ € ©,, ([z,¥]).
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Hence we obtain for any z € By,(0),

Zw([xjtz,y—l—z}):liminfl/ eny (E)w (§+ 2) dE.
Om([z.y])

m——+oo T

Using Fatou’s lemma, we get that

G =G < [ -2 (hm w - [ ([ De;fy<s>w<s+z>ds) 0z
1/n m [,y

m—-+oo T

m——+oo 7T

< lim inf l/ / pn(—2) ey, (§) w(§ + 2)dédz.
Bl/n em([‘zvy])

For each m € N sufficiently large we have

™

L 1
— n\— m dédz = = m . d ’
. /Bw / oy P (O (€ + 2)dedz / (i

and since p, * w is smooth, we obtain as in Step 1,

1
_/ €$y (&) pn x w(§)d§ — pn *w(s)ds as m — +o0.
7T Om ([z,y]) [z,y]

Thus for each =,y € Br(z) we have
Gal2) = Galy)] < /[ ]pn s w(s)ds.
Y

Then for € Br(2), h € S? fixed and ¢ >0 small, we infer that

[Gn + 0h) — Gu(2)] 1/
< = —
5 <5 o P * w(8)ds o Pk w(x)

and we conclude, letting § — 0, that |V(,(z) - h| < p, * w(x) for each © € Br(z) and
h € S? which implies that |V(,| < pn * w in Bg(2g). Since V(, — V¢ and p, * w — w
a.e. on Bg(z) as n — +00, we deduce that |V(| < w a.e. in Br(2p). Since zq is arbitrary
in Q\ (PU{yo}), we derive

V(| <w ae. in Q.

By Proposition [1.3/in Chapter (1], it follows that |((z) — ((y)| < dw(x,y) for any x,y € Q
and in particular, we obtain choosing y = x,

Dy(x,20) < dy(z,70) for any z € Q.

Step 4. End of the Proof. Let § >0 be given. We choose some gy € Q2 \ (P U {yo}) such
that [Jo,y0] C 2\ P and |7y — yo| < 3%. By the previous step, we can find an element

F' = (loa, B, - -, [, Bu]) € Q' (0, §o) verifying
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Then we consider F = ([an, B1], - - -, [, Bnl, [U0, o)) € Q(zo, yo). We have
_ _ 20
b (F) < Ly (F') + Algo — yo| < dw(x0,%0) + 3
- 20
< dw(To,Yo) + duw (Yo, %o) + 3
< dw(0,90) + 9
and then F satisfies the requirement. [ |

2.2.2 The dipole removing technique

We first present the dipole removing technique for a single dipole. We then treat the
case of several point singularities.

Lemma 2.2. Let P and N be two distinct points in Q andu € H*(Q, S*)NC* (\ {P, N})
with deg (u, P) = +1 and deg (u, N) = —1. Let F = ([a1, B1], - - -, [@n, Bn]) be an element
of Q(P,N) such that N & U!_!ag, Bi] U [an, Bu]. Then for any 6 >0 small enough, there
exists a map us € C* (Q,5?) such that :

/|VU5 )Pw(z dm</|Vu z)dx + 87ly, (F) + 6

and ugs coincides with u outside a d-neighborhood of Uy_; o, Bx| included in €.

Proof. Let F = ([ou, B1], -+, [an, Ba]) € Q(P, N) such that N & U~ ax, Bi] U [an, Bl
and fix some 6 >0 small. We proceed in several steps.

Step 1. We consider a small 0 < ry <0 verifying B, (1) C 2\ {N}. By Lemma A.1 in
[16], we can find v € C* (2\ {a1, N}, 5%) N HY(Q) (recall that a; = P) satisfying

u(z) on Q\ B, (aq),
v(x) = _ (2.12)
R ( T ) on B, (ay),
|z — an|
for some rotation R and
/[Vv(x x)dr < / |Vu(z x)dz + 6. (2.13)
Q

Let W = {x € R3, dist(x, [y, 31]) <d}. For § small enough, we have W C Q\ {N}. We
set d = |a; — f1]. We choose normal coordinates such that a; = (0,0,0) and 5, = (0,0, d).
Let 0 <r <. Since v is smooth on W \ B, (1), we can find a constant o(r) such that
Vo] < o(r) on W\ B,,(a;). For m € N*, we consider

K, =

|:_ a%h& a1ocn1ﬂ1 :| 2 |:_ atr)énl,ﬁl it agllvﬁl
2 7 2 2
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For m large enough, we have ©,, ([a1,/1]) € K,, C W. As in [16], we are going to
construct in the next step a map vy € C* (W \ {61}, 5?) N HY(W) verifying v; = v in a
neighborhood of OW and deg(vy, 1) = +1. For simplicity, we drop the indices oy and [3;.

Step 2. We divide K, in m + 1 cubes @7 defined by

Qiﬂ:[—%,%} x{<]—§)am,(]+§)am] for j=0,...,m.

Arguing as in [16], we infer from (2.12)) that

Z / VP <O (aL + mo(r)2a3n> : (2.14)
j=0 Q7. m

We are going to make use of a map wy, : B (0) C R* — S? defined by

2a? )
Wi (1, 22) = ——5—— (21,22, —az,) + (0,0,1
( 1 2) a%n +l’% +x% ( 1,42 ) ( )
(wm was first introduced in [29] and we refer to the proof of Lemma 2 in [29] for its main
properties). For j = 1,...,m, we choose an orthonormal direct basis (€], e, €3) of R? such
that

(0,0, (j — 1/2)an) = (0,0,1) in the basis (&, e}, €}),

and we define the map vf* : UT(0Q7, — S* by
1) for (21,22, 23) € (ULo0Q7,) \ (UL B2, (0) x {(j — 1/2)am}),

’UT(iCl,x'g,ng) = ?)(.’L'l,xz,-fg),
2) for j =1,...,mand (x1,29,23) € B2 (0) x {(j — 1/2)am},
e
vt (21, T2, 3) = Wi (—, —) in the basis (¢], €}, el),
3) for j = 1,...,m, for (v1,29,23) € (B (0) \ B% (0)) x {(j —1/2)a,} and using

2
cylindrical coordinates (z1, za, x3) = (pcos@, psinb, z),

v (1, 29, T3) = (Alp + B1, Asp + Bo, \/1 — (Aip+ B1)? — (Aap + B2)2>

in the basis (e], e}, €}), where Ay, Ay, By, By are determined to make v} continuous. More

recisely, if we write v = vie] + vq€l, + vse} then
) 1 2 33

(a2 Ai(0) + Bi(0) = v;(a?, cosb,a? sinb, (j — 1/2)a,,) i=1,2,
a? 2a3
Im A B (0) = m
2 0(0) + Bu(6) = 5 cos,
a?, 2a3 .
\TAQ(Q) + BQ(&) = m sin 6.

m m
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The map v}" satisfies by construction v{* = v on 0K,,. Moreover, it follows exactly
as in the proof of Lemma 2 in [16] that deg(v*,0Q7,) = 0 for j = 0,...,m — 1 and
deg(vf", 0Q™) = +1. Then we extend v]" on each cube @7, by setting

m m [ @m(z — b)) , ‘
(%1 (SC):Ul (m—l—b]) OHan for]:O,...,m,

where b; = (0,0, s;) is the barycenter of @7, and ||z — ;s = max(|z1], |zal, |z3 — 55]).
We easily check that v]* € HY(K,,, S?), v" = v on dK,,, v* is continuous except at the
points b; and Lipschitz continuous outside any small neighborhood of the points b;. We
also get that

deg(vi",b,) = +1 and deg(vi",b;) =0 forj=0,....m—1. (2.15)
We remark that if we set
D3, = B (0) x {(j = 1/2)an} U BY (0) x {(j +1/2)an} forj=1,...,m—1,
= =2
D), = B (0) x {1/2a,} and Dj; = B% (0) x {(m—1/2)an},
= 2

then we have

U {x €qQ’ (T =b;) +b; € D! if v # b; or z = b; otherwise} = O, (a1, £1])

AR e
and if x € Q4 N O,, ([ay, B1]) for some j € {0,...,m} then

h(x) = |23 — 85| = ||z — bjllc  and r(z) = /2?4 23. (2.16)

Some classical computations (see [16] and [29]) lead to, for 7 =0,...,m,

[ e [ vk o)
(0Qm)\ D1, O0Qm

and therefore

/. Vol (z)|Pw(z)dr < C’lAam/ Vol + CoAdl,.
i \Om ([o1,61]) QM

Adding these inequalities for j = 0,..., m and combining with (2.14) we obtain
/ Vo (o) Puo(a)de < CA (r + mo(r)d, +d2,). (2.17)
Km\Om([a1,61])

For x € Q7. N O,, ([ay, B1]) for some j € {0,...,m}, we have

1 ) . . i+1  j+1 +1y
W in the basis (e, e . el ) if 23 — 5, >0
m(|x3—3y‘”!x3—5y|) am,an e )2 =5 >0,

Wm - ) e in the basis (¢, €}, ¢}) otherwise.
|75 — 55| |zs — s
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Following the computations in [27], we infer that
Vw, ( o , 7 )
|25 — 55| 25 — 5]

2

2

2
1+ Cad?, in @7, N Oy, ([, B1)).

|23 — SJ|2

Vol (@ >|2

Since we have (see [29])

Vol (2)Pw(x)ds < / dx + CAa?,.
/Qmem([al,m) 1 QO (o)) (173 = 8g|2afn L

_ 8|zs — s5]'ay,

 (Jog — s52al, + 2% + 23)?’

we derive that

Summing these inequalities for j = 0, ..., m and using (2.16) we obtain that
/ Vol (z)|Pw(z)dr < 8/ el 5 (x)w(z)dx + CAal, (2.18)
m(la1,61]) m(la1,61])

Combining (2.17) with (2.18) we conclude that
/ Vol (z)|Pw(z)dr < 8/ en 5 (x)w(x)dr + CA (r +mo(r)’a), +az,) .
m Om ([a1,81])

Taking the liminf in m, we derive that we can find m; € N large and r small enough such
that

/ Vo™ (2))?w(z)dr < 8liminf/ oy 5 (T)w(w)dw + 0. (2.19)
K, mTE0 JOm([ar,B1])

Since v{"* = v on 0K,,,, we may extend v{"' to W by setting vi" = v on W \ K,,,.
Now we recall that v" is singular only at the points b;, j =0,...,m (We also recall that

= ). From (2.15) and the results in [16], 17, 22|, we infer that exists a map v; in
Cl (W\ {41}, 5%) N H' (W) satisfying v; = v in a neighborhood of OW, deg(vy, 81) = +1
and

/W IVon () Pu(z)dz < / Vo™ (2) 2w (x)d + 6. (2.20)

Wy
Since v = u in a neighborhood of OW, we may extend v; to Q by setting v; = u in
Q\ W. Then we conclude that v; € C* (Q\ {61, N},5%) N HY(Q), deg(v1, B1) = +1,
deg(vy, N) = —1 and by (2.13)-(2.19)-(2.20),

/|VU1 )|Pw(x dx</|Vu z)dx + 8lim inf Ear. gy (@)w(z)dr + C6.

m—+00
Om([o1,61])
Step 3. Applying Step 1 and Step 2 to v; instead of u and replacing (aq, 31) by (aw, 52)
(recall that 3; = ), we obtain a map vy, € C* (ﬁ\ {B2, N}, 52)ﬂH1(Q) satisfying v, = vy
outside a d-neighborhood of [ag, B3] included in Q, deg(vg, £2) = +1, deg(vqy, N) = —1 and
/|va )Pw(z)dr < / |V (z da:+8hm1nf/ Erm. 5, (T)w (2 )dr + C6.
Om ([az,82])

m—-+oo
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Iterating this process, we finally obtain a map v,_1 € C* (Q\ {,, 8.}, S*) NH () (recall
that 3, = N) verifying v, ; = u outside a d-neighborhood of UyZ{ [, Bx] included in Q,
deg(v,_1, ) = +1, deg(v,_1, 5,) = —1 and

n—1

/]an_l( da:</ \Vu(z x)dz+8 hmmf/ Emy g, (T)w(2)dr+CO0.
Q Om ([a,Bk])

m——+o0

As in Step 1, we consider 0 <ry<d such that
B, (an) N By (B,) =0 and By, (a,) U B, (8,) C Q

and we construct, using Lemma Al in [16], a map o € C' (Q\ {a,., 8.}, 5%) N H(Q)
satisfying

u(z) on Q\ B, (ay),
= {7 (o) on Bt
- (F=iy) o et

for some rotations R, and R_ and

/Q|Vf7($)|2w($)d$§/Q|an_1(a:)|2w(:v)d:v+5.

Applying the construction in Step 2 starting from ¥, we obtain a new map " (for some

large m,, € N) defined on §-neighborhood W of [, 3,,] included in €2, which coincide with

0 near OW’, which then has only point singularities of degree zero (since deg(?, 8,) = —1)

and satisfying

/ Vo (@) P () da < / V() [2w(z)dz + 8 lim inf / e (wyw(x)de+ C6.
! ! em([an ﬁn}

m—-+00

Since the degree of each singularities of v]'» is zero, we can construct a map v, in
C'(W',5%) (see [17, 22]) verifying v, = ¥ in a neighborhood of W' and

/W/ ’an(l')Pw(x)dx < / , ‘VU:?"(QU)FUJ(:U)dx )

Then we define us : Q — S? by

v (z)  ifzeQ\ W,
us(x) = .
v () ifxeW.
Since v,y = ¥ and ¥ = v,_; near W', we deduce that us € C*(Q,S?). Moreover it
follows by construction that us = u outside a d-neighborhood of U}_,[ax, Bx] included
in  and

/|VU5 )|Pw( da:</|Vu x)dx + 87l (F) + C9,



42 Chapitre 2. The relazed energy for S?-valued maps and measurable weights

which ends the proof since ¢ is arbitrary small. [ |

Lemma 2.3. Let (P;, N;)K, be 2K distinct points in Q and consider u € H*(Q,5%) N
CYHQ\ UK {P;, N;}) such that deg(u, P;) = +1 and deg(u, N;) = —1 fori =1,..., K.
There exists a sequence of maps (un)nen C CH (€, 5%) satisfying unjan = won,

/|Vun( dw</|Vu x)dx + 87 Ly (u) + 277,
Q

and

meas ({z € Q, u,(z) #u(x)}) <27

Proof. Without loss of generality we may assume that ) . d,,(F;, IV;) is equal to the length
of a minimal connection relative to d,, between the points (P;) and (N;). As in [16], we
are going to “remove” each dipole (P;, N;). More precisely, for each n € N, we construct
successively K maps (u! )lK1 satisfying

(a) u, € HY(Q,8%) N C! (Q\Ui+1§j§K{JJj,Nj}> fori=1,..., K,
() ul =won Q\W}! and v}, = v’ on Q\ W} fori = 2,..., K where W} is is strictly
included in Q\ U, <;<x{ P N;} and [W;| < 27"/ K,

-

2
© [ 1vifutod < [ |Vu<sc>|’%u<of:>das+87rczw<131,zv1>+7 and
2771
/yvu ) [P da:</\VuZ (o) o)+ S (P N+ 2o fori =2, K

We easily check that the sequence (uX),cy then satisfies the requirement since we have
Ly(u) =Y, dy(P;, N;). We start with the construction of w,).

Construction of ul. By Lemma 2.1, we can find F; = ([ay, 4], ..., [a;, B)]) € Q(Py, Ny)
satisfying
(U, {P, N} U{N}) N (U, Bl U fau, 1)) = 0, (2.21)
and
9—(n+1)

Zw (f‘l) S dw(Pth) +

8K~
From (2.21), we infer that we can find § >0 small enough such that
2 n
= {z € R?, dist(x, U, _ [ax, B]) <0} € Q\UE{P,, N;} and |W}| < =

By the method described in the proof of Lemma 2.2, we construct a map u) € H'(Q, S?*)N
CHQ \ UE,{P;, N;}) verifying ul = u outside W} and

_ —(n+1)
/ ]Vu,ll(:c)IQw(x)da: < \Vu(x)|2w($)d$ + 87l (F1) + e
Q

< [ |Vu(z)Pw(z)dr + 87dy, (P, Ny) + ——
Q
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Construction of u', i =2,..., K. We iterate the previous process, i.e., we proceed as for
the construction of u! but starting from u’~! instead of w. |

2.3 Proof of Theorem 2.2

2.3.1 Lower bound of the energy

In this section, we denote by F,, the functional defined for maps u € H ;(Q, S?) by

/yvu 2)dx + 87 Ly (u).

Proposition 2.1. The functional F,, is sequentially lower semi-continuous on Hg1 (Q,5?)
for the weak H'-topology.

Proof. We follow the method in [18]. Since the supremum of a family of sequentially lower
semi-continuous functionals is sequentially lower semi-continuous, it suffices to show that
for any function ¢ : Q — R which is 1-Lipschitz with respect to d,,, the functional

u€ H, — /Q |Vu(z)| w(x)d:z:—i—?/ﬂD(u) -V(dx

is sequentially lower semi-continuous for the weak H'-topology (the term [, (D(u) - )¢
only depends on g and ¢ ). Consider (un)nen C Hy(Q,S%) and u € H}(Q,5?) such that
u, — u weakly in H'. Setting v, = u,, — u, we have

/Q|Vun(x)|2w(x)dx:/g|Vu( d:B+/|an (x)dx + o(1),

and writing
2/D(un)-VCdx—An+Bn+Cn
Q
with

A—2/ GuA8u6C+8u/\8u8C+8uA8u6C
8ZE2 8x3 8I1 8ZE3 8x1 8$3 8ZE1 6@ 8$3

B, 2/ 8vn/\8u+8u ov,, 8C+2/u 8vn/\8u+8u/\8vn oC
N 8%2 8.1'3 8.1'2 81‘3 8:1:1 Q " 81'3 axl 81'3 8.771 81'2
+2/ 8vn/\0u+0u/\8vn oC
8$1 61'2 al‘l 81'2 61‘3 ’

C =2 / ov,, A ov, ¢ n ov,, A ov, 0C n ov,, A ov, ¢
N 8:1:2 833'3 8:61 85133 &cl 8373 85131 833'2 8:1:3 .
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We easily obtain that A, — 2 fQ -V( as n — 400 since u,, — u weak* in L*> and
that B, — 0 since v,, — 0 weakly in L2 and u, — u strongly in L?. Now we set

v - (u 8vn/\8vnu 3%/\3%“ % (%n
" Oxe Oxy’ " Oxs Oxy " Omy 8352

We have
Q Q

By Lemma 1 in [18], we know that 2|V,| < |Vv,|* and by Proposition 1.3 in Chapter 1,
any ¢ : Q — R which 1-Lipschitz with respect to d,, satisfies |V(| < w a.e. in 2. Then we
obtain

Cl < / V() o) di

and we conclude that

/ |V, (2)[Pw(z)de + 2/ D(uy,)-V(dx > / \Vu(z)|*w(x)dr + 2/ D(u)-V{dx+o(1)
Q Q Q Q

which clearly implies the result. |

Proof of “>7 in Theorem [2.2. Let u € H ;(9,52) and consider an arbitrary sequence
(tn)nen C Hy(Q,5%) N CH(Q) such that u, — u weakly in H'. Since u,, is smooth in ,
we have T'(u,) = 0 and then L, (u,) = 0. We conclude by Proposition 2.1 that

limJirnf/ |Vu, (z)|*w(x)dr = liminf Fy(uy, / \Vu(z x)dx + 87 Ly, (u).
Since the sequence (u,)nen is arbitrary, we get the announced result. [ |

2.3.2 Upper bound of the energy

Proposition 2.2. Let u € H (Q,S?). There exists a sequence (un)nen C H, (2, S%) N
CY(QQ) such that u, — u weakly in H' and

limsup/\Vun( dx</|Vu x)dx + 87 Ly, (u).
n—-4o0o [9)

End of the proof of Theorem [2.2. Let u € H;(Q,SQ) and let (u,)nen be the sequence of
maps given by Proposition 2.2. By definition of E,,(u) and Proposition 2.2, we have

E,(u) <lim inf/Q |V, ()| Pw(x)de < /Q \Vu(z)Pw(z)de + 87 Ly, (u),

n—-+o0o

which ends the proof of Theorem 2.2. [ |

To prove Proposition 2.2, we need the following Lemma. We postpone its proof at the
end of this section.
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Lemma 2.4. For any u,v € Hy(Q, S%), we have
Lu(w) ~ Lu(0)] < CA (19l 2@ + [Velli2@) [ Vu = Vollizy,  (2:22)
for a constant C independent of w.

Proof of Proposition [2.2. Let u € Hj(Q,S%). By the result in [16, 22|, we can find a
sequence of maps (vy)nen C H, (Q,5%) such that v, € CH(Q\ U {P,;, N;}) for some 2K,

distinet points (P, IV;) in €, deg(vn, P)) = +1 and deg(v,, N;) = =1 fori =1,..., K, and
such that

IV (v —u)||z2@) <27 (2.23)
From this inequality we infer that
meas ({z € Q, |v,(z) — u(z)] <2_”/2}) <Cc2™. (2.24)
Applying Lemma 2.3 to v,, we find a map u,, € C'(€, S?) satisfying Unjon = 7,
/ Vi () [P () dae < / IV (@) () d + 87 Ly (vg) + 27" (2.25)
Q
and
meas ({z € Q, u,(z) # v,(z)}) <27 (2.26)

From (2.23) and Lemma 2.4/ we deduce that L, (v,) — L,(u) as n — 400 and then it
follows that (u,)ney is bounded in H'. Moreover we obtain from (2.24) and (2.26) that
u, — u a.e. in © and we conclude that u,, — u weakly in H'. Letting n — +oo in (2.25)

leads to
limsup/ |V, (z) 2w (x)dr < / |Vu(z x)dx + 87 Ly, (u),
n—-+00
which completes the proof. [ |

Proof of Lemma 2.4. To prove Lemma 2.4, we follow the method in [18]. For v and v in
H,;(€,5%), we set

L, (u,v) = Sup {/ (D(u) — D(v)) - V¢, ¢ :  — R 1-Lipschitz with respect to dw} .
Q

Since D(u) - v = D(v) - v on 092 (it only depends on g), we have
[ ptw)-ve- [ 0= [ De)-ve- [ D)1t [ (D) - Dw)-ve.
Q o0 Q o0 Q

and we easily derive that
’LUJ(u) - Lw<v)‘ < Lw<u7v)'

Similar computations to those in [18], proof of Theorem 1, lead to

/Q(D(U) — D(v)) - VC‘ < C(IVullz@ + IVl 2@) Ve = Vol 2@ IVl @)

By Proposition 1.3 in Chapter 1, any real function ¢ which is 1-Lipschitz with respect to
d,, satisfies |V(| < w a.e. in 2. We deduce that (2.22) holds since w < A a.e.in Q. N
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2.4 Stability and approximation properties

2.4.1 A stability property

Before stating the result, we need to recall some previous ones obtained in Chapter [1.
For any real measurable function w satisfying assumption (2.1), we may associate to
distance d,, the length functional L;, defined by

—Sup{zd tk+1)),0:t0<t1<...<tm:1,meN*},

where 7 : [0,1] — Q is any continuous curve. In Chapter [I, we have proved that for any
z,y € 9,

dw(2,y) = Inf {La, (7), 7 € Lip([0,1],Q), 7(0) = = and (1) = y} (2.27)

where Lip([0, 1], Q) denotes the class of all Lipschitz maps from [0, 1] into Q. We have also
shown that the infimum in (2.27) is in fact achieved.

The following stability result relies on the I'-convergence of the length functionals (we
refer to [41] for the notion of I'-convergence). In the sequel, we endow Lip([0, 1], Q) with
the topology of the uniform convergence on [0, 1].

Theorem 2.3. Let (w,)nen be a sequence of measurable real functions such that
0<co<w,<Cy a.e inf) (2.28)

for some constants cq and Cy independent of n € N. The following properties are equiva-
lent :
(i) the functionals Ly, T-converge to Lg, in Lip([0,1],Q) and

/]Vgo(x)|2wn Ydz — /|V<,0 z)dx  for any o € H'(Q,R),  (2.29)
Q

n—-+o0o

(ii) for every smooth boundary data g : 9 — S? such that deg(g) = 0,

Ey,(u) — Ey(u) for anyue Hy(,S5%).

n—-+o00

Proof. (i)=(ii). We fix a smooth boundary data g : 2 — S? such that deg(g) = 0. Clearly
(2.29) implies that

/Q|Vu(:c)|2wn(x)dx — /|Vu(x)]2w(x)da: for any u € H) (2, 5%),

n—-+00 Q

and by Theorem 2.2] it remains to prove that

Ly, (u) —  Ly(u) for any u € H) (€, S?). (2.30)

n—-+4o0o
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Consider u € Hgl(Q, S?). By the result in [16],22], there exits a sequence of maps (vg)gen C
HY(,8?) such that v, € CY(Q\ U2 {P;, N;},5%) for some 2M,, points (P, N;) in Q,
deg(vi, P;) = +1 and deg(vy, N;) = —1 for j = 1,..., My, and v, — u strongly in H'.
We have

Ly, (vr) = Min Zd ) and L, = Min Zd

o€SM,, i1 o€S M 5

Since the functionals Ly, I'-converge to Lg, in Lip([0, 1], Q), we deduce from Theorem 1.2
in Chapter 1 that for every k € N, Ly, (vx) — Ly(vx) as n — +00. Now we fix a small
§ > 0. Since v, — u strongly in H', we derive from Lemma 2.4 and (2.28) that exists
ko € N which only depends on u, § and Cj such that

Ly, (vg) — 6 < Ly, (u) < Ly, (vr) + 6 for any n € N and k > k.
Letting n — 400 in this inequality, we get that

Ly(vg) — 0 <liminf L,, (u) <limsup L, (u) < L,(vg) +6  for k > k.

n—-4oo n—-—+o0o

Passing to the limit in £ and using Lemma 2.4, we obtain

Ly(u) — 6 <liminf L,, (u) <limsup Ly, (u) < Ly(u) + 9,

n—+0o0 n——+o0

which leads to the result since ¢ is arbitrary small.

(ii)=(i). First we prove (2.29) for ¢ € C*®(Q,R). Let ¢ € C=(,R) and consider the
smooth map g : 90 — S? defined by g(z) = (cos(p(x)),sin(p(x)),0). We easily check
that deg(g) = 0. Now consider the map u defined for z € Q by

u(r) = (cos(ip(x)), sin(p(x)), 0).

We have v € H}(2,8%) N C*(Q) and then Ly, (u) = Ly(u) = 0 for any n € N. Since
|Vul? = |Vy|?, we derive from assumption (4) and Theorem 2.2 that

/ Ve(a)Pwn(z)de — / V(e
Q n—-+00

Let us now prove (2.29) for any ¢ € H'(2,R). Let ¢ € H'(2,R) and consider a sequence
(or)ren € C®(Q,R) such that ¢ — ¢ strongly in H'. We fix a small § > 0. From
assumption (2.28)), we infer that exists kg € N which only depends on ¢, § and Cj such
that for any n € N and k > ko,

/Q Vion () P ()i — 6 < / V() Pron(z)dz < / Vion () P (2)dz + 6
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Since y, is smooth, letting n — +oo we obtain for k£ > ko,

/Q|Vgok(93)|2w(a7)dx— § < limimf/Q \Vo(x)|*w, (x)dx

n—-4o0o

< limsup/ (Voo () |Pw,(z)dr < / IV oor(z) Pw(x)dz + 4.
0 0

n—-+4+o0o

Passing to the limit in &£ and then § — 0, we conclude

n—-+00

lim /Q V() P () = /Q V() Pw(z)dz.

It remains to prove that the functionals Ly, TI-converge to Lg, in Lip([0,1],9). Let P
and N be two distinct points in Q. We take g = (0,0,1) and consider u € Hy(Q,S%) N
CHQ\ {P,N}) (such a map is constructed for instance in [27, [30]). By Theorem 2.2, we
have

E,, (u) = /Q \Vu(x)|*w,(z)dx + 87d,,, (P, N)

and

E,(u) = /Q \Vu(z)Pw(z)de + 87d, (P, N).

From (2.29) we get that [, |[Vu(x)|*w,(z)dz — [, |Vu(z)]?w(z)dz and from assumption
(11) we deduce that
dy,(P,N) — d,(P,N) asn — +o0.

Since the points P and N are arbitrary in €2, we derive that d,, converges to d,, pointwise
in 2 x 2 and the conclusion follows by the results in Chapter [1, Section [1.4.1. [ |

In the next proposition, we give some sufficient conditions on a sequence (wy)nen
converging pointwise a.e. to w for property (i) in Theorem 2.3/ to hold.

Proposition 2.3. Let (w,)nen be a sequence of measurable real functions satisfying (2.28)
and assume that one of the following conditions holds :

(a) w, > w and w, — w a.e. in S,
(b) w, — w in L=(Q).
Then property (ii) in Theorem 2.5 holds.

Proof. By Proposition 1.4 and Theorem 1.2 in Chapter 1, (a) or (b) implies that the

functionals Lg, I'-converge to Ly, in Lip([0, 1],€2). We also check that (a) or (b) implies
(2.29) by dominated convergence. Then the conclusion follows from Theorem 2.3. |

Remark 2.1. The conclusion of Proposition 2.3 may fails if we only assumes that w,, — w
a.e. in  (see Remark [1.4' in Chapter [1).
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2.4.2 Approximation property

In this section, we show that the functional F,, can be obtain as pointwise limit of a
sequence (Fy, )nen in which the weight function w,, is smooth.

Proposition 2.4. Let (p,)nen be a sequence of smooth mollifiers. Ezxtending w by a suf-
ficiently large constant and setting w, = p, * w, we have

Ey,(u) — Eu(u) for anyue Hy(<, S2).

n—-4o0o

Proof. By construction, (2.29) clearly holds. Then property (i) in Theorem 2.3/follows from
Theorem 1.2/ and Theorem 1.3/ in Chapter [1! which leads to the result by Theorem 2.3. B

2.5 The relaxed energy without prescribed boundary

data
In this section, we consider the relaxed type functional
Ey,(u) = Inf{liminf/ |V, (2)|?w(z)dz, u, € C*(Q, 5?), u, — u weakly in Hl}

defined for u € H'(Q,S5?). We recall that F. Bethuel has also proved (see [16]) that
C(€, 5?) is sequentially dense in H'(£2, S?) for the weak H' topology and then E,, is
well defined.

As in [18], there is also a notion of length of a minimal connection relative to d,,

defined for any u € H'(, S?) :
Ly(u) = — Sup { ,¢), ¢ : Q — R 1-Lipschitz with respect to d,, and ¢ = 0 on 89}

Since no assumptions are made on u|sq, it may happen that deg(ujaq) # 0 or that deg(ujsq)
is not well defined. But clearly L, (u) always makes sense. When u is smooth except at a
finite number of point in €2, iw(u) is equal to the length of a minimal connection relative
to d,, between the singularities of u and some virtual singularities on the boundary (see
[30]). More precisely, one adds some virtual singularities on the boundary in such a way
that the new configuration has the same number of positive and negative points and one
consider the length of a minimal connection relative to d,, for this configuration. Then
L (u) corresponds to the infimum of these quantities when one varies the position and
the number of the boundary points. There is the variant of Theorem 2.2 for E,,.

Theorem 2.4. For any u € H*(Q, S?), we have

/|Vu x)dx + 87 Ly (u).
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2.5.1 Proof of Theorem 2.4

The inequality ">" in Theorem 2.4/ can be proved using a method similar to the one
used in Section 2.3.1/ and we omit it. We obtain "<" as in Section 2.3.2 using Proposi-
tion 2.5 and Lemma 2.5/ below instead of Proposition 2.2 and Lemma 2.4. The proof of
Lemma 2.5 is almost identical to the proof of Lemma 2.4 and we also omit it (note that
all the boundary integrals vanish since ¢ = 0 on 0f2).

Proposition 2.5. Let u € H' (2, S?). There exists a sequence (up)nen C CH(€2,S?) such
that
U, — v weakly in H*

and

limsup/Q |Vu, (z)[*w(x)dr < /Q |Vu(z)|*w(x)de + 8L, (u).

n—-+o00

Lemma 2.5. For any u,v € H'(Q,S?), we have

Ew(u) - Ew(U) S CA (||VU||L2(Q) + ||VUHL2(Q)) ||VU - VU||L2(Q), (231)

for a constant C independent of w.

Proof of Proposition 2.5. Let v € H'(£2,5?). By the result in [16, 22|, we can find a
sequence (v )ney C H'Y(Q,S?) such that v, € CHQ\ {(a;)Y}) for some N, distinct
points aq,...,ay, in €2 and

= vl < 27 (2.32)

Since we are dealing with an approximating sequence, we may assume that (see [16])
| deg(vy,a;)| =1 fori=1,...,N,.

Since v,, is smooth except at a finite number of point in €2, the length of a minimal
connection Ly, (v,) is computed as follows (see [30], part IT). We pair each singularity a;
either to another singularity in 2 of opposite degree or to a virtual singularity on the
boundary with opposite degree. In other words, we allow connections to the boundary
of €. Pairing all the singularities in this way, we take a configuration that minimizes the
sum of the distances between the paired singularities, computing the distances with d,,.
We relabel all the singularities (the a;’s and the virtual singularities on the boundary),
according to their multiplicity for those on the boundary, as a list of positive and negative
points say (P, ..., Pk,) and (Ny,..., Nk, ) such that

Kn
Ly(vy) = Zdw(Pj’ Nj).
j=1

Using Lemma 2 bis in [16], we can find @, € H(€2, 5%) N CY(Q\ Uiz { P}, N;}) for 2K,
distinct points (P;, N;) in © such that 0, = v, outside a small neighborhood of 02,
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deg(@n,f’j) = +1 and deg(f)n,Nj) = —1lforj=1,...,K,, ) — P, (respectively Nj _
Nj> if P; € Q (respectively if N; € Q) and |P; — P;| <
[N; = Nj| < %), and

otherwise (respectively

|0 — V1) < 27" (2.33)
Note that, for each pair (P;, N;), we necessarily have f)] = P; or Nj = N; and then

Kn
N = 30 du(B )| < 02 230

j=1

and from (2.32) and (2.33), we infer that
meas ({z € Q, |u(z) — 0, ()] <2_”/2}) <C2™. (2.35)

Applying Lemma 2.3 to ©,, we find a map u,, € C'(£, S?) satisfying
/|Vun(:)s)|2w($)d$ < / |V, (x) dx+87r2d (P;, N;) + 27" (2.36)
Q 0

and
meas ({z € Q, u,(x) # 0, (x)}) <27 (2.37)

From (2.34) and (2.36), we derive that

/ |Vu,(x x)dr < / Vo, (2)|2w(z)dz 4+ 87 Ly (v,) + C 27 (2.38)

Since v, — u strongly in H', we deduce from Lemma 2.5 that L, (v,) — Le(u) as
n — +oo which implies that (u,)ney is bounded in H'. From (2.33)) and (2.37) we obtain
u, — u a.e. in  and then we conclude that u,, — u weakly in H'. Passing to the limit
n (2.38) leads to

limsup/\Vun( dx</|Vu x)dx + 87 Ly (u)
0

n—-+o0o

and the proof is complete. [ |

2.5.2 Stability and approximation properties for E,
We present in this section the variants for E,, of the results in Section 2.4.

Theorem 2.5. Let (w,)nen be a sequence of measurable real functions satisfying (2.28)
and assume that (i) in Theorem 2.3 holds. Then we have

B, (u) — Eu(u) for anyu e H'(Q,S?). (2.39)

n—-4o00
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Proof. Assumption (2.29) clearly implies that

/|Vu(x)| xr)dr — /|Vu x)dr for any u € H'(Q, S?),
Q

n—-+0o

and by Theorem 2.4, we just have to prove that

Lo, (1) Tl Ly(u) for any u € H' (2, 5?). (2.40)
Consider v € H'(£,5?). By the result in [16, 22|, we can find a sequence (vy)ren C
H'(£, S?) such that v, € CY(Q\ U5 {a;}, S?) for some M, points (a;) in Q and vy — u
strongly in H'. We easily check that a minimal connection for v, relative to distance
dy, does not allow more than S>M* | deg(vy, a;)| connections to the boundary. Therefore,
extracting a subsequence (n;),en, we can relabel the singularities of vy, and the virtual
singularities on the boundary given by a minimal connection relative to dy,, , as a list of
positive points (P{,..., Pf, ) and a list of negative points (N{,..., N, ) with Kj inde-
pendent of [ and such that

l l l l
Ly, (v) = Min Zdwnl P! N, Zdwnl PLNL )

UEK

for some permutation o, € Sk,. Extracting another subsequence if necessary, we may

assume that o, = o, is independent of [ € N and that P! — P; and N! — N; for
T b0 T l—too

j=1,..., K. From the results in Chapter [1l Section [1.4.1, we know that assumption (i)
implies that d,,, converges to d,, uniformly on Q x Q and then we have

Ky,
(O MURTRIES S
]:

By definition of L, (v;), we obtain that

wn

Ly(vx) < lim Ly, (V).

l—4o00

On the other hand, we can also relabel the singularities of v, and the virtual singularities
on the boundary given by a minimal connection relative to d,,, as a list of positive points
(P1,..., Px) and a list of negative points (N, ..., N%) such that

K
Ly(vk) =Y _du(P;, N,

J=1

~—

As previously, we have for any [ € N,

K
w"l Uk SZ wnlﬁ N
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Letting | — 400, we obtain

K
lim L wn, (vg) gz F N

l—4o00

and then we conclude that lim [:wnl (U3) = Ly (vg). By uniqueness of the limit, we deduce

l—+

that the convergence holds for the full sequence, i.e.,

Lwn (’Uk) — iw (Uk)

n—-+4o0o

At this stage, we can proceed as in the proof of Theorem 2.4 (i)=(ii) using Lemma 2.5
instead of Lemma 2.4. [

We also obtain the following variants of Proposition 2.3 and Proposition 2.4 using
Theorem 2.5/ instead of Theorem 2.3l

Proposition 2.6. Let (wy,)nen be a sequence of measurable real functions satisfying (2.28)
and assume that (a) or (b) in Proposition 2.3 holds. Then (2.39) holds.

Proposition 2.7. Let (p,)nen be a sequence of smooth mollifiers. Extending w by a suf-
ficiently large constant and setting w, = p, * w, then (2.39) holds.
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Chapitre 3

Vortices 1n a two dimensional rotating
Bose-Einstein condensate

3.1 Introduction

The phenomenon of Bose-Einstein condensation has given rise to an intense research,
both experimentally and theoretically, since its first realization in alkali gases in 1995.
One of the most beautiful experiments was carried out by the ENS group and consisted of
rotating the trap holding the atoms [68,69] (see also [1]). Since a Bose-Einstein condensate
(BEC) is a quantum gas, it can be described by a single complex-valued wave function
(order parameter) and it rotates as a superfluid : above a critical velocity, it rotates
through the existence of vortices, i.e., zeroes of the wave function around which there is
a circulation of phase. Then the number of vortices increases as the angular speed gets
larger and the vortices arrange themselves in a regular pattern around the center of the
condensate.

A two-dimensional model for a rotating BEC was used by Y. Castin and R. Dum
[40]. This model corresponds to a harmonic trap that confines strongly the atoms in the
direction of the rotation axis, so that the system becomes effectively two-dimensional
(see [77]). After the nondimensionalization of the energy (see [4]), the wave function u.
minimizes the Gross-Pitaevskii energy

1 1 1
/ {§|Vu\2 + 2—82(% + A223)|ul? + 4—€2|u|4 — Qua*-(iu, Vu)} dx (3.1)
R2

/RQ lul? =1 (3.2)

where € > 0 is small and represents a ratio of two characteristic lengths, 0 < A <1 and
Q) = Q(e) > 0 denotes the rotational velocity. The term z? + \2x2 in (3.1) models the
trapping potential. In [40], the equilibrium configurations are studied by looking for the

under the mass constraint

minimizers in a reduced class of functions and some numerical simulations are presented.

95
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In this chapter, our main goal is to study the number and the location of vortices
according to the value of the angular speed Q(¢) as ¢ — 0. We consider the situation in
which the trap is axisymmetric, i.e. A = 1, and 2 is at most of order |Ine|. Using (3.2),
we rewrite the energy (3.1) in the equivalent form

Fu(u) = /R {%yw? + 4%2 [(uf? = a(@))? - (o (2))?] - Q- (i, Vu)} dr (3.3)

where a(z) = ag — |7|? and ay is determined by [z, a*(z) = 1 so that ag = \/2/7. Here
a™ and a~ represent respectively the positive and the negative part of a. We will see that
in the limit & — 0, the minimization of F. strongly forces |u.|* to be close to a* which
means that the resulting density is asymptotically localized in

D:={z € R* a(z) > 0} = B(0,/ag ).

We will also prove that |u.| decays exponentially outside D. We will seek vortices only

inside the domain D and compute an asymptotic expansion of F.(u.) in order to

a) determine the critical velocity €, for which the dth vortex becomes energetically
favourable,

b) express the part of the energy governing the location of the vortices (the so called

“renormalized energy”).

Let us now recall some related works. In [20], F. Bethuel, H. Brezis and F. Hélein have
developed the main tools for studying vortices in “Ginzburg-Landau type” problems. We
also refer to L. Almeida and F. Bethuel 7], F. Bethuel and T. Riviére [21], E. Sandier [73]
and E. Sandier and S. Serfaty [75, 74, [76] for additional techniques. A similar functional
to (3.3) was considered by S. Serfaty in [80] where a(z) = 1 and R? is replaced by a
disc. She proves the existence of local minimizers having vortices for different ranges of
rotational velocity. In [4], A. Aftalion and Q. Du follow the strategy in [80] for the study
of global minimizers of the Gross-Pitaevskii energy (3.3) where R? is replaced by D. In
[2], A. Aftalion, S. Alama and L. Bronsard analyze the global minimizers of (3.3) for
potentials of different nature leading to an annular region of confinement. We finally refer
to [9} 10, 63] for mathematical studies on 3D models.

We emphasize that we tackle here the problem which corresponds exactly to the phy-
sical model. In particular, we minimize F; under the mass constraint (3.2) and the admis-
sible configurations are defined on the whole space R?. Several difficulties arise especially
in the proof of the existence results and the construction of test functions. We point out
that we do not assume any implicit bound on the number of vortices. The singular and
degenerate behavior of va* near 9D induces a cost of order |Ing| in the energy and
requires specific tools to detect vortices in the boundary region.

We now start to describe our main results. We introduce the functional space in which
we perform the minimization

H = {u e H'(RC), /R 2Pluf? < oo} (3.4)
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When Q =0, F.(u) = E.(u) where

Bt = [ {5IVuP + 5 (0P - ae)? - @ @) o (3.5)

We shall prove that for € small enough, the minimization problem

Min {E.(n), n € H, ||nllr2@2) = 1} (3.6)

admits a unique solution 7. (up to a complex multiplier of modulus one) which is a real
positive function. Moreover 7. converges to va® in L®(R?) as ¢ — 0.

The notion of vortex that we consider here, is similar to the one used in [7, 78, 79, 80]
and will be specified later. Defining for any integer d > 1, the critical velocities

2 2(d — 1)

Qg =—|lne| + In|Inel, (3.7)

our main theorem can be stated as follows :

Theorem 3.1. Let u. be any minimizer of F. in H under the mass constraint (3.2)) and
let 0 <6 < 1 be any small constant.
(i) If Q < Qy —éIn|lnel|, then for any Ry < \/ag, there exists eg, > 0 such that for
any € < €g,, U s vortex free in Bp,, i.e., u. does not vanish in Bg,. In addition,

Fe(ue) = Ec(7)c) + o(1).

(i) If Qg+ dln|lne| < Q < Qur1 — dln|lng| for some integer d > 1, then for
any Ry < \/ag, there exists e, > 0 such that for any ¢ < eg,, u. has exactly d
vortices x5, ...,x5 of degree one in Bg,. Moreover, we have that |75 < cO2
forany j = 1,....d and [z} — 25| > CQ Y2 for any i # j for some constant
C > 0 independent of €. Setting r5 = \/ﬁ&:j, the configuration (Z5,...,25) tends to
minimize in R%? the renormalized energy

d
yen
w(by, ... by) = —7Ta021n|bi—bj|+TZ|bj|2. (3.8)
i#£] Jj=1
In addition,
mad

Fo(u) = Eo() =52 d(Q— )+ %C‘O (& —d) In [ Ine|+ Min w(b) +Qa-+o(1) (3.9)

where Qg is an explicit constant depending only on d.

These results are in agreement with theoretical predictions on Bose-Einstein conden-
sates. More precisely : the critical angular velocity §2; coincides with the one found in
[4, 40] and the vortices are concentrated around the origin at a scale v/Q. The minimi-
zing configurations for the renormalized energy w(-) has been studied by S. Gueron and
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L. Shafrir in [56]. They prove that for d < 6, regular polygons centered at the origin and
“stars" are local minimizers. For larger d, they numerically found minimizers with a shape
of concentric polygons and then triangular lattices as d increases. These figures are exactly
the ones observed in physical experiments (see |68, 69]).

We now describe briefly the content of this chapter. Section 2 is devoted to the study
of the density profile 7). defined by (3.6). We first introduce the real positive minimizer 7.
of E., i.e.,

E(1e) = min E (). (3.10)

We show the existence and uniqueness of 7. (see Theorem 3.2) and we have that . — Va™
in L*(R*) N CL.(D) as € — 0 (see Proposition 3.1). Then we explicitly characterize the
link between 7. and 7. in Theorem [3.3/ and we prove that |E.(n.) — E.(7:)| = o(e). We
point out that the mass of 7. may not be equal to 1 in general. Therefore, we shall use
the profile 7. as a test function.

In Section 3, we prove the existence of minimizers u. under the mass constraint (3.2)
(see Proposition 3.2) and some general results about their behavior : E.(u.) < C|lnel?,
|Vu.| < Cge ' and |u.| < vt in any compact K C D, u. decreases exponentially quickly
to 0 outside D (see Proposition [3.3). Using a method introduced by L. Lassoued and P.
Mironescu [65], we show that F.(u.) splits into two independent pieces (see Lemme 3.4) :

the energy FE.(n.) and a reduced energy F/ of v. = u./n, i.e.,
Fo(ue) = E:(n:) + F2< (ve) (3.11)

where

FI(ve) = EX (ve) — RE(ve), (3.12)

2 4
ng(va):/ 77—5|Vva|2 y (v = 1)* and R™*(v.)= Q/ n?xt - (iv., Vo). (3.13)
R2 2 4e? R2
In (3.11), E.(n.) carries the energy of the singular layer near 0D and hence, we may
detect vortices by the reduced energy FI<(v.). We study the vortex structure of u. via
the map v. applying the Ginzburg-Landau techniques to the weighted energy £7¢(v.) ; the
difficulty will arise in the region where 7. is small. We notice that v. inherits the following
properties : £ (v.) < ClInel?, [Vu.| < Cxe ! and |v.| < 1 in any compact K C D. Using
(3.11) and 7). as a test function, we obtain in Proposition 3.5/ an important upper bound
of the reduced energy inside D :

F (v, D) < o(1). (3.14)

In Section 4, we compute a first lower bound of £ (v.) using a method due to
E. Sandier and S. Serfaty (see [75, [76]). We start with a first construction of small vortex
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balls {B(p;,7:)};c;. in a domain D, slightly smaller than D : outside these balls |v.] is
close to 1, so that v. carries a degree d; on 0B(p;, ;) and (see Proposition [3.7)

EN (0, D) = > EX (v, B(pi,ri) 27 Y a(pi)|di] | Inel. (3.15)

i€l i€l

Then we prove an asymptotic expansion of the rotational energy outside the vortex balls
{B(pi, 1) }icp. (see Proposition 3.8),

Rge (U€7 Da \ UiGIEBi) ~ ? Z a2(pl-) dz (316)

1€l

Estimates (3.15) and (3.16) yield a first lower bound of F(v., D) that we match with
(3.14) in order to derive the first critical angular velocity €2; and to prove the absence
of vortices for velocities strictly less than €2; (see Proposition [3.9). We also obtain that
for @ < Q; + O(In|lng|), the number of vortex balls with nonzero degree is uniformly
bounded in € (see Proposition 3.10). We conclude by two fundamental energy estimates
(see Proposition 3.11))

EF (v, D) = O(|Ineg|) and  EXF(ve, D: \ Byjjye-1/6) = of| Ingl). (3.17)

In Section 5, we give a finer description of the vortex structure inside B CC D using
the method of “bad discs” introduced by F. Bethuel, H. Brezis and F. Hélein [20]. We find
that the number of bad discs is uniformly bounded, all of them remaining close to the
origin (see Theorem 3.4). The main ingredients are the energy estimates (3.17) and a local
version of the Pohozaev identity. Using a “clustering” method presented in [7], we obtain
a new family of modified bad discs {B(z5, p) }jeig such that p ~ %, |v.| > 1/2 outside
these discs and v, has a non zero degree D; on each dB(x5, p) (see Proposition [3.15). We
identify a vortex with the center of a modified bad disc B(x5, p).

In Section 6, we establish some lower estimates of the energy taking into account the
interaction between vortices. Following similar methods to [20], we evaluate separately
the energy carried by each vortex (see Lemma [3.9)

£ (ve, B(a5, p) > wa(a5)| Dy n £+ 0(1) (3.18)
and the energy away from the vortices (see Proposition 3.16)

E (v, Bp \ Uje . B(25,p)) = 7 Y D3 a(a5)|Inp| + Wre((5, D));er.) + Or(1). (3.19)

jede

Here, the radius R € (*/T'TO, /o) is fixed and the error term Og(1) is computed in function
of R. The quantity W, is similar to the renormalized energy in [20] and involves the
interaction between the vortices. As for (3.16), we find an asymptotic expansion of the
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rotational energy outside the modified bad discs { B(a5, p)}je ; and it yields (see (3.155)
in the proof of Lemma 3.10)
e MNe WQ 2 £
FLe(ve, De) > E1(ve, Br) — =~ > a’(a5) Dj + og(1). (3.20)
j€Je
Using (3.14), (3.18), (3.19) and (3.20), we prove in Section 7 that each vortex is of
degree 1, i.e., D; = 1 (see Lemma [3.11)). Then it allows us to improve the above estimates
and to obtain the result in the subcritical case (i) in Theorem 3.1. The rest of the proof
requires an upper bound of F(v.) which is proved at the end of the chapter adapting
a method due to N. André and 1. Shafrir [12] (see Theorem 13.5). We are then led to the
following expansion (see Proposition 3.18))
_mnaj(Q =) | mag

FIe(ve) = 5 + 5 (n> —n)In|lne| + O(1) where n = CardJ..

If Qy+0In|lne] < Q < Qyyq —dIn|lne| for any small 6 > 0, this expansion yields the
exact number of vortices 2 : n = d (see Proposition 3.19). Moreover, we find that the
vortices are uniformly distributed at a scale Q~'/2 around the origin (see Lemma [3.13).
Then we compute an asymptotic formula of the energy Wg. given in (3.19) as € — 0 (see
(3.175) in the proof of Proposition 3.20) :

. . . . . wapd?  magd?
ll_r%(WR,E(xl,...,xd)+7ra0;1n\a:i —a5|) =— 5 T Inay + O(|R — Vaol).
i#]

(3.21)
We derive from (3.18), (3.19), (3.20) and (3.21) the lower estimate of F(v.) (see (3.176)
in the proof of Proposition 13.20) :

T

2
liminf (F2°(vc) + 52 d(Q = ) = T2 (@ — ) In | Ine]—w(&, ... 7)) >
> Qa+ O(|R — Vao|) (3.22)

(the constant (g is explicitly given in Proposition [3.20 and w is the renormalized energy
given by (3.8)). Since the left hand side in (3.22) does not depend on R, we can pass to
the limit R — /ao on the right hand side. Using the upper bound of F=(v.) given by test
functions (see Theorem [3.5), we find the expansion of the energy (3.9) and we conclude
that the rescaled configuration (3, ...,Z5) tends to minimize the renormalized energy w
(see Proposition 3.20).

We now list some open problems about the 2d model (3.3). The first one concerns the
non-existence of vortices in the whole space R? for Q small (2 = O(1)). For Q larger,
vortices may exist in the region where u. is small. Therefore, a natural problem is to
investigate the vortex structure close to the boundary 9D and outside the domain D for
Q2 ~ 4. One can also ask if our results hold for the case of asymmetric trapping potentials,
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ie., a(r) = ag — 2 — X\r3 with 0 < A < 1, or even for some functions a(z) positive in a
domain which is not simply connected.

Notations. Throughout this chapter, we denote by C' a positive constant independent
of ¢ and we use the subscript to point out a possible dependence on the argument. For
A C R?, we write

1

Ce(u) = —IVu!2 1z ((uff —a(@)’ = (@ (@))%) ,

el(v) = |VU|2+—(1— Cloke
E.(u,A) = /A e-(u), Re(u, A)= Q/AxL -(iu, Vu), F.(u, A) = E-(u, A) — R.(u, A),

@@@:A@WRWAFQAﬁA@NWf%A) £7(0, A) — R7(v, A) |

where 7 denotes one of the functions a, 1. or 7.. We do not write the dependence on A
when A = R?.

3.2 Analysis of the density profiles

In this section, we establish some preliminary results on 7. and 7). defined respectively
by (3.10) and (3.6). We will show that the shapes of 7. and 7). are similar.
We notice that the space H is the set of finiteness for E., i.e.,

H={ue H(R*C), E.(u) < +o0} .

In the sequel, we endow ‘H with the scalar product

(u, vy = | Vu-Vo+ (1 + |z (u-v) foru,veH,
R2

and then (H, (-, -)3) is a Hilbert space.

3.2.1 The free profile

We start by proving the existence and uniqueness for small € of 7. defined as the real
positive solution of (3.10). Hence 7. has to satisfy the associated Euler-Lagrange equation

{gmku()—%>_01nw, (323

ne > 0 in R2

We have the following result.
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Theorem 3.2. For any 0 < & < %2, there exists a unique classical solution n. of (3.23).
Moreover, n. is radial, n. < \/ag and N. s the unique minimizer of E. in H up to a
complex multiplier of modulus one.

The method that we use for solving (3.23)) involves several classical arguments generally
used for a bounded domain. The main difficulty here is due to the fact that the equation
is posed in the entire space R? without any condition at infinity. We start with the
construction of the minimal solution : we consider the solution 7, . of the same equation
posed in a ball of large radius R with homogeneous Dirichlet boundary conditions and then
we pass to the limit in R. We prove the uniqueness by estimating the ratio between the
constructed solution and any other solution. A crucial point in the proof is an L*-bound
of any weak solution.

Before proving Theorem 3.2, we present the asymptotic properties of 7). as ¢ goes to 0.
We show that 7. decays exponentially fast outside D and that n? tends uniformly to a™.
The following estimates will be essential at several steps of our analysis.

Proposition 3.1. For ¢ sufficiently small, we have
3.1.a) E.(n.) <C|lneg|,

423
31.c) 0<+/a(x)—n.(z) < CeV3\/a(x) for v € D with dist(x,dD) > /3,
3A.d)  |[Vne|| e me) < Cg ,

3d.e) |n-—valcrxy < Cge? for any compact subset K C D.

2 _
3.1.0) 0<n.(z) <CePexp (—m ao) in R*\ D,

Remark 3.1. As a direct consequence of [3.7.a), we obtain

[ it 2a @i+ [ (a@) - P < C2 el (3:20)
R2\D D

Proof of Theorem (3.2). Step 1 : Existence. For 0 < e < % and R > 0, we consider the
equation
e?Ann + (a(z) = n3)ne =0 in Bg,
Nr > 0 in Bg, (3.25)
ng =10 on OBg.

By a result of H. Brezis and L. Oswald (see [33]), we have the existence and uniqueness
of weak solutions of (3.25) if and only if the following first eigenvalue condition holds

2
Inf {/B IVo|? — (6)|¢| ¢ € Hi(Bg) with ||¢]| 125, = 1} <0

or equivalently

Qo

2
Inf {/ Vol + il | |¢’ , ¢ € Hy(Bg) with ||¢||r2(8x) = 1} = (3.26)
Bpr
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We claim that for R sufficiently large, this condition is fulfilled. Indeed, setting for z € R2,

U(x) = \/%exp <—%) :

we define for any integer n > 1,

(o) = n (1) vt

where ( : R — R denotes the “cut-off" type function given by

1 if <1,
((ty=K2—t ifte(1,2), (3.27)
0 if £ > 2,

and the constant ¢, is chosen such that |[¢),||,2r2) = 1. We easily check that

2 2P e / 2 J2E ) 22
[ (vl +Bwr) = [ (190r+Eor) =2

and we deduce that for R > 2n,

o 7 e 2 |z? 2 2
Inf IVoI™ + —-[01" | < Vbl + - [¥ul” | = = +o(1),
$€H}(Br) J By g? Bon g2 £

||¢||L2(BR):1

where o(1) denotes a quantity which tends to 0 as n — +oo. Hence there exists R. > 0
such that for every R > R., condition (3.26) is fulfilled and equation (3.25) admits a
unique weak solution 7, .. By standard methods, it results that 7, . is a radial classical
solution of (3.25). We notice that, for any R. < R < R, Nae 1s a supersolution of (3.25)
in Br and thus

MR, S Nie in BR

by the uniqueness of 7, .. By the maximum principle, we have

MR, < V ao in R2~

For every R > R., we extend 1. by 0 on R? \ Bg. Since the function R — ng.(z) is
non-decreasing for any x € R?, we may define for x € R?,

Ne(x) = Hm npe(z).

From the properties of 1, ., we deduce that 7. is radial and satisfies

0<n. <ag
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and
e?Ane + (a(z) —n?)n. =0 in D'(R?).

Since 1. € L*°(R?), we derive by standard methods that 7. is smooth and then it defines
a classical solution of (3.2).

Step 2. L*-bound for solutions of (3.23). The result in this step is due to A. Farina
(see [51]) and relies on a result of H. Brezis (see [26]). We present the proof for convenience.
Let i be any weak solution of (3.23) in L} (R?). We claim that

n <.+/ap a.e.in R2.

Indeed, if we consider w = e~ !(n — \/ag), then w € L} (R?) and since 7 satisfies (3.23),

loc

we infer that Aw € LL _(R?). By Kato’s inequality, we have

loc

sgn™ (w)

A(wt) > sgn* (w)Aw > (07 — ao)n = 5w (ew + 2/g) (ew + /) > (w)*

e3

Therefore wt € L} (R?) and w™ satisfies
—A(wt) + (w")? <0 in D'(R?).

By Lemma 2 in [26], it leads to w™ < 0 a.e. in R? and thus w* = 0.

Step 3. Uniqueness. Let n. be the solution constructed at Step 1 and let n be any weak
solution of (3.23) in L} (R?). By the previous step, n € L*(R?) and using standard
arguments, we derive that 7 is a classical solution of (3.23). We remark that 7 is a super-
solution of (3.25) for every R > R.. Hence (recall that we extend 7, by 0 outside Bg),

Nre <1 in R2.

Passing to the limit in R, we get that 0 < n. < n in R2. Thus, 7. is the minimal solution
of (3.23) and we can define the L>-function p : R*> — R by

_
n

The function p is smooth, takes values in (0, 1] and satisfies

774

div(n’Vp) + (1 —p°)p=0 in R® (3.28)
€
For every integer n > 1, we set (,(x) = ¢ (n~!|z|), where ( is given by (3.27). Multiplying
(3.28) by (1 — p)¢? and integrating by parts, we derive
-2

/Rz (n_ p(L=p)*(L+ )G + nZCZWpP) =2 /RQ (= p)a(Vp-VG).  (3.29)



3.2. Analysis of the density profiles 65

Since p is bounded, the Cauchy-Schwarz inequality yields

/ (1= p)Ca(Vp- V) = / (1= p)Ca(Vp - VGo)
R2 Bayn\Bn

1/2 1/2
g(/ n2<1—p>2|v<n|2) (/ n%,%WpF)
B2n BQn\Bn
1/2
< 27 [l ey ( / n2c,%|w|2) |
R2\ B,

Using (3.29) and the bound on 7 obtained in Step 2, we infer that

1/2
[ecver <avam ([ apceor) (3.30)
R2 R2\ B,

It then follows
167ra02/ n”C|Vpl? — / n*|Vpl?
R2 n—+0o0 [po

by monotone convergence. Since n?|Vp|> € L'(R?), the right hand side in (3.30) tends
to 0 as n — 400 and we deduce
/ 7| Vpl? = 0.
RQ

Hence p is constant in R? and by (3.29), we necessarily have p =1 i.e., n = 7..

Step 4. End of the proof. The existence of a minimizer n of E. in H is standard. Since
E.(|n|) < E.(7) for any 7 € H, we infer that 77 := |n| is also a minimizer and therefore 7
satisfies the equation

e2An + (a(z) —7*)n =0 in R?

n=0 in R?.
By the maximum principle, it follows that either 77 > 0 in R? or 7j = 0. Let us prove that
7> 0. For 0 <e < % and R > 0 sufficiently large, we consider the unique solution 7.
of (3.25). By the results in [33], 7 is the unique non-negative minimizer of E.(-, Bg) in
H}(Bg,R). Extending 1. by 0 outside Bg, we have

E.() < E:(Nne) = Ec(Mre , Br) < Ec(0, Br) = E.(0)

which implies that 77 is not identically equal to 0. Then 7 solves (3.23) and by Step 3,
we conclude that |n| = 7 = n.. From the equality E.(|n|) = E.(n), we easily deduce that
exists a real constant « such that n = |n|e’ = n.e'. [ |

Remark 3.2. The range of € € (0, %) where we have existence and uniqueness of positive
minimizers 7. is optimal. This is due to an argument based on the first eigenvalue condition

(given in [33]) for problem (3.25). In particular, for e larger than %, zero is the unique

minimizer of F..
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Remark 3.3. We emphasize that from the proof of Theorem 3.2, it follows that any
smooth function 7 satisfying

—e*An = (a(x) — [n*)n  in R?,
n>0 in R?,
verifies n > 1. in R?.

Proof of Proposition3.1. Proof ofl3.1.a). We construct an explicit test function £ € H!(R?)
such that E.(§) < C|lneg|. Since 7. minimizes E., we deduce

E(ne) < E(§) < Cllnel.
We construct £ as follows. We consider for s € R,

Vs if s> g3
v(s) = S

—— otherwise
-1/3

and we set £(x) = y(at(x)) for z € R?. We obtain exactly as in [63] that

/ V&P < Cllne| and / (@ —~(a™)?)? < O
R? -

for a positive constant C' independent of ¢.

Proof of [3.1.b). We construct a radial supersolution 77 of (3.23) of the form :

(Vao — |z]? if |x| < +Vag—9,

—|z|vag — 6 + ag
Ve

| Bexp(—|z|?/20)  otherwise,

if vVag— 9 < x| <rs, (3.31)

where ¢ > 0 will be determined later,

Qg \/&_o

+

2\/@0—(5 2 ’

and (3, o are chosen such that 7 € C'(R?) i.e.,

rs =

-/ -0 J
g = 20 2(10/(;0 ) exp(ri/20) and o= h.

A straightforward computation shows that for § = 4(1(1)/ Se2/3, 7] is a supersolution of (3.23)

and then
rs —\/ag = (’)(52/3)7 o= (9(82/3) and = (9(51/36(10/20)_
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By Remark 3.3, it results that . < 7 in R? which leads to3.1.5). Note that we also obtain

n(x) < va(z) for |z| < Vag— ¢ and n.(z) < Ce'/? for \/ag — 6 < |z| < ag. (3.32)

Proof of3.1.c). Here, the proof is similar to that of Proposition 2.1 in [2]. Let xy € D be
such that

Vs — || > £/ (3.33)
and set
a= min a=ay— (Jxo| +¥?)* = O("?).

B(zo,2/3)

We want to construct a subsolution in Bjs(xg). For & = £/3/\/a, we denote by @ the
unique solution of

1
—Aw+ < (0* —1)w =0 in By,

9
W >0 in By, (3.34)
w =20 on aBl

From Proposition 2.1 in [10], we know that

1 — 2
0§1—@(m)§0exp(— 2lfx| )

Then we map @ to B(zg,£?/?), namely

From (3.34) we derive
1 1
—Aw + 6—2(1,02 —a(z))w < —Aw + ;(w2 —a)w=0 in B(zg,e¥?).

Since 1. > 0 on dB(z¢,£%?), by the uniqueness of w, we deduce that w < 7. in B(zg, £¥/?).
The decay estimate on @ implies 0 < \/a — w(zg) < Cy/a exp (—%) < Cy/ae'3. By

(3.33), we have
Va(xo) — va < Cy/a(zg)e/?.

Then (3.32) yields

0 < a(xo) — (o) <V a(xo) — w(xo) _V a(zy) — Vo i Va —w(z) < CeV3,
a(xo) Va(zo) Va(zo) Va(zo)

for a constant C' independent of x.
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Proof of13.1.d). Let zy € R? arbitrary. We are going to show that |Vn.| < Ce™!in B(xzg, )
with a constant C' independent of xy. We define 6 : By(0) — R by 6(y) = n.(xo + €y).
From [3.1.0) and [3.1.c), we infer that |Af| = | (a(xo + cy) — 6?) 0] < C in By(0) for a
constant C' independent of zy. By elliptic regularity, we deduce that for any 1 < p < oo,
10llw2r(B,0)) < Cp for a constant C), independent of xy. Taking some p > 2, it implies
that

VOl ooy (0)) < C

for a constant C' independent of xy which leads to the result.

Proof of3.1.e). The idea of the proof is due to I. Shafrir. Suppose that K C B, C Bg C D
for some 0 <r < R < /ay . First we prove that

In. —va| < Cg,e* in B,. (3.35)
From (3.23) we infer that
—&?A(n. —Va) +1:(ne + Va)(n. —Va) = 2A(Va) = O(e?) in Bp.

By!3.1.c), for e small, we have |n. —/a| < ‘/75 in Bp and then, n.(n. ++/a) > dy > 0 in Bg
for some constant dy which only depends on R. Then estimate (3.35) comes immediately
by the following result (which is a slight modification of Lemma 2 in [19]) :

Lemma 3.1. Assume that dg > 0 and 0 < r < R. Let w. be a smooth function such that

—e?Aw. + dow. <0 in Bp,
w, <1 on OBpg.

Then w. < e~ %" in B, with C = C(R,r,dp).

From (3.23) and (3.35), we deduce that 7. is uniformly bounded in W??(B,) for any
1 < p < 0. In particular, it implies

Vel Lo (i) < Cr (3.36)

We now use the same argument to prove [3.1.e). We denote

one B
— and zp=
3@ Ij

2 = for j € {1,2}.

Obviously, we can assume that (3.35) and (3.36) holds in Bg. Then we have that

—e?Azo + (312 — )20 = 2az + O(e?) = \/5@ +0(e%) = neﬁ + O(g?) in Bg,
8$j al‘j
da

2 2 .
—&®Az. + (32 —a)z. =n.— in Bg.
e Az + (32 —a)z gy, b B
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Therefore,
—*A(z: — 20) + (302 — a)(2: — 20) = O(e?)

and we conclude by Lemma 3.1. [

We now state a result that we will require in Section 2.2. We follow here a technique
introduced by M. Struwe (see [81]).

Lemma 3.2. Let I : (0,%) — Ry be the function defined by

I(e) = Min{E.(n), n € H}. (3.37)
Then I(-) is locally Lipschitz continuous and non-increasing in (0, % ). Moreover,

1
Cline| for almost every € € (0, %). (3.38)
5

Proof. First we infer from [3.1.b) in Proposition 3.1 that we can find R>,/ao such that
for any 0 <e < %,

[I'(e)] <

/ 0" + 2a” (2)|n.|* < C<° (3.39)
RZ\Bg
Let us now fix some ¢ € (0,%) and 0 < h < . We have

Eeyin(neo ) = 1(€0 + 1) < Begin(teg—n) < Eeon(eg-n) = I(e0 = h) < Ezon(leq)
and hence

By n(Meg—n) = Begrn(Meg—n) < I(eo —h) — I(eo +h) < By n(Meorn) — Eegsn(Meorn)

By (3.39), it leads to

I(eg+h) —I(g0 — h) o - o
2h 2 2(g0 + h)2(g0 — h)? /BR [(Cl(i) — | Neon]”)” — (a™ (2)) ] —(36;10)
and :
](€0+h>—](€0—h) —&p bes B )
2h < 2(z0 + h)2(g0 — h)2 /BR [(CL(I> — Neo—n|")" — (a™(2)) ] —|—(3C’41)

which proves with (3.24) that () is locally Lipschitz continuous in (0, %). Therefore I(-)

aog
' 2
that n.,_n — 7, and 1.y4s — 7., in L*(Bg) and L*(Bgr) as h — 0. Assuming that &, is a
point of differentiability of I(-), we obtain letting & — 0 in (3.40) and (3.41),

—1
2e3

is differentiable almost everywhere in (0, ). We easily check using standard arguments

I'(e) = / [(a(x) — eaf2)? — (a (2))?] + O(1). (3.42)

Then we deduce (3.38) combining (3.24) and (3.42). |
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3.2.2 The profile under the mass constraint

In this section, we study the minimization problem (3.6). The main motivation here
is to construct admissible test functions for our model. The result is stated as follows :

Theorem 3.3. For e sufficiently small, problem (3.6) admits a unique solution 1. up to a
complex multiplier of modulus one. Moreover, denoting by k. € R the Lagrange multiplier
associated to the constraint ||1.| r2w2) = 1, we have

k.| < C|Ine] (3.43)

and 1. is characterized by

\/ 2
Ne(z) = G + ket Nz ( Vo ) with &= Lg (3.44)
Vi "Vt ke a0+ e
In addition,
}Ee(fk) - Ea(ne)| < O52| In €|2- (3.45)

Remark 3.4. Identity (3.44) gives us automatically the asymptotic properties of 7. from
those of 7. by a simple change of scale and hence we obtain the analogue of Proposition 3.1
for 7..

Proof of Theorem|3.5. Step 1 : Existence. Let (n,)nen be a minimizing sequence for (3.6)).
Extracting a subsequence if necessary, we may assume that 7, — 7. weakly in H and

2 (R?) as n — oo. We easily check that E. is lower semi-continuous on H

strongly in L
with respect to the weak H-topology and therefore

E.(n:) < liminf E.(n,).

To conclude that 7. is a solution of (3.6), it remains to prove that |7/ z2(r2) = 1. Writing
M = TN + pn, We have p, — 0 weakly in H and therefore,

1=/|%P=/Wmf+/|mf+mn. (3.46)
R2 R2 R2

Obviously, p, — 0 in L ((R?) and [, |z]*|ps]* < C. For any R > 0, we have

loc

n—oo n—oo

R? limsup/ lpul? < limsup/ 2|2 pu]? < C.
R2\Bg R?

Letting R — +o0 in this inequality, we conclude that p, — 0 strongly in L*(R?). Then we
derive from (3.46) that ||7.||z2r2) = 1. Since E.(|7:]) = E.(7.), we infer that 7. = [7.|e"
for some constant «. Hence we may assume that 7, is R-valued and 7, > 0 in R2,

Step 2 : Energy bound. We now prove that

E.(7.) < C|lnel. (3.47)
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Setting 7. = HnEHZ%(RQ)nE, it suffices to check that E.(7.) < C|Ine| by the minimizing
property of 7. First we show that ||7.||.2(r2) remains close to 1 as ¢ — 0. Since fRQ at =1,

[P =1+ [ (= a@)

we have

and by (3.24),

1/2
[ np-aron < [ 2@‘(x)lna|2+0(/ (Ina|2—a+(1‘))2) < Cel el
R2 {a->1/2} {a-<1/2)

Hence ||775||i2(R2) =1+ O(g|Ing|*/?). Then we derive from [3.1.a) in Proposition (3.1,

/ Vi |2 = ||77€|]L22(R2)/ V.| < / IVn.|? + Ce|Ine|*? < C|Inel.
R2 R2 R2
Using (3.24), we deduce that

1

52 R2

ax_AQQ_(ﬂ?Q:l a(z) — [7:]?)? % 4
(alo) = 1P = (@™ (@) = 5 [ (ao) = i) + [om

e2

H775H222R2 _
=L @)
€ R2
\D
1

< [ (ale) = |2[)? + C|Ine]
e Jp

and
1 i 1 2(1 — |7 || 3(ze))
5 [ e = PP =5 [ (o)~ n P+ =5 [ (o)~ PP
D e Jo € D
(1= I )’
B [y
& D
1 1/2
<l +¢ (5 [ fato) - 10
& Jo

< C|lng|.

Therefore E.(7.) < C|lne| and (3.47) holds.

Step 3 : First bound on the Lagrange multiplier. Since 7). is a solution of (3.6), there exists
k. € R such that 7. satisfies

1 o~ S
= ?(a(l’) - |775|2)775 + kana 1mn R2~ (348)

— A7,
Multiplying this equation by 7., integrating by parts and using that [o, 7[> = 1, we

obtain that .
b= [ vl 5 [ (R - a@)lf
R2 e R2
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From (3.47) we derive

_ 1 _ _
[vars 5 [ (i - o)
R2 € Jr2\D

< (C|lneg|

and

5 [0 = )i

< i /DW — a(x))” +§2 /D%)Hﬁs!? — a(z)|
1/2

< Cl|lne| + g—(’; (/D(!ﬁe\? - a(:c))2)

< Ce™|Inel'2.

Hence we have
k| < Ce™YInelY/2. (3.49)

Step 4 : Proof of (3.44). We rewrite equation (3.48) as

- 1 TN
—Are = 6_2<a5(m) - |77a|2)776 m jo (3.50)
with
a.(z) = ag + k.e® — |z (3.51)
Since 7. > 0 and ||7.|/,2 2y = 1, we necessarily have 7. > 0 in R? by the maximum

principe. Setting for € small enough,

9.(x) = Vao . (\/ao—i-/{:e&??x
: Vag + k.g? 1l Vo

a straightforward computation shows that

), (3.52)

—&A0, = (a(x) — |99, in R?
9. >0 in R?

ape
ag+kee?

with € = . For ¢ sufficiently small we have € < % and by Theorem 3.2, it leads to

195 =" (353)

Combining this identity with (3.52) we obtain (3.44).
Step 5 : Proof of (3.45). From (3.53) we infer that

where I(-) is defined by (3.37). On the other hand, we easily see from (3.52) that

Qo ~

E(7.)

BT
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with E. defined by

B =5 [ 1Val+ o5 [ (ade) = PP - (@ @) (3.54)

and a.(z) given by (3.51). Therefore

B1) = 2 1), (3.55)
But since ||| 2@ = 1, we have
B = B~ 5 [ P+ 5 [ @ @) - @)
= B~ 5+ 5 [ @) - @ @) (3.56)
> 1) - 2+ L[ (@) = (@t @), (3.57)

2 422 Jgo
Using the fact that fW a™ =1, a simple computation leads to

k. 1

Tagk?e? N ket

——= 4+ — H2))? = (at(2))* = 3.58
2 482 R2(OJ8 (.7:)) ((I (‘T)) 4 12 ( )
Combining (3.55)), (3.57) and (3.58), we are led to
]{2 2 ka 2 ka 3.4
TA0RE 1 1e) — 1oy 4 Rl gy o TR (3.59)
Qo 12
Then we estimate using (3.38), (3.49) and [3.1.a) in Proposition 3.1,
[1(6) — I(e)| < Ce'|Inelle — ] < Clke|e?| Ine] (3.60)
and e [
ﬁf(é) < COlk.|e?*| Ing, mlkle < COlk.|e?| Ing].

Qo 12
Inserting this estimates in (3.59), we deduce that |k.| < C|Ine].
Step 6 : Uniqueness. Let 7. be another solution of (3.6)). As for 7., we may assume that

7. is a real positive function. Let k. be the Lagrange multiplier associated to 7, i.e., 7.
satisfies

) 1 AT N
—Af), = ?(a(x) - ‘77€|2)77€ + k.. in R?.

By Step 4, whenever ¢ is small enough, solution 7). is characterized by

\/ kg2
i) = YOI (D) i o=
Vao Vao + k.e? ap + kee?



74 Chapitre 3. Vortices in a two dimensional rotating Bose-Finstein condensate

Hence it suffices to prove that k. = k.. We proceed by contradiction. Assume for instance
that k. < k.. Then 7). satisfies

. 1 9 a ..
— AR > 8—2(a(x) —19e[)Ae + ko). in R2 (3.61)

We consider the function

) (3.62)

which satisfies by (3.61),
{—%195 > (a(z) — |9:2)0. in R?

J. >0 in R2.

Therefore 9. is a supersolution of (3.23) with £ instead of €. By Remark 3.3, we infer
that J. > n: in R By (3.44) and (3.62), it leads to 7). > 7. in R?. Since ||7).||z2w2) =
17| 2(r2y = 1, we conclude that 7). = 7. and hence k. = k., contradiction.

Step 7 : Proof of (3.45). By (3.43), (3.55)), (3.60) and [3.7.a) in Proposition [3.1, we have
E.(i):) = E-(n:) + O(¢*| Ine]?). (3.63)
On the other hand, by (3.43), (3.560) and (3.58), we also have
E.(.) = E-(i)-) + O(¢?| Ine[?).

and (3.45) follows. [

3.3 Minimizing F. under the mass constraint

Our aim in this section is to make a first description of minimizers u, of F, under
the mass constraint. We prove the existence of u. and that |u.| is concentrated in D.
We also present some tools that we will use in the sequel, in particular the splitting of
energy (3.11).

3.3.1 Existence and first properties of minimizers

First, we seeck minimizers u. of F. under the constraint ||u.||;2r2) = 1 and then study
some first asymptotic properties. We want to perform the minimization in H and we shall
see that F is well defined on H :



3.83. Minimizing F. under the mass constraint 75

Lemma 3.3. For any uw € H, o0 >0 and R > /ay, we have

QQ 2
R <o [ [vuf+ 2L
- 8

e L @) — PP = @ @] + Cr, 2

In particular, the functional F. is well defined on H.

1

Proposition 3.2. Assume that Q) < 7. Then there exists at least one map u. which

minimizes F. in {u € H, ||u|| 22y = 1}. Moreover, u. is smooth and there exists (. € R
such that u. satisfies

1
—Au, + 2iQzt - Vu, = = (a(z) — Juue + loue  in R% (3.64)

e2

We emphasize that we state the result for an angular velocity € strictly less than 1/¢
but we also recall that we only consider the case of an angular velocity €2 at most of order
|Ine|. In the sequel, we assume that

Q < wp|Ine (3.65)

for some positive constant wy.

Before proving Lemma 3.3/ and Proposition 3.2, we present some basic properties of
any minimizer u.. We point out that the exponential decay of |u.| outside the domain D
(see3.5.c) below) shows that almost all the mass of w, is concentrated in D.

Proposition 3.3. For € sufficiently small,
3.3.a) E.(u.) < C,llnel?,
3.3.b) || < C,oe el

12
3.5.¢) |ue(z)] <Clye' el exp (%) for x € R2\D with |z|>+/ag + 2¢/3,
£

3.3.d) |u.(x)] < Va(x) + |le|e2 4 e22|z|? for x € D with dist(z,0D) > £'/8,
3.5.€) |uc| <+/ag+ Coellne| in R?
8.5.1) ||Vl ) < Cugic e for any compact set K C R,

Remark 3.5. As a direct consequence of [3.5.a), we have

/ (Juel* + 2a™ (2)|u|*) + / (|ue)? — a(x))? < C,, €% Inel?. (3.66)
R2\D D
Proof of Lemma3.5. Let u € H and o € (0,1). We have

4U\R€(u)\§4a2/ |Vu|2—|—Q2/ 2 2luf2.
R2 R2
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For R > /ag , we have |z|* < —R2R—_2aoa(a:) whenever |z| > R. Then we derive

O R?
4o |R.(u §402/ Vu2——/ 2a(x u2—|—Q2/ x| |ul?. 3.67
R0 <0t [ = g [ st v 02 [ e o

Now we notice that

R? a ag R?
x2u2:—/ —2a(x)|ul? — 0 /x2u2—|—0—/ ul?
[ vl = s [ a2 [

R? / ) R? / ,  mRia?
< — —2a(x)|u|” + ————— ul” 4+ ———.
2(R? — ag) /5, (@)lul 2(R? — ag) Jp, [ 2(R? — ap)

Inserting this estimate in (3.67), we obtain

|Rs(u)| < 0'\/R2 |v'u,|2 + % /R2 [(CL(QZ) — "LL|2)2 _ (CL7<;U))2] 4 %

and the proof is complete. [ |

Proof of Proposition [3.2. Since < 7!, we can find 0 < § < 1 such that Q < de~ 1.
Taking in Lemma 3.3

52 +1 2(1 + 0%)ag
o= 1 and R = T2
we infer that for any u € H,
197 2 2
E.(u) —CsQ° < F.(u) <2E.(u) + C5Q°. (3.68)

We easily check that E. is coercive in ‘H (i.e., there exists a positive constant C' such
that E.(u) > C(|lull3, — 1) ) and by (3.68), F. is coercive, too. Let (u,)nen C H be a
minimizing sequence of F. in {u € M, |lul|r22) = 1}. From the coerciveness of F., we
get that (u,)nen is bounded in H and therefore, there exists u. € H such that up to a
subsequence,

. . 4
U, — u. weakly in H and wu, — u. in L,

(R?). (3.69)

Arguing as in Step 1 in the proof of Theorem 3.3, we infer that |lu.| 2@y = 1. Writing
for u € H,

1 ) 2 1 1 _
F.(u) =3 [(V —iQat)u|” + 50 {5 lul* + (a= (z) — £2Q°|z]?) |u]2]
R2 €7 J{a—(2)>02e2|z[2}
T [(a() — Ju)? — (0~ (2))? — 20222 [ul?]

4€? J{a- (2)<02e2]af2}
we observe that the functional
1

1 1
€ H— - ’(V — iQxl)u|2 +— S lul* + (a7 (2) = £2Q%[2[?) Jul”
2 R2 2e? {a—(z)>0Q2e2|z|2} 2
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is convex continuous on H for the strong topology. Then from (3.69), it follows that

F.(ue) < liminf F.(u,).

n—oo

Hence u. is a minimizer of F. in {u € H, ||u|z2@2) = 1} and by the Lagrange multiplier
rule, there exists /. € R such that (3.64) holds. By standard elliptic regularity, we deduce
that u. is smooth in R2. [

Proof of Proposition [3.5. Proof of 3.3.a). Let 7. be any real minimizer of E. under the
constraint ||7):|| 22y = 1. Since (in., V7)) = 0, we derive from (3.47),

F.(u.) < F.(i.) = E.(i.) < C|Ine|. (3.70)

Using Lemma 3.3 with 0 = 1/4 and R = \/2a¢, we infer that for & small enough,
1
3 E.(u.) — CQ* < F.(u,). (3.71)

Combining (3.70) and (3.71)), we obtain [3.5.a).

Proof of [3.5.b). Multiplying equation (3.64) by u., integrating by parts and using that
ng |uc|> = 1, we obtain

(. = / |Vu.|* — ZQ/ ot - (iue, Vug) + 12/ (Jue|® — a(z))|u|*. (3.72)
R2 R2 e R2

From [3.9.a) and Lemma 3.3, we derive

1

/ |Vu|? — QQ/ ot (iue, V) + —2/ (|ue)? — a(x)|uc?| < CuylInel>  (3.73)
R2 R2 €% Jr2\D

and arguing as in the proof of (3.49), we obtain by (3.66),

1

;/D(]uEIQ —a(al:))|u5|2 < Cuy 5’1|ln5|. (3.74)

Using (3.72), (3.73) and (3.74), we derive that |[(.| < C,,e7|Ing]|.

Proof of3.3.c). We argue as in [2], Proposition 2.5. Setting U, := |u.|?, we deduce from
equation (3.64),

L tae) — U)UL - .U

2

1
5 AU, = |Vu.|* = 2Q 2™t - (iu., Vu,) —

and hence

2
~AU. + = (U. = (a(z) + °|l:| + 2Q%|z]?)) U. < 0 in R (3.75)
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Let T. = {x € R*\ D, a™(x) > 2(?|(.| + 2Q?|x|?) }. From (3.75), we infer that
1 :
AU, > =0 (x)U. >0 in T (3.76)

and thus U, is subharmonic in 7. C R? \ D. Note that by (3.66),
/ U? < C,e%|Inel?. (3.77)
R2\D

Consider now
D. = {z € R?, dist(z, D) > 51/3}.
By [3.5.b), for € small enough we have 90T C {x e R? |z| <ap+ #} Then for £ small

and any xy € D., we have B(xy, #) C T.. We infer from the subharmonicity of U, in 7.

and (3.77),

1/2
4 C
0<U < — U. < — U? < O* 231 Vao € D
- 6(170) - 7T52/3 /];’(10,512/3) - 51/3 </B(mo,512/3) 6) B WOe | n€| 0 -

with a constant C  independent of zy. Hence we conclude that U, — 0 locally uniformly
in R2\ D as ¢ — 0. It also follows that u. € L>°(R?) and U, € H'(R?). By (3.76), U. is
a subsolution of

—&?Aw+a (x)w=0  in D,

w0 in D., (3.78)
w=C} 3 Ine| on 0D..

We check that for € small enough,

ag + /3 — |x|2>

Vout(T) = C*D€2/3\ Ine|exp ( 7

w

is a supersolution of (3.78)). Therefore

ap — |917|2

B 9 * 2/3
Ue(x) = |ue(@)]” < vout(x) < CFe™”|Inelexp < 2e2/3

) for |z|> > ag + 2¢'/3.

Proof of13.5.d) and|3.5.¢). We set ro = \/ag — €'/* and
a(z) + [0)e* + e2Q? |z|? if |z <rg
nlz) = {—(1 —20)ro(2)z] — o) +ag + |lele? if v <r < Jag+e'/?
We easily verify that for ¢ sufficiently small, v;, satisfies
—&*Avin > 2 (a(x) + [l]e? + 2QP[z]? — vw) vin 0 B 5408,

Vi > 0 in B 10, (3.79)
vm(z) > C 3| Ine| > Ud(z) on OB 55401/
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and
vin(7) > a(x) + |[6|e* +*Q%|z)* in B asieiss.

Setting V. = U. — vy, we deduce from (3.75) and (3.79),

_52A‘/5 + b(l‘)‘/g S 0 in Bm_‘_el/;g’
‘/ESO on aB\/%_i_al/g’
with
b(z) = 2(Ue + vin — (a(z) + 6|2 + £2Q%z]?)) > 0.

Hence V. < 0 which gives us [3.5.d). Then estimate [3.5.e) directly follows from the
construction of vy, and v,y and from [3.5.0).

Proof of 13.3.f). Without loss of generality, we may assume that K = Bgp with R > 0.
Consider the rescaled function

te(z) = uc(ex), Vo € By k.
From (3.64), we obtain
— A, = (a(ex) — |@.|?)@. — 2iQ’z" - Vi, + (2’0, in By, x.

Take an arbitrary xo € Br. It suffices to prove that exists a constant Cz > 0 independent
of xg and ¢ such that
| Viie|| oo (B(2o,1)) < Cln,r- (3.80)

Indeed, by [3.3.¢), we know that a(x)u. is bounded in R?. Using3.5.a),(3.5.0) and [3.5.¢),
we derive that

|AG| L2808 <O (Il(al) + €ee® = [ue*)uc|| Lo g2y + Q2|2 - Viie|| 252 3)))
< Cly (14 Qelja™ - Ve 2(By.y))
<Cyuy.r(1+Qe|lnel)
<Cuo,R

Since [|te|zoo(B(zo,3)) < Cuy by [3.3.¢), it follows that ||| g2(Bzo,2) < Cuo,r by elliptic
regularity. From Sobolev inequalities, we deduce that

| Viie|| £4(B(20,2)) < Clo,r-
We repeat the above argument and it results
| ATl 1(Bw0,2)) € Canr(1+ Q2| Viie|| Lt(B(as.2))) < Cln.r-

It finally yields ||tc||w24(B(zo,1)) < Cup,r Which implies (3.80)). [ |
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3.3.2 Splitting the energy

In this section, we prove the splitting of the energy (3.11). The splitting technique
has been introduced by L. Lassoued and P. Mironescu in [65]. The goal is to decouple
the energy F.(u) into two independent parts : the energy of the density profile 7. and the
reduced energy of the function u/n. (which plays the role, in some sense, of the phase of
u). For 0 < e < %4, we introduce the class

6. = {ve @0, [ RIVoP +ui - P < 400
RQ
We have the following result :

Lemma 3.4. Let u € H and 0 < ¢ < %. Then v = u/n. is well defined, belongs to G.
and

F.(u) = E.(n:) + FXF (v). (3.81)

Proof. Let u € H and define v = u/n. € HL_(R?). We consider the sequence (u,)nen C H
defined by

un(w) = ¢ (n7|2]) u(z)
where ( is the “cut-off" type function defined in (3.27). We easily check that u, — u a.e.

and Vu, — Vu a.e. in R?. Setting v, = Un/7e, then we have v, — v a.e. and Vv, — Vv
a.e. in R2. Since u,, has a compact support, we get that v, € G. for any n € N. We have

[V |* = [V + 02| Vual* + (Joal* = DIV + 0V - V(|oa* = 1),

and therefore,

1 U5
Pulun) = Bu) + 5 [ (RI90 + 55wl = 1)

1 1
T3 /RQ ((onl? = DIV + 0V - V(Jva = 1) + §n§(|vn|2 —1)(n? — a(x))).

As in [65], the main idea is to multiply the equation (3.23) by 7.(|v,|> — 1) and then to
integrate by parts. It leads to

2
N
[ {0 = 010 010+ B - D02 - ata) | -
and we conclude that E.(u,) = E.(n.) + £ (v,) for every n € N. Now we observe that
lup| < |ul and  |Vu,| < |Vu|+|u| ae. in R? (3.82)

and by dominated convergence, it results E.(u,) — E.(u). Applying Fatou’s lemma, we
obtain

ErF(w) < lim &F(v,) = lim E.(u,) — E.(n.) = E-(u) — E.(n:) < 00,

n—-4o0o n—-4o0o
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and we conclude that v € G.. Since n_!|u||Vn.| < |[Vu| + n.|Vv|, we infer from (3.82)
that
2 [Vua|* < C(IVul* + ul” + nZ|Vu[?)

and
n2(Jon]? = 1) < 2(Jul* +12).

By dominated convergence, we finally get that

Er(v) = lim &¥(v,) = lim E.(u,)— E-(n.) = E(u) — E-(n¢).

n—-+00 n—-+00

The rest of the proof is trivial since z+ - (iu, Vu) = n2z* - (iv, Vv) a.e. in R% [

Remark 3.6. By the splitting of the energy, one can deduce the uniqueness of positive
minimizers 7. of E..

We now want to translate some of the properties of u. to the map wu./n.. To this aim,
we define the subclass G. C G. by

G. = {veg. nweH and |[n.v|ro@) =1}

The result below directly follows from Proposition [3.1, Proposition 3.2/ and Proposi-
tion 3.3.
Proposition 3.4. For smalle > 0, let u. be a minimizer of F. in {u € H, |lul|r2mz) = 1}.
Then v. = u./n. minimizes F in G.. Moreover, we have

34.a) E'(v.) < Cullnel?,

94.b) |v(z)| < 14 Cyye? for x € D with dist(z, 0D) > £'/8,

3.4.c) Vel < Cugice™ " for any compact subset K C D.

3.3.3 Splitting the domain

The main goal in this section is to show that we can excise the region of R? where
the density |u.| is very small (which corresponds roughly speaking to the exterior of D)
without modifying the relevant part in the energy.

Proposition 3.5. For small e and v € (1,2), we set
D! = {z € R? a(z) > v|Ine| %2}, (3.83)

We have
Fle(v., DY) < C, | lns\_l.
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Proof. Since u. minimizes F. on {u € H, |Jul|z2r2) = 1}, we have for ¢ sufficiently small
F.(u.) < F.(7.) (we recall that 7. is defined as the unique real positive solution of (3.0)).
As before, R.(7.) = 0 since 7). is real valued. Then we get that F.(u.) < E.(7.) and by
Lemma 3.4/ it leads to

‘T_Z‘k (Ua) < Ee(ﬁa) - Ea(na)'

Using (3.45), we deduce that
FE(v.) < Ce?|Inel?. (3.84)
We set NV = R?\ D”. From the previous inequality, it suffices to prove that
Fe (v, N¥) > —C | Ineg| ™ (3.85)

with C,,, > 0 independent of € and v. Arguing as in the proof of Lemma [3.3 with o = 1/4
and R = 2,/ag, we infer from (3.66)),

1
R N <5 [Tl 92 [ ol
N N

4
1 20)2 _

S—/ 773|VU5|2 + — 20" (z)|ue|® + 4a092/ |ue |2
4 _/\/'El/ 3 RQ\BQM B2M\Dg

1
§—/ 77§|VU6|2+4QOQ2/ luc|* + Cpye?| Ine|.
4 ./V;” Bgm\pg
By (3.66), we may also estimate
[ k= wls [ (uP-a)+ [
Ba, /a5 \D¥ Bs jag\B, /a5 B, ja5\DY B ja5\D¥¢

gO(/BQm\Bm |u€|4>1/2+0</3

<C,,(|Ing|™ +¢|Inel).

1/2
(el = a@))?) " + Clne| 2
vag \D¥
Then it follows that
1
R (00, N2)| S 5 E07(0, N?) + Co ] (3.56)
which leads to (3.85). |

For some technical reasons, it will be easier to deal with a' instead of 7.. We now
prove that the energy estimates inside D” remain unchanged if one replaces n? by a™ in
the energies.

Proposition 3.6. We have

ENv., DY) < C’wollnslz and  Fl(v., DY) < Cw0|ln5|_1.
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Proof. From [3.1.¢) in Proposition 3.1, we infer that

2 2 4
a _2775 < 081/3 and a _4775 < 051/3
Nz llreo(py) Ne Lo (py)
and then [3.4.a) in Proposition 3.4 yields
1E4(v., DY) — E™ (v, DY)| < Ce'PE™ (v, DY) < Cpoe'?|Inel’. (3.87)

Using [3.3.a) and [3.5.¢) in Proposition [3.3, we derive

2
Dy €

< Ce'BQ(E.(u., D)2 < C0e'3Inel?.

R0, DY) — R (D) < Q [ 2 ) |@
| e(UE’ e) 5(”57 s)|— |u6|| u€|

Therefore, it follows that
| F(ve, DY) — FF (v, DY)| < Cope'/?|Ingl?, (3.88)

Then the conclusion comes immediately from [5./.a) in Proposition 3.4/ and Proposi-
tion 3.5. [

3.4 Energy and degree estimates

In this section we find some a priori estimates of the energy and of the number of
vortices. The main ingredients are the construction of vortex balls and an asymptotic
expansion of the rotational energy in terms of these balls. From this formula, we show
the non existence of vortices for velocities strictly less than €2;. For larger angular speeds,
we give a first result about the location and number of the vortices inside D. We also
prove a fundamental energy estimate (Proposition 3.11) which is the starting point for
our analysis in the next section.

3.4.1 Construction of the vortex balls

We present here a first vortex structure. It relies on the construction of vortex balls
by a method due to E. Sandier [73] and E. Sandier and S. Serfaty [74].

Proposition 3.7. Assume that (3.65) holds. Then there exists a positive constant Ay such
that for small €, there exist v. € (1,2) and a finite collection of disjoint balls {Bi}ief =
{B(p;, ri)}id satisfying the conditions :
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(i) B; CC D.:=D for every i € I. (where DY is defined by (3.83))),
(ii) {x €D, |v-(z)] <1—|Ine|™} C Uier.B;,

(iii) Y 1 <|lne|™",

i€l

(iv) / a(z) <%|VU€’2 — Qa™ - (iv,, VUE)> > mwa(p;)|d;|(|Ine| — AgIn|Inel),
B;

where d; = deg (|U—6‘, 8Bi) for every i € I..
UE

Proof. Using the method of E. Sandier [73] and E. Sandier and S. Serfaty [74], we prove
as in [2] (by the estimates in Proposition 3.6/ with v = 1) the existence of a finite col-
lection of disjoint balls {Bi}ze ;. such that the conditions (i) and (i) are fulfilled for

D! = {z e R* a(z) > |ln5]_3/2} and we have
/ @Kv — Q). * > wa(p)|di| (| Ine| — AgIn|Ine|), Vi € I..
B;

Therefore, by (iii), we can find v, € (1,2) such that
(91)8”6 N UieIEBz’ = 0.

By cancelling the balls B; that are not in D, it remains a finite collection of balls which
satisfies (i), (i) and (i) for DY. Notice now that (iv) takes place since

07 [ Slaluf <@ [ [oPlul < 0847 = of|lne ™)
B; B;

7

and this term can be absorbed by Agln|Ing| (up to a different constant Ay + 1). |

3.4.2 Expansion of the rotation energy

We are now in a position to compute an asymptotic expansion of the rotation energy
according to the center of each vortex ball B; and the associated degree d;. We have :

Proposition 3.8. For small ¢,

Q
RE(ve, D=\ Uier. By) = % Z(GQ(Z%‘) — V2| Ine[7*)d; + of|Ine|™°)
i€l.
Proof. By Proposition 3.7, D, \ Ujer. B; C D\ {|v:| < 1/2} if 0 < € < 5. For x € D, such
that |v.(z)| > 1/2, we set
. v ()
jve ()]

we ()
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Since (iv., V) = |v.|*(iwe, Vw,) in D, \ {|ve| < 1/2}, we have

RE (ve, D: \ User. B;) = Q/ a(x)zt - (iw,, Vw,)
De\Uier, Bi
+ Q/ a(z)(|v|* = Dt - (iw., Vw,). (3.89)
De\Uier. Bs

Then we estimate using Proposition 3.6,

< Ce (E2(ve, D)) |V we| 12D (o <1 /2))

/ a(@)([o.]? = 1) 2t - (iw., Vi)
De\User, Bi
< C€| In 8‘ ||Vw€||L2(DE\{|vE‘<1/2}) . (390)

In D, \ {|v:| < 1/2}, we have |Vw.| < 2(|Vv| + |V]v.||) < 4|Vv.|. We deduce that

/ V.2 < 16/ Vol? < 16]1n5]3/2/ o(2)[ Vo < Ol el (3.91)
D \{|ve|<1/2} De

De

and hence we obtain combining (3.89), (3.90) and (3.91),

R (ve, De \ Ujer. By) = Q/ a(z) vt - (iw., Vw,) + O(e| Ingl*). (3.92)

DE\UiGIE B;

We now define the function P. : D, — R by

a*(z) — v Ing|™3

P.(x) = 1

The function P. satisfies

VP.(x) = —a(z)x for x € D,
P.(z)=0 for x € 0D..

Since (iw., Vw,) = w. A Vw, , we derive that
/ a(z) vt - (iw., Vw,) = — / VAP () - (we A Vw.)
D:\User, Bi De\Uier. Bi

=2 (0 )

i€l

where 7 denotes the counterclockwise oriented unit tangent vector to dB;. The smoothness
of v, implies the existence of a. € (3,2) such that & = {z € R?, |v.| < .} is a smooth
open set. Then we set for ¢ € I,

U =B,NU
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(note that U; CC B; for € small enough by Proposition 3.7). For each i € I., we have
by (3.91),

(9w€ aws
Px) | we N —=— | — Px) | we N —— || =
9B; ()( 87) ou; <>( 37)‘

<Cri||[Vwel 2.\ {joe|<1/2))
<Cr;|Ine[*

V+P.(z) - (w: A V)
Bi\U;

and since |v.| < 2/3 in U;, it results from [5.4.b) in Proposition 3.4/ and Proposition 3.6,

/8 ()= P.(p) (vs A %”T)‘

/ui a(z) z* - (ive, V)

/aui (Pe(x) = Pe(pi)) (wg A aaws) ‘ <C

T

<C

+C

/Z/l~ (Pa(l') - 735(]31)) det(Vva)

<C (rilVaVoe| 2o, + ri|Ine’? |Vave[Fag,)
<Cr;|Ine|"?.

Therefore we conclude by (74) in Proposition 3.7 that

ow, B
R (ve, D\ Uier Bi) :QZPE(pZ-)/a we A=+ of|Ine| %)
i€l Ui

=270y Popi) di + o/ lne|™)

i€l

and the proof is complete. [ |

3.4.3 Asymptotic behavior for subcritical velocities

We are now in a position to prove point (i) in Theorem 3.1 for small angular veloci-
ties. In terms of the map v., the result takes the following form (using the notations in
Proposition 13.7) :

Proposition 3.9. Assume that

2
Q <wpllne| with wy < —. (3.93)
0

Then for € small enough, we have that

> ldil =0 (3.94)

1€l
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and
|ve] = 1 in L3 (D) ase — 0. (3.95)
Moreover,
Fl(ve) =o0(1) and EX(v.) = o(1). (3.96)

Proof. Combining Proposition 3.6 and Proposition 3.7, we get that

1 1
Oe )= P2 D) 25 [ a@IVel s o [ @ wp? @
2 JDA\Gier. Bi 4e* Jp.

+7 Y alp)ldi| (|Ine] — AgIn|Inel) — R (ve, D. \ Uier. By) -

1€l

Since a*(p;) — V2| Ine|™ < ag a(p;), we infer from Proposition [3.8 that

RE (0 Do\ Uier. B) € =50 3" alpo)ldl el +o(|ne[7)  (3.98)

i€le, d; >0

Since wg < 2/ag, we infer from (3.97) and (3.98) that for e small enough,

1 _
5[ o [P amldine < O(mel ), 399
/De\UZEIEB

1€l

for a positive constant C' independent of e. Since a(p;) > |Ine|*/? in D., we derive that

>ier 1di] < O(|Ine|~/2) and therefore (3.94) holds for ¢ sufficiently small. Coming back
o (3.99), (3.94) implies
1
e?

a®(x)(1 — |ve|?)? < o(1). (3.100)

Then the proof of (3.95) follows as in [19] using the estimate [3.4.c¢) in Proposition 3.4
on |Vu|.

Since ) .., |di| = 0, we derive from Proposition 3.8 that RZ(v., D: \ Uier, Bi) = o(1).
On the other hand, [3.1.c) in Proposition 3.1, [3.5.a) in Proposition 3.3/ and (i) in
Proposition 3.7 yield

}R? (v-, User. B < QZ/ zug,Vug)‘ < CQ|| Vel 25y Zn = o(1)

iel. iel.
(3.101)
and we conclude that R?(v., D.) = o(1). Since F2(v., D) < o(1), we deduce that
EXNv., D) = o(1) (3.102)

and hence we have F%(v., D.) = o(1). By (3.87) and (3.88), it leads to £ (v., D.) = o(1)
and F(v., D) = o(1). Using (3.84) and (3.85), then we get

o(1) < FI (v, N*) < =F(ve, De) = o(1) (3.103)
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and therefore F(v.) = o(1). By (3.86), we have

FU(0e, NI°) = EF (02, NI°) + RE (02, NI¥) 2 588 (v, NZ¥) + 0(1)

N| —

and we conclude from (3.103) that £ (v., N*=) = o(1). |

Remark 3.7. Assuming that (3.93) holds, it follows from (3.102) and Proposition 3.1
that for any sequence ¢,, — 0 we can extract a subsequence (still denoted by ¢,,) such that

+ a3 1
Ue, — Vate'™ in Hy,

(D) for some constant o € R. By Proposition 3.1, Proposition 3.3

and Proposition of 3.9, we also have |u.| — Va* as e — 0 in L% (R?\ dD).

3.4.4 Degree estimates near the critical velocity

In this section, we are going to prove that the number of vortex balls with nonzero
degree present in a slightly smaller domain than D., is bounded. To this aim, we need to
distinguish different types of vortex balls. We divide I, into three pieces : I. = [(UI,UI_
where

Iy={i€I.,d;>0and |p;] < |Ing| 5},
I, ={i€l.,d;>0and|p]| > |Ine| 0},
I ={iel,d <0}

Then the result can be stated as follows.

Proposition 3.10. Assume that

2
Q< —(|lne|+w;In|lnel), (3.104)
Qo
for some constant wy € R. Then
No =Y _|di| < C., (3.105)
i€lp

and setting B, = {x € R?, |z| < y/ap — |Ing|~1/2 }, we have for e sufficiently small,
o i =o0. (3.106)

i€l UI_, p;€Be

Proof. From Proposition 3.8, we derive that for £ small enough,

maps2 m(ag — |Ine|~*)Q _
R? (0, D\ Uier. B) < "9 S o) + 0S4 4 o el )

<m Y a(p)|dil|ne| + 7wy Y a(p:)|di| In | Ine] (3.107)
iGIoUI* 'LGID

™ —
= 5oz 2 alp)|dif| = + of| Ine| )

1€y
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(here we used that
-1/3 2 2/3 1 2/3
(ap — |Ine|™/°)Q < 2|lneg| — —|Ine|”” + 2w In|Ine| < 2|lne| — —|Ing|
Qg Qo

for i € I, and e small). Combining (3.107) and (3.97), we infer that for £ small enough,

/ a(@)[Ve]> + ) alp)ldi||nel*® + > a(p;)|d;|| Ine| <
De\Uier. Bi

1€l el

< Co(Mo+wi) Y a(py)ld;|In|Ine| + O(|Ine| ™)
i€lp

< Co(Ao +wi)agNoIn|Ine| + O(|Ine| ™) (3.108)

for some positive constant Cj independent of €. We set
j*:{ZEI*, |p7,| < \/a0_|1n5|1/2} ) N*:Z‘dZL
iel,

and

P { eI, Il < \Jao — \lnew/z} C N =Y .

iel_

Since a(p;) > |Ine|~/2 for any i € I, U I_, we obtain from (3.108),

/ a(2)|Voe > + Ny Ine|V® + N_|Ing|'/? < Cy|Ag + wilagNo In|Ine| + O(|Ing| ™)
DE\UZEIEB
(3.109)

which implies in particular,

N,
max{N,, N_} < 70 (3.110)

for e sufficiently small. We now show that Ny is uniformly bounded in e. Consider the
sets

7= [|le[ %, V2] and 7= {r €2, : 05,0 (Uier B) = 0}.

Notice that 7. is a finite union of intervals verifying |Z. \ J.| < |Ine|7'°. For r € J. and
e small, we have |v.| > % on 0B, and therefore, we can define

D) = dex (55.05.(0)).
By (3.110), we obtain that for small ¢,

|D(r)| = | Zdi|ZNO_N—Z% for any r € J..

Ipil<r
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We have
27
/ a|Vu,|? 2/ a(r)(/ |Vv€|2rd9> dr
Bm\uie[EBi e 0
2
1 2m v,
Z_/ ar)(/ |v€/\—v|2r2d9>d7ﬂ
4), r 0 or
Set we = 5 in B s \ Uier. B;. Since
0 & 28] = Jou P n 222 > Ly, 2 2
Ve = |Ve| |We Z = |We - |»
or or 4 or

it follows that

27
/ a|Vu.|? zc/ @(/ |w5/\%|27’2d6’> dr
B yag \Vier. Bi VAR 0 or
Mo

vV
Q
S

-

=

%‘ [}
V
Q
&

—

=

Notice now that

< [nel*1Z.\ J| = o(1)

JENE
. T VAR

d
and since / &~ Cm |Ine| + O(1), we finally get that
r

a
/ —|Vu> > CiIn|Ine|NZ.
B a5 \Uier. Bi 2
2

for some positive constant C; independent of . From (3.109), we derive that
(ClNg - O()|A0 + w1|a0N0) In | 1HE| S O(| 1n€|_1)

which implies that for ¢ small enough, C; N2 — Co|Ag + wi|agNy < 1 and hence Ny is
necessarily bounded in €. Then it follows by (3.109) that

In|Ine|

In|Ine|
|1n6|1/2)'

M= O(|lng|1/6

) and N_ < O(

Therefore, N_ = N, = 0 for ¢ sufficiently small. [
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3.4.5 Energy estimates near the critical velocity

We give here some fundamental energy estimates. These estimates follow from Propo-
sition 3.10 and will allow us to construct a fine vortex structure in the next section.

Proposition 3.11. Assume that (3.104) holds. Then there exist two positive constants
My and My (which only depend on wy) such that

ENve, D) < My|lne| and EXv., A.) < Myln|lng|,
where A. = D, \ By|jye-1/5 -

Proof. From Proposition 3.8 and (3.106), we infer that for & small,

TaoS?
R (v, D- \ Uier. By) < — }: pﬁdw+—418|”2}:cMMWA+oﬂmd*)
€lo i€L\ I«
2m
gﬁ§:a@m¢uund+uhm¢md)+E—§:anmumdn2
i€lp i€l

+o(|Ing|~?)
Injecting this estimate in (3.97), we derive that

Z a(pi)|d;||Ine| < C,, NoIn|lne|

i€y

and from (3.105), we deduce that >°,; a(p;)|d;||Ine|"/? = o(1). Hence

RE (v, De \ User. B <7TZCL pi)|di| (| Ine| + wi In|Inel) + o(1). (3.111)

i€ly

By (3.101) we have R%(v., D.) = R (ve, De \ User. B;) + o(1) and since
O(|ne|™) > F(ve, D.) = €2 (ve, D.) — RE(ve, De),
it follows by (3.111)) and (3.105),

E4ve, Do) < 7Y alpi)di|(|Ine| + wi In | Inel) + o(1) (3.112)
i€lp

< Cy Nollne| < C,, | Inel.

As in (3.101)), we have that R? (v, U;er, Bi) = o(1) and we infer from Proposition 3.7 that

Z / )|V 2 = Z / )| Ve > = RE (ve, User, Bi) + o(1)

i€lp i1€lp

> 7Y a(p)|di| (| Ine| — Agln|Ine]) + o(1).

i€lp
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Matching this inequality with (3.112), we finally obtain

E(vey Ae) < E2(ve, D=\ Uiery Bi) < mlwi + Ag) Z a(pi)|d;| In[Ine| 4 o(1)
i€l
< CyyNoln|Ine| < C,, In|lne¢|

and the proof is complete. [ |

3.5 Fine structure of vortices

The main goal of this section is to define a fine structure of vortices away from the
boundary of D. The analysis here follows the ideas in [20] and [21]. The main difficulty in
our situation is due to the presence in the energy of the weight function a(x) which vanishes
on 0D and it does not allow us to construct the structure up to the boundary. From now,
we assume that (3.104) holds, i.e., Q < a2_0 (|llne| +wy In|Inel) for some constant wy € R.
We will prove the following result :

Theorem 3.4. 1) For any R € (Y52, \/ag ) there exists eg > 0 such that for any € < eg,

2) There exist some constants N € N, \g > 0 and g9 > 0 (which only depend on wy) such
that for any € < eq, there exists a finite collection of points {:Uj} C Byag such that
4

Card(J.) < N and

J€Je

1 e
lve| > 5 B@ \ (Uj€J€B<I?,)\O€)).
Remark 3.8. The statement of Theorem 3.4 also holds if the radius @ is replaced by
an arbitrary r € (0, R) but then the constants in Theorem 3.4/ depend on r. For sake of
simplicity, we prefered to fix r = @

3.5.1 Some local estimates

We start with a fundamental lemma. It strongly relies on Pohozaev’s identity and it
will play a similar role as Theorem II1.2 in [20]. In our situation, we only derive local
estimates as in |7, 21], 82]. Some of the arguments used in the proof are taken from |7, 21].

Jao

In the sequel, R denotes some arbitrary radius in [¥5=, \/ao ) and we will write R’ = M.

Lemma 3.5. For any 2/3 < a < 1, there exists a positive constant Cg,, such that

1

= (1 —|v*)? < Cra for any zy € Bg.
B(

0,E%)
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Proof. Step 1. We claim that
E.(us, Bpr) < Cg|Ine|. (3.113)
Indeed, since u. = n.v., we get that
[Vue” < (Vaol Vel + v ||V < Cr(IVeel* + [Vne*)  in Br

(here we use [3.4.b) in Proposition [3.4). Then it results

-1
/ Vu.|? < Cg (min a(y)) / a(r)|Vu|? + C’R/ IVn|> < Cr|Inel,
Bp/ Bp/

YyEBp Bp/

by [3.1.a) in Proposition 3.1 and Proposition 3.11. On the other hand, we also have by
the same propositions,

1 C
| (al) = ) <5 / [(a(e) — 12)2 + 0 (1 — [u?)?]
£ BR’ € BR’
<C [ (o) -+ <2 / aH(2)(1 - [ue]?)? < Crl Ine]
€ BR’ £ BR’

and therefore (3.113) follows.

Step 2. We are going to show that one can find a constant Cr, > 0, independent of ¢,
such that for any zy € Bg, there is some 7o € (¢%,%/2%1/3) satisfying
CR,a

E. (u., 0B(z9,710)) < )
To

We proceed by contradiction. Assume that for any M > 0, there is x); € Br such that

M
E. (uc, 0B(zpr, 7)) > Vr € (2,313 (3.114)

T
r

Without loss of generality we may assume that B(xj,e%/?*Y/3) C Bp since ¢ is small.
Integrating (3.114) in r € (£%,&%/2+1/3), we derive that

a/2+1/3

E. (u., Br) zM/ &~ M(a/2 - 1/3)|Ine|
o r

which contradicts Step 1 for M large enough.
Step 3. Fix xy € Bg and let 1y € (€%,2%/%71/3) be given by Step 2. As in Step 2, we may
assume that B(zg,r9) C Br. By Proposition 3.2, we have

1

1
—Au, = g(a(xo)—|u5|2)u5+g(a(:r;)—a(xo))ug—ZiQa:L-V%%—Esug in B(xzg,70). (3.115)
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As in the proof of the Pohozaev identity, we multiply (3.115) by (z — z) - Vu. and we
integrate by parts in B(xg,ry). We have

2

u.
/ —Au, - [(x — ) - Vu] = @/ Vu|? — 7”0/ ! (3.116)
B(zo,r0) 2 OB (z0,r0) OB (z0,r0) ov
and
1 2
- (a(wo) — |ue|*)ue - [(x — mo) - Viue] =
€ B(:vo,’l‘o)
1 o 22
== (a(wo) — ucl*)? - —/ (a(zo) — [u:]") (3.117)
262 B({L’Q,To) 452 aB(EO»TO)

(where v is the outer normal vector to 0B(z,79)). From (3.115)), (3.116) and (3.117) we
derive that

1 _
z / (alzo) — luel?)? < C(ro / Vel + 1o / 2(alo) — u)?
€ B(zo,r0) OB (z0,ro) OB(z0,r0)

+ e~ / la(z) — a(wo)|[ue| Ve
B(Z‘o,'f‘o)

+ Qro/ |Vug\2 + |€E]r0/ |uEHVu8]).
B(xo,r0) B(z0,r0)

Then we estimate each integral term in the right hand side of the previous inequality.
According to (3.113) and to(3.5.a),(5.5.b),[3.5.¢) in Proposition [3.3, we have

[ (el - PP < [ [(aan) - ao)? + (alo) - [uY]
0B (z0,70) 0B(z0,70)

< 08_2/ (a(z) — |ue*)? + C'nga_l
OB (z0,ro0)

and
QTO/ |VUE|2 S QTOEE(UE; BR) § OR €a/2+1/3| In €|2
B(zo,r0)
and
e [ o) - ate)lecl Vel < Curde? [ v
B(zo,r0) B(zo,r0)
< Crrye?[E-(us, Bp)]'* < Cp 8%a_1| Ine|*/2
and

ro [ el V] < Colel 3 Bl B} < CreH el
B(xo,r0

(here we used that |a(x) — a(zg)| < Crro for any z, xy € Br/), so that we finally get that

1 (a(20) — [4e]?)? < Cra(1 + roE- (us; OB(z0,70)) )

2
€ B(zo,r0)
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for some constant C'r, independent of e. By Step 2, we conclude that

1

= o )(a(xo) — |u*)? < Cra- (3.118)
(Eo,EO‘

Using [9.1.e) in Proposition 3.1, we may write

1 Cr
1 A-lolP <[ -l
2 B(xo,e%) g? B(z0,e%) )
C
< (a(z) = |ucl*)? + o(1)
€ B(IQ,EO‘)
Cr 242
<— (a(zo) = [uel*)” + o(1) < Cra
€ B(J:(LEO‘)
and we conclude with (3.118)). |

The next result will allow us to define the notion of a bad disc as in [20].

Proposition 3.12. There exist positive constants A\g and ugr such that if

1
— (1 —|ve*)* < pur  with x9 € Bg,

)
5 - 2> Mg and | <1,
€% J BpnB(x0,20) €

then |v.| > 1/2 in Br N B(xo,1).

Proof. By |3.4.c) in Proposition 3.4, there exists a constant C'r > 0 independent of ¢ such
that

C
|VU5| S ?R in BR"

Then the result follows as in [20], Theorem II1.3. |

Definition 3.1. For x € Bp, we say that B(z, Age) is a bad disc if

1
- (1= 0.?)? = i
€% JBpNB(z,2)ge)
Now we can give a local version of Theorem 3.4. We will see that Lemma 3.5/ plays a
crucial role in the proof.

Proposition 3.13. Let 2/3 < a < 1. There exist positive constants Nro and eg, such
that for every e < erq and xy € Br one can find z1,...,xN, € B(xg, %) with N. < Ng,
verifying

lve| > in  B(zg, %)\ (UévilB(ﬂfk, Are)) .

N | —
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Proof. First, choosing ¢ small enough, we may assume that B(zg,e“) C Bpg. Consider
now a family of discs { B(;, )\Re)}ie # such that
x; € B(xo,e%),
B(zi, Are/4) N B(x;, Age/4) =0 fori # j, (3.119)
B(Jfg,ga) C Uie]—' B(ﬁz, )\R€>.

We denote by F' the set of indices i € F such that B(z;, Age) is a bad disc. We derive
from Proposition 3.12 that for € small enough,

C

1
pr Card(F') < —2/ (1—|u?)? < —2/ (1—Joe*)?
icF € BR/QB(CEZ‘,Q)\RE) € B(Io,é‘o‘,)

where C' is some absolute constant and o = 1/2(a+2/3). The conclusion now follows by
Lemma, (3.5l [}

Remark 3.9. By proof of Proposition 3.13, any cover {B(xz-, /\Rg)}ie.?’-' of B(xg,e®) sa-
tisfying (3.119) contains at most Ng, bad discs.

We will need the following lemma to prove that vortices of degree zero do not occur :

Lemma 3.6. Let D > 0,0 < 3 <1 and v > 1 be given constants such that v3 < 1. Let
0 < p < €8 be such that p¥ > Age. We assume that for xy € B,

. 1
(1) Vo + — (1 — |ve|
0B(0,p) €

1
(”) ‘UE‘ > 5 on 8B($07p)7

Ve

"Us|,

(iii) deg (

Then we have

83(330,,0)) ~0.

Proof of Lemma |3.6. Step 1. We are going to construct a comparison function to obtain
the following estimate :

1
Vo2 4+ —(1 = [v]?)? < Cyi. 3.120
2 /67
B(x0.) 2

Since the degree of v, restricted to dB(zy, p) is zero, we may write on 0B (xg, p)

ve = |v.|e'*
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where ¢, is a smooth map from dB(zg, p) into R. Then we define 9, : R* — C by

0. = € in B(xg, p)
Ve = U in R?\ B(zy, p)

where 1), is the solution of
A, =0 in B(zg,p)
% = ¢s on 8B(l’g,p>,

and x. has the form, written in polar coordinates centered at x,

X:(r,0) = (Jv-(pe”)] = 1)é(r) + 1

and & is a smooth function taking values in [0, 1] with small support near p with £(p) = 1
(note that by [3.4.b) in Proposition 3.4, 0 < x. < 1+ Ce'/3). Arguing as in [19], proof of
Theorem 2, we may prove

0. |?
[ wersenf 0
B(xo,p) 0B(x0,p)

or

< Op/ |V, |? (3.121)
OB (z0,p)
and
1 1
/ IVx|? + 5 (1—x2)* < cp/ V.| + sa(l- w224+ O(p).  (3.122)
B(zo,p) € 0B(z0,p)

From (3.121), (3.122) and assumption (7), we infer that

1
/ Vi[> + —(1 — o))< C. (3.123)
B(wo,p)

We set 0. = m_'9. with m. = 170 || L2(r2y. Clearly we have 0. € G. and hence, by

Proposition 3.4,
Fir(v) < FE(E), (3.124)

We claim that

F=(0.) < F=(.) + Cp|Ing*. (3.125)

Indeed, using (3.123), ||n-ve || r2r2) = 1, 0. = v. in R*\ B(zo, p) and 3.4.a) in Proposition
3.4, we estimate

m&n+/ ﬁmf—”+/ 21— [uaf?)
B(Io,p) B(l‘o,p)
=14+ O(pe|lne|) (3.126)

From [3.4.a) in Proposition 3.4, (3.123) and (3.126) we derive

/ 77§|V1~)5|2:m82/ T]?’V@E|2:/ n?|Vo.|* + O(pe|Ine)?), (3.127)
R2 R? R2
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by [8.5.a) in Proposition [3.3, Lemma 3.3 (3.123)) and (3.126),
RE(0:) = m*RE(6:) = RE(8:) — (1 — m_?) Re(ne0.) = R (9:) + O(pe| Inel?), (3.128)
and using also [3.5.¢) in Proposition 3.3, (3.66) and [3./.a) in Proposition 3.4,

1

52 R2

- a2 = 2 / (L= 0u2)? +
6 ]R2
A—m22 [
Sk T
& R2
1 4 ~ 12\2
<5 [ wa-np)

1 1/2 1/2
+Cpline] (—2 [ aa- m\?)?) ( / |u5|4)
€% JR2\B(z0,p) R2\B(z0,p)

+ Cp*|Inel?

1
<5 / (1 —|0:*)* + Cp| Ine|?. (3.129)
]RQ

2(1 —m_?

) ) .
= 7752(1 - |v€]2)\7]€1)5|2
]R2

e2

We conclude from (3.127), (3.128) and (3.129) that (3.125) holds.
Since 0. = v, in R?\ B(zg, p), we get from (3.124) and (3.125) that

ng(vsz(x()up)) < FQE(@&B(‘IU)p)) + Cp' 11’16|2‘

By (3.123) we have & (0., B(xo, p)) < C and therefore,
|RE (0., B(xo, p))| < CRQ/( )|Vﬁ£] < Cr|| Ve 12(Bzo.p) = Olp|Inel).
B Zo,p

Hence, F! (0., B(xg,p)) < C and we conclude that
FF(ve, B(wo, p)) < Cp.

As for ., using Proposition [3.11], we easily check that |R" (v., B(xzo,p))| = O(p|Ine|*/?)
and we finally get that £ (v, B(xg, p)) < Cy which clearly implies (3.120) by [3.1.¢) in
Proposition 3.1,

Step 2. We deduce from (3.120) that

P 1
/ (/ Va2 + (1 - |v5|2)2) ds < Ciyn.
2p7 0B(z0,s) 2e
ds

Since [, Tz = Cylln g|'/2, we derive that for small ¢ there exists sy € [2p7, p] such

that
Cﬂ R

1
Vol + —(1— PP < —22
\/HB(mO,so)’ /U| +2€2( ”U |) = SUHHSO’l/Q
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Repeating the arguments used to prove (3.120), we find that

1 Cs.r
Vo2 4+ — (1 — 2\2 B, '
/B(mo,so) | U6| * 252( |UE| ) a |1H 80|1/2

In particular, we have

- (1 - ee?)? = o(1)

2
€% JB(x0,207)

and the conclusion follows by Proposition 3.12. [

We now establish an estimate of the contribution in the energy of any vortex :

Proposition 3.14. Let xg € Br and 3 < a < 1. Assume that |v:(xo)| < 1/2. Then there
exists a positive constant Cr, (which only depends on R, a and wy) such that

/ |Vu|? > Cpaollnel.
B(zo,e®)

Proof. Let Ngo and z1,...,zN. € B(xg,£%) be as in Proposition [3.13. Set
al’? —q

0y = ———
3(Nra +1)

and for £ =0,...,3Ng + 2 we consider
o = a? — kb, , Tp = [, e%+1] and Cj, = B(xq, 1) \ B(xo, ).
Then there is some kg € {1,...,3Ng, + 1} such that
Cro, N (VX B(, Age)) = 0. (3.130)

Indeed, since N. < Ng, and 2Age < |Z| for small €, the union of IV, intervals of length
QARE
ijil(|xi — Zo| — ArE, |ri — 20| + Age)

cannot intersect all the intervals Z; of disjoint interior, for 1 < k < 3Ng, + 1. From
(3.130) we deduce that

Therefore, for every p € Iy,,

Ve
dr, = deg (ma OB (o, P))
is well defined and does not depend on p.
We claim that
di, # 0. (3.131)
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By contradiction, we suppose that dy, = 0. From Proposition 3.11, it results that
1
/ Vo |* + (1= 1v:[%)? < Cg|Inel.
B 2e

Using the same argument as in Step 2 of the proof of Lemma 3.5, there is a constant Cg,
such that

1 Chr.a
/ Vo> + 51— v.[2)? < =22 for some py € Ty -
0B (z0,p0) 2e Po

According to Lemma 3.6/ (where 5 = a1 and v = %), we should have |v.(xo)| > 1/2
0
which is a contradiction.
By (3.131), we obtain for every p € Zy,,

1 0
/ —Q(UE/\ﬁ) SC/ V|
OB(z0,p) |U6| or OB (z0,p)

(where we use that [v.| >  in Cy,). Cauchy-Schwarz inequality yields

C
/ Vo > — Vp €Iy,
0B (z0,p) P

and the conclusion follows integrating on Zj,. |

1
1§|dk0|:%

3.5.2 Proof of Theorem 3.4

The part 1) in Theorem 3.4 follows directly from Lemma 3.7 below.

Lemma 3.7. There exists a constant eg > 0 such that for any 0 < € < g,
1 .
]v€|2§ in BR\B@.

Proof. First, we fix some a € (2/3,1). We proceed by contradiction. Suppose that there is
some xg € Br \ Byag such that |v.(zg)| < 1/2. Then for any ¢ sufficiently small, we have

5
B(zg,e%) C A. (A is defined in Proposition 3.11)) and therefore, by Proposition [3.11, we
get that

/ Vo2 < Cpéf(vn, A) < Cpln|Ine]
B(z0,e®)
which contradicts Proposition [3.14/ for € small enough. |

Proof of 2) in Theorem|3.4. We fix some 2/3 < a < 1. As in the proof of Proposition [3.13,
we consider a finite family of points {z;};c s satistying

T; € B@
B(xi, Aoe/4) N B(x;, e /4) =0 for i # j,

B@ C U B(Zﬁj,)\gg),
’ JjeT
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2
set of indices j € J such that B(z;, A\oe) contains at least one point y; verifying
1

[o=(yi)] < 5 - (3.132)

where \g := Ayag (defined in Proposition 3.12/ with R = ¥%) and we denote by J. the
2

3v/ag

Applying Lemma 3.7 (with R = =4=), we infer that there exists ey such that for any

0 <e < ey,

B(xj, \og) C Byay for any j € J.. (3.133)
4

Then it remains to prove that Card(.J.) is bounded independently of €. Using (3.133)) and
Proposition 3.14] (with R = @), we derive that for every j € J.,

/ Vv |> > CylInel (3.134)
B(yj,e%)

for some positive constant C, which only depends on « (where y; is any point satisfying
(3.132) in the ball B(z;, Aoe)). We set for € small enough

W = (x;,2e” B a5 .
U Bl 2 € B
VISDE

We claim that there is a positive integer M, independent of € such that for any y € W, the
point y belongs to at most M, balls in the collection {B(z;,2¢%)};ey.. Indeed, consider
for y € W the subset K, of J. defined by

K, ={j€J.,ye Blx;2)}.

We have for every j € K,,
z; € B(y,e”) C B e (3.135)
with o = 1/2(2/3 + a). Obviously, the family {B(xj,)\oe)}jeK

a cover of B(y,e®) satisfying (3.119) (with R = */TCTO) and by Remark 3.9, this cover

contains at most M, bad discs for a constant M, independent of €. On the other hand,

can be completed into

B(x;, \o¢) is a bad disc for any j € J. by Proposition [3.12. Hence
Card(K,) < M,.
From (3.134), we infer that

/ Vo z/ Vol > Z/ Vol > CoCard(J)|Inel.  (3.136)
Bm w

jEJ :z:] 2e)

Moreover, we know from Proposition 3.11,

/ Vol? < c/ ) Vo2 < Cllnel (3.137)
Br

for some constant C' independent of €. We deduce that Card(.J;) is bounded independently
of € matching (3.136) with (3.137)). [



102 Chapitre 3. Vortices in a two dimensional rotating Bose-Finstein condensate

3.5.3 Modifying the bad discs

In this section, we refine the vortex structure given by 2) in Theorem [3.4. We obtain
the following result as in 78] combining Theorem [3.4/ with an adaptation of Theorem V.1
in 7] (the method comes from a preliminary version of [20]).

Proposition 3.15. Let 0 < 3 < p < 1 be given constants such that i := pN*t > 3 and
let {25} jes. be the collection of points given by 2) in Theorem |3.4. There exists 0 < 1 < &g
such that for any € < 1, we can find J. C J. and p > 0 verifying

(i) N < e <p<ef<el,

g 1 =
(“) ‘UE‘ > 5 m B@ \Uj€j€B<x§>p)7

2 ~
(1i1) |ve| > 1— e on OB(x5,p) for every j € Je,
‘ 1 C(B, .
(iv) Vol + g0 = e < SO for cvery j <
0B (x5,p) € P

(v) |xj — 5| > 8p for everyi,j € J. with i # j.

Moreover, for each j € J., we have

D; = deg (E OB(z, p)> £ 0. (3.138)

|U€”

Proof. By Theorem 3.4, we have for £ small enough,

Ujest(l';, )\08) C B@

From (i) in Proposition [3.7, there exists a radius r. € (@, @] such that
BiNOB,. =0 foreveryic I, (3.139)

where { B, }sc;. denotes the collection of vortex balls constructed in Proposition 3.7. Hence
we have
[v:] >1—|Ing|™ on dB,..

The existence of a subset J. C J. satisfying (i)-(v) can now be proved identically as
Proposition 3.2 in [78]. It remains to prove (3.138)). From the proof of Theorem 3.4, we
know (by construction) that each disc B(z%, \g), k € J., contains at least one point yy
such that [v:(yx)| < 3. Therefore each disc B(x5, p), j € J., contains at least one of the y;,’s

1/2

with |25 — Y| < Aoe. Assume now that D; = 0. By Lemma 3.6/ with v = =/, it would

lead to |v.| > § in B(%, p7) and then |v-(yx)| > 5 for ¢ small enough, contradiction. W

Remark 3.10. We emphasize that each ball B(z5, p) carries at least one zero of v, since
D; # 0 for any j € J..
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The previous result also gives us a control on the degrees D; :

Lemma 3.8. For every j € J., we have

|D;| <C
for a constant C independent of .
Proof. We have
1 1 ov,
Dil =5 | (A )| < UVl < €
(I]’:p) €
by (iv) in Proposition [3.15. [

3.6 Lower energy estimates

In this section, we obtain various lower energy estimates for v. in terms of the vortex
structure defined in Section 3.5.3, Proposition [3.15. We start by proving a lower bound
on the kinetic energy away from the vortices which brings out the interaction between
vortices. The method we use is based on the techniques developped in [7], [20] and [7§].
As in the previous section, the main difficulty is due to the degenerate behavior near the
boundary of D of the weight function a(x). To avoid this problem, we shall establish your
estimates in B for an arbitrary radius R € [\/ao/2,/ao). To emphasize the possible
dependence on R in the “error term”, we will denote by Og(1) (respectively og(1)) any
quantity which remains uniformly bounded in ¢ for fixed R (respectively any quantity
which tends to 0 as ¢ — 0 for fixed R). In the rest of the chapter, we consider that ¢ is

sufficiently small and we write J. = {1,...,n}. By Theorem 3.4, we may also assume
i B(x5,p) C B@. (3.140)

3.6.1 A lower estimate away from the vortices

Proposition 3.16. Setting ©, = Br \ Uj_, B(75, p), we have

1 n
5/ a(z)|Vo|* > 7 Z D3 a(x5)|Inp| + Wre((5,D1), ..., (2, Dn)) + Or(1) (3.141)
©p

Jj=1

where

Wre:((z7,D1),...,(z5,Dy)) = —7 Z D;Dja(z5) In |z — 2§| — Z DR (z5)
i#] =1

and Vg is defined by (3.146). Moreover, if \Q;Tpgﬂ — 0 as e — 0 for any i # j then the

term Og(1) is in fact og(1).



104 Chapitre 3. Vortices in a two dimensional rotating Bose-Finstein condensate

Remark 3.11. We point out that the dependence on R in the interaction term Wg,
only appears in the function Wg .. Moreover, for Uy . to be well defined, 1/a(x) has to be
bounded inside B% (see (3.146)) so that we can not pass to the limit R — /@y in (3.141)
without an a priori deterioration of the error term.

Proof. We consider the solution ®, of the linear problem

(
1

diV(EV(I)p) =0 in ©,,

d,=0 on 0Bg,

$, = const. on B(z5, p),

109

/ —h:27TD‘7 jzl,...,n,

L 8B(x§,p) a Ov

and ®r. the solution of

div(%V@R’E) =27 ) D6, in Bg

— (3.142)
Or.=0 on OBp
For x € O, we set w.(z) = ‘Zi& and
ow 10® ow 109
S (—won e 29 AW 20
( v 8x2+a8:c1’ 6x1+a8x2>

We easily check that

divS=0 in ©, and / S-l/:/ S-v=0.
OBR, BB(z?,p)

By Lemma L1 in [20], there exists H € C*(0,) such that S = V-H and hence we can
write the Hodge-de Rham type decomposition

1
we A Vw, = = V+®, + VH.
a

Consequently,
1
[ a@vep = [ —ovepiz | vie, vH+ [ a@vnP
o, o, a(z) O, o,
1
> [ —|VO 2+2/ Vi, VH.
/@p CL(:L') | ﬂ| o, P

The last term is in fact equal to zero since it is the integral of a Jacobian and ®, is

constant on 00,. Hence

| a@iver= [ pﬁww.

P
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Since |Vo.|* > |v.|*|Vw.|* in ©,, we derive that

1
Vo> [ ——|V®,|* + T + 2T
[, a@rverz [ oswe oo

with

1
T1 _ / (|’U€|2 . 1) - |Vq)p|2 and T2 — / (|U€’2 — 1) V(I);_ . VH
o a(z) e

p P

Arguing as in [7] (see Step 4 in the proof of Theorem 6), it turns out that 77 = og(1) and
Ty = og(1) and therefore

2 L 2.,
/@pa(as)|Vva\ z/@p o7 IV@P + 0n(D). (3.143)

On the other hand, we have

1 1 0P -
L v, = / L g 9rNT Dy (2)
[ vl = [ 2Dy
for any point z; € 9B(z5, p). By Lemma [3.8, we may write this equality as
1 > -
/@p o) IV, [? = —zw; D;j Ope(2) + O(|Pre — Pyll1=(e,)) (3.144)
Using an adaptation of Lemma 1.4 in [20] (see e.g. [15], Lemma 3.5), we derive that

Pre— P, 1o < sup ®rp.— inf Pr.|. 3.145
2 =) Z(aB(xpp) o OB(z5,p) R) ( )

Now we define for x € Bp,
Up(r) =P (x ZD a(x$)In |z — x5].
Since ®p . satisfies (3.142), we easily derive that Wp . verifies

ya! - . 1 N
div <—V\IIR£) = — ZDj a(z5)V <5> -V (In|z —25|) in Bg,

ZDa )In |z — 5] on 0Bg.

(3.146)

By elliptic regularity, we have (recall that all the x5’s remain close to the origin)

|V rellwer(sy) < Cryp forany 1 <p<2.
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In particular, Wy is uniformly bounded with respect to ¢ in C%/2?(By) and hence

sup Yre— inf Wp. < Cryp=o0r(1).
8B(:c§,p) 0B (ff P)

Since |25 — x§| > 8p, we have by Lemma 3.8,

sup (ZDCL ln|x—x|) aBi(I;gp)<ZDia( )ln|x—x\>

8BSC p i=1 =1

sza(l‘?) sup i < O(1),
=1

oB(asp) [T — 5| T
(respectively < o(1) if ﬁ — 0 as e — 0 for any i # j). Coming back to (3.145), we
deduce that
[Pre = Ppll(o,) < Or(1)
(respectively < og(1) if |—5%€‘ — 0 as ¢ — 0 for any ¢ # j). Inserting this estimate in
(3.144), we get that

1 n
/(;) @ ]V‘I)p\z = — QWZDJ' (I)R,E(Zj) —+ OR<1)

j—l

:—QWZD Ur(2)) QWZDDCL )In|z; — a5

Jj=1 1#]

+27TZD2 lnp| + Or(1)

(respectively +og(1) as e — 0). Slnce Up. is uniformly bounded with respect to ¢ in
COY/2(Bg), we have

Wre(z) = Vre(25)] < Cry/p = or(1).
By Lemma 3.8 and since |25 — x§| > 8p, we derive

6

1> DiDja(af)(In |z — 25| — In a5 — a5]) Z\D||D|1n\1+

1#£j i#£]
<Z\DHD|, L <0
i#£]
(respectively < o(1) as € — 0) and we conclude that
1
/ —|V<I>p|2——27rZD Ure(z —QWZDDCL )In |25 — a5
o, a(x) oy
+27TZD2 Inp| + Or(1)

(respectively +og(1l) as ¢ — 0). Combining this estimate with (3.143)), we obtain the
result. n
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Remark 3.12. It would be interesting to know if the estimates on V. and ®r, hold
independently on R when ¢ is small.

3.6.2 Lower estimate for &£

From Proposition 3.16/ and Proposition 3.15, we derive the following lower bounds
estimating the contribution of any vortex.

Lemma 3.9. We have

EX(ve, Bg) = 7Y _ D} a(x5)|Inp| +7TZ|D la(a® ln—+WRE+OR( ) (3.147)
j=1
and .
a 19 p
£%(v., Bg) > wz; [Djla(x5)In = + O(1). (3.148)
J:

Proof. By Proposition 3.16, it is sufficient to show that
€2 (ve, B(a5, ) 2 w|D,|a(af) In £ 4+ O(1)

which is equivalent to prove

1/ o | alxf) 212 p
= Vo|* + —2-(1 — |v.|*)? > 7| D;| In= + O(1) (3.149)
2 B(z%,p) 2e2 J 9

(we used that |a(z) —a(z5)] < Cp for ¥ € B(x5, p) and £2 (v, Br) < C|Inel). We consider

T — 15
the change of variable T = . and we set
p
. N £
() =v.(x) and &=
py/a(x5)
From (%ii) in Proposition(3.15/ we have v > 1— | ron 9By and by (iv) in Proposition 3.15,

Vo] |VUE|2 a(z3) 212
- o) = L85G pr<c
/BBl 2 42 8B(x§,p) 2 4e2

1 1 1 a(xs)
Vil + —(1— 512)2 = _/ Vo2 + B85 1 )2,
V3l + ( 1) 2 B(ﬁ,p)| vl 4 2e2 ( [vel")

and

2 B,

As in the proof of Lemma VI.1 in [7], we infer that for £ small enough,
1

2 B,

and hence (3.149) holds. [

1
[V + 5=5(1 = [0 > 7Dy | né] + O(1) = 7l D] In £ + O(1)
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3.6.3 Lower estimate for F!
We are now able to give some lower expansions for F2(v., D,).
Lemma 3.10. We have
p 78 2
., D.) > D2 )1 D; - — — 2) D,
(v 772 |np|+7rZ| | a(z )m8 a(x) i+

Jj=1

+ Wee +Og(1)  (3.150)

and

(v, D >WZ|D [a(af)In = — Z $YD; +O(1). (3.151)

Proof. Consider the family of vortex ball { B; };c;. given in Proposition 3.7, As in the proof
of Proposition 3.15, we can find r. € [R, %] such that (3.139) holds. We set

IL.={iel,p;¢B.} and I_={icl ,p¢B,.} (3.152)
where [, and I_ are defined in Section 4.4. By construction, we have
B; CcD.\B,, foranyic Lul_.

Setting Z. = D, \ (Uz‘ef*ull B;UuUj_, B(mj,p)), we derive from Proposition 3.7, 1) in
Theorem 3.4/ and Proposition 3.15, that for € small enough,

Arguing exactly as in the proof of Proposition 3.8 we obtain that
a(, = IR 2/, ¢ Y 2 2 -3
RE(ve,Ee) = Y @’(@5) D+ — Y (dP(p) — v2|Ine|)d; + op(1).  (3.153)
j=1 il Ui
Now we remark that
IR (v, B(a5, )| < CIIVo | 2o, = 0] Inef*?)

(here we use Proposition 3.11, [%.1.c) in Proposition 3.1l and [3.4.b) in Proposition [3.4)
and using Proposition 3.7, we deduce that

fg(vsape) Z gg<va7Br ) Ra Usw—le Z -/Ta U€7 + OR(l)

iel ul_
Q
zgs(va,B%)—WQ Z D +7 Y a(p)ldi|(|lne] — Agln|Ine])
J=1 i€l ul_
{2 2 2 -3
- Z (a*(p;) — V2| Ine|~%)d; + op(1). (3.154)
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Since p; & B,, for i € I, UI_, we have a(p;) < ag and we infer that for e small enough,
sy

7 Y a(p)ldi|(|Ine| — Agln|Inel) — > Z (a*(p;) — V2| Ine|)d; > 0
iel ul_ el Ul_
which leads to (since r. > R)
a ﬂ-Q - 2(,.€
F2(ve, D:) > L (ve, Br) — > " a(25) D + og(1). (3.155)
j=1

Combining (3.155) and (3.147) we obtain (3.150). In the same way, (3.155) with R = Y2°
and (3.148) yield (3.151). |

3.7 Proof of Theorem 3.1

In this section, we are going to prove Theorem 3.1/ in terms of the map v.. We write
2

Q=—(Ine|+w(e)In|lne|) (3.156)
Qo

so that assumption (3.104) can be reformulated as w(e) < w;.

3.7.1 Vortices have degree one

Lemma 3.11. We have
Dj=+1 forj=1,...,n,

for e sufficiently small.

Proof. By (3.140) we may use the estimates in Section 6 with R = @ Combining
Proposition 3.6/ and Lemma 3.10, we get that

" or P TapS) w— p w8 .
WZ:\Dj|a(1:j)lng— > " a(x5) D; <WZ\D|a In=——- a<j)ngc9(1)

2

Jj=1 Jj=1
Using (3.156), we derive

> Dyl (x5 ln—<Z|D|a ) Ine| + o(|Ine|)
j=1

D;>0

Since p > e*, it yields (recall that D; # 0)
1) Y |IDjla(a)|ne| < Y Dyl a(a5)| Ine| + of|Inel).
D;<0 D;>0

For ¢ small we have ag > a(z5) > “2—0 and therefore (using Lemma [3.8)

S Dyl < Z|D|+o <C—"“M+o<1)

D;<0 D>0
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Choosing i and then e sufficiently small, we obtain ZDj<0 |D;| =0, ie.,
D;>0 foranyj=1,...,n
Since all the 25 ’s remain close to the origin, we have for € small enough,
—WZDDCL )In |25 — 25 > O(1)
i#]
and hence Wyag _ > —m ) 0 D; \Ifr _(z5) = O(1). We deduce from Lemma 3.6/ and
Lemma [3.10,
WZDQ |1np|—|—7TZD a(x ln——— aQ(xj)ng(%l).

2
Jj=1 € Jj=1

As previously, we derive from (3.1506),

n

S (D2 = D)) ae) gl < of| e

Jj=1

Since p < & and the xj 's are closed to 0,

B (D2 - D)) < ol1)
=1
which leads to D; = 41 for ¢ sufficiently small. [ |

We now derive an easy estimate for the energy.

Corollary 3.1. We have

n

Q
Fe (v,) >WZ 9| lne| —%ZaZ(x§)+WR,E+oR<1).

J=1
Proof. This estimate follows directly from Lemma 3.10, Lemma 3.11], (3.85) and (3.88).H

3.7.2 The subcritical case

In this section, we extend Proposition [3.9/ to higher rotational speeds which remain
below €2;.

Proposition 3.17. Assume that w; < 0. Then the conclusion of Proposition|3.9 holds.
Proof. We fix @ < Ry < /ay. We get from Corollary 3.1 with R = @ and (3.84) that

WZ lne| — m;OQZ x5 <7TZ |ln5|——2a O(1)

j=1

Using (3.156), we obtain that

In|lnel < —w; Y a(zf)In|lne| < O(1)

j=1

w1 nag
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and then n <
J.=01ie.,

m which implies that n = 0 for € small enough. Therefore we have

-
|U5|Z§ in B ag.

2

By 1) in Theorem 3.4, for € < g, we have

in BRO-

l\')l»—t

’U6|

Using the notation (3.152), we infer from Proposition 3.6 and (3.154),

QO
T > alp)ldi|(|ne] — A01n|ln5|)—% 3" (P(p) — Il ?)d; < O(|Inel ™).

iel ul_ iel Ul_

Since a(p;) < ag for i € I, U f_, we infer that exists ¢ > 0 independent of € such that

Q
¢y ap)ldil| el < 7Y alps)|di| (| ne| — A In | Inel) — - > > (@) =2 ne| P)d
iclui_ icl,ul_ zef*uf,

and since a(z) > |Ing|™%/2 in D,, we finally obtain

Sl < O(me )

iel ui_

Hence ), ; i |di| = 0 for ¢ sufficiently small and we conclude from (3.153),

R?(UE,'DE \ Uief*uf,Bi) = 0(1).
Then the rest of the proof follows as in the proof of Proposition [3.9. [ |
3.7.3 The supercritical case
From now, we assume that
w(Ee)>d>0

for some constant ¢ independent of . We are going to prove that vortices appear in this
regime. We will use explicit test functions constructed in Section 3.8. We start with :

Lemma 3.12. v, has at least one vortex (i.e., n > 1) for any € sufficiently small.

Proof. By Theorem 3.5/in Section 3.8 (with d = 1), there exists for € small enough, 4. € H
such that ||t.|| 22y = 1 and

F.(u.) < E-(n.) — mapw(e) In|Ine| + O(1).
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By the minimizing property of u. and Lemma 3.4, we have E.(n.) + F2(v.) = F.(u.) <
F.(@.) and then we deduce that

FI(ve) < —magw(e) In|Ine| + O(1).
From here, it turns out by Corollary 3.1 with R = @ (recall that W= _ > O(1)),

n

—mapw(e)In|Ine| + O(1) > F(v.) >7TZ ]lna]—?Zaz(xj)
Jj=1 j=1

82
>7TZ ( e)ln|lne| + ’2’)

> —Waow(&?)nln |Inel.
Hence n > 1+ o(1) and the conclusion follows. [ |
We shall use this first development of energy :
Proposition 3.18. We have
Fl=(ve) = —mapw(e)nln|Ine| + %(n2 —n)In|lne| + O(1)

Proof. In the case n = 1, we have already proved the result in the proof of the pre-
vious lemma. Then we may assume that n > 2. Since ||V a5 _[lo = O(1), we get from
52,

Corollary 3.1 with R = ‘ﬁ

= (v2) >7TZ <|1n5| me 6|—Q (xj))+cf)(1)

@#J

>7rZa < (e)ln]lne| — Zln|x — 75+ |x€\2) +O(1). (3.157)
i=1
i#]

By Proposition 3.5, F(v.) < o(1) and therefore

—Zln\x — 5|+ Z!xEP < Cln|lne|

7]
On the other hand — 37, In|z; — 25| > O(1) so that |25]* < C(In|lne|)|Ine|™ and
hence
€ Q €2
WZ w(e)In|lne| — Zln |z — a5 |—|— |57 | = (3.158)

Z#J

Q n
= —maqw(e)nln|Ine| — WGOZIH |z; — 25| + 7Ta20 Z 252 + o(1)
i i=1
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Setting r = max; 25|, we remark that

0 < Qr?2 _ n?>—n
—Zln|xf—x§|+52 25> > —(n® —n) In2r 4=~ >
i#] j=1

In|lneg|4+O(1). (3.159)

Combining this estimate with (3.157) and (3.158)), we finally obtain
FU=(ve) > —magw(e)nln |Ine| 4+ %(Tﬁ —n)ln|lne| + O(1). (3.160)
By Theorem [3.5/in Section 8, there exists @, € H such that ||| ;2@2) = 1 and
F.(u.) < E.(n.) — magw(e)nln|Ine| + %IO(TL2 —n)ln|lne| + O(1).

Since E.(n.) + FI (ve) = F.(u.) < F.(@.), we obtain the reverse inequality in (3.160) and
the proof is complete. [ |

Now we are in position to derive the critical rotational velocities for which v. has
exactly d vortices.

Proposition 3.19. Assume that (d — 1)+ < w(e) < d — 9§ for some integer d > 1 and
0 < 0 < 1. Then, for € sufficiently small, v. has exactly d vortices of degree one, i.e.,
n=d.

Proof. We start with proving that n > d. The case d = 1 is given by Lemma 3.12. Now
we assume that d > 2. By Proposition 3.18 and using the test functions in Theorem 3.5
as in the proof of Proposition 3.18, we infer that

—magw(e)nIn |In 5|+%ao(n2—n) In|Ine| <—magw(e)dIn|In 5|—|—%ao(d2—d) In|lneg|+0O(1).

Hence we have

2 d*> —d

—w(e)n + L —w(e)d + 5 T o(1)

and it yields
d—n)(d -1
w(e)(d—n) < . ”)(2” ) 4 o(1), (3.161)
If assume that n < d — 1, it would lead to
d -1
(d—1)+6< +Z o(1) <d—1+o(1)

which is impossible for € small enough.

Assume now that n > d + 1. As previously we infer that (3.161) holds and therefore
>d+n—1
- 2

d—29¢ +o(1) > d+o(1)

which is also impossible for £ small. [ |
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3.7.4 Vortex location and final expansion of the energy

In this section, we assume that (d — 1) + 6 < w(e) < d — ¢ for some integer d > 1 and
0 < 0 < 1. By Proposition [3.19, we may assume that v, has exactly d vortices. We obtain
here a precise information on their location.

Lemma 3.13. Under the assumptions above, we have
C .
|ZE§|§W fOszl,...,d

and for d > 2,
e e c .
G 2 e fori A

Proof. Combining Proposition 3.18, (3.157) and (3.158)), we get that

d
Q
—WGOZID xs —x5|+7m0 Z|x§|2§%(dQ—d)land—l—O(l)

i#j j=1
Hence
d Q|z5)?
Z — Y In (\/|1n5 |25 — a5 > 2] <0(1)
i=1 \ i
and the conclusion follows. [ |

Since Fpﬂ =0(1) and D; = 1, we may now improve the lower estimates obtained in
i g
Lemma 3.9 :

Lemma 3.14. We have

d
EX(ve, Br) >7TCL()Z |ln5|—|—WR€(x1,...,x‘2)+7m

7j=1

Inag + apdyy + or(1)

where 7o 1is an absolute constant.

PT’OOf. Since # =

B

o(1) and D; = 1, we obtain by Proposition [3.16,

/ 7)|Vo.|? >7TZ Nnpl +Wge(af, ... z5) + or(1) (3.162)

and it remains to estimate £2(v., B(5,p)) for j = 1,...,d. We proceed as follows. Since
D; =1, we may write on 0B (xj ,p) in polar coordinates with center 5,

ve(z) = |ve ()| ei(”wj(e)), 0 € 10, 2n]
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where 1p; € H'([0,27],R) and v;(0) = v;(2r) = 0. Then in each disc B(z5,2p), we
consider the map v, defined by

Ue(7) = ve(w) if v € B(a5,p)

and if x € B(x5,2p) \ B(75, p),

(o) = (L + QPP— Clva(at + pe®)])exp i (9 +wj<e>2pp‘ d +wj<o>”;7“) -

Exactly as in the proof of Proposition 5.2 in |78, [79], we prove that
£ (b, B(x5,2p) \ B(x5, p)) — ma(x5) In2| = o(1). (3.163)

Since |a(z) — a(x5)| = O(p) on B(x5,2p), we may write

EX (0., B(x5,2p)) = @/B( . |Vo.|* + ;f)(l — [0.]%)? + 0(1). (3.164)

Now we should recall a result in [20]. For € > 0, consider

1

1
I(¢) = Min —/ |Vu|2 + —(1 — |ul )2
ueC 2 B(0,1)

where

C= {u € H'(B(0,1),C), u(z) = — on dB(0, 1)} .

~ Ja]

Then we have
lim ([(é) + mln é) = 9. (3.165)

E—0

Since 0. (z) = — Z1 i (0 op OB (x5, 2p), we obtain by scaling

|x_mj‘

1 L al)
3 [ vap e SRy
B(5,2p) 2p\/

—alnZ 4 rm2+ glna(xj) + 70 + o(1).
€
With (3.163) and (3.164), we derive that for j =1,...,d,

alxs
(0., B(z5. ) > ma(a) In # Ina(a) + aa5)0 + o(1)
> ma(z5) In P + 7 % nag + aopyo + o(1).
g

Combining this estimate with (3.162), we get the result. [ |
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Proposition 3.20. Setfting 15 = \/ﬁxj Jor j =1,...,d, as € — 0 the I5’s tend to
minimaize the renormalized energy w given by

mTa
w(by,...,ba) = —mag »_ In|b; — b;| + OZW

i#]
Moreover, we have

Tag

FI (ve) = —mapw(e)dIn | ln5|+ (d*~d)In|In 5|—|—l}\/[lérb w(by,...,bq)+Qa+o(1) (3.166)
cR2

xen 2

d
where Qq = T(d2 —d)In2 + wapdInag — o

+ ag d’)/o .

Proof. Step 1. From Lemma [3.14' and (3.155), we infer that for any [\/ao/2, /a0 ),

n

Q d
“(ve, De) > wz ne| — % Z az(:cj) + Wge+ M;O Inag + agdyy + or(1).

7j=1

By (3.85), it implies

n

sy Ta d
FI (ve) > WZ lne| — TZGQ($§)+WR,5 0 Inag + apdyy + or(1).
j=1
Expanding  and writing a(z5) = ag — |25|?, we derive that

d
O nag + apdyo + ogr(1)

Q|x€-|2
= (ve) >7TZ g)ln|lne| + —— 5 + Wre +

and by Lemma [3.13], it yields

apd
Fl(ve) > —magw(e )dln]ln€|+—ZQ|x5|2+WR€+ In ag+aodyo+or(l). (3.167)

Step 2. By Lemma 3.13, we may write

:—WaOZln x5 —$€|—7TZ\I/RE o(1). (3.168)

i#]

By (3.146) and since D; =1 for any j, the function V. satisfies the equation

d
div (éV\IfR@) = — ; a(x5) V (2) -V (In|z —25]) in Bg,

a (3.169)
—Z a(x5) In |z — 25| on 0Bg.
=1
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Now we remark that in Br, we have

_ i a(z5) vV G) -V (In |z —25]) = 2a0d i ( = a@?()g\;;:(f;;;;))

j=1

. —2CLOd
- a(a)

+ fo(2).
Moreover, for any p € [1,2) fixed, we have by Lemma [3.13,

1 fello(Br) = or(1). (3.170)

We also have by Lemma 3.13,

|dagIn R — Z ) In |z — 25| Hcl(aBR) =o(1). (3.171)

Let us now define U} to be the solution of the equation

div (lvqf*R> = 2 By,
a a*(z) (3.172)
Uy = —dagln R on 0Bg.
It follows by (3.170), (3.171) and classical results that
Ve — Uhllze(a) = or(l). (3.173)

We are going to compute explicitly the function ¥F,. Since a(x) is a radial function, it
follows by uniqueness that W3 is radial. Setting W% (x) = g(|z|), we have to solve the

equation
1\’ ' —2d
( J )) +rg = “2% 4 (0, R) (3.174)

a(r a(r) a?(r)

together with the conditions
g(R) = —dagIn R and ¢'(0) = 0.

Multiplying (3.174) by r and integrating the equation, we obtain that

rg'(r) " " sds
=2 [

and it yields

g(r) = —Qdag/o (/ ra2(s) ds) dt+c
where ¢ denotes the constant determined for g to satisfy the condition g(R) = —dag In R.
Therefore we found ) )
g(r) = AR =) dag In(R)

2
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and consequently

Uh(z) = M — dag In(R).

Hence we may write

. . wagd?  mwayd?
11m{—7r2\p }: s Ty nao+ O(IR — Vay).

e—0

By (3.168), it follows

. waod®  magd?
ll_r}[l){WR,e(xi?...,xfl)+7ra0;1n|xf—x§|} = + 5 Inag+
i#j

+O(|R = Vaol).  (3.175)

Step 3. We derive from (3.167) and (3.175) that

lirsn_glf {FI(v.) + maw(e)dIn | Ine| 4 maq Zln x; — a5 — 7T_CL0 Z Q|5
i
> _Wa;dQ . Wa§d2 Inag + mTod In ag + apdyy + O(\R — \/a_o\).
Setting 75 = \/ﬁwj for j=1,...,d, we deduce
lirgriiglf {FI(v.) + magw(e)dIn | Ing| — o (d d)In|lne| —w(z],...,75)} >

> Qa+ @(IR — Vaol)
Letting R — /ag, we finally conclude that

xen

limiélf {F7=(v.) + magw(e)dIn | Ine| — T(d —d)In|Ine| —w(z],...,25)} > Qq (3.176)

and hence
lim iglf {FI(v.) + magw(e)dIn | Ing| — o (d d)In|lne|} >
> Z}\E/Iﬂég w(bl, c. ,bd> + Qd. (3177)

Step 4. End of the proof. Let b= (131, e ,?)d) € R?? be a minimizing configuration for the
renormalized energy w, i.e.,

w(by, ..., bg) = Min w(by, ..., by) (3.178)

beR2d
(and therefore b; # b; for i # j). By Theorem [3.5/in Section 8, for any ¢’ > 0, there exists
(i )e>0 C 'H such that ||t.||z2r2) = 1 and
lim sup { F(fi) — B (1) + magw(e )dln|ln5|—%ao(d —d)In|Ine|} <w(by,...,bs)+Qu+d

e—0
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As in the proof of Proposition 3.18, F.(u.) < F.(t.) implies

lim sup { F7 (v2) + magw(e)d1n | Ine| — %(d? —d)In|Inel} < wby,... ba) + Qa+5.

e—0

Letting ¢' — 0, we infer from (3.178) that

lim sup { F7*(v.) + magw(e)dIn|Ine| — 7TTao(d2 —d)In|lne|} <
e—0
< Min w(by,... b))+ Qu.  (3.179)
beR2d

Matching (3.177) with (3.179), we conclude

xen

lim {FI(v.) + magw(e)dIn | Ine| — —=(d* — d)In|Ine|} = Min w(by, ..., bs) + Qu.

2 beR2d

Coming back to (3.176), we are led to

Min w(by,...,bq) + Qq — limsup w(z3,...,25) > Qq
beR2d e—0

and therefore lir% w(Zg,...,T5) = Min w(by, . ..,by) which ends the proof. [
e— beR

Remark 3.13. In the case d = 1, the expansion of the energy takes the simpler form
FlE(v.) = —magw(e) In|Ine| + Q1 + o(1)

Ta
with Q1 = maglnag — 70 + apyo and the renormalized energy w reduces to

Tao|b|?

w(b) = 5

In particular, if 2° denotes the single vortex of v., we have vVQz° — 0 as e goes to 0.

3.8 Upper bound of the energy

In this section, we give the construction of the test functions used in the previous
section. For any integer d > 1, we consider an arbitrary configuration of d distinct points
b = (by,...,bg) in R?. We assume that Q < %(|1n6| + wiIn|Ine|) for some constant
w; € R. Using notation (3.156), we have

Theorem 3.5. For any ¢’ > 0, there exists (tic)e>0 C H such that ||i.||L2r2) = 1 and

lim sup { F.(i.) — E-(n.) +maow(e)dIn | Ine| — %ao
e—0

(®—d)In|lne|} <w(b,...,by)+Qu+d

where the constant Qg is defined in Proposition 3.20.
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3.8.1 First construction

Using a slight modification of a result of N. André and I. Shafrir (see [12], Lemma 2.6),
we obtain the following.

Proposition 3.21. For any §' > 0, there exists (Uc)eso such that n.v. € H and

limsup { F*(%.) + maow(e)dIn | Ine| — %(Cﬂ —d)In|Inel} <w(by,...,ba) +Qu+ 7.

e—0

Proof. Step 1. Let ¢ > 0 and s be two small parameters that we will choose later. We
define in D the function a, by

a(x) if |z| < +V/ag — o,
—2Vag — o ||+ 209 — 0o if Vag— o < |z| < \Jao.

It turns out that a, € 01(5), ay > a and a, > Co? in D for some positive constant C.
We infer from the supersolution of (3.23) given by (3.31) that exists ¢, > 0 such that for

any 0 < € < &4,
n?(z) < a,(z) for z € D. (3.180)

Step 2. We consider &, : D — R the solution of the equation

1
div(—V®,) = 2nddy in D,
s (3.181)

®, =0 on 0D.
By the results in Chap. I of [20], we may find a map v§ € C*(D \ {0}, S!) satisfying
vg A Vo] = a—lavicbc, in D\ {0}. (3.182)
For ¢ small, we set ©, = D\ B(0, s 'Q~1/2). By (3.181) and (3.182), we have

1 1 1 100,
-/ agngy?:—/ —\vq%.ﬁz—/ 10% 4
2 0, 2 O, A4 aB(Oﬁ—lel/Z) a 81/

1,0V, d
= _/ - —|—al) (¥, + apdIn|z|)
dB(0,k~10~1/2) a" Ov |I|

(3.183)

where U, (z) = ®,(x) — apdIn |z|. Notice that ¥, is of class C? in D since it satisfies the
equation
1
div(—VV,) = f,(z) in D,
do (3.184)
aod

\Ifoz—Tlnao on 0D
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with p
—2
2a0 if |z| < +V/ag — o,
]_ A ao(x)
fg(x) B _GOdv(aa(x)) . W - —2apd v/ag — o
0 0 otherwise.
az(r) x|

Arguing as in Step 3 in the proof of Proposition 3.20, we infer that

U, (2) = — /|ﬁ “”t(t) (/Ot fa(s)sds) dt — a%dln ao.

z|

A straightforward computation gives for |z| < v/ag — 0o,

d(ag — |z)? d
VV¥,(z) = —dxr and V,(x)= M — %lnao + O(0).

By (3.183), we conclude that choosing ¢ small enough,

1 2 2 !
lim —/ e | VU |? — magd® In(kQY?) b = _ Taod + maod Inag + o (3.185)
e—0 | 2 . 2 2 2
In R?\ B(0, x71Q712), we define
vg () if x € ©,,

be () = x :
vg(\/a_om) if z € R*\ D.

Since . does not depend on ¢ in R?\ D, (for & small enough) and |0.] = 1 in R?\ D,, we
derive from (3.32) and [5.1.b) in Proposition 3.1,

lim £(6., R*\ D.) = 0 (3.186)

From (3.180), (3.185)), (3.186) and the fact that vg is S'-valued in R?\ B(0, x 1Q~1/2),
we deduce that

limsup {20, R* \ B(0, s~ 'Q7"/%))—maod® In(k02'/?)} <

e—0

2 e 5
< _mg n mg lnag + 5. (3.187)

Step 3. We are going to extend 9. to B(0,kx'Q7Y2). As in [20], we may write in a
neighborhood of 0 (using polar coordinates),

vi () = exp (i(d9 + wg(x)))
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where 1), is a smooth function in that neighborhood. We choose  sufficiently small such
that max [b;] < 1/4k. We set bge) = Q7Y/2b;. We proceed exactly as in in the proof of
Lemma 2.6 in [12]. In A, . = B(0,x1Q7Y2)\ B(0, (2xk)71Q"Y/2), we write

d ()
e 0) H Z€)| — exp(i(df + 6.(x))

for a smooth function ¢, satisfying
Voe(2)| = O(R*QY2) and  [¢.(2) = 1o(0)| = O(s%) for z € A,

We define in A, .,
0e(z) = exp(i(df + ¢(x)))
with
V() = (2 = 26QY%2]) p-(2) + (262 2| — 1)y ().
As in [12], we get that

1
lim sup {5/ s | Vi, |* — wagd® ln2} < O(K?).
e—0 Ag.e

and hence (using (3.180))

limsup { £ (0., Ayc) — magd’In2} < O(K?). (3.188)

e—0

Next we define 7, in

=, = B(0, (20)71Q712) \ UL B, 260271/2)

by
(e)
_ “/)0'(0 H L= bj
o =07
j=1 1T = U;
Once more as in [12], we have (using (3.180))
. - : 1 2
limsup % (0., 2, ) < limsup — | V|
e—0 e—0 2 Zk,e
1
< mag(d® + d) 1n2— —ﬂa021n|bi —bj| + O(k). (3.189)
K
i#]

Finally, in each B](-a) = B(bga), 2k071/2) ) we set

(e)
x —b;
UE(QZ) m/zg( )’LU (259 i/2> (3190)
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where @/ realizes

1
Min —/ |Vv|2—|—
2 /B,

with

1 2Ky + b,
(1—|v| H|2Ky+b —bl naB(o,l)} (3.191)

. €
° T 2/1«/@0 971/2.

As in the proof of Lemma 2.3 in [12], we derive

1 )
lim{—/ |Vl | +
e—0 | 2 B(0,1)

where g is defined in (3.165) and X (k) denotes a quantity satisfying X (k) — 0 as k — 0.
By scaling, we then obtain

1 oy N
sz (1~ 02 = nlInel b =0 + X (0

e—0

1 2601/
lim{Q/ |Vv€|2—|——(1—|qj€|2>2_7rln "{ - } :glnao—i-%—i-X(m).

Notice that in BJ(»E), we have

_ . aolyl®
(z) = <ap—(|lng| +w In|ng|)™*
0o(e) = afe) < a0 = ([Inel + el me) ! in 2L

and therefore

" 2) Q—I/Q
limsup { = / s | V| + aoa (1 — [0|*)* — map In " } <
e—0
bi|?
< %lnao—i‘(l(ﬂ/@ — % +X<I€)
and we deduce (using (3.180))
260712 b;|?
lim sup { E= (Ve B(E)) — TagIn i } < W;o Inag + agyo — % + X (k). (3.192)
e—0 g

Combining (3.187), (3.188), (3.189) and (3.192)), we conclude that choosing x small en-
ough,

lim sup { €7 (0.) — waod] 1n5|—%(d2 —d)In|lne|} < (3.193)

e—0
Ta, d
< Wagzm\b—b|— 02|bj]2+Qd+5’.
i#] Jj=1

Step 4. Now we are going to estimate R?*(0.). We have

1/2
mzewg,ﬂ%z\m)rscﬂ(/ |x\2nz) (£7 (5., B2\ D)) (3.104)

R2\ D,
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and by 13.1.0) in Proposition 3.1, (3.32) and (3.186), we derive

lim |RZ(6.) — R (0, D.)| = 0. (3.195)
By the results in Chap. IX in [20], for € sufficiently small, for j = 1,...,d there exists
exactly one disc DI € B(0,1) with diam(D?) < C¢ such that [@7| > 1/2in B(0,1)\D. By
scaling, we infer that exist exactly d discs D}, ..., D with DJ C B;a) and diam(D?) < Ce
such that

|| > in Da\u;l:ng.

N | —

By (3.192) we have

d
’Rgs(@aU?:ngM < CQgZ (8;75(@5,83(-5)))1/2 . 07
=1

e—0

and by (3.195)), it leads to
li—r}(l) |Rg€ (0c) = RZ(0e, De \ U?:1D2)| =0.
Arguing as in the proof of Proposition 3.6, we infer that
lim [R2* (¢, D \ Uj_y DI) — RE (0, De \ Uj_, DI)| = 0

and hence
lim R (0e) — RE(0., D \ Uj_, DI)| = 0. (3.196)

To compute R (v, D\ U;’Zng), we may proceed as in the proof of Proposition 3.8(here
we use that 7 (0.) < C|lne| by (3.193)). It yields

d
0
lim (R2(i., D. \ Ui, DI) - %Zcﬁ UR)
7=1

since deg(0./|0:|,0D?) = +1 for j = 1,...,d. Expanding a (bga)) and Q, we deduce from
(3.196) that

hr% (R (0.) — maod | Ine| — magw(e)dIn |Ine|) = —may Z |b;]2. (3.197)

Combining (3.193) and (3.197), we obtain the announced result. [
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3.8.2 Proof of Theorem 3.5
We consider the map v. given in Proposition 3.21/ and we set
0. =m0, and G =7.0. with m. = ||7.0:] r2(r2),

where 7). is given by Theorem 3.3l Using the characterization of 7. given in Theorem 3.3
(see (3.44)), we check easily that @. € H (and obviously ||%.||,2r2) = 1). We are going to
prove that the map wu. satisfies the required property. We proceed in several steps.

Step 1. We recall that 7). satisfies equation (3.50) and then, exactly as in Lemma [3.4] the
functional E. defined in (3.54)) splits into two independent pieces. More precisely, for any

5;75 (3) < 400
Ne

u € H we have
and

From (3.63), we infer that
E.(u) = E.(n.) + £ (3) +o(e) (3.198)

where the "error term" o(e) is independent of w. Moreover, if ||ul/z2r2) = 1 we may also
rewrite F.(u) as
~ ke 1
E.(u) = E-(u) — 5 + 1 -
By (3.58) and (3.43), we have

ke o1 .

2 4e? Jpo
and using (3.198), we conclude that
E.(i.) = E-(n.) + EF(.) + o(e). (3.199)

Step 2. We claim that
EM(9.) = EF (D.) + o(1). (3.200)

d
j=1

m§=/ ﬁ3+/ ﬁ§<|@a|2—1>=1+/ 2.2 - 1).
R? ud_, BY wd_, B\

Using Cauchy-Schwarz inequality, we derive from (3.190), (3.191) and Theorem III.2 in
[20] that

First we estimate m.. Since || = 1 in R? \ U B](F) and |7 L2r2) = 1, we have

| / PE([0e[* = 1)| < CefIne 72 (3.201)
ud_, B
Jj=1"3
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and thus
m?2 =1+ O(e|Ine|~Y?). (3.202)

By Theorem [3.3 and (3.193), we derive that
ET(v,) < C|Inel. (3.203)
and thus

/ ﬁ§|Vf}6|2:m€_2/ ﬁf|V@€|2:/ 2| Vo.|? + O(e] Ine|'/?). (3.204)
R2 R2 R2

Since [0, =1 in R?\ U?ZlB](-e), we may write

1 ~4 oy 2(1=m?) L2 o2
5 [ =iy 6—2/RZ775(1—UE\)+6—QEW e o)
(-

|
m—2 2 L
+ T)/Rz 20 . (3.205)

We infer from (3.201)), (3.202)) and (3.203) that

1 — —2)\2
omf o ) / 70" < Cllne[™, (3.206)
8 RQ
and ' »
<lomd - | 7o (1 = [0]*) < Cllnel ™ (3.207)
€ Ul B®

]1J

Combining (3.204), (3.205), (3.206) and (3.207), we deduce that (3.200) holds.
Step 3. By (3.199) and (3.200), we have

E.(tc) = E.(ne) + EF(0:) + o(1). (3.208)

Moreover, (3.197) and Theorem 3.3/ imply |R7(9.)| < C|Ine|. Hence
RE(0.) = m*RE(0.) = RE(0:) + O(e| Ine|/?)

and since R.(u.) = R (v.), we conclude

F.(ti) = E(n:) + F2*(0:) + o(1).
In view of Proposition 3.21, to prove Theorem 3.5, it suffices to show

lim | 7 (6.) — F2(.)| = . (3.200)

By (3.44), we may obtain exactly as for (3.186) and (3.195),

lim EM(9:,R*\ D) =0 and lim R (9, R*\ D;) = 0.
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As in the proof of Proposition [3.6, we derive using (3.193)),

lim |£% (0., D.) — E2(b:,D.)| =0 and lim IR (0., De) — RE(be, D:)| = 0.

e—0

To get (3.209) it suffices to prove that

lim |E7 (0., D) — EX(0:,D.)| =0 and lim |R* (6., D.) — R(0:,D.)| = 0. (3.210)

e—0 e—0
From [3.1.¢) in Proposition 3.1 and Theorem 3.3, we infer that (see Remark 3.4)
a — iz

it

~2
L>(De)

Tz

< Ce'? and ‘

Lo>o(De)

and we may proceed as in the proof of Proposition 3.6 (using (3.193)) to obtain (3.210)
which ends the proof. |
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Chapitre 4

On a Ginzburg-Landau energy with
e-depending weight

4.1 Introduction and main results

Let G be a smooth bounded and simply connected domain in R? and let g : G — S*
be a fixed smooth map of topological degree d > 0. For € > 0, we consider the Ginzburg-
Landau type functional

/ |Vu(x)|*de + o ae(:c)(l — |u(x)*)?dw,
defined for u € H'(G, C) such that u = g on OG. The weight function a.(z) is given by
a-(x) = if € GT and a(x)=1if z € G,

where G and G~ are two open subsets of G such that GFUG- =G and ¥ = G+t NG~
defines a smooth curve as in Figure 4.1, and « is a positive constant.

In this chapter, we study the asymptotic behavior as ¢ goes to 0 of minimizers wu. of
the energy F.. Each minimizer u. satisfies the associated Euler equation

1 .
—Au, = = ac(z)(1 — Ju|*)u.  in G,

U =g on 0G.

(4.1)

In the case a. = 1, F. Bethuel, H. Brezis and F. Hélein have proved that for each
sequence €, — 0, there exist a subsequence ¢,, — 0 and d distinct points ay,...,as in
G such that u., converges in certain topologies to ug the canonical harmonic map with
values into S! associated to {ay, ...,as} with degrees +1 and to the boundary data g (see
[20]). The map wyg is given by

Z— Z— ay

up(2) = e?®) in G\ {ay,..., a4}

|z—a1|'”|z—ad|

129



130 Chapitre 4. On a Ginzburg-Landau energy with e-depending weight

F1G. 4.1 — Admissible geometries for G™ and G~

with
Ap =0 in G,
up =g on OG.
They also show that the singularities aq, ..., a4 can be localized in G as a minimizing

configuration of the renormalized energy W (-) associated to the boundary data g and the
configurations of d points in G of degree +1 (cf. Section [4.4 for the definition of W and
we refer to Chapter II in [20] for more details).

In our situation, we prove a similar result of convergence and we show that all the
singularities are confined in G~ U X, the less penalized part of the domain. This result
can be stated as follows.

Theorem 4.1. For each sequence €, — 0, there ezist a subsequence also denoted by (e,,)
and d distinct points ay, ...,aq in G~ UX such that u., converges to uy as €, — 0 in the
spaces Hi, (G \ UL {a;}), C2. (G \ UL {a;}), cLr (G\ (UL {a;} UX)) for any B < 1,

loc A loc

CE. (G\ (UL {a;} UX)) for any k € N where ug is the canonical harmonic map with

loc
values into S associated to {ay, ..., aq} with degrees +1 and to the boundary data g.

We also prove that the location of the singularities aq,...,aq is governed by the re-
normalized energy W (-) restricted to (G~ U X)4. More precisely, we have :

Theorem 4.2. The limiting configuration (ai, ..., aq) minimizes the renormalized energy
W (-) over all configurations in (G~ U )4,

Remark 4.1. Since W(ay,...,ay) — 400 as one point a; tends to OG, any minimal
configuration (ay, ..., aq) for W/ -us)a satisfies a; ¢ OG but some of the a;’s might be
on Y. Indeed, if g(z) = 2z, G is the unit disc of R? and G~ = GN{(z1,72) € R?, x5 > 0},
then @ = 0 minimizes W on G~ U X.
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The proofs of Theorem 4.1/ and Theorem 4.2 are given in Section 4.3 and Section 4.4
respectively. In Section 4.2, we present the analogue result of Theorem 2 in [19]. This
result is the main tool in the proof of the convergence near a point of >.

4.2 A preliminary study in degree zero

Let B be the unit disc of R? and let f be a smooth real function defined on a neigh-
borhood of [—1,1] such that f(0) =0 and || f'[|oc < 1. We denote by I" the smooth curve
{(z1, f(21)), 21 €] — 1,1[} N B and we define for any set E C B,

ET ={(z1,20) € E, 13> f(z1)} and E~ ={(z1,22) € E, 19 < f(11)}.

For £ > 0, we consider the following minimization problem :

Min )%/B\Vu(x)|2d:1:+4—; )1 = o) e, (4.2)

ueH}_(B,C

where g. : OB — C is a smooth given map, Hglg(B,(C) denotes the set of all maps
u € H'(B,C) such that u = g. on OB and the function a.(z) is given by

a.(z) =¢* ifzeBtand a.(z)=1 ifzeB.
For any € > 0, this problem admits at least one solution u. which satisfies

1
~Au = (@)1 - uP)u. B, (43)

Ue = (e on 0B.

Our goal in this section is to study the asymptotic behavior of u. as € goes to 0 in the
following context : we suppose that exists a function g : 9B — C such that

g. — ¢ uniformly on 0B as ¢ — 0, (4.4)
1gell 2oy < 1, (4.5)
19e | zr108) < C, (4.6)
/83 ae(2)(1 — |g-(z)*)*dx < C&*. (4.7)

We notice that (4.4) and (4.7) imply that |g| = 1 on 0B. Therefore the topological degree
of g is well defined. We assume that

deg(g,0B) = 0. (4.8)

From (4.8) we infer that exists a function ¢y € H'(0B,R) such that g = €'#° on JB.
Moreover (4.8) implies that

Hy(B,S')={ue H'(B,C), lu| =1ae in B,u=gondB} #0
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and the following minimization problem makes sense

Min / Vul?. (4.9)
B

ueH1(B,S")

By the results in [19], we know that (4.9) admits a unique solution u, which satisfies

—Au, = |Vu,|*u, in B,
Upe = ¢ on 0B.

In addition, w, is characterized by u, = €“* where ¢, is the unique solution of the equation

Ap, =0 in B,
4 o (4.10)
Ve =y on JB.
Theorem 4.3. Under the hypothesis (4.4))-(4.8), we have as e — 0 :
u. —u, in HY(B), (4.11)
ue —u, uniformly on B, (4.12)
u. —u, in CF_(B\T) Vk, (4.13)
~s 1- € 2
Gc@) A= ul) | G2 ek (B\T) k. (4.14)

)
We split the proof into several steps.

Step 1 : Proof of (4.11). As in [19], we use a comparison method. We consider v. : B — C
defined by

_ it
UE - 7766 67

where 7). is the solution of

—&?An. + a.(r)(n. —1) =0 in B, (4.15)
Ne = |ge| on 63,
and 1. the solution of
AY. =0 in B,
v o (4.16)
"pe = e On 8B,
where . : 9B — R is given by g
1pe — €
|9:|

(which is possible since deg(g.,0B) = 0 for ¢ sufficiently small by (4.4) and (4.8)). By
(4.4), we may choose ¢, such that p. — ¢g uniformly on dB. We claim that

/B [V7el? + 8_12/Bde(x)<77€ —1)* < Ce. (4.17)
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Proof of (4.17) : The function 7. minimizes on H Ilgs\<B ,R) the functional

0= [1v0F+ 5 [ am-17

We use a comparison function. We construct 7. an extension in B of |g.|. We proceed as
follows. We define the map ® on a neighborhood of B by

O(xq,x9) = (1,29 — f(27)).

By the assumptions on f, ® defines a smooth change of variables in a neighborhood of
B. Since ® is a small perturbation of the identity, ®(B) can be parametrized using polar
coordinates :

®(B) = {se”, s € [0, R(0)[} .
We remark that for any set E C B,
(I)(EJr) = (b(E) N {(ybyZ) S RQ? Yo > 0}
and
P(E7) =®(E)N {(yl;y?) eER? yp < 0} .
We denote by (r(z),0(z)) the polar coordinates of ®(z) for x € B and we define 7. by
- (2) = (|g:(27" (R(8(2))e” )| = 1) v (|z]) + 1,

where v is a smooth real function with small support near 1 with (1) = 1. By (4.6) we

infer that
/ Vi.]> < C
B

and using the change of variables y = ®(x), we obtain

[ a-rse | @) -1va

(B

IN

*)
R(6)
C/o /0 (lg- (Y (R(0)e™)| — 1)*sdsdh

0/0 (|g=(@71(R(0)e)| — 1)2R(0)dsdb

cf a1y
ATy AR

We derive from (4.7) that
1
[ vk [awe -1 <
B € JB

™
T

IN

IN

and in the same way,
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Hence we conclude

/B [Vie|* + 5—12/3&5(:@(775 -1 <C. (4.18)

Now, we multiply (4.15) by V - V(n. — 1) with V(z) = ?v(m) (recall that (r,0) is
r

defined as the polar coordinates of ®(x)) and we integrate by parts. Estimates (4.6) and
(4.18)) yield

1 ? 9. 9)g-
[anveo-m=3 [ e 9102
B 0B

One (V-v)+

ov

B or (V-1)+0(1)

and
L@@wwﬁuvwm—m=eﬂégm—HWVW—w>
N UEVIUA O

= [ a1 v

a(B+)

1 .
#3),, lad =DV 0+ 00

By construction, V(x) is tangent to I' at z € I" and since V(x) is close to z/|x| on 0B,
we can find ¢ > 0 such that V(z) - v > ¢ on dB. Therefore we obtain
UL

7/
2 9B 3V

From (4.6) and (4.7)), we conclude that

o

Now we multiply (4.15) by (n. — 1) and we integrate by parts. This yields

2
C ~ 3776395
ac(2)(|ge| = 1)* < - 9

(V-71)+0(1).

2_52 OB 9B aV (97'

2
<C.

on.
ov

_ One
62/ |Vn.|? +/ a.(z)(n. —1)* < 52/ 5 In. — 1]
B B aB | OV
on.
<e? [19el = 1|2 08
ov L2(8B)
< &3
which ends the proof of (4.17). |

End of Step 1. Now we claim that

1 2 1 ~ 212 1/ 2
— — 1-— < = V . 4.1
2/B|Vug| —|—4€2 Bas(x)( lu|?)? < 5 B[ Ye|* 4+ Ce (4.19)
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By construction of v, and (4.17), we have

1

5 [ @t =5 [ -k < ce

e? Jg

and

Jvul = [ 190 9o < e+ [ vaf
B B B

(by the maximum principle we get easily that n. < 1). This prove (4.19) since u. is a
solution of problem (4.2)).

We infer from (4.6), o, is bounded in H*(9B), ¢. — o uniformly on dB and ¢. —
strongly in H'/2(0G). From Equation (4.16) we derive that 1. — ¢, strongly in H'(G)
and by (4.19), u. is bounded in H'(B). Therefore we can find a sequence &, — 0 and
u € H'(B) such that

u., — u weakly in H' .

From (4.19) and a lower semi-continuity argument, we deduce that the map u satisfies

/\Vu|2§/ ]V90*|2:/ |V |?. (4.20)
B B B

[, 2 <cs,
B

we conclude that |u| = 1 a.e. in B. Thus u € H,(G,S") and u is a solution of (4.9). By
uniqueness, it implies that u = u,. We obtain the strong convergence of u. as ¢ — 0 to
u, in H'(B) from (4.19) and the uniqueness of the limit. [

Since we have

Remark 4.2. Note that we also obtain from (4.19),

é a1 -2 =0 (4.21)
Step 2 : Proof of (4.12). As in [19], we derive from the maximum principle that

luel <1 in B. (4.22)
By Lemma A.1 in [19] and (4.3), we infer that the following estimates hold

V| < Cr,e” %2 in any compact set K; C B, (4.23)

|Vu.| < Ck,e™  in any compact set Ky C B™. (4.24)

Arguing as in Step A.1-A.2, Section 2 in [19], we show that |u.| — 1 uniformly in any
compact set K7 C (BT UT) or Ky C B~ (here we make use of (4.21))). Following Step 2,
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Section 3 in [19], we also prove that |u.| — 1 on B+ and in any compact set K C (B=\T).
We claim that
|uc| — 1 uniformly on B-. (4.25)

We argue by contradiction. Assume that exist a sequence ¢, — 0, a sequence (z,) C B~
and 0 > 0 such that
|ue, ()] <1—0 for every n € N. (4.26)

We may also assume that
Fel.

Tn —
n—-+o00o

We set u,, = u., and d, = dist(x,, 0B~) where “dist" denotes the Euclidean distance

in R%. Following Step 2, Section 3 in [19] and using (4.21), we obtain

d
— — 0 asn— +oo. (4.27)
En

Now we use a blow-up argument with v, = |u,|?. The function v, satisfies the equation

1 . _
—Av, = g(l - |Un|2)|un|2 — 2|Vun|2 in B™,
Uy = |9e, ? on OB~ N OB, (4.28)
Vp = |ty |? sur 0B~ NT,
and
/ |V, |* < 4/ [Vu,|? < C < +o0. (4.29)
B- B
We set

wy(y) = v, (dpy + x,) fory e, = di (G_ — {xn})

n

The function w,, satisfies the equation

2

2 .
—Aw, = 8—2(1 — wy)w, — 2d2 |V, (dyy + x,)]°  in Q, (4.30)

and

/|V%F:/ Vo, |* < C. (4.31)
o, _

We may assume that €, — Q as n — +o0o where Q is an angular sector of R? and
the convergence is defined in the following sense : for any compact set K C €2, resp.
K' C R?\ Q, there exists N € N such that for any n > N, K C Q,, resp. K' C R?\ ,,.
We claim that

n—-+o00

/ Aw,p — 0 forevery p € D(Q). (4.32)
0
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Indeed, let p € D(Q2) and K = supp ¢. For n sufficiently large, K C €2, and then we have

[ dune= [ (0= w0 wn0) — 288l + 2 ) oo

Since 0 < w,, < 1, we derive that

d;

5—2/ (1 — wy)wyp
n JK

and by (4.27), we conclude that I; — 0 as n — +00. Next we have

d2
I = < 1K el

[2:

[ 21ty + xn>|2so<y>dy]
K

/ 2|Vu, (2)|%p (z—xn> dz
dnK+xp dn

< ( / 2|wn<z>|2dz) 16l
dn K+xzpn

Since u,, — u, strongly in H'(B) and |d,, K + z,| — 0, we deduce that

/ Vu,(2)|*dz — 0.
dnK+an oo

Therefore I, — 0 as n — +o0 and (4.32) is proved.

Going back to (4.31), we may assume that w,, — w strongly in LP(K) for any compact
set K C €. From (4.31) and (4.32), we infer that

Aw =0 inD'() (4.33)
and
/ Vw|* < +o0. (4.34)
Q
We claim that
w, — w uniformly in any compact set K C 2. (4.35)

Fix y € Q and o > 0 such that dist(y, 92) > 20. For n sufficiently large, B,(y) C Q,. By
Lemma A.1 in [19], we have

|Vu, ()] < C (i + 1

2 dﬁcﬂ) for every x € BdnTo(dny +2,).
Using (4.22), (4.27) and (4.30), we deduce that
|Aw,| < C, in Bg(y).

Therefore (wy,)nen is compact in CO(E% (y)). We conclude that w,, — w uniformly on
Bs(y) which ends the proof of (4.35).
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We claim that
w=1 on 0. (4.36)

It suffices to prove that |w — 1| < & a.e. on 02 for any € > 0. Since all cases can be
treated in the same way, we just consider the case

Q= (—o00,a] x (—o0,b] with a,b < +00.

Let z € 09, for instance z = (a, 23). For 6>0,lety = (a— 5, 29). For n sufficiently large,
the projection II,,(2) of z on 0%, in the direction (z,y) is well defined. From (4.31) and
(4.34), we get that for almost every s,

/ |Vw,|> < C, (4.37)
(Rx{z2})Ny,

and
/ |Vw|* < +o0. (4.38)
(Rx{z2})N2

We may assume that z, satisfies (4.37) and (4.38) and we deduce that for n sufficiently
large and ¢ sufficiently small,

and |w,(y) — w, (I1,(2))] < -. (4.39)

|
|

w(z) —w(y)| <
Since |u,| — 1 uniformly on d(B™"), and by (4.4), (4.35), we have for n sufficiently large

and |w,(IL,(2)) — 1] <

B~ |
B~ |

[w(y) — wa(y)] <
We finally obtain, choosing 4 sufficiently small and n sufficiently large,

w(z) = 1] < w(2) = w(y)| + [w(y) — wa(y)]
+ |wa(y) — wn (I (2))] + [wn (I (2)) — 1

E.

IN

Therefore |w(z) — 1] < € for almost every z € 0.

By classical arguments (see [54] for instance), we deduce from (4.33)), (4.34) and (4.36))
that w = 1 in . Then (4.35)) implies that w,(0) — 1 which contradicts v, (z,) = w,(0) <
1 — 6 for every n € N, and the proof of (4.25) is complete.

Since |u.| — 1 uniformly on B, we have |u.| > 1 for ¢ sufficiently small and we can
write

u. = p.e¥  with p. = |u.|. (4.40)

As in [19], we get from (4.3)),

1 .
—Ap. + p| V| = 5 e(2)(1 = p)p. in B, (4.41)
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and
div (p?Vip:) =0 in B. (4.42)

By (4.10) and (4.42), we have
—div (p2V(p. — ¢.)) = div ((p2 = 1)Vp,) in B. (4.43)

Since p. — 1 uniformly, the equation (4.43) is uniformly elliptic for e sufficiently small.
By classical estimates (see [54]), we obtain for p > 2,

I pe = i ey < C (I 0 = @ llz=om) + || (02 = Vs llzo(c)) - (4.44)
Since ¢ € H'(OB), we infer from (4.10) that o, € H*?(B) and therefore Vg, €
H'Y2(B) ¢ L*(B). Choosing p = 4 in (4.44), we get that

| e = @l < C (|| 0= — ¢e lz=@n) + || (02— 1) [|l25)) —.0.

e—0

Then ¢, — ¢, uniformly on B which end the proof of (4.12). [

Step 3 : End of the proof. To prove (4.13) and (4.14), we consider u. on BT and B~
separately. We have

—Au, = (1 — |uc|*)u. in BY,

€2+a

and u. — u, in H'(B*) and uniformly on B+. Applying Step 3, Section 3 in [19], we
obtain
(BT) for any k > 1

u. — u, in CF_

and .l

1—u 5 .
s — [Vl in Ol (BY) for any & > 0.
Using the same arguments on B~ (with 2 instead of £2t®), we obtain the announced

result. [ |

Remark 4.3. A consequence of Theorem 4.3 is that u. converges in B faster than in
B~. To illustrate this fact, one can consider the function

_ In(1—Ju.(2)]?)
Ine '

we ()
If we assume that |Vu,| does not vanish in B, we derive from (4.14) that for each x € B,

(1 — u.(x)?) = 2Ine + In (| Vuu(2)?) + O(1) it v e B,
T lerame s n(Vu@p +on) ees

and we conclude that w. — 2 + axp+ uniformly on every compact subset of B \ I" as
e — 0 (here xp+ denotes the characteristic function of the set B*). The precise behavior
of the profile of u, across I' remains an open question.
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4.3 The convergence result, proof of Theorem 4.1.

We begin the proof of Theorem 4.1 by some fundamental estimates.

Lemma 4.1. There exist ¢g > 0 and C7 > 0 such that for any 0 < € < g,
E.(u.) < ﬂdlné +Ch. (4.45)
Proof. We fix d distinct points by,...,b; in G~ and R > 0 such that
B(bi, R)NB(b;,R) =0 and B(b;, R)NIG~ =0 Vi#j.
Let Q =G\ U, B(b;, R) and 5 : 9Q — S* defined by

g(2) if z € 0G,
g(Z) = Z — bl

— if 0B(b;, R).
P if z € ( )

By construction deg(g, Q) = 0 and then there exists a smooth function v : Q — S* such
that v =g on 02. We set

o(2) = o(z) if z € Q,
~\w(z—b) ifze B, R),

where w realizes

1 1
I(e,R) = Mi - 2d — 11— 2dx.
er= i o [ vt [ R

z

Since u, is a minimizer of E., we have
1
F.(u.) < B.(v) = 5/ Vo (2)Pde + dI (e, R).
0

By the results in [20], we know that for ¢ < R,

1

I(e,R) <mln—-+1I(1,1),

£

which leads to (4.45). |

Lemma 4.2. There exists a constant Cy > 0 such that for any € > 0,

1

1 [, 0@ = u(@))do < Co (4.46)
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Proof . We follow the method in [44]. For any € > 0, we have

E E _ 3 1 2y 2701 1 2)2 4.47
c(ue) — 2E<u€)_1652 Gi( — |uel”) t Sitazzra G+( — uel%)". (4.47)

By the results in [20], there exists a constant Cy such that for any v € H,(G,C) and
any € > 0,

1 2 1 2\2 1
§/G|VU| +4—€2/G(1—|'U|) Zﬂ‘dlng—CU

For e small enough, as. > 1 and consequently
1
EQE(UE> > wdln 2— — C(). (448)
€

Combining (4.45), (4.47) and (4.48)), we derive

5 / (1—|u |2)2+22+a—_1/ (1 —|u)?)? <7dln2+C, + C
16e2 /- € 2itag2ta [, el ) = 1 0

which ends the proof. [ |

We deduce directly from Lemma 4.1/ and Theorem 4 in [73], the first convergence result
which can be stated as follows :

Proposition 4.1. For each sequence €, — 0, there exist a subsequence (also denoted
by €,) and k distinct points aq, ..., ax in G with k < d such that U, converges weakly in
HL (G\{a1,...,ax}) to an S*-valued map u,.

Now we can precise the convergence result.

Proposition 4.2. We have

uy € C*° (G \ {ay,...,ax}), (4.49)
—AU* = ‘VU*‘Q’U/* n G \ {(11, e ,ak}, (450)

Uy =g on 0G,

and the following convergences hold as €, — 0 :
U, —u, i CY(G\{ar,...,a1}), (4.51)
Ue, = Ol (G (BU{an, ... a})) VB < 1, (4.52)
Ue,, = Uk in Olk(:)c (G \ (Z U {ala R 7ak})) ka (453)
1 — 2

e, (W) A= 0el) Gu2 i ok G\ (S ULan. . a}) Vi (4.54)

2
€n



142 Chapitre 4. On a Ginzburg-Landau energy with e-depending weight

Proof. We fix xy € G\ {a,...,ar} and consider R > 0 satisfying
B(zo,2R) Cc G\ (XU {ay,...,ap}) ifzo gD
or
B(zg,2R) C G\ {a1,...,a;} if zp € .
From Proposition 4.1/ and Lemma 4.2, we can find R’ € (R, 2R) such that

/ Vu.,|>? <C (4.55)
0B (zo,R')

and
/ a, (x)(1 — |u5n\2)2 < Cei. (4.56)
8B(z0,R!)

From (4.55), we infer that (extracting a subsequence if necessary)
U, — U, uniformly on 0B(xg, R').
Since u, € H'(B(zg, R'),S'), we have
deg(uy, 0B(xo, R")) = 0.

For n sufficiently large, |u.,| > 1/2 on 0B(x¢, R') and extracting a subsequence if neces-
sary, we may assume that

deg(u.,,0B(zg, R')) = 0.

If xg ¢ ¥, we apply Theorem 2 in [19]. If 2y € 3, choosing R’ sufficiently small, we may
assume that >N B(xg, R') can represented, in local coordinates, by the graph of a function
f as in Section 2. Then we apply Theorem 4.3. We obtain (4.49), (4.50), (4.53)), (4.54) and
convergence in C° (G \ {a1,...,aq}) and CL7(G\ (2 U {ay,...,aq})). Now we consider

xo € 0G\ {ay,...,aq}. If 1o € G N'Y, we apply Theorem A.3 in [20] and we get (4.52).
If 19 € OG N'Y, we use a simple modification of Theorem 4.3/ in order to obtain (4.51). W

Lemma 4.3. We have

deg(us,a;) =1 Vi and then k =d, (4.57)

a; € GTUY Vie{l,...,d}. (4.58)

Proof. As in |20], we will extend our maps to a largest domain G’such that G CcC G'.
We fix a smooth map g : G'\ G — S! verifying g = g on dG. Then we extend all maps
u: G — S' into a map defined on G’ and also denoted by u letting u = g on 0G.

We may assume that for any i = 1,...,k, deg(u,a;) # 0. Indeed, suppose that
deg(uy, a;) = 0. Then, for R > 0 sufficiently small, u., is bounded in H'(B(a;, R)) and
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a; is not a singularity. Since E. (u.,) — 400 as n — +o00, there is at least one singular
point.
We fix p > 0 such that

1
4p < S min {dist(a;, 0G"), |a; — a,|} .

From Proposition 4.2/ we infer

/ Ve, P < Clp).
GB(ai,p)

Then for n sufficiently large, we have |u., | > 1/2 on 0B(a;, p) and
deg(u€n7 aB(aiv p)) = deg(u*a aB(“h p)) =k .

Applying the Corollary in [73], we obtain for i = 1,... k,

1

1 1
> Ve, |” + — (1= Jue,|*)? > wlki] In — — C(p).
2 /B(ai,m e I B(aip) €n

Summing these inequalities in ¢ and then combining with (4.45), we get that

k
Z |k;| < d+
i—1

C(p)
|Ine,|

Letting n — +o00, we derive

k
Z ki| < d.
i—1

Since Y k; = d, we deduce that k; > 0 for each ¢ € {1,...,k}. By Lemma 4.1, we can
apply Theorem 3 in [73|. Then we find a constant C3 > 0 such that for any n > N(p),

there exists a collection of points in G (27, ... ), k(n) < d, satisfying

T

1 1
—/ Vue, | < wdln = + Cs.
2 Jenu, B(a;.5) p

Extracting a subsequence if necessary, we may assume that
k(n) = K = constant and 7 —[; € G asn — +oo.
Then, for n sufficiently large, we have {J; B(z}, %) C U, B(l;, p) and therefore

1

1
—/ |V, |* < mdIn = + Cs. (4.59)
2 Jenu, Bs0) p
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We set J = {j € {1,..., K}, B(l;,p) N (U; Blai,p)) # 0}. We have

k

U B, p) | Blai, 4p).

jeJ i=1
From (4.59) and Proposition 4.1, we infer that

1 1
—/ Vue,|* < 7dln =~ + C.
2 JanU, Blaiap) p

Letting n — 400, we get

1

1
—/ IVu,|* < mdIn = + C. (4.60)
2 JanU; B(aia) P

By Corollary I1.2 in [20], we have

k
1 / 9 9 1
- Vu,|* >n E:]lln-—C.
2 Jany, Blai ap) ; ! p

Combining the last inequality with (4.60), and letting p — 0, we obtain
d kK —k <0

and then k; =1 for each i € {1,...,k}. Since ) _ k; = d, we deduce k = d.
It remains to prove that a; ¢ 0G for any 7. We argue by contradiction. Suppose that
exists i € {1,...,d} such that a;, € 0G and fix R > 0 verifying

B(a;, )N B(a;,R) =0 Vi#j and B(a;,R) CG" Vi.
By Lemma VL1 in [20], we have for any p € (0, £),

1

1
/ Vu,|> >27rIn =~ - C,
2 JB(aig,R)\B(aig 4p) p
and by Lemma 1.1 in [73], for any i # iy,

1 1
—/ |Vu,|* > mln = — C.
2 JB(as,R)\B(as,4p) p

From this two inequalities, we obtain

1 1
_/ |Vu,(|2 27T(d—|— 1)ln——C,
2 Jany, Blaiap) p

which contradicts (4.60) for p sufficiently small. Therefore a; € G for any i.
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Now suppose that exists a;, € G and fix R > 0 such that
B(a;, R)N B(a;,R)=0 Vi#j, B(a;,R)CG Vi and B(ay,R)C G*.
For n sufficiently large, |u.,| > 1/2 on 0B(a;, R) and
deg(u.,,0B(a;, R) = deg(uy, 0B (a;, R) = 1.

Applying the Corollary of [73], we obtain for any i # i,

1 1 1
5/ |Vuan|2+4—2 (1= Jue,|*)? > 7ln— - C,
B(ai,R) €n JB(as,R) €

n

and

1 1 e} 1
5/ |v/u€'n|2 + 4 2+ / (1 - |usn|2)2 Z ™ (1 + 5) hl -_— — C
B(a’io 7R) En B(al’o 7I%) En

We deduce that

E. (u,)>m (d—i— %) lni - C,

which contradicts Lemma 4.1/ for €,, sufficiently small. |

Lemma 4.4. We have

Uxy = Ug

the canonical harmonic map relative to the singularities (ay, . . ., aq) with associated degrees
(+1,...,+1) and to the boundary data g.

Proof. Taking the exterior product between equation (4.1) and u., and letting n — 400
we obtain

div(Vu, X uy) = lim div(Vue, X u.,) =0 in D'(G).

Using the method in [82], we infer that (u., ) is bounded in WP(G) for any p < 2 and then
u, € WHP(Q) for p < 2. From the results in [20] Chapter I, we conclude that u, = u,. B

4.4 The Renormalized Energy

In section 1.4 in [20], the authors introduce the function called renormalized energy,
W = W(b,d, g), associated to a general configuration of distinct points in G, b = (b;)?,
of degrees (d;)i_; C Z™ with ). d;, = d. In our setting, we consider only the configurations
of d distinct points of degree +1. Then the renormalized energy W is given by

1 g d
W(b)=—m> Inb; — b +§/6G<1>0 <g X E) — 7Y Ro(by),
=1

i#]
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where @, is the solution of the Neumann problem

d
Ady = Z 27y, in G,
i=1

8@0 89

E =g X E on aG,
such that @y = 0 and Ry(z) = ®g(z) — Y0, In |z — b;]. The proof of Theorem 4.2 is

le

based on the two following lemmae.

Lemma 4.5. Let b = (b;) be a configuration of d distinct points in G—. There exists p, > 0
such that for any 0 < p < py and for any € > 0,

E.(u.) < dI(e,p) +W(b) +nd ln% + O(p), (4.61)

where ) )
I = Mi - Vo2 + — 1— |v]?)2.
o= Min 5 [ vt g [ o)

veH'; (Bp)

[z

Lemma 4.6. For any p > 0 sufficiently small, there exists an integer N(p) such that for
any n > N(p),

B (u.) > dI(0, p) + W(a) + mn% +o,(n), (4.62)

where o,(n) denotes a quantity verifying liIr(l) (limsup o,(n)) = 0.
pP— n—oo

Proof of Theorem 4.2. Let b = (b;) be a configuration of d distinct points in G~. From
Lemma 4.5 and Lemma 4.6, we infer that for p sufficiently small and any n > N(p),

W(a) < W()+o0,(n) + O(p).
Letting n — 400 and then p — 0, we get that
W(a) < W(b).

d

Since b est arbitrary in (G™)%, we conclude that a realizes

Inf W(b)= Min W(b)
be(G—)d be(G-ux)d

which ends the proof of Theorem 4.2. [ |

Proof of Lemma 4.5. We apply Theorem 1.9 in [20] to the configuration of points b. For
1
any 0 < p < §H;1n{|b, — bj|, dist(b;, 0G)}, there exists a map 4, : G\ U, B(b;,p) — S*
i#j
b
such that @, = g on 0G and 4,(z) = &i|z—b| on 0B(b;, p) with |a;| = 1 and

2= b

1

1
—/ Vii,|* = 7dIn = + W (b) + O(p).
2 Ja\U; Bbi) p
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Let w be a map realizing (g, p). We define

Up(2) in G\ U; B(bs p),
a;w(z —b;) in B(b;,p) fori=1,...,d.

We easily check that v € Hj(G) and
1
E.(v) =dI(e,p)+W(b) + Wdln; + O(p).

Then (4.61) directly follows from E.(u.) < E.(v). [

Proof of Lemma 4.6. By Theorem 4.1), for any p > 0 fixed sufficiently small, there exists
Ni(p) € N such that for any n > Ny(p),

1 2 1 2 2
5| Nue, " =5 [ [Vuel” = p7, (4.63)
2 Ja, 2 Jo,

where Q, = G\ U, B(ai, p). By the results in [20], we know that

1 1
3 |Vuo|> = W(a) + WIH; + O(p?). (4.64)
QP

Combining (4.63)) and (4.64), we obtain for any n > Ni(p),

1 1 1
—/ Ve, [” + 5 [ ae,(@)(1 = Jue, [)? =2 W(a) + wln =+ O(p?).
2 Q, dey Q, p

Then it suffices to prove that for every i € {1,...,d},

1 1
s Vel [ @O P 2 gt (06)
B(a;,p) B(ai,p)

n

We use the method in [65] and [66]. In the annulus

Ai

p,/\p:{xeca p < |z—a;| < Ap}

with A = 1 + p, we can write for n sufficiently large,
Z — Q; :
e“vz’n(z)

ue,(2) = |ue, (2)]

)

|z

where 1, is a smooth real function. We consider the test function

U, (2 in B(a;,p),
vy [ o
&n(z —a;) in A

pAp?
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with

N R R e N R A W AN IS VP
5”“‘( iy R (| p (F = vnleg +0)

We easily check that
ue,(z)  on dB(ai,p),
§n(z —ai) = z—a;

|z — a;

and |u., (2)] < [€.(2 — a;)| < 1in B(a;, A\p). Then we have w € H'(B(a;, Ap) and w(z) =

on 0B(a;, Ap),

|Z — ai| on 0B(a;, Ap). Therefore we deduce that
zZ — Q;
Hewd <y [ uPs g [ @y
ny — Y
2 B(a;,A\p) 45% B(a;,A\p)
Since I(g,, Ap) > I(gn, p), it remains to prove that
1 1
3 [ Vat-alf+ o [ (=6 - )PP = o).
2 J4i dez [ 4i
AP PP
From (4.21) we derive
1 22 _ 1 212
S oalaewrr s [ e @ P = on)
n A:))\p n J B(ai,p)
By Theorem 4.1, we have
/A Vén(z —a)|* — _ V€2 asn — +oo
A;)\P Alﬂ,)\p

where

L E— |z —ai| = Ap 2 —a; ‘
£(z) = eXp(@ Py ¢(P|2_ai|+@z))>

and 1 is a smooth function in a neighborhood of a; such that

2T i)

uo(z) = = a
1

Since v is smooth, we infer

/ v = o).
’

AP
and we conclude that
| VE(z — @) = 0,(n),
A;,/\p

which ends the proof of Lemma 6. [ |



Chapitre 5

Stabilization in finite time for a system
of damped oscillators

5.1 Introduction

The purpose of this work is to made a first presentation of the study made by the
authors on the dynamics of the finite-dimensional system corresponding to vibration of
N-particles of equal mass m located along the interval (0, 1) of the x axis. Each particle
is connected to its neighbors by two harmonic springs of strength k, the elongation of the
left one is given by z;(t) and we assume the motion subject to a resultant friction force
which is the composition of a Coulomb (or solid) friction and other type of frictions such
as, for instance, the one due to the viscosity of an surrounding fluid. The equations of
motion for this system are

mii(t) + k(—wi-1(t) + 225(t) — 21 (t)) + peB(@:(t)) + pgg(@:(t)) 0
(PN) %(0) = Uo,i
%:(0) = vo,
i =1,...,N, where we are assuming that zo(t) = 0, xy41(¢) = 0 for any ¢t € (0, +00),

Ug, Jbg are positive constants, the term pg3(#;(t)) represents the Coulomb friction, with
3 given by the maximal monotone graph in R?

{-1} ifr <0,
B(r) =< [-1,1] ifr =0,
{1} if r >0,

g is a Lipschitz continuous function such that ¢g(0) = 0, pgB(r) + pg9(r) > 0 for any r > 0
and the reverse inequality for r < 0. The internal initial data (ug;), (vo;) are given in RY.

It is well known that, if we write, for simplicity, & = 75 (with o = 1/(N + 1)) and
m = 1, then problem (Py) arises in the spatial discretization, by finite differences, of the

149
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damped string equation

(

Ust — Uz + ppB(ue) + pgg(uy) 20 in (0,1) x (0, 4+00),
() u(0,t) = u(l,t) =0, t € (0,400),
u(z,0) = ug(x) z € (0,1),
u(z,0) = vo(x) z € (0,1).

\

In fact, it was by passing to the limit, N — oo in (Py), how the wave equation (without
friction) was obtained by Jean Le Rond D’Alembert in 1746.

Our main goal is to give several criteria in order to have the stabilization in a finite
time for this mechanical system. The study of the special case of a single oscillator, N = 1,
without viscous friction,

mi + 2kx + ppB(i) 3 0,

can be found in many textbooks (see, for instance, [67]). It is easy to see then that
the motion stops definitively after a finite time, i.e., there exists T, < 400 and x,, €
[—g—z, ’;—Z] such that x(t) = z, for any t > T,. There are, also, some partial results on the
stabilization to an equilibrium state in a finite time for the solutions of the wave equation
(see [36] and [37] for some particular initial data). The case of arbitrary initial data wug(z)
and vg(x) seems to be, still, an open problem.

Concerning the case of N—particles we can mention the work by Bamberger and
Cabannes [14] in which they prove the stabilization in a finite time in absence of viscous
friction (414 = 0). We point out that this type of friction arises very often in the applications
and that its consideration was already proposed by Lord Rayleigh (see, e.g. [72]). Concrete
expressions for g can be found also in [67]. The case of a linear damping ¢(z;) = A\&; and
the absence of stabilization in a finite time for A large enough was commented at the
end of the paper [14] but no mention to the possibility of a simultaneous dichotomy of
behaviors was made there.

One of our main goals is to prove that the presence of a viscous friction may origi-
nate a qualitative distinction among the orbits in the sense that the state of the sys-
tem x(t) := (z1(t),z2(t),...,xn(t))" (here h™ means, in general, the transposed vec-
tor of h) may reach an equilibrium state in a finite time or merely in an asymptotic
way (as t — +400), according the initial data x(0) = x¢ := (ug1, U2, .., Uon)" and
x(0) = v := (vo.1,v02, -, Von) . This dichotomy seems to be new in the literature and
contrasts with the phenomena of finite extinction time for first order (in time) ordinary
and parabolic nonlinear equations (see, for instance, the exposition made in [13]). Some
results exhibiting this alternative, but for the case of a single particle with a non-Lipschitz
friction term G(u) = |u|* " u (a € (0,1)), can be found in [46], [47] and [9] (problem rai-
sed, many year ago, by Haim Brezis). In the last section we show that this alternative
may occur also in the case of the wave equation (P,,) in all dimension in space and under
suitable conditions.
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5.2 The dichotomy for the N-dimensional system

The system under study can be written, in short, as a vectorial problem
mx(t) + kAx(t) + psB(%(t)) + pusG(x(t)) 2 0,
(Pn)q x(0) = xo,

%x(0) = vy

where x(t) := (z1(t), z2(t), ...,xn(t))T, A is the symmetric positive definite matrix of
RY*N given by

2 -1 0 0

-1 2 -1 0

A=l 0 -1 2 -1 0o [,
.. 0 -1 2 -1
o .. 0 -1 2

B RN — P( RY) denotes the (multivalued) maximal monotone operator given by

B(yla s >yN) = (ﬁ(yl)a cee 7ﬂ<yN))T
and G : RY — RY is the Lipschitz continuous function defined by

G(yla cee ,3/N> = (g(y1)7 s 7g(yN))T'

In what follows, a - b denotes the Euclidian scalar product of a,b €RY and | . || the
Euclidean norm.

Our first result deals with the existence, uniqueness and asymptotic behavior of solu-
tions of (Py)

Theorem 5.1. For any initial datum (Xg, vo) € R?N, the Cauchy problem (Py) admits a
unique weak solution x € C1([0,+00) : RY). Moreover, there exists a unique equilibrium

state Xoo € RY satisfying that Axs € ([—;—Z, Z—Z]N)T such that

| x() || + || x(t) = X0 [|[— 0 as t — +o0. (5.1)

Concerning the dichotomy mentioned at the introduction, the following result shows
that the stabilization in a finite time depends of the structural behavior of the viscous
friction g near 0.

Theorem 5.2. i) Suppose that g(r)r < 0 in some neighborhood of 0. Then all solutions
of (Py) stabilize in a finite time.

ii) Suppose that g(r) = A\r with X\ > 22@, where A\ denotes the first eigenvalue of A.
Then there ezist solutions of (Py) which do not stabilize in any finite time.

iii) Suppose that N =1, A =1 € R and g is C' in some neighborhood of 0. Then, if

g (0) < Qﬁ, all solutions stabilize in finite time but if ¢'(0) > %Zﬁ there exist some

solutions which do not stabilize in any finite time.
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Remark 5.1. Notice that the growth condition on g(r), near » = 0, is independent on
ps. In the case of a single particle (notice that then A\; = 1) more precise results can

be obtained by using, as in [46], [47], [9], the trajectory equation in the phase space
Yy € —kx—pgB(y)—peg

; W) hyg they will not be presented here.

Remark 5.2. The positive results on stabilization in a finite time remain true for a
general symmetric and positive definite matrix A as well as under the presence of some
impulsive forces f(t) leading to the system

mx(t) + kAx(t) + psB(x(t)) + psG(x(t)) > £(t)
assuming that their amplitude is small enough : more precisely if
Ja > 0 such that pgB(r) + peg(r) > « and g(—r) = g(r) for any r > 0
then we have to we assume that
f(t) €([—a +€,a—€V)T for some € € [0, ) and for a.e. t > T}, for some Tj > 0.

This behavior face up to with the case in which the amplitude of f(¢) becomes large and
g'(v) < 0 for any v # 0. Then, the dynamics generates a wide range of events leading to
the chaos (see [39]).

Remark 5.3. The simultaneous possibility of the occurrence of stabilization in a finite
or infinite time does not hold for solutions of scalar first order in time equations of the
form

u — dAu+ ((u) 50 (5.2)

for 5(u) multivalued at w = 0 and d > 0 (see, for instance, [31], [45] and their references).
We assume given homogeneous Dirichlet boundary conditions and an initial datum. Mo-
reover, if we add an extra term, g(u), such that, g(u)u > 0 for any u € R, then the
solutions of

U —dAU + B(U)+g(U) >0 (5.3)

satisfy that [[u(t,.)|| ;o) = IU(%, )l 1s(q) and so, the extinction in a finite time of u(t,.)
implies the same property for U(t,.). The opposite comparison holds when g(u)u < 0.
This explain the important different behaviors among the solutions of problems of first
and second order in time. Notice that if we assume k£ = 0 in (P;) then we get that
U(t) = @(t) satisfies an equation similar to (5.3) with d = 0. Notice, also, that if m is very
small then problem (P;) becomes a quasi-static problem (in the terminology of [49]) and

then the solutions are closed to the solutions of the first order in time problem
2kx + pgB(E) + pgg(a(t)) 3 0,
(QSP) ’
x(0) =z

In that case, g(u)u > 0 implies an opposite comparison to the above mentioned one with
respect the solutions with ¢ = 0. Nevertheless, the multivalued character of 3 at u = 0
does not imply, now, the stabilization in a finite time for the solutions of (QSFy).
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Proof of Theorem [5.1. In order to reformulate (Py) in the framework of nonlinear semi-
group operators theory we introduce the phase space H = (RY, <, >4) x (RY,.), with
< a,b >a= Aa- b, and we define the operator L in H by

L(x,y)={-y} x {%AX + %B(y)} for (x,y) € H. (5.4)

It is easy to prove that L is maximal monotone in H and since 22G(y) is Lipschitz conti-
nuous, by using the results on Lipschitz perturbations of maximal monotone operators
(see [25]) we get the existence and uniqueness of a solution of (Py). Multiplying the
equation by %x(¢) and integrating in time we get the energy relation

N
O+ [ 12100+ 2ot = EO), 55)
where ) k
E(t) = 5 | %(t) ||? +o Ax(t) - x(t). (5.6)
By (5.5), the trajectory (x(t),%(t)):>0 is compact in H, so, we can find o > 0 such that
pali(t)] + pgg(xi(t))a:(t) > aldi(t)] fori=1,...,N and all £ > 0.
By (5.5), we conclude that x € L'(R) which leads to the existence of the limit

Xoo 1= tEerooX(t)

and to lim;, o X(t) = 0. |

In order to prove Theorem 5.2, it is useful to reformulate the problem in its nondi-
mensional form.

Lemma 5.1. The change of scales x(t) :=X(t)z*, t = £, a* = E2 t* = \/%, transforms

Gk
(Py) in the nondimensional problem

x(t) +AX(t) + B(x(¢ ))+ﬁG(j—£7§(t))90,
(Pn) § X(0) = %o,

X(O) = Vo,
with io = %XO and % = %kVO.

Proof. It is enough to check that %(t) = &% and to use that B(6%(t)) = B(x(t)) for any

t* dt

6> 0. [ |

We come back to the proof of part i) of Theorem [5.2. In the following we shall identify
(Py) with (Py) if no confusion may arises. In view of Theorem 5.1/ and Lemma 5.1, we
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have to prove that there exists 7, > 0 such that x(t) = x, for any ¢t > T,. In what follows
we shall adopt some notation similar to the introduced by Bamberger and Cabannes in [14]

A(t) := (Ax(t)); and A} := (AXy);, forie{l,...,N}.

We recall that, since X, is an stationary point, we have (AN, € [-1,1]Y. We need
an auxiliary lemma describing the behavior of x(¢) for large time. In the statement, the
constants may depend on the initial data.

Lemma 5.2. 1) Suppose that for some i € 1,...,N, |Af| < 1. Then there exists T; > 0
such that ¥Vt > T;, i;(t) = 0.

2) If, for somei € 1,...,N, Af =1 (resp. Af = —1). Then there exists T; > 0 such that
Vt > Ty, @4(t) <0 (resp. @5(t) > 0).

Proof. Let 0 < § < 1 be fixed. By Theorem /5.1 we can find ¢, > 0 such that

B 15

> o 1D £ (1-20) and oL (0)] < 2 57
If ;(to) = 0, we conclude that x;(t) = z;(ty) = (z0); for any t > o since A;(t) € [—1,1]
for any t > tq. If not, let

T =sup {s > to, |&;(t)| > 0Vt € [to, s[}.

Multiplying the ith component of (Py) by #;(f) and using (5.7) we obtain

%%(m(t)ﬁ) +0)i:(t)| <0 for ae. t € [to, TT. (5.8)

Dividing (5.8) by |#;(t)| we get

%(y@.(m) +5<0 forae t€[t,T]. (5.9)

Integrating, we see that
) Zi(t
i (to + [#:lbo)] 20)‘) — 0.
Thus 7' < 400 and we conclude, as before, that x;(t) = 2;(T) = (2); for any t > T.
To prove part 2) we consider, again, 0 < § < 1 and suppose that A¥ = 1 (the case

A¥ = —1 is similar). By Theorem 5.1/ we can find ¢, > 0 such that

(]

Ait) =6 and |g(—2 g (0) < E26 for ae. t > 1. (5.10)

vmk Hg

Suppose that &;(ty) > 0 and let

T =sup{s > to, &;(t) >0 VtE€ [ty,s[}.
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In [tg, 7] we have

Hg  HB_ . -0,
Mﬁg(m i(t)) =0

From (5.10), we get that #;(t) < —1 in [to, 7] and by integration

Zi(t) + Ai(t) + 1+

Thus 7 < +o0 and we conclude that we can find T' > ¢, such that @;(7") < 0. Now suppose
that there exists t; > T such that 2;(¢;) > 0. From the continuity of Z;, there exists some
interval |to, 3] with to > T and ;(t2) > 0, where &; is strictly increasing. In |to, t3] we

have #; = —1 — A; — Z—Z g(\/”—%k #;). Thus form the choice of §, & is strictly decreasing in
|ta, t3[, which is a contradiction. |

Proof of Theorem 5.2 (continuation), proof of i). We set
T={ie{l,....,N}, Aj =1} and I ={ie{l,....N}, Af=—-1}.

In view of Lemma 5.1, we can find 7" > 0 such that for any ¢ > T" we have that :
a) Vie{l,....N},  g(Z ai(t)d:(t) <0,
b) Vie I, &;(t) <0,
c) Viel, &) >0,
d) YigITul-, &;(t)=0.
We write the equations of (Py) as

Fo(t) + A(t) — AF + 1+ Bla(t)) + Z—Zg(\/% #:(1) 20, for i € I, (5.11)

(and analogy for i € ™). Multiplying by #;(t) and summing over i, we get

. : Cx)-x Ha a8 50 - x(t) =
X(t) - %x(t) + A(x(t) — Xo0) (t)+MBG(m () -%x(t) =0,Vt > T,

Integrating in time, we infer that for t > T,
5 (t) |17 +A () = Xo0) - (%(8) = Xo0) 2] X(T) |7 +AX(T) = Xoo) - (X(T) = Xo) 2 0

Letting t — +oo we obtain || X(T) ||* +A(x(T) — X&) * (x(T) — X&) = 0. Since A is a
positive definite matrix, we conclude that x(7T") = x., and thus x(t) = X, for any ¢t > T.

Proof of ii). Assume now that g(r) = \r with \ > 2vamk ’\”" . In order to construct a solution

of (Px) which does not stabilize in finite time we seek a particular solution of the vectorial
linear ODE
Aldg

Vmk

X + AX+ X =0. (5.12)
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Since A is a symmetric definite positive matrix, we can find a matrix P € R¥*¥ such
that A = PTdiag(\y, -+, An)P with 0 < A\ < Xy < ... < Ay and PTP =1, the identity
matrix. Writing X = PTY, system (5.12) is equivalent to the system

A
st Ny H9 gy — 0 fori=1,...,N. (5.13)

Vmk

Altg
vmk

any t > 0 since A\ > @ We define Y (t) = (y1(),0,...,0) which satisfies (5.13).
Then, X(t) := PTY(t) satisfies (5.12) and is such that i;(¢) has a constant sign and
never vanishes or 2;(t) = 0 . If we denote by A* the constant vector of RY defined by
Af = Bo(z),i=1,..., N, with Gy(r) = p(r) if r # 0 and 55(0) = 0, and consider x., as

the solution of Ax,, = —A*. Summing X and X, we get a solution of (P y) which never

The equation §; + Ay, + g1 = 0 admits a solution y;(¢) such that ¢;(¢) < 0 for

stops.

Proof of iii). We suppose N =1 (and take A = 1). The problem becomes

Bo o223y 5 0. (5.14)

x—ira:—l—ﬂ(a:)—l—uﬂg(m

Firstly, suppose that ¢'(0) < 2*2—”7“ We want to prove that all solutions of (5.14) stabilize
in finite time. In view of the pregvious steps, we only have to consider the case |z(t)| — 1.
By analogy, it is enough to consider the case z(t) — 1. We know that there exists a time
T such that @(t) < 0 and |z(t) — 1] < 1 for any ¢ > T'. If the process does not stop at a
time T, then there exists a ¢y > T such that &(ty) < 0. Let 7 = sup{t > ty, ©(t) < 0}.
Since g is regular near 0 and ¢'(0) < 2\2—"7“ we know by Hartman’s Theorem ([59]) that
the point (1,0) is a center or a focus for the equation

itu—1+ 2 gy =0 (5.15)

Mg~ Vmk

Since z(t) satisfies this equation in (¢y,7), we deduce that 7 < oo and z(7) < 1 with
&(7) = 0, thus the process stops at time 7 which contradicts that x(t) — 1 as t — +o0.
If we assume, now, that ¢’(0) > Qi—mik, since g is regular near 0, by Hartman’s Theorem,
the point (1,0) is a node for equatgion (5.15) and we can find a solution wu(t) such that
u(t) < 0 for any t > 0. Such solution is also a solution of (5.14) which does not stabilize

in any finite time. [

Remark 5.4. Similar results also hold for other N-dimensional systems arising when the
spatial discretization of the wave equation is taken by finite elements instead of finite
differences.
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5.3 The dichotomy for the damped wave equation

As an illustration of possible extensions of ii) of Theorem (5.2 to other dynamical
systems, we consider the damped wave equation in a bounded regular open set Q C RY

Ut — Au + ﬁ(ut) + /\ut 50 in Q2 x (0, —I—OO), (516)

with Dirichlet boundary conditions wu(.,t) = 0 on 92 for ¢ € (0,+00). Let us assume
that A > 24/A;, with )\; the first eigenvalue of the operator u — —Au associated to
homogeneous Dirichlet boundary conditions. Then we can find some solution of (5.16)
which does not stabilize in any finite time and also some solution which stabilizes in a
finite time. We construct the first type of solution in the form

u(z,t) = a(t)o(z) + (),

where v is a solution of the eigenvalue problem

—Av=MX\v inQ,
v=20 on 0,

such that v > 0 in 2, the function £ is defined as the solution of

A¢E =1 in Q,
&E=0  on 09,

and a(t) solves the ODE
i+ Ma+ =0, (5.17)

such that a(t) > 0 for any ¢ > 0 (which is possible since A > 2y/A; ). Then, we get a
solution which does not stabilize in any finite time.
By the contrary, if we choose a(t) as a solution of (5.17) such that

a(t)y >0 forte0,1), a(l)=0 and a(l) =K,

with K = and take

u(z,t) = b(t)v(z) + &(z)

where

K otherwise,

b(t) = {a(t) if <1,

we get a solution which attains the stationary state u.(z) = Kv(z) + &(x) exactly at
time t = 1. n
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Résumé

Dans le Chapitre 1, nous calculons I'infimum d’une énergie comportant un poids mesurable,
sur des classes d’applications & valeurs dans S? ayant des singularités prescrites. Nous montrons
qu’une telle quantité induit une distance. Ceci nous permet de calculer dans le Chapitre 2, une
énergie de type relaxée pour des applications u : © C R? — S2. La formule fait intervenir la
longueur d’une connexion minimale associée & la distance obtenue au Chapitre 1, connectant
les singularités topologiques de u. Dans le Chapitre 3, nous étudions le modéle physique d’un
condensat de Bose-Einstein bidimensionnel en rotation. Nous estimons la vitesse critique de
rotation pour avoir d tourbillons et nous déterminons leur position. Dans le Chapitre 4, nous
étudions le comportement asymptotique des minimiseurs d’une énergie de Ginzburg-Landau avec
un poids dépendant de € et nous montrons un phénoméne d’ancrage des singularités limites. Dans
le Chapitre 5, nous présentons quelques résultats sur la stabilisation en temps fini de processus
mécaniques ou un frottement de Coulomb coexiste avec d’autres types de forces donnant lieu a
des oscillations dans ’absence de frottement.

Mots-clés: singularités topologiques, connexion minimale, énergie relaxée, condensation de Bose-
Einstein, fonctionnelle de Ginzburg-Landau, énergie renormalisée, frottement de Coulomb, sta-
bilisation en temps fini

Abstract

In Chapter 1, we compute the infimum of an energy with measurable weight, over classes
of S2-valued maps with prescribed singularities. We prove that such quantity induces a distance.
This result allows to compute in Chapter 2 a relaxed type energy for maps u :  C R? — S2. The
explicit formula involves the length of a minimal connection relative to the distance defined in
Chapter 1 connecting the topological singularities of u. In Chapter 3, we investigate the physical
model for a two dimensional rotating Bose-Einstein condensate. We estimate the critical angular
velocity for having d vortices and we determine their location. In Chapter 4, we study the
asymptotic behavior of minimizers of a Ginzburg-Landau energy e-depending weight and we
prove a pinning effect on the limiting singularities. In Chapter 5, we present a set of results on
the stabilization in a finite time of some mechanical processes where a Coulomb friction term
coexists with other physical frameworks leading to oscillations in absence of friction.

Keywords: topological singularities, minimal connection, relaxed energy, Bose-Einstein conden-
sation, Ginzburg-Landau functional, renormalized energy, Coulomb friction, stabilization in finite
time
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