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1. Introduction

Recently there has been some interest in the study of maps between manifolds
with H1/2–regularity, especially in the context of the complex Ginzburg-Landau
equations and their applications to superconductivity models (see [1], [2], [4], [6],
[8], [9], [10],[13], [16], [17], [18], [19] and [20]). In this note, we shall consider one of
the most common class of such maps, namely,

X =H1/2(S2; S1) :=
{
g ∈ L2(S2; R2) ; |g| = 1 a.e. in R2 and |g|1/2 < +∞

}
, (1.1)

where | · |1/2 denotes the standard Gagliardo fractional seminorm, i.e.,

|g|21/2 =
∫

S2

∫
S2

|g(x)− g(y)|2

|x− y|3
dxdy .

One easily sees that X is a closed subset of the Sobolev space H1/2(S2; R2) and
that it defines a complete metric space for the distance induced by the H1/2–norm
‖ · ‖1/2 = ‖ · ‖L2(S2) + | · |1/2.

The main feature of the space X is that the subspace of smooth maps X∩C∞(S2)
fails to be dense in X with respect to the strong topology. However density holds
for the weak topology (see [19]). A typical example of a map in X which can not
be strongly approximated by smooth maps is given by g : S2 → S1,

g(x1, x2, x3) =
(x1, x2)√
x2

1 + x2
2

.
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Indeed, it can be shown, using degree theory, that g cannot be smoothed near its
singularities at the north and south poles without violating the constraint of being
S1-valued. This simple example contains the essence of the obstruction and shows
its topological nature.

For an arbitrary map g ∈ X, a characterization of the topologically relevant part
of the singular set of g has been obtained in terms of a certain distribution T (g) in
[2], [11], [19] (we also refer to [10] for an alternative approach in terms of Cartesian
currents and to [3], [11] for higher dimensional analogues). Given ϕ ∈ Lip(S2; R), an
arbitrary extension u ∈ H1(B3; R2) of g and an arbitrary extension Φ ∈ Lip(B3; R)
of ϕ, the distribution T (g) is defined through its action on ϕ by

〈T (g), ϕ〉 =
∫

B3
H(u) · ∇Φ (1.2)

where

H(u) = 2
(
∂2u ∧ ∂3u, ∂3u ∧ ∂1u, ∂1u ∧ ∂2u

)
∈ L1(B3) . (1.3)

One observes that divH(u) = 0 in D′(B3) so that the integral in (1.2) formally
reduces to an integration on the plane. In particular, this integral only depends on
g and ϕ and so T (g) is well defined (see [2]). As shown in [19] (see also [2]), g can
be approximated strongly by smooth maps if and only if T (g) = 0 and in particular
T (g) = 0 whenever g is smooth.

If g ∈ X∩W 1,1(S2), the integration by parts in (1.2) can be rigorously performed
(see [2]) and yields

〈T (g), ϕ〉 = −
∫

S2
(g ∧∇T g) · ∇⊥T ϕ (1.4)

where ∇T denotes the tangential gradient in a direct orthonormal frame (τ1, τ2, ν)
and ν is the outward normal on S2 = ∂B3. If in addition g is smooth except at a
finite number of points {aj}N

j=1 then (1.4) leads to (see e.g. [7])

〈T (g), ϕ〉 = 2π
N∑

j=1

djϕ(aj) (1.5)

where dj ∈ Z is the topological degree of g around aj and
∑N

j=1 dj = 0 for obvious
topological reasons.

Our main objective in this note is to measure the obstruction to smooth approx-
imation in terms of energy. We shall rely on the method and techniques developed
in [16] (see also [19] and [10] for an approach in terms of Cartesian currents). We
consider the following energy for g ∈ H1/2(S2; R2),

E(g) =
∫

B3
|∇ug|2
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where ug ∈ H1(B3, R2) is the harmonic extension of g to the tridimensional unit
ball B3 ⊂ R3, i.e., {

∆ug = 0 in H−1(B3),

ug |S2 = g .

Equivalently,

E(g) = Inf
{ ∫

B3
|∇u|2 ; u ∈ H1

g (B3; R2)
}

.

It is well known that |g|21/2 ∼ E(g) and in particular, g 7→ (E(g))1/2 provides a
seminorm equivalent to | · |1/2.

As a first step in our analysis, we introduce a suitable “dipole problem” moti-
vated by the following remark. Let g ∈ X and {hn}n∈N ⊂ X ∩ C∞ be such that
hn → g a.e. in S2. If one consider the sequence {h̄ng}n∈N ⊂ X, where h̄ng denotes
the complex product between g and the complex conjugate of hn (we identify R2

with the complex plane C), it turns out that T (h̄ng) = T (h̄n) + T (g) = T (g) for
every n ∈ N since T (h̄n) = 0 (see [2]). And obviously, h̄ng → (1, 0) a.e. in S2.
Assuming that T (g) takes the simple form T (g) = 2π

(
δP − δQ

)
for some distinct

points P,Q ∈ S2, it is therefore relevant to consider the quantity

m
(
2π(δP − δQ)

)
= Inf

{
lim inf
n→+∞

E(g) ; {gn}n∈N ⊂ X , (1.6)

T (gn) = 2π
(
δP − δQ

)
, gn → (1, 0) a.e.

}
which heuristically gives the minimal H1/2-energy necessary to remove the pair of
singularities (P,Q). The explicit computation of m

(
2π(δP − δQ)

)
is referred to as

the “dipole problem” and is the object of our first result.

Theorem 1.1. Let P and Q be two distinct points on S2. We have

m
(
2π(δP − δQ)

)
= 2π dS2(P,Q) ,

where dS2 denotes the geodesic distance on the sphere S2.

The result of Theorem 1.1 can be generalized to an arbitrary T (g) (see [16]) but
for our purposes it suffices to concentrate on the special case (1.5). Indeed, the class
of maps which belong to X ∩W 1,1(S2) and are smooth except for a finite number
of points, is dense in X for the strong topology. This important result was first
obtained in [19] (see also [2] and [16]). The statement of Theorem 1.1 for (1.5) should
be modified as follows. Let a1, . . . , aN be N distinct points on S2, let d1, . . . , dN ∈ N
be such that

∑N
j=1 dj = 0, and consider the quantity m

(
2π

∑
j djδaj

)
defined as

in (1.6) using the constraint T (gn) = 2π
∑

j djδaj
(admissible sequences can be

easily constructed, see e.g. Section 3). Since the sum of the dj ’s equals zero, we can
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relabel the aj ’s taking into account their multiplicity |dj | as two lists (p1, . . . , pK)
and (q1, . . . , qK) in such a way that

2π
N∑

j=1

djδaj = 2π
K∑

i=1

δpi − δqi . (1.7)

Then we have

m
(
2π

N∑
j=1

djδaj

)
= 2π Min

σ∈SK

K∑
i=1

dS2(pi, qσ(i)) , (1.8)

where SK denotes the set of all permutations of K indices. We shall omit the proof
of (1.8) since the main ingredients are already contained in the proof of Theorem 1.1
(see also Section 3).

The quantity on the right hand side of (1.8) is often referred to as the length
of a minimal connection between the singularities relative to the distance dS2 . It
has been first introduced in [5] for similar questions involving S2-valued maps from
tridimensional domains with H1-regularity, and it can be written in the dual form
(see [5]):

Min
σ∈SK

K∑
i=1

dS2(pi, qσ(i)) = Sup
{ K∑

i=1

ϕ(pi)− ϕ(qi) ; ϕ ∈ Lip(S2; R) , (1.9)

ϕ is 1-Lipschitz with respect to dS2

}
.

The formula above motivates the following definition for the length of a minimal
connection relative to dS2 for an arbitrary map g ∈ X,

L(g) =
1
2π

Sup
{
〈T (g), ϕ〉 ; ϕ ∈ Lip(S2; R) , ϕ is 1-Lipschitz with respect to dS2

}
.

It turns out that L(g) is the right quantity to quantify the obstruction to smooth
approximation. If one wants to measure, for a given g ∈ X, the distance of g to the
subspace of smooth maps, it is natural to consider the relaxed energy E : X → R
defined by

E(g) = Inf
{

lim inf
n→+∞

E(gn) ; {gn}n∈N ⊂ X ∩ C∞(S2) , gn → g a.e.
}

.

Obviously E(g) ≥ E(g) and the gap between E(g) and E(g) is precisely the quantity
we are interested in. We have the following result.

Theorem 1.2. For every g ∈ X, we have

E(g) = E(g) + 2πL(g) .

A similar result has first been obtained by H. Brezis, F. Bethuel and
J.M. Coron [5] in the context of S2-valued maps. Since then many studies have
been done on this type of relaxation problems for Sobolev maps between manifolds,
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see e.g. [7], [12], [14], [15], see also the recent works by M. Giaquinta, G. Modica,
J. Souček [10] and M. Giaquinta, D. Mucci [9] for H1/2-maps in the context of
Cartesian currents.

The plan of the paper is as follows. Sections 2 and 3 are devoted to the proofs of
Theorem 1.1 and Theorem 1.2 respectively. In Section 4, we present some generaliza-
tions of the previous results when S2 is replaced by a more general two dimensional
manifold M. Then we compare our dipole problem with the more classical notion
where one simply computes the infimum of the energy over the class of maps having
two prescribed singularities of degree +1 and −1.

2. The dipole problem

Proposition 2.1. Let P and Q be two distinct points on S2. There exists a sequence
{gn}n∈N ⊂ X such that T (gn) = 2π

(
δP − δQ

)
for every n, gn → (1, 0) a.e. and

lim sup
n→+∞

E(gn) ≤ 2π dS2(P,Q) .

Proof. We split the proof into several steps.
Step 1. Due to the invariance of the energy E with respect to rotations, we may
assume without loss of generality that the points P and Q satisfy

P = (l, 0,−h) and Q = (−l, 0,−h)

for some l > 0 and h ≥ 0. In the sequel, we shall make use of the conformal
transformation Φ : R3

+ = R2 × R+ → B3 ⊂ R3 given by

Φ(y1, y2, y3) =
(

2y1

y2
1 + y2

2 + (y3 + 1)2
,

2y2

y2
1 + y2

2 + (y3 + 1)2
,

y2
1 + y2

2 + y2
3 − 1

y2
1 + y2

2 + (y3 + 1)2

)
.

We observe that Φ(·, ·, 0) ∈ C∞(R2; S2 \ {(0, 0, 1)}) is an inverse stereographic pro-
jection. Moreover

P = Φ
(
(`, 0, 0)

)
and Q = Φ

(
(−`, 0, 0)

)
for some 0 ≤ ` ≤ 1 and the image of the segment

[
(−`, 0, 0), (`, 0, 0)

]
through Φ is

a minimizing geodesic on S2 connecting Q to P .
Step 2. We introduce the second conformal transformation φ : R2

+ = R × R+ → D
defined by

φ(y2, y3) =
(

y2
2 + y2

3 − 1
y2
2 + (1 + y3)2

,
2y2

y2
2 + (1 + y3)2

)
,

so that φ(·, 0) ∈ C∞(R; S1 \ {(1, 0)}) is an inverse stereographic projection. Using
the complex notation, for y2 6= 0 we have

φ(y2, 0) = eiθ(y2) with θ(y2) = 2 arctan(1/y2) .



6 V. Millot

Next we define the sequence {φn}n∈N by

φn(y2, y3) =


φ(ny2, ny3) if |y2|2 + |y3|2 ≤ 1 ,

(1, 0) if |y2|2 + |y3|2 ≥ 4 ,

ei(θ(ny2))(2−|y2|) if 1 < |y2| < 2 and y3 = 0 ,

harmonic if 1 < |y2|2 + |y3|2 < 4 and y3 > 0 .

We may easily check that φn ∈ Lip(R2
+), φn(·, 0) ∈ Lip(R; S1) and∫

R2
+

|∇φn|2dy2dy3 −→
n→+∞

∫
R2

+

|∇φ|2dy2dy3 = 2π . (2.1)

Now we consider for y = (y1, y2, y3) ∈ R3
+,

vn(y) =


φn

(
y2

ηn(y1)
,

y3

ηn(y1)

)
if |y1| < ` ,

(1, 0) if |y1| ≥ ` ,

where ηn(y1) = (`− |y1|)/n . Once more, one may check that vn is locally Lipschitz
in R3

+ away from {(−`, 0, 0), (`, 0, 0)} and has finite energy. Moreover, vn is identi-
cally equal to (1, 0) outside a small neighborhood U ⊂ R3

+ of
[
(−`, 0, 0), (`, 0, 0)

]
independent of n. Finally, we define un : B3 ⊂ R3 → R2 by

un(x) =


vn

(
Φ−1(x)

)
if x ∈ Φ(U) ,

(1, 0) otherwise .

By construction un ∈ H1(B3, R2), un is locally Lipschitz in B3 away from the points
P and Q. In addition, gn := un|S2 ∈ X ∩W 1,1(S2), gn → (1, 0) a.e. as n → +∞ and
T (gn) = 2π(δP − δQ) for every n.
Step 3. Using the conformal invariance of Φ, a straightforward computation yields∫

B3
|∇un(x)|2dx =

∫
R3

+

|∇vn(y)|2a(y)dy , (2.2)

where the weight function a(y) is given by

a(y) =
2

y2
1 + y2

2 + (y2
3 + 1)2

.

Then we estimate∫
R3

+

|∇vn(y)|2a(y)dy ≤
∫ `

−`

( ∫
R2

+

|∇2,3 vn|2a(y)dy2dy3 + 2
∫

R2
+

|∂1vn|2dy2dy3

)
dy1 .

Changing variables, yi = ηn(y1)zi for i = 2, 3, we obtain∫
R2

+

|∇2,3 vn|2a(y)dy2dy3 =
∫

R2
+

|∇φn(z2, z3)|2a
(
y1, ηn(y1)z2, ηn(y1)z3

)
dz2dz3

= a(y1, 0, 0)
∫

R2
+

|∇φn(z2, z3)|2dz2dz3 + O(1/n)
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and ∫
R2

+

|∂1vn|2dy2dy3 ≤ |η̇n(y1)|2
∫

R2
+

|∇φn(z2, z3)|2(z2
2 + z2

3)dz2dz3

≤ 4|η̇n(y1)|2
∫

R2
+

|∇φn(z2, z3)|2dz2dz3 .

Since
∫ `

−`
|η̇n(y1)|2dy1 = O(1/n2), we deduce that∫

R3
+

|∇vn(y)|2a(y)dy ≤
( ∫ `

−`

a(y1, 0, 0)dy1

) ∫
R2

+

|∇φn|2 + O(1/n) .

which leads by (2.1) to

lim sup
n→+∞

∫
R3

+

|∇vn(y)|2a(y)dy ≤ 2π

∫ `

−`

a(y1, 0, 0)dy1 .

In view of (2.2) and the definition of E, we conclude

lim sup
n→+∞

E(gn) ≤ lim sup
n→+∞

∫
B3
|∇un|2dx ≤ 2π

∫ `

−`

a(y1, 0, 0)dy1 .

On the other hand, γ : [−`, `] → S2 defined by γ(t) = Φ((t, 0, 0)) is a minimizing
geodesic on S2 joining P and Q so that

dS2(P,Q) =
∫ `

−`

|γ̇(t)|dt =
∫ `

−`

a((t, 0, 0))dt .

Therefore

lim sup
n→+∞

E(gn) ≤ 2π dS2(P,Q)

and the proof is complete. �

Proposition 2.2. Let P and Q be two distinct points on S2. Then, for any sequence
{gn}n∈N ⊂ X such that gn → (1, 0) a.e. and T (gn) = 2π(δP − δQ) for every n, we
have

lim inf
n→+∞

E(gn) ≥ 2π dS2(P,Q) .

Proof. Without loss of generality, we may assume that

lim inf
n→+∞

E(gn) = lim
n→+∞

E(gn) < +∞ .

Let un ∈ H1(B3) be the harmonic extension of gn to B3. Then the sequence {un}n∈N
remains bounded in H1. Since gn → (1, 0) a.e. on S2, extracting a subsequence, if
necessary, we have un ⇀ (1, 0) weakly in H1. Next we observe that |∇un|2 ≥
|H(un)| a.e. in B3. We fix 0 < r � 1 and we consider a cut-off function χ ∈
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C∞(R; R) such that 0 ≤ χ ≤ 1, χ(t) ≡ 1 if |t| ≥ 1− r and χ(t) ≡ 0 if |t| ≤ 1− 2r.
Then

E(gn) =
∫

B3
|∇un|2dx ≥

∫
B3

χ(|x|)|H(un)|dx =
∫
A2r

χ(|x|)|H(un)|dx ,

where A2r = B3 \ B(0, 1 − 2r). Setting d2r to be the geodesic distance in A2r, we
define for x ∈ Ar

Ψ(x) = d2r(x,Q) ,

and for x ∈ B3

ζ(x) = χ(|x|)Ψ(x) if x ∈ A2r , ζ(x) = 0 otherwise ,

so that ζ ∈ Lip(B3). Since |∇Ψ| ≤ 1 a.e. in A2r, we may estimate∫
A2r

χ(|x|)|H(un)|dx ≥
∫
A2r

χ(|x|) H(un) · ∇Ψ dx =

=
∫

B3
H(un) · ∇ζ dx−

∫
K

χ̇(|x|)Ψ(x) H(un) · x

|x|
dx

= 〈T (gn), ζ|S2〉 −
∫

K

χ̇(|x|)Ψ(x) H(un) · x

|x|
dx

= 2πd2r(P,Q)−
∫

K

χ̇(|x|)Ψ(x) H(un) · x

|x|
dx (2.3)

with K = A2r \ Ar . By classical results, ∇un → 0 in L2
loc(B

3) so that H(un) → 0
in L1(K) and the integral on the right handside of (2.3) vanishes as n → +∞.
Therefore

lim
n→+∞

E(gn) ≥ 2πd2r(P,Q) .

Now we let r → 0 and since d2r(P,Q) → dS2(P,Q) as r → 0, we recover the
announced result. �

3. Relaxed energy and minimal connections

We begin with the proof of the upper bound E ≤ E + 2πL in Theorem 1.2.

Proposition 3.1. For every g ∈ X, there exists a sequence {gn}n∈N ⊂ X∩C∞(S2)
such that gn → g a.e. in S2 and

lim sup
n→+∞

E(gn) ≤ E(g) + 2πL(g) .

Proof. Step 1. First we assume that g ∈ X ∩W 1,1(S2) and g is smooth except for
a finite number of points. Then the distribution T (g) may be written as T (g) =
2π

∑K
i=1 δpi

− δqi
and without loss of generality, we may assume that

K∑
i=1

dS2(pi, qi) = Min
σ∈SK

K∑
i=1

dS2(pi, qσ(i)) = L(g)
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by (1.9). We consider for each i = 1, . . . ,K, the sequence {gi,n}n∈N ⊂ X associ-
ated to the pair (pi, qi) given by Proposition 2.1. We denote by ug, resp. ui,n, the
harmonic extension of g, resp. of gi,n, to the unit ball B3. Next we consider the
sequence

gn =
(
ΠK

i=1ḡi,n

)
g ∈ X ,

using the complex product and complex conjugation. Obviously gn → g a.e. since
gi,n → (1, 0) a.e. for every i. By [2], we have

T (gn) = T (g)−
K∑

i=1

T (gi,n) = 0 .

By an easy application of the maximum principle, one obtains |ug| ≤ 1 and |ui,n| ≤ 1
in B3 so that a straightforward computation yields

E(gn) ≤
∫

B3
|∇ug|2 +

K∑
i=1

∫
B3
|∇ui,n|2 = E(g) +

K∑
i=1

E(gi,n) .

In view of Proposition 2.1, we derive that

lim sup
n→+∞

E(gn) ≤ E(g) + 2π
K∑

i=1

dS2(pi, qi) = E(g) + 2πL(g) .

Since T (gn) = 0, gn can be strongly approximated by smooth maps in X (see [19]).
Hence the required sequence may be obtained by approximating each gn by smooth
maps and then applying a standard diagonalization argument.
Step 2. Now we consider an arbitrary map g ∈ X. First we observe that

|L(g1)− L(g2)| ≤ C
(
|g1|1/2 + |g2|1/2

)
|g1 − g2|1/2 ∀g1, g2 ∈ X , (3.1)

for some universal constant C > 0 (see e.g. [16] for more details). By the results in
[19], we may find a sequence {gn}n∈N ⊂ X such that gn → g strongly in H1/2 and
gn satisfies the assumption of Step 1 for every n. Obviously, we may assume that
gn → g a.e. extracting a subsequence if necessary. By (3.1), we have

E(gn) + 2πL(gn) −→
n→+∞

E(g) + 2πL(g) .

Hence we may apply Step 1 to each gn and then obtain the required sequence by a
diagonalization argument. �

To obtain the lower bound E ≥ E + 2πL, we shall use an argument based
on the lower semicontinuity result below. We introduce the expected lower bound
F : X → R+ defined by

F (g) = E(g) + 2πL(g) .

We have the following.

Proposition 3.2. The functional F is sequentially lower semicontinuous on X

with respect to the a.e. convergence.
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Proof. Step 1. First we introduce for a given 0 < r < 1, the functional Fr : X → R+

defined by

Fr(g) = E(g) + 2πLr(g) ,

where Lr(g) denotes the length of a minimal connection relative to the geodesic
distance dr in the annulus Ar = B3 \B(0, 1− r), ie.,

Lr(g)=
1
2π

Sup
{
〈T (g),Φ|S2〉 ; Φ ∈ Lip(Ar; R), Φ is 1-Lipschitz with respect to dr

}
.

In the remaining of the proof we shall extend any Φ ∈ Lip(Ar; R) to the whole B3

by setting

Φ(x) = χ(|x|)Φ
(

(1− r)x
|x|

)
∀x ∈ B(0, 1− r)

for a fixed function χ ∈ C∞(R) satisfying 0 ≤ χ ≤ 1, χ(t) = 1 if |t| ≥ 1 − r and
χ(t) = 0 if |t| ≤ 1− 2r. Then for any g ∈ X and any Φ ∈ Lip(Ar; R), we have

〈T (g),Φ|S2〉 =
∫

B3
H(ug) · ∇Φ

where ug is the harmonic extension of g to B3.
We claim that Fr is sequentially lower semicontinuous on X with respect to the

a.e. convergence. Obviously, it suffices to prove that for any Φ ∈ Lip(Ar; R) with Φ
1-Lipschitz with respect to dr,

g ∈ X 7→ E(g) +
∣∣∣∣ ∫

B3
H(ug) · ∇Φ

∣∣∣∣
is sequentially lower semicontinuous on X with respect to the a.e. convergence since

Fr(g) = Sup
{

E(g) +
∣∣∣∣ ∫

B3
H(ug) · ∇Φ

∣∣∣∣ ; Φ ∈ Lip(Ar; R),

Φ is 1-Lipschitz with respect to dr

}
.

Let {gn}n∈N ⊂ X be such that gn → g ∈ X a.e. on S2. Without loss of generality,
we may assume that

lim inf
n→+∞

Fr(gn) = lim
n→+∞

Fr(gn) < +∞ .

Since supn E(gn) ≤ supn Fr(gn) < +∞, we can extract a subsequence (not rela-
beled) such that gn ⇀ g weakly in H1/2. Setting un to be the harmonic extension of
gn to B3, it is well known that un converges to ug weakly in H1(B3) and strongly
in H1(K) for any compact set K ⊂ B3. Writing un = u + vn, vn converges to 0
weakly in H1(B3) and strongly in H1(K) for any compact set K ⊂ B3. Therefore

E(gn) = E(g) +
∫

B3
|∇vn|2 + o(1) .
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Next we observe that

H(un) = H(vn) + 2(∂2vn ∧ ∂3ug, ∂3vn ∧ ∂1ug, ∂1vn ∧ ∂2ug)+

+ 2(∂2ug ∧ ∂3un, ∂3ug ∧ ∂1un, ∂1ug ∧ ∂2un) .

Hence H(un) → H(u) in L1(K) for any compact set K ⊂ B3, so that∫
B3

H(un) · ∇Φ =
∫

B3
H(ug) · ∇Φ +

∫
Ar

H(vn) · ∇Φ + o(1) .

Since |∇Φ| ≤ 1 a.e. in Ar, we deduce

E(gn)+
∣∣∣∣ ∫

B3
H(un)·∇Φ

∣∣∣∣ ≥ E(g)+
∣∣∣∣ ∫

B3
H(ug)·∇Φ

∣∣∣∣+∫
B3
|∇vn|2−

∫
Ar

|H(vn)|+o(1)

and the conclusion follows because |∇vn|2 ≥ |H(vn)| a.e. in Ar.
Step 2. We claim that

F (g) = sup
r>0

Fr(g) ∀g ∈ X . (3.2)

In view of Step 1, the proof of (3.2) will complete the proof of Proposition 3.2.
Obviously it suffices to show that L(g) = supr>0 Lr(g).

First we consider the case of a map g ∈ X ∩W 1,1(S2) smooth except for a finite
number of points. In this case, we may write T (g) = 2π

∑K
i=1 δpi − δqi and by the

results in [5],

L(g) = Min
σ∈SK

K∑
i=1

dS2(pi, qσ(i)) and Lr(g) = Min
σ∈SK

K∑
i=1

dr(pi, qσ(i)) ∀ 0 < r < 1 .

Now using the uniform convergence of dr to dS2 on S2 × S2 as r → 0, one easily
obtains Lr(g) → L(g) (see [16] for details). Then we conclude by observing that
Lr(g) ≤ L(g) since dr ≤ dS2 as distances on S2.

Now we consider a general map g ∈ X. By the results in [19], given ε > 0 small,
we may find gε ∈ X ∩W 1,1(S2) smooth except for a finite number of points such
that ‖g − gε‖1/2 ≤ ε. Using (3.1) and its equivalent form for Lr, i.e.,

|Lr(g1)− Lr(g2)| ≤ C
(
|g1|1/2 + |g2|1/2

)
|g1 − g2|1/2 ∀g1, g2 ∈ X ,

for a constant C > 0 independent of r (see [16] for details), we derive

lim inf
r→0

Lr(g) ≥ lim
r→0

Lr(gε)− Cε = L(gε)− Cε ≥ L(g)− Cε

and

lim sup
r→0

Lr(g) ≤ lim
r→0

Lr(gε) + Cε = L(gε) + Cε ≤ L(g) + Cε .

Letting ε → 0, we recover Lr(g) → L(g) as r → 0 and the conclusion follows since
Lr(g) ≤ L(g). �

Corollary 3.1. Let g ∈ X and let {gn}n∈N ⊂ X∩C∞(S2) be an arbitrary sequence
such that gn → g a.e. in S2. We have

lim inf
n→+∞

E(gn) ≥ E(g) + 2πL(g) .
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Proof. Since {gn}n∈N ⊂ C∞(S2), we have T (gn) = 0 and hence L(gn) = 0. Next
we infer from Proposition 3.2 that

lim inf
n→+∞

E(gn) = lim inf
n→+∞

F (gn) ≥ F (g) = E(g) + 2πL(g)

which completes the proof. �

4. Some extensions and open problem

In this section, we extend the results of Theorem 1.1 and Theorem 1.2 to a more
general starting manifold. We consider a smooth open bounded domain Ω ⊂ R3

diffeomorphic to the unit ball B3 and we set M = ∂Ω so that the manifold M
is diffeomorphic to the unit sphere S2. We are interested in the space of S1-valued
maps

XM = H1/2(M; S1) =
{
g ∈ H1/2(M; R2) ; |g| = 1 a.e. on M

}
endowed with the metric induced by the H1/2-norm.

For g ∈ XM, we define the distribution T (g) as in (1.2) by integrating over Ω
and taking extensions in Ω instead of B3, and the energy of g is still given by the
energy of its harmonic extension, i.e.,

EM(g) =
∫

Ω

|∇ug|2 ,

with ug ∈ H1
g (Ω; R2) satisfying ∆ug = 0 in H−1(Ω).

For two distinct points P and Q on M, we define the dipole problem on M as

mM
(
2π(δP − δQ)

)
= Inf

{
lim inf
n→+∞

EM(g) ; {gn}n∈N ⊂ XM , (4.1)

T (gn) = 2π
(
δP − δQ

)
, gn → (1, 0) a.e.

}
.

Using a suitable diffeomorphism between Ω and B3 and applying the method in
Section 2 with minor modifications, we obtain the following variant of Theorem 1.1.

Theorem 1.1.bis. Let P and Q be two distinct points on M. We have

mM
(
2π(δP − δQ)

)
= 2πdM(P,Q)

where dM denotes the geodesic distance on the manifold M.

To characterize the obstruction to smooth approximation in XM, we proceed as
in the case M = S2. We introduce the relaxed energy EM : XM → R+ defined by

EM(g) = Inf
{

lim inf
n→+∞

EM(gn) ; {gn}n∈N ⊂ XM ∩ C∞(M) , gn → g a.e.
}

,

and we readily obtain from Section 3 and Theorem 1.1.bis the following result.
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Theorem 2.2.bis. For every g ∈ XM, we have

EM(g) = EM(g) + 2πLM(g) ,

where LM(g) is the length of a minimal connection relative to dM, i.e.,

LM(g)=
1
2π

Sup
{
〈T (g), ϕ〉 ; ϕ ∈ Lip(M; R) , ϕ is 1-Lipschitz with respect to dM

}
.

To conclude this section, we present a more classical notion of “dipole problem”
where one minimizes the energy over all maps in XM having exactly two prescribed
singularities (see e.g. [7] in the context of W 1,1-maps with values into S1). More
precisely, given two distinct points P and Q on M, we consider

m̃M
(
2π(δP − δQ)

)
= Inf

{
EM(g) ; g ∈ XM , T (g) = 2π(δP − δQ)

}
. (4.2)

The next result compares the dipole problems mM and m̃M.

Theorem 4.1. Let P and Q be two distinct points on M. We have

2πdΩ(P,Q) ≤ m̃M
(
2π(δP − δQ)

)
≤ 2πdM(P,Q) , (4.3)

where dΩ denotes the geodesic distance in Ω. Moreover, if dΩ(P,Q) = dM(P,Q) and
dΩ(P,Q) is small enough, we can extract from any minimizing sequence {gn}n∈N ⊂
XM, a subsequence {gnk

}k∈N such that gnk
→ α a.e. on M for some constant

α ∈ S1. In particular, the infimum defining m̃M
(
2π(δP − δQ)

)
is not achieved

whenever dΩ(P,Q) = dM(P,Q) and dΩ(P,Q) is small enough.

Observe that Theorem 4.1 gives a sufficient condition for which the two dipole
problems coincide. We believe that in the case dΩ(P,Q) < dM(P,Q), the two prob-
lems completly differ in nature. For instance, it seems that the lower bound in (4.3)
is sharp but we do not have a proof of this fact. Beyond this quantitative problem,
one can ask the much more interesting question:

Open problem. Let P and Q be two distinct points on the manifold M such that
dΩ(P,Q) < dM(P,Q). Is m̃M

(
2π(δP − δQ)

)
achieved ?

We emphasize that the main difficulty of this problem comes from the constraint
T (g) = 2π(δP − δQ) which is obviously noncompact. The reader should certainely
relate this question to recent results by P. Mironescu and A. Pisante [17] concerning
H1/2-maps from the circle into itself.

Proof of Theorem 4.1. The upper bound in (4.3) is a trivial consequence of
Theorem 1.1.bis and the lower bound can be easily deduced from the discussion
below.

Let P and Q be two distinct points on M such that dΩ(P,Q) = dM(P,Q), and
let {gn}n∈N ⊂ XM be a minimizing sequence for m̃M

(
2π(δP − δQ)

)
. Set un to be

the harmonic extension of gn to Ω. Since supn EM(gn) < +∞, by classial results,



14 V. Millot

we can extract a subsequence (not relabeled) such that un ⇀ u weakly in H1(Ω)
with ∆u = 0 in H−1(Ω), gn ⇀ g weakly in H1/2(M) with g = u|M ∈ XM and
gn → g a.e. on M.

Next we consider the function Ψ : Ω → R defined by

Ψ(x) = min
{
dΩ(x, Q) , dΩ(P,Q)

}
.

Obviously, Ψ is 1-Lipschitz in Ω with respect dΩ so that |∇Ψ| ≤ 1 a.e. in Ω. Since
|∇un|2 ≥ |H(un)| a.e. in Ω and ∇Ψ = 0 a.e. in K := {x ∈ Ω ; Ψ(x) = dΩ(P,Q)},
we easily estimate

EM(gn) =
∫

Ω

|∇un|2 ≥
∫

K

|∇un|2 +
∫

Ω\K
|H(un)| ≥

∫
K

|∇un|2 +
∫

Ω

H(un) · ∇Ψ .

Then we observe that
∫
Ω

H(un) · ∇Ψ = 〈T (gn),Ψ|M〉 = 2πdΩ(P,Q) and hence

EM(gn) ≥
∫

K

|∇un|2 + 2πdΩ(P,Q) .

Now we infer from (4.3) and the assumption dΩ(P,Q) = dM(P,Q) that EM(gn) →
2πdΩ(P,Q). Therefore,

∫
K
|∇un|2 → 0. On the other hand, if dΩ(P,Q) is small

enough, we may find a ball B(x0, ε) ⊂ R3 such that x0 ∈ Ω, B(x0, ε) ∩M 6= ∅ and
B(x0, ε) ∩ (Ω \K) = ∅. By lower semicontinuity, one obtains∫

B(x0,ε)∩Ω

|∇u|2 ≤
∫

K

|∇u|2 ≤ lim
n→+∞

∫
K

|∇un|2 = 0 ,

so that u is constant in B(x0, ε)∩Ω. Since u|M = g ∈ XM, we deduce that |u| = 1
in B(x0, ε)∩Ω. Now, by an easy application of the maximum principle, one deduces
that u is constant in Ω and hence u ≡ α for some constant α ∈ S1. In particular,
g ≡ α and the proof is complete. �
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Montreal in July 2006. The author was partially supported by the Center for Non-
linear Analysis (CNA) under the National Science Fundation Grant No. 0405343.

References

[1] F. Bethuel : The approximation in the trace spaces defined between manifolds, Non-
linear Analysis 24 (1995), 121–130.

[2] J. Bourgain, H. Brezis, P. Mironescu : H1/2–maps with values into the circle:
Minimal connections, lifting and Ginzburg-Landau equation, Publ. Math. Inst. Hautes
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