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1. Introduction

In the recent years, several papers were devoted to the study of the fractional Sobolev space H'/?
with values into the unit circle S!, in particular in the framework of the Ginzburg-Landau model (see
[7], 8], [9], [14], [22], [25], [27], [33] and [34]), but also into more general target manifolds (see [23],
[24]). In this paper, we are interested in one of the simplest case of such spaces, namely in

X = {f € L2 (R*:R?); |f| =1 a.e. and Iflij2 < —l—oo}, (1.1)
where | - |1 /2 denotes the standard (Gagliardo) H'/2-seminorm

= ([, [ Wdzdy)l/g (1.2

which makes X modulo constants a complete metric space. In this way, X naturally appears as a
closed subset of the homogeneous Sobolev space H'/?(R?;R?) (see Section 2 for the definitions and
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the basic properties of the homogeneous Sobolev spaces we are interested in). As it is well known, up
to a multiplicative constant,

|f|1/2 = ||VUfHL2(Ri) ) (1.3)

where uy is the (unique, finite energy) harmonic extension of f to the half space R3 := R? x (0, +00).
Alternatively, | f|? j2 = Sz 1€]] f (€)|2d¢, where f denotes the Fourier transform of f. Throughout the
paper, we might identify R? with OR3 = R? x {0} and for z = (z1, 72, x3) € R3, (z1,22,0) = & € R%

On the space X, we will consider a family of seminorms including (1.2) and equivalent to it. These
seminorms arise naturally from Riemannian metrics on Ri. The main goal of this paper is to study
variational problems for energy functionals corresponding to Dirichlet integrals as in (1.3) with respect
to Riemannian metrics with measurable coefficients. The lack of regularity will force us to introduce
suitable length structures in the sense of [26] and corresponding geodesic distances related to Finsler
metrics that will be the proper substitutes for the Euclidean metric. For S'-valued maps, the present
study recovers some recent results proved in [9] and [22,25] in the setting of Cartesian currents. In
contrast with the aforementioned papers, our analysis is performed in the entire space which motivates
the use of homogeneous Sobolev spaces. In the case of the Euclidean metric, most of the present results
could be derived from the ones in [22,25] once adapted to the unbounded domain situation.

In order to describe the variational problems in details, we recall some properties of maps in X
related to the nontrivial topology of the target. These properties are well known in the bounded domain
case (see [9], [34] and see also [25] for a different approach) and their proofs can be found in the next
sections. In particular, the strong density of the subspace of smooth maps X N C°(R?) is known to
fail (see e.g. [14]) and the sequential weak density to hold (see [34]). However strong density holds for
maps with finitely many singualrities (see [34] and Section 2). For any f € X, a characterization of the
topological singularities, i.e., the topologically relevant part of the singular set of f, can be obtained
in terms of a distribution T'(f) as in [9], [27] and [34] (see [22] and [25] for an alternative approach
in terms of currents and [10], [27] and [23] for higher dimensional extensions). Roughly speaking, this
distribution measures how much f fails to preserve closed forms under pull-back.

For f = f(z1,72) € X and ¢ = p(x1,22) € Lip(R?%; R), we consider u = u(z1, x2,73) € Hl(Ri;Rz)
and ® = ® (21, 2, x3) € Lip(R};R) with ugz = f and ®g2 = . Setting

H(u) = 2(82u A O3u, O3u A Oyu, O1u A 82u) ,

the distribution T'(f) is defined through its action on ¢ by
<T(f),p >= H(u) -Vodx. (1.4)
R}
It is not hard to check (see [9] for details) that such a definition makes sense, i.e., it is independent of
the extensions u and ®, and T(f) € (Lip(RQ))/. As shown in [34] (see also [9] and Section 2), T'(f) = 0
if and only if f can be approximated strongly by smooth functions. For maps which are slightly more
regular, namely if f € X N Wli)cl (R?), an integration by parts in (1.4) yields

<TUe>=— [ (FnoNoo— (A 0)0re Ve € CHEAE). (15)

and the same formula holds for f € H'/? whenever ¢ € C2(R?;R), interpreting (1.5) in terms of
H'Y? — H=1/2 duality (see Remark 2.2 in Section 2). In addition, if f is smooth except at a finite
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number of points {a; }5?:1 and u is taken to be smooth in the open half space, then
H(u) - V®dz = u¥dw A d® = d(u¥w A dD),

where w(y1,¥2) = y1dyz2 — y2dy; induces the standard volume form on S' = {y7 + y3 = 1}. In this
way,
k
ufdw Nd® = — | fFuondp = 727‘(2(% w(a;),
R2

3 °
+ Jj=1

<T(f),p>= /

R

where the integer d; = deg(f,a;) is the topological degree of f around a; and 25:1 d; = 0 because
f € HY? (see [11], [17] and Lemma 2.2 in Section 2). The same finite sum representation holds if
T(f) is a finite measure (see [9]), this result being the H'/2—counterpart of the same statement for
Wl —maps proved in [22],[29] and [16].

As a consequence of the strong H'/2—continuity of T(f), we easily see that, no matter which
seminorm (-) equivalent to the standard one is used, given fy € X such that Ty := T'(fo) # 0, we have

m<.>(T0) = Inf{(f)Q; fex, T(f) =Ty } >0. (1.6)

A slightly different quantity will play the decisive role in the sequel. It can be introduced as follows:
oy (1) o= Dot T uf ()% (fubnes © X T() =T, (1.7)
fn = a weakly in H'/? for some constant « € Sl} .

It is a nontrivial fact that m.y(Tp) is well defined. This issue will be discussed in Sections 2 and 7 (see
also [9]). In any case, we obviously have m.y(Tp) > my(To) since the sequences converging weakly
to a constant are the only ones allowed in the definition of m.y(7p).

In the particular case Ty = 27(dp — o) with P,Q € R?, it is tempting to show that the numbers
p(P,Q) := me.y (27‘1’(513 - 5Q)) and p(P,Q) = myy (27T((5p — 5@)) , (1.8)

as functions of P and @ are distances on the plane. At least for suitable seminorms, this will be the
case, these functions giving heuristically the minimal H'/2—energy necessary to move the singularity
P up to the singularity Q.

In this paper, we discuss two natural questions concerning (1.8), namely

(Q1) Can we compute (1.8) in terms of (-) ?

(92) What is the behavior of a minimizing sequence in (1.8) ?
Both the questions are very delicate in nature and intimately related to the specific choice of the
seminorm. Since smooth maps are dense in the weak topology and T(f) = 0 for any such map,
it is obvious that the constraint T'(f) = Tp is not sequentially weakly closed. Hence each of the
minimization problems above is highly nontrivial.

In analogy with the minimization problem studied in [33], we confine ourselves to a class of semi-
norms which come from second order linear elliptic operators in the half space. As we shall see, no
matter which regularity we assume on the coefficients of the operators, concentration phenomena oc-
cur near the boundary of the half space. These phenomena can be regarded as the boundary analogues
of the concentration phenomena in the Ginzburg-Landau theories and they will be explained in terms
of concentration and quantization effects for Jacobians.
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The class of seminorms we are interested in is defined as follows. Let ST be the set of all positive
definite symmetric 3 x 3 matrices and consider A : Ri — ST satisfying the ellipticity assumption

MEP < A(z)€- € < A[E)?, for ae. z € RY,VE € R, (1.9)

for some constants A = A(4) > 0 and A = A(A) > 0 independent of . We denote by A the set of all
measurable matrix fields satisfying (1.9). Thus, A C L>(R3;S8T). We shall also consider A C A the
subset of those A € A of product-type, i.e. such that

B0
A= <0 b> , (1.10)

for some 2 x 2 matrix field B and scalar function b such that B(x) = B(x1,z2) and b(z) = b(x1, z2).
Given A € A, we introduce a functional on H*'(R?;R?) as follows

Eu(u) = %/R?' tr(Vu A(Vu)')dz . (1.11)

We define an energy €4 and a seminorm (-) 4 on H'/2(R?;R?) by setting
Eath) = (13 =t { Ealu): we HHELRY) | vf e Y205 R). (1.12)

where H}c = {u e H' ; URz = f} Due to the uniform ellipticity assumption (1.9), this seminorm is
equivalent to (1.2). Moreover, as we recall in Section 2, the infimum in (1.12) is precisely attained by
the (unique) map u = uy € H}(R‘i; R?) satisfying

div(AVu) =0 in H'. (1.13)

In the sequel, we will refer to uy as the A-harmonic extension of f.

Assuming the choice (-) = (-) 4 in (1.6) (respectively (1.7)) for the rest of the paper, we will denote
by ma(Ty) (respectively m4(Tp)) the corresponding quantities and similarly pa(P, Q) (respectively
p4(P,Q)) the functions as defined in (1.8).

To a given a matrix field A € A which is continuous, one may associate natural geometric distances
on the half space and its boundary (see Section 3). We will introduce the integrand La(x,7) =

(Cof A(z))7 - 7 in order to define the length functional L4 : Lip([0, 1];R3 ) — R, by setting

La(y) = / La(v(D),5(8))dt (1.14)

In the case of a measurable field A, the previous formula is meaningless since A has no trace on
sets of null Lebesgue measure. However, it is possible to construct a generalized length functional on
Lip([0, 1]; @) associated to A, still denoted by L 4, such that (1.14) holds whenever A is continuous.
This issue has been partially pursued in [31], [32] and will be presented in Section 3. To the functional
L4, we associate the geodesic distance d4 : R3 x ﬁ — R, defined for P,Q € @ by

dA(P,Q) = Inf{mm v € Lip([0, 15 B2 ) , 4(0) = P, 4(1) = Q } .

In the same way, L4 induces a distance d4 on R? by taking the previous infimum over curves lying
on (“)Ri ~ R?, ie., for P,Q € R?,

dA(P.Q) = Inf{LA<v> € Lip((0,1;0R%), 4(0) = P, A(1) = Q } .
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Both these distances are equivalent to the Euclidean ones and reduce to the respective Riemannian
distances whenever A is continuous. In addition, formula (1.14) still holds for a suitable Finsler metric
LY (see Proposition 3.3).

The first result of this paper compares the functions pa, pa, da and dy4.

Theorem 1.1. Let A€ A, pa, pa, da and da as defined above.
(i) The function pa is a distance on R%. Moreover,
AP — Q| < pa(P,Q) < AP — Q| VP,Q cR?,

where A = A(A) and A = A(A) are the ellipticity bounds of A.
(i) We have

ﬂ-dA(PaQ) < pA(P7Q) and 7"-JA(]DaCQ) < ﬁA(PvQ) VP,Q € R?.

(iii) If A € Ag, then pay = pa = mds = wd . In particular, pa is a distance.
(iv) If 7da(P, Q) = pa(P,Q) for some distinct points P,Q € R?, then, up to subsequences, any

minimizing sequence {fntnen for pa(P,Q) tends weakly to some constant o € S'. As a
consequence, 7da(P,Q) = pa(P,Q) = pa(P,Q) = mda(P,Q) and pa(P,Q) is not attained.

Except for the upper bound in (3), both (i) and (i) come from a duality argument involving the
characterization of 1—Lipschitz functions with respect to the distance d4 as subsolutions of suitable
Hamilton-Jacobi type equations with measurable matrices in the spirit of [18]. This argument was
originally introduced in [13] for the Dirichlet integral in the context of S?>~valued maps from domains
in R3. Here we follow the same strategy of [31,32], where, still in the S?—valued case, this approach
was extended to the conformally flat case A(x) = w(x)Id. Essentially the same characterization, com-
bined with a differentiation argument yields the equality p4 = 7d in (4i). Another basic ingredient
providing the upper bound in (%), is the construction of an explicit optimal dipole {f,}nen with re-
spect to a constant matrix. As in [33], the crucial role is played by Mobius transformations. Under
the structure assumption (1.10), da and d coincide as distances on the plane (see Corollary 3.2) and
this fact leads to the full equality in (7). About claim (iv), we will show that the energy has to stay
in a bounded set, therefore concentration follows from the strong maximum principle.

Remark 1.1. We point out that the first inequality in Theorem 1.1, claim (%), may be strict. More
precisely, we may construct a matrix field A € A of the form A(x) = a(z3)Id with a € C°([0, +00))
such that 7da(P,Q) < pa(P,Q) < pa(P,Q) = nda(P, Q) whenever P # Q (see Example 4.1).

In the case of a general matrix field A depending also on the x3-variable, we would need, and this is
indeed the missing ingredient, a useful boundary version of the eikonal equation on 8R§_ to characterize
functions which are 1-Lipschitz with respect to d 4. Though not yet completely satisfactory, the use of
measurable eikonal equations seems of interest for this problem. Indeed, due to the lack of regularity
of the matrix A, both the usual coarea type argument for the lower bounds (see e.g.[1]) and the direct
construction of optimal dipoles for the equality p, = md4 seem to be impossible.

In the case of a continuous matrix field A, the situation simplifies a lot and much more can be
said. In particular, the asymptotic behavior of optimal sequences for p4 can be described. We have
the following.
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Theorem 1.2. With the notation of Theorem 1.1, assume that A € A is continuous in @ and
A€ Ay where A = A(x1,22) = A(x1,72,0). Let P,Q € R? be two distinct points, {fn nen C X an
optimal sequence for pa(P,Q) and {u, }nen C Hl(Ri; R?) the corresponding A—harmonic extensions.

(i) We have ps(P,Q) = mda(P,Q).
(i) Up to subsequences, thefe exists an injective curve v € Lip([0,1]; ORY) satisfying v(0) = Q,
~¥(1) = P and La(y) = da(P, Q) such that

1 *
3 tr(Vau, A(Vu,))de > 7La(z, 7)H' LT asn — +oo, (1.15)

weakly-* in the sense of measures, where I' = ~([0,1]) and 7, denotes a unit tangent vector
to I' at the point x.
(iii) Up to subsequences, the graph current G,, associated to f, satisfies
<Gmﬁ>-:><cm5>+<fxsmﬁ> V3 € D*(R? x SY), (1.16)
n—-1+0oo
where T is the 1-rectifiable current relative to the oriented curve .
(iv) The energy is carried by the vorticity sets, i.e., for any 0 < R < 1, we have

1 _
f/ tr(Vu, A(Vu,)')de — wR*ds(P,Q). (1.17)
2 J{jun|<Rr) oo

In the light of Theorem 1.1, claim (i) is not surprising and actually holds even if A does not
satisfy the structure assumption (1.10). The upper bound could be obtained from a direct dipole
construction but we prefer to deduce it from claim (%) of the previous theorem. Claim (i) describes
lack of compactness of optimal sequences and the structure of the limiting defect measure. The analysis
of this quantization phenomena is based on a study of pre-Jacobians of HY 2_maps and their limits.
Claim (744) interprets the topological counterpart of the energy concentration in terms of bubbling-off
of a vertical current in the framework of Cartesian currents (see [21]) as already pursued in the H'/2-
setting in [22,25] and [33] in the S'-valued case and [23,24] for more general target manifolds. Our
approach to graph currents is quite direct and does not rely heavily on Geometric Measure Theory.
Instead, it essentially relies on a representation formula for the pre-Jacobian current J(f) in terms of
a suitable lifting of the map f. Our lifting construction is based on a deep result in [9] (see Section 6
for details). Finally, claim (iv) asserts that the energy is carried by the vorticity sets of the extensions,
much in the spirit of the Ginzburg-Landau theories. This statement is the higher dimensional analogue
of [33], Remark 7, formula (3.54), and it is proved using the oriented coarea formula of [1].

The previous results are very useful in order to deal with approximation and relaxation type
problems. We recall that smooth maps are dense in X only for the H'Y/2 weak topology (see Section 2
and [34]). Then, a natural question is to know, for a given f € X, how far from f remains a smooth
approximating sequence. Given the energy functional £4 on X, we study the smooth approrimation
defect via the relaxed functional £ 4 : X — R defined by

gA(f) = Inf{ lim+inf EA(fn), {fn}neN cXn COO(R2) ’ fn IR f weakly in HI/Q} .

Obviously €4 > €4 and the determination of the gap between £ 4(f) and £4(f) for a given f € X,
gives an answer to the previous question. We point out that in the definition of £ 4 (as well as for m4),
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we could take the convergence a.e. instead of the weak convergence. Actually, in view of Theorem 2.5,
this alternative choice gives the same quantity.

In the context of S>~valued maps from three dimensional domains, it has been proved in [6] and
[32], that the gap occurring in the approximation process is proportional to the length of a minimal
connection between the topological singularities of positive and negative degree. In our setting, the

length of a minimal connection relative to the distance d 4, corresponds to the functional L4 : X — R,
defined by

La(h) = = Sww{ <T(9).p > o € Lin(®2R). (1.18)

0(P) — p(Q)] < da(P.Q) YP,Q € R? } .

For f € X, La(f) can be viewed as the dual norm of T(f) € (Lip(RQ;R))/ with R? endowed with
the metric d4, and in the particular case T(f) = 27(6p — 0q), La(f) is equal to da(P, Q). Here we
can not assert that L4(f) is the right quantity to consider for computing £a(f) — £4(f). In view
of Theorem 1.1 (and as suggested in [16] for W' !—energies), a natural candidate is the length of a
minimal connection relative to the distance pg4, i.e., the functional Ly:X — R, defined by

1

La(f) 5

Sup{ <T(f),¢ > ;¢ € Lip(R* R), (1.19)
o(P) = Q) < 7 palP.Q) ¥P.QER? ).

For a general measurable matrix field A € A, we have the following result.
Theorem 1.3. Let A€ A and da, pa, ma, Ea, Ea, La, L4 as above. Then for every f € X,
Ealf) +7LA(f) S Ea(f) < Ealf) +7Lalf), (1.20)

wLa(f) <ma(T(f)) <wLa(f). (1.21)

If in addition pa = wda (e.g. if A € CO(@) or A € Ay) then equality holds in (1.20) and (1.21).
Conversely, if

Ea(f) = Ealf) +mLa(f) (1.22)
or ma(T(f)) = wLa(f) for every f € X, then py = wdA.

For the upper bounds, the heart of the matter is a combination of the density of maps with finitely
many singularities with Theorem 1.1 through a dipole removing technique. The lower bounds are
obtained again by duality arguments. As already mentioned, when A = Id formula (1.22) could be
proved using the theory of Cartesian currents, adapted to the case of the entire space, combining the
lower semicontinuity of the energy functional and the approximation in energy (see [25], Prop.2.11
and Thm. 6.1). As for Theorem 1.1, it would be very interesting to know if the representation formula
(1.22) fails for a certain class of matrix fields A € A, e.g., highly oscillating in the xs-variable.

We point out that it seems difficult to have a representation formula for € 4(f) which is local,
i.e., with the term L(f) written as an integral with respect to some measure. Indeed, in the case
T(f) = 2rn(0p — ), Theorem 1.2 suggests to write L4(f) as an integral with respect to H! on
a da-geodesic running from P to Q. However there would be no canonical choice for such geodesic
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whenever P and @) are conjugate points. Moreover, for measurable matrix fields, we may even believe
that different recovery sequences could concentrate energy on different geodesics.

The plan of the paper is as follows. In Section 2, we recall and prove basic properties of homogeneous
Sobolev spaces, S'-valued maps and A-harmonic extensions. In Section 3, we introduce the notions
of length structures and geodesic distances related to a measurable field of matrices and we prove a
characterization of the corresponding 1-Lipschitz functions in terms of Hamilton-Jacobi equations. In
Section 4, we combine the previous notions with duality arguments and dipole-type constructions to
prove Theorem 1.1. In Section 5, we develop a theory for pre-Jacobians and graph currents associated to
H'/2_maps. In Section 6, we describe the quantization properties of Jacobians of harmonic extensions
and we prove Theorem 1.2. In Section 7, we apply the previous techniques to the relaxation problem
and we prove Theorem 1.3. We collect in a separate appendix the proof of the density of maps in X
with finitely many singularities.

2. Function spaces and A—harmonic extensions

In this section, we collect the definitions and the basic properties of the homogeneous function spaces
we use throughout the paper and the related results concerning A-harmonic extensions. Many proofs
will be omitted since they are similar to the ones for bounded domains. The main reference is [20],
Chap. II.

2.1 Homogeneous Sobolev spaces.

The main function spaces we are interested in are the homogeneous Sobolev spaces H1/2 (R%;R?) and
H! (R3;R?). In Section 5, we will also consider the homogeneous BV -space BV (R?;R). We start with
H'/2(R?;R?) which is defined by

HY2(R?%R?) = {f € L} (R%R?) 5 | f]1/2 < +00 }

where | - |1/2, given by (1.2), is just a seminorm since it vanishes on constant functions. Clearly
C°(R%*R?) ¢ HY?(R?*R?) and the same holds for the Schwartz class S(R?; RQ) In addition, as
already recalled in the introduction, a direct computation yields |f|2 /= = Jeo Kl F(€)]2de, where f
denotes the Fourier transform of f € S(R?;R?). The following proposition clarifies the behavior of
H'/2_functions at infinity.

Proposition 2.1. For every f € /2 (R%;R?), there exists a uniquely determined f> € R? such that
][ (f — f®)dié = O(R™?) as R — +o0. (2.1)
Br

Moreover, there exists a constant C' > 0 independent of f such that

o0 |2
I = ¥l < Clflye and / = /= f C i <cifp s (2.2)

In view of Proposition 2.1, we have the following result.

Theorem 2.1. The space H'/?(R?;R?) endowed with the scalar product

<f; >1/2 _foo g _|_/R2 /RQ ))(g(A)_g(g)) didz} (2.3)

1z -9
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is an Hilbert space. Moreover, setting || - |12 to be the induced norm, we have :
(i) the subspace C° . (R%;R?) := C§°(R%;R?) @ R? of smooth functions constant outside a compact
set is dense. In addition, f* =0 if and only if f € m?hm}
(ii) H'?(R?;R?) < L _(R?;R?) and the embedding is compact.

We postpone the proofs to the end of this subsection when we will derive them as a consequence
of other results below.

Remark 2.1. We observe that the operator f € HY/2 — f is linear and continuous. In particular,
if f,, — f weakly in H'/2 then fo — f>* asn — +oo.

Remark 2.2. Let us consider the subspace
7R R?) = O (RERE) 2 = {f € 'R R, [fly2 < +oo }

endowed with the scalar product (2.3) and let H~1/2(R2;R?) be its dual space (as an Hilbert space).
If f € H)/? (actually if f € H/2) then 0,f € H~/2 for j = 1,2. Indeed, for f,g € C3°(R%;R?), an
easy application of the Fourier transform leads to the inequality

’/‘@ng
R2

Hence, arguing by density, for f € HS/ 2 (actually, for f € HY %) the distribution 9; f extends to an
element in H~'/2 (actually in (H'/2)"). As a consequence, given f,g € H'/? and {f,}nen, {gn tnen C
02 (R%R?) such that f, — f and g, — g in HY/?, we may set
/ 0;f Ng:= lim Oifn A\ gn -
R2

n—-+oo R2

< |flij2lgliyz -

This number is well defined (i.e. independent of the sequences) and

[ostna==[ rnow | [ 10| <ifislslye. (2.4)

Now we recall that the homogeneous Sobolev space H! (Ri; R?) is defined as

loc

HIRSRD = {“ € I3, (R4 R?); Vu e (IX(RLRY) }

where ”quL?(Ri) = (Eld(u))l/2 =: |ul; is the natural seminorm associated to the Dirichlet energy
which vanishes precisely on constant functions. The following proposition parallels Proposition 2.1
and clarifies the behavior of H!-functions at infinity.

Proposition 2.2. For every u € Hl(Ri’_; R?), we have u € L2 (@, Rz) and there exists a uniquely
determined u™ € R? such that

]/ (u—u®)de = O(R"/2) as R — +oc. (2.5)
B}:gﬁ]RBJr

Moreover, there exists a constant C' > 0 independent of u such that for any xo € R3,

|u— u>[?

—u®|?, < 2 = = Ldr< 2dx . 2.
- w2 (Ri)_c/ﬂﬁw de and /RS+ r— dx_C/Ri|Vu| de (2.6)
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Proof. According to [20] Chapt. I, Remark 4.1, we have u € L2 _ (@, RQ). Setting @ to be the even
reflection of u across the plane {z3 = 0}, we have & € H'(R3;R?) and Va2 gs) = 2||Vu|\%2(Ri).

By Lemma 5.2 and Theorem 5.1 in [20], Chapt. II, there exists

u>® = lim i dzx
R—+o0 8Br

and for any zg € R3,

~ 0|2 @ —u>]? ~12
la —u| + 5 dr <C [ |Va|'dr.
L6 (RS\Bl (zg)) R3\ By (o) |£U — l'0| R3
Therefore,
u™® = lim tdr = lim tdr = lim udx, (2.7)
R—+o00 OBR R— 400 Br R—+oc0 BRﬁRi

and v — u™ € LS(R% \ Bi(z)). Then (2.5) follows from Hélder inequality. To complete the proof
of (2.6), we consider a cut-off function x € C§°(Bz2(xp)), 0 < x < 1, with x = 1 in By(zg). Clearly
(@ — u>®)x? € H}(Ba(xp); R?). Combining the standard Hardy and Sobolev inequalities in By (zq)
with (2.7), the conclusion easily follows. Finally, the uniqueness of u® is an obvious consequence of
(2.6). ]

As a consequence of Proposition 2.2, we have the following classical theorem.

Theorem 2.2. The space Hl(le_;Rz) endowed with the scalar product

(u,v)q == u> - v™ —|—/]R tr(Vu(Vv)') do

3
+
is an Hilbert space. Moreover, setting || - ||1 to be the induced norm, we have :

(i) The subspace C2S, (@, ]RQ) = Cy° (@, RQ) P R? of smooth functions constant outside a compact

const
[l2

set is dense. In addition, > = 0 if and only if u € Cgo(@; R2) |
(ii) H'(R3;R?) — L?

loc

(R3;R?) and the embedding is compact.

Proof. The proof of the Hilbert space structure and (ii) are easy consequences of Proposition 2.2
together with standard arguments. Claim (%) is given in [20], Chapt. II, Theorem 6.6. |

Remark 2.3. The proof of Thm. 6.6 in [20], Chapt. II, is based on standard convolution and suitable
truncation arguments. From this proof, it follows that, for any u € H 1(Ri; R?) N L™, there exists a
sequence {Un }nen C Cq (]RT?H R?) such that u, — u in H' and ||ty ||os < ||u]lo for each n. In view
of Theorem 2.3 below, the analogous property holds for f € H'/2(R%;R?) N L™ since such a map f
admits a bounded extension of finite energy.

The homogeneous Sobolev spaces introduced above are naturally related through the notions
of traces and extensions. Recall that for any ® € Co5.(R3;R?) the function ¢(2) = ®(£,0) €

const

C3st (R% R?) is the trace of ® on the plane R?, ie., ¢ = ®g2. In Theorem 2.3 below, we introduce

const
the trace operator Tr acting on H' but we might use in the next sections the notation ug2 for u € H!

instead of Tru .
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Theorem 2.3. There exits a unique bounded lmearﬁace operator Tr from Hl(Ri; R?) onto
HY2(R%R?) such that Tr & = dpge for any & € C2, (RY;R?). Morcover,
(i) (Tr u)>® = u™ for every u € H'(R%;R?), "
.. . . oo /T3 oy [T
(ii) the kernel of the trace operator Tr is given by N(Tr) = C§°(R3;R2?) ",
1i1) there exists a bounded linear operator Ext : HY2(R2:R?) — HY(R3;R?) such that Tr(Ext m=r
+
for every f € HY?(R%,R?). In particular, the trace operator Tr is surjective.

Remark 2.4. From the continuity and linearity of the operator Tr, we infer that, if u, — u weakly
in H', then Tru, — Tru weakly in H'Y? as n — +o0.

Proof of Proposition 2.1. We start with three auxiliary facts. Let ¢ € C5°(R?*;R?) and define
g = FY|¢)V2F(p)), where F and F~' are respectively the Fourier and inverse Fourier transforms.
Clearly g € L*(R?*; R?) with 19/lz2®2) = |¢l1/2 and ¢ = FHlel72F(g)) = Clz|*/* % g. By Hardy-
Littlewood-Sobolev fractional integration theorem (see e.g. [37]),

lpllLa@zy < Cll 12|~ % gllLa@2) < CllgllL2@2y = Clely2, (2.8)
for some constant C' > 0 independent of ¢. The second fact we need is the following version of the
Hardy inequality (see [30], Theorem 2). For ¢ € C$°(R?;R?), we have

|<p|2dA<C| 2 (2.9)
Rz |2 v =T .

for some constant C' > 0 independent of ¢. Finally, given & € C§° (@, R?), the function (%) =
®(7,0) € C5°(R?; R?) satisfies

|l /2 < C/Ra [Vo|*dz, (2.10)
+

for some constant C' > 0 independent of ®. Now let f € H'/?(R?; R?) and consider o € C3°(R%;R)
such that ¢ > 0 and [;, 0 = 1. We define

u(Z, xs3) = . f(&+x32)0(2)dz. (2.11)

Standard calculations (see [30], proof of Theorem 2) lead to u € C*(R3;R?) with Vu € L?(R3) and
clearly u(-,z3) — f(-) a.e. in R? as x3 — 0. Since u € H'(R3;R?), we infer from Theorem 2.2 that
there exist u™® € R? and {®,, }ren C C5°(R3;R?) such that v — u> € LS(R3;R?) and V®,, — Vu in
L*(R%). Combining (2.9), (2.8) and (2.10) we obtain
D, (2, 23)% .
B b ol < IR,
for some constant C' > 0 independent of z3 and f. Up to subsequences, we have ®, (-, z3) — u(-,23) —

o0

u® as n — oo for every x3 > 0 by the standard trace theory. Then Fatou lemma yields

5, 00 |2
[ I 2 ) — 0 ey < U
R2 2|
for every x3 > 0. Applying again Fatou lemma as z3 — 0, we conclude that f — f € L*(R?) and
|2|7Y2(f — f°°) € L*(R?) for f> = u>°. This complete the proof of (2.2) and then (2.1) follows from
Hélder inequality. Finally, the uniqueness of f°° is an obvious consequence of (2.2). |
Proof of Theorem 2.1. The proof of the Hilbert space structure is a standard consequence of
Proposition 2.1. In addition, one also has the continuity of the restriction operator f — f, from
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H'Y2(R?;R?) into HY/2(€; R?) for any smooth bounded domain @ C R2. Then claim (i) follows from
the well-known compact embedding H/?(Q) < L?(Q). In order to prove claim (i), we go back to the
proof of Proposition 2.1. For € > 0, we set f. = u(-,&) and by the arguments in the previous proof,
we have f. — f> € C§°(R?;R?) HAHl/z. A simple computation yields |f:|/2 < |f]1/2. Since we already
proved that (f.)*° = f*° and f. — f a.e. as ¢ — 0, we infer from claim (i) that f. — f weakly in
H'/2. Then , by Fatou lemma, we have |f|; /2 < 11?1_}51f|f5|1/2 < |fl1/2 so that f. — f strongly in

H'/2. Therefore f — f~ € C5°(R2;R?) /2 and the proof is complete. [ |

Proof of Theorem 2.3. By Theorem 2.2 we can argue by density and the continuity of the trace
operator follows from (2.10). Claim (ii) is a direct consequence of Theorem 6.5 in [20], Chapt. II. To
prove claim (74i), we argue exactly as in the proof of Proposition 2.1. We easily see that f(Z) — w(&, x3)
given by (2.11), is a continuous linear mapping from H'/2 to H'. In addition, it is a left inverse for

the trace operator, as one may check on the dense subspace CZ, . (R?; R?). n

An easy consequence of the definitions of the spaces H'/2 and H' and their properties recalled
above is that both H'/2 N L>® and H' N L™ are algebras and the trace operator well behave under
pointwise multiplication. The proof of these facts are elementary and it will be omitted.

Proposition 2.3. Let Y = H'/?(R%R?*)NL>® and Z = Hl(Ri; R%)NL>® endowed with the respective
norms || flly = | fllij2 + | flloc and |lullz = ||ull1 + |ullsc. Then Y and Z are Banach algebras for the
complex product of functions where R%2 ~ C, and for every f,g € Y, resp. u,v € Z, we have

I£glly < [f= Mg+ Fly2llgllee + 19120 fllee + [ fllecllglloo < [1F I [lglly

[uv]lz < [u[[v] + [[Vull2l|vlleo + [[Voll2llullo + [[uflcolvlloc < [lullzllv]lz -
Moreover, for any u,v € Z, we have Tr(uv) € Y and Tr(uv) = Tr(u)Tr(v).

The last fact we need about the space H' is the lattice property for scalar valued functions. Since
the proof is exactly as in the case of bounded domains, it will be omitted.

Proposition 2.4. Letu € Hl(Ri;R) and denote by ut and u™ the positive and negative parts of u.
Then,

(i) ut,u~ € Hl(Ri;R) and Vut = x(u>01Vu, Vu~ = —x{u<o}Vu a.e. in RY,

(1) the map v — (ut,u™) is continuous,

(iii) Tr ut =0 (resp. Tru™ =0) iff Tru <0 (resp. Tru >0) a.e. in R2.
We conclude this subsection with the homogeneous BV -space BV (R?;R) defined by
BV (R2R) = {4 € LL(B2R): Dy = (Duv. Dav) € MEHE) |

where M(R?;R?) denotes the set of all R%-valued finite Radon measures in R?. We shall use the
notation [1| gy := |Dy|(R?). By classical results (see e.g. [3]), we also have

|¥|y = Sup { /RQ Ydivodr : ¢ € CHR*R?), (|l L (re) < 1} .

It is well know (see e.g. [3]) that ¢ — |1)|pv is sequentially lower semicontinuous with respect to the
Ll

loc

the behavior of BV—functions at infinity.

(R?)-topology. The following proposition parallels Proposition 2.1, Proposition 2.2 and clarifies
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Proposition 2.5. For every ¢ € B.V(RQ;R), there exists a uniquely determined 9> € R such that
][ (Y —¢>)di = O(R™") as R — +oo. (2.12)
Br

Moreover, there exists a constant C' > 0 independent of 1 such that

[ — ™| L2me) < ClYlBY - (2.13)

Proof. Consider a smooth mollifier o € C§°(R%;R), ie., o > 0, Jgz0 = 1, and set for ¢ > 0,
0:(2) = 720(z/¢). Then, for ¢ € BV (R2;R), we define 1. = . * 1 so that 1. € C°(R?) N LL (R?)

loc

and Vi), = . * Dy € L*(R?). Then the conclusion of Proposition 2.5 holds for ¢. by Lemma
5.2 and Theorem 5.1 in [20], Chapt. II, together with arguments similar to those used in the proof of

Proposition 2.2. It is well known (see e.g. [3]) that ¢. — 1 a.e., in L{ (R?) and |[¢.|gy = | D |(R?) —

loc

|DY|(R?) = 1| gy as € — 0. Setting 1. = 3, (0) Y=+ We observe that

ngo| < ‘ ][ ("/)6 - Z/J?o)‘ + |7/;s| < C”ws - ¢§OHL2(R2) + W_)s‘ < C|¢E|BV + |¢_’s|
B41(0)

so that ¥2° remains bounded. Hence, for a subsequence €, — 0, 9> = lim Z° exists. In particular,
n—-+4oo g

Ve, — Y — p — P> a.e. as n — +00 and we infer from Fatou lemma that

9 — ™ L2re) < lim inf e, — ¥ 2 me) < ¢ lim Ve, BV = Cl|Bv -
Then (2.12) easily follows from Holder inequality. [

As a consequence of Proposition 2.5, we have the following classical result.
Theorem 2.4. The space BV (R?;R) endowed with the norm

[¥llBv =[]+ [¥]v
18 a Banach space. Moreover, we have :

(i) For every 1 € B'V(RQ;R), there exists a sequence {1, tnen C Co(R%;R) such that 1, — 1 in
LIIOC(RQ); ¢$L° - ,(/}oo and |wn|BV - |’lp|BV as n — 400.

(ii) BV(R*R) — L}

loc

(R%;R) and the embedding is compact.

Proof. The proof of the Banach space structure and (ii) are easy consequences of Proposition 2.5
together with standard arguments. Given ¢ € BV and v, as in the previous proof, claim (i) for .
classically follows by multiplying ¥. — ¥2° by a suitable sequence of cut-off functions (see [20]). Then
we derive (i) for ¢ using a standard diagonal argument. [ |

2.2. HY2 -maps with values into S*.

According to the definition of X (see (1.1)) and the properties of H/2(R?;R?) recalled in the previous
subsection, we easily derive the following structure result.

Theorem 2.5. We have

X = {feHl/Q(RQ;RQ) Cfl=1 a.e.}
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and it defines a complete metric space under the distance induced by H/? (R%;R?). In addition, f> €
St for every f € X. Moreover, for any bounded sequence {f,}nen C X, there exist a subsequence
{fn.} and a map f € X such that f,, — f weakly in H'/2, f,. — f a.e. and in L2 (R?).

loc

Remark 2.5. In the next sections, we shall need a diagonalization procedure for sequences in X with
multi-indices. The generic situation we will have to deal with can be described as follows. Consider
a sequence { fr m}(n,myen> C X such that f, , — f, € X a.e. asm — +oo and f, — f € X ae.
as n — +oo with limsup,, limsup,, E4(fn,m) < +00. We claim that we can find a diagonal sequence
fe = fnn.m, such that limsup, Ea(fr) < limsup,, limsup,, Ea(fnm), fu — f weakly in H'? and
fx — f ae. as k — +oo. Indeed, we have | f, m(x) — f(2)|(1 +|z]?)"2 < 2(1 + |z|*) 72 for a.e. x € R?
and 2(1 + |x|?)~2 € L*(R?). Hence, by dominated convergence,
lim  lim / (@) = F(2)] (1 + 2]2)%dz = 0.
R2

n—-+oo m——+oo
Consequently, we may find a diagonal sequence fr = fn, m, such that
lim [fr(@) = f(@)](1 + [2|*)"2dz = 0
k—-+oco R2
and limsupy, €4 (fx) < limsup,, limsup,, £a(fn,m). Then, extracting a subsequence if necessary, we

have also f — f a.e. and fr — f as k — 4o0.

As already recalled in the Introduction, density of smooth maps in X is a delicate issue. In general
the best one can hope is the density of maps smooth except at finitely many points. The following
result shows that this is indeed the case. It is the analogue in the entire space of the one in [9], [34]
and [25]. The proof will be given in the Appendix.

Theorem 2.6. For any f € X, there exists a sequence {fn}neny C X N I/Vlt’l(Rz) such that for every

C
n € N, f,, is smooth outside a finite set, f, is constant outside a compact set, f° = >, fn — f a.e

in R? and |f, — fli/2 — 0 as n — +oo.

For a generic map f € X, the approximability by smooth maps depends on the topological singular
set as described rigorously in terms of the distribution T'(f) defined by (1.4). The equivalent repre-
sentation formula (1.5) is given in the following lemma. The proof is a straightforward consequence
of the distributional curl structure of H(u), namely,

H(u) = curl (u A Vu) in D'(R3;R?), (2.14)
combined with an integration by parts which can be justified by smooth approximation.

Lemma 2.1. If f € X N Wll’l(]RQ) then for any compactly supported function p € C3(R?%;R),

ocC

ST > == [ (7 n00p = (£ 1 0uH)010).

For a map f with finitely many topological singularities, T'(f) takes a particularly simple form.

Lemma 2.2. If fe XN Wll’l(RQ) is smooth except at finitely many points a1, ..., ay then

ocC

k
T(f)=—27» dida, (2.15)
=1
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where the integers d; = deg(f,a;) satisfy Zle d; = 0.

Proof. Formula (2.15) is classical and can obtained from the previous lemma exactly as in [9]. Then,
without loss of generality, we may assume that Zle d; > 0. Then consider for R > 1, ® : R3 - R
such that ® = —1 in B, ® = 0 in R? \ Byg and |[V®|| 1 (rs) < 1. Let u be a finite energy extension
of f to the half space. Taking R large enough so that aq,...,ar € Br, we estimate

k
2y d; =< T(f), Dl >=/ H(u)-V(IJS/ |Vul>? — 0
P (B2r\Br)NRY (B2r\Br)NRE. R—oo

because u has finite energy. Hence Zle d; = 0. |

The space X naturally appears as a group under the pointwise product of functions. Moreover,
an elementary dominated convergence argument shows that this product is jointly continuous under
strong convergence. The following proposition relates the operator T" and the group law on X. The
proof is obtained by a density argument as in [9] Lemma 9 and Remark 2.3, and relies in our case on
Theorem 2.6 and Lemma 2.2.

Proposition 2.6. Let fi,fo € X. We have fifs € X with (fif2)>* = fi°f5° and |fif2li <

|f1l1/2 + [ f2l1/2. Moreover, the product is jointly continuous with respect to fi and fo. In addition

T(fi) =-T(f1) and T(f1f2) =T(f1)+T(f2)
where f1 is the pointwise complex conjugate of fi.

For a given f € X, it is possible to characterize the approximability by smooth maps both in the
strong and in the weak H'/2—convergence in terms of the distribution T(f) according to the following
result (see also [9], [34] and [25]).

Theorem 2.7. Let f € X. Then T(f) =0 if and only if f € C, . (R2;S) hre gs consequence,
for any f € X, there exists {fn}nen C C2 . (R%;SY) such that f, — f weakly in H'? and f, — f
a.e. as n — +00.

Proof. Clearly if f € Cé’gnst(RQ;Sl)”'Hl/2 then T'(f) = 0 by continuity of 7' under the strong H'/?~
convergence. The converse statement holds by Proposition 7.3. Weak density of smooth maps is given
by Theorem 7.2 and the approximating sequences can be assumed to be constants outside compact
sets again by Proposition 7.3. |

The density results stated above, combined with the properties of the operator T allows to give
a structure theorem and, at the same time, an existence result of for sequences of maps with pre-
scribed singularities converging weakly to a constant. The representation formulat(2.16) is essentially
contained in [9], Theorem 1 and Lemma 16, for H 1/2_maps from a compact surface of spherical type
into S and it is somehow implicit in the proof of Theorem 5.1 (see Section 5), since there the current
t is an integration over a countable union of oriented segments. Since we will not use this result in the
paper, the proof will be omitted.

Theorem 2.8. For each f € X, there exists two sequences { P;}jen, {N;}jen C R? such that > 1P —
Nj| < 400 and

<T(f),p>=21Y_ (p(P;) —¢(N;)) Ve € Lip(R*R). (2.16)
JjEN
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Conversely, for any sequences {P;}jen, {N;j}jen C R? such that Zj |P; — Nj| < 400 there exists a
sequence { fnYnen C X such that (2.16) holds for every n € N and f,, — o € S' weakly in H'/? as
n — +00.

2.3. A-harmonic extensions.

Let us define the subspace Hi C H' as H{(R3;R?) := C°(R3;R?) and denote by H~'(R3)
its dual space. The following result is a standard consequence of the properties of the homogeneous

ll-ll

Sobolev spaces recalled in the Subsection 2.1, the Dirichlet principle and the Lax-Milgram lemma.

Proposition 2.7. Let A€ A and [ € HI/Q(RQ;RZ). There exists a unique minimum uy of Ea in
H} = {ue HY(R3;R?); Tru = f}. Moreover, uy is the unique weak solution of

div(AVu) =0 in H (R} ;R?) 7 (2.17)
Tru=f on R?

and
Cf1|f|1/2 < |Vugle < Cilfly2, (2.18)

for a constant C; = C1(A) which only depends on the ellipticity constants of A.
In addition, if fi, fo € H'/?(R?,R?) and u; denotes the A;~harmonic extension of f; relative to
some A; € A, i =1,2, then

IV (ur — ug)l|p2rs) < Co (|f1 — falijz + (1f1liy2 + 1 f2l1y2) 1A — A2|oo> ; (2.19)

for a constant Co = Cy( A1, A2) > 0 which only depends on the ellipticity constants of A; and As.

We collect some standard regularity and compactness properties of solutions of (2.17). The proof
is exactly the same of the corresponding result in [33], using the lattice property of Proposition 2.4,
therefore it will be omitted.

Proposition 2.8. Let A€ A, f € X and uy as in Proposition (2.7). Then,

(i) if f € X, then u € C°(R3;R?) and |u| < 1 in R3 with strict inequality whenever f is nonconstant,
(i) if A€ C=(R3;8T) then u € C>(R3;R?),

(iii) let {fn}nen be a bounded sequence in X and {A,}neny C A a sequence of matriz fields with
uniform ellipticity constants A and A. Denote by {u, }nen the corresponding sequence of solutions of
(2.17). Then {uy}nen is compact in CY, (R3;R?),

(i) if {An}nen is compact in LS (R3; ST, then {uy, nen is compact in HY (R3;R?),

(.v) if {Ap}nen is compact in L (R3;ST) and { fu}nen is compact in X then {u,}nen is compact in
H(R3;R?).

3. Length structures and Hamilton-Jacobi equations

In this section, our main purpose is to introduce a distance d 4 associated in a canonical way to the
matrix field Cof A which coincides with the standard distance 64 below whenever A has continuous
entries,

3a(P.Q) =t [ EEAGERD 30 dr (3.1)
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where the infimum is taken over all v € Lipp ¢ ([O, 1); R3. ) Here, Lipp ([O, 1);R3. ) denotes the set of
all Lipschitz curves v from [0, 1] with values into R such that v(0) = P and v(1) = Q. As it will be
transparent in the next sections, the construction of a generalized distance d 4 will be the crucial tool

in giving the lower bound for the energy functional £4(f). We start by presenting both the energy
and the length functional in a natural unifying way when the involved matrices are continuous. The
passage to the measurable case, though harmless for the energy functional, is much more delicate for
the length functional and will occupy us for the whole section.

3.1. Remark on the induced Riemannian structure.

Consider a Riemannian metric g = (gij) on @ with continuous entries which possibly satisfies the
natural product-type assumption on the boundary,

g($1,$270) = gll(xl,xg,O)dx% + 2912(1‘1,1?2,0)d$1d$2+ (32)
+ ga2 (w1, 2, 0)da3 + gss(w1, 22,0)day  V(x1,22) € R?,

and let ¢ = (gij ) be the dual metric (which obviously inherits the same structure assumption on
the boundary). For curves v : [0,1] — @, the squared length of the tangent vector 4(t) at the
point y(t) is given by [¥(1)[;. | = ¢, (#(t),7(t)). For maps u : (R}, g) — (R?1Id) the squared
length of the differential du = dyudzy + drudry + dzudrs at a point x = (z1,xe,x3) is given by

|dul? = g (du',du") + §.(du®,du?). Taking this definitions into account, one easily get that

1 1
Ea(u) = 7/ |dul} dVoly, Lg,(y) = / IV (g, dt = g=CofA,
R3 0

2
so both the functional we are interested in have a natural geometric interpretation and they come
from the same metric tensor g = Cof A.

3.2. Construction of the distance d

First of all, we call the attention of the reader to the fact that, in the case of a measurable matrix
field A (or in other words, a measurable metric tensor g), there is no way to define a distance via the
usual formula (3.1) since A is not well defined on curves which are sets of null Lebesgue measure. This
difficulty has been overcome in [31] and the main idea was to thicken the curves in order to construct
a generalized length structure in the sense of [26]. Let us explain this procedure in details.

For two points P and @ in Ri, we define the class P(P, Q) to be the set of all finite collections of
segments F = ([amﬂk])zg) such that ay, Br € R, By = agy1, B # ax, ou = P and BnF) = Q.
Next we define the length ¢4 (F) of an element F € P(P,Q) by

la(F) = Z lim inf 1 v/ Cof A(x) Ty, - 7 d.

2
e=0t TET Sz ([ax,Bu).e) NRY

where 1, = \gZ:zZI and E([ak,ﬂk],e) = {:c € R3; dist(x, [ak,ﬂk]) < 5} and then we consider the

function da : R3 x R3 — R defined by

da(P,Q)= Inf ¢ .
AP.Q) = Inf  L4(F)
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In the next sections, we shall also consider for any r > 0, the distance induced by Cof A on the strip
domain ©, := R? x (0,7) corresponding to the distance

1
75(P.Q) = 1ut{ [ CTAGWI 30 dt: 7 € Libpg(0.11) | (33)
0
in the case where A is smooth. For r > 0, we define d; : Q, x Q, — R by
d, (P = Inf lA(F
GPQ = It (a(F)

where P,.(P, Q) = {F = ([an, Bi])i=; € P(P,Q); [an, Bi] C 2, Yk},

In the following proposition, we extend d4 (resp. d’y) to R3 x R (resp. Q, x Q,) and we establish
the metric character of d4 (resp. d’;) as well as the identity between d4 and d4 (resp. between d’
and 6%) for a smooth matrix field A. We shall use the notations Qs := R%, d :=da, 05 := 64 and
for P,Q € R3, Poo(P,Q) := P(P,Q). The proof follows as in [31] but we reproduce it here for the

convenience of the reader.

Proposition 3.1. For any 0 < r < oo, d induces a distance on Q, which is equivalent to the
Fuclidean distance. Moreover d'y agrees with 6"y whenever A is continuous.

Proof. Step 1. Let P,Q € Q, and let F = ([ou, 51],- - -, [@n, Bn]) be any element of P,.(P, Q). From
assumption (1.9), we get that

)‘Z|ak — Bl = hm L|E<[akaﬁk]75) NRY| < 0a(F) <

0+ me?

n

SAk 152%1 T|“(O‘ka5k] QREH AZM—ﬁkl

Taking the infimum over all F € P,.(P,Q), we infer that
AP - Q< dy(P.Q) < AP - Q| YP.Qe9,. (3.4)

From (3.4) we deduce that d’(P,Q) = 0 if and only if P = Q. Let us now prove that d’
is symmetric. Let P,Q € €, and § > 0 arbitrary small. Obviously, we can find an element
Fs = (lar, 2], lom, Bn]) in Po(P,Q) satisfying €4(Fs) < d4(P,Q) + 6. Then for F} =
([Bnsanl, -5 [Br,c1]) € Po(Q, P), we have dy(Q,P) < la(Fj) = La(Fs) < d’(P,Q) + 6. Since
J is arbitrary, we obtain d"y(Q, P) < d,(P,Q) and we conclude that d (P, Q) = d,(Q, P) inverting
the roles of P and @. The triangle inequality is immediate since the juxtaposition of F; € P,(P, R)
with F5 € P.(R,Q) is an element of P,.(P, Q). Hence d’; defines a distance on €, satisfying (3.4).
Therefore the distance d’y extends uniquely to €, x €2, into a distance function that we still denote
by d7. By continuity, d’; satisfies (3.4) in Q..

Step 2. If A has continuous entries, it is easy to see that for a segment [a, 3] C Q, with a # 3, we

have
1
im — VCof A(z)T - 7 dx = v Cof A(s)T - 7 ds,
e=0F T J=([aB].c) NRE [,8]
where 7 = |g o] - Hence we obtain for any F = ([a1, 1], .- ., [an, Br]) in P-(P, Q) with P,Q € Q,,

A(F) = /n . v/ Cof A(s)7y, - 7 ds. (3.5)
k=11%k:Pk
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Since A is continuous, the infimum in (3.3) can be taken over all piecewise affine curves « : [0, 1] — 2,
such that v(0) = P and (1) = @ and we infer from (3.5) that d’y (P, Q) = ¢% (P, Q). Then d’, = ¢",
on €, x Q, which implies that the equality holds in ©Q, x Q, by continuity. |

3.3. Geodesic structure and the length functional

In this subsection, we study some geometric properties of the distance d’y. For this purpose, we
introduce its associated length functional. Recall that to any metric space (M,d) is associated a
length functional L4 defined by

m—1
La(y) = Sup{ Z d(v(tr),Y(ths1)); 0=to <t1 < ... <ty =1,m¢€ N} (3.6)
k=0

where v : [0,1] — M is any continuous curve. Note that Ly is always lower semicontinuous on
C°([0,1], M) endowed with the topology of the uniform convergence on [0, 1].

Definition 3.1. A distance d is said to be geodesic on M if for any P,Q € M,
where the infimum is taken over all continuous curves vy : [0,1] — M such that v(0) = P and v(1) = Q.

A geodesic distance d satisfies most of the time the usual properties of the Euclidean distance. For
instance, if (M, d) is locally compact and complete, two arbitrary points in M can be linked by a curve
of minimal length. Applying this concept to our distance d’;, we obtain the following proposition.

Proposition 3.2. For any 0 <r< oo, the distance d'y is geodesic on Q,.. In addition, for any points
P,Q€qy,

(P, Q) = Min {Lay, (v); 7 € Lippo([0,1: Q) } 3.7)
and the minimum in (3.7) is achieved by a curve Yp,o which satisfies
dy (Vpo(t), 1po(t) = La; (Vpo)lt =] Vt,t' € [0,1]. (3.8)

Proof. The geodesic character of d; follows as in the proof of Proposition 2.1 in [31] and we shall
omit it. Since d’; is equivalent to Euclidean distance, Q, endowed with d’y defines a complete and
locally compact metric space. By the Hopf-Rinow Theorem (see [26], Chap. I), for any P,Q € €.,
there exists 7 : I = [0,C] — §Q,. such that 7(0) = P, (C) = Q and

d (3(t),3t")) = [t —t| forallt,t’ €1
with C' = d’y (P, Q). Setting for ¢ € [0, 1], vp (t) = 7(Ct), we easily check that the curve v, satisfies
(3.8) so that vp is Lipschitz continuous by (3.4). Then (3.7) follows from (3.8). [

Remark 3.1. We point out that, for any r € (0,00] and any P,Q € Q,, the curve Ypg 8iven by
Proposition 3.2 is a % |P — Q|-Lipschitz curve for the Euclidean distance.

Remark 3.2. Since d’j is equivalent to the Euclidean distance on €., for any 0 < r < oo, the
functional Ly is lower semicontinuous on C°([0,1],9,) endowed with the topology of the uniform
convergence on [0, 1] induced by the Euclidean distance on Q,. .
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Remark 3.3. It follows from the definition of L4, and (3.4) that for any r > 0,
AL1a(7) € Ly (v) < ALwa(y) Vv € C°([0,1]; Q) (3.9)
where Liq(7y) stands for the usual Euclidean length of 7 (i.e. for A = Id).

Through the results in [19] and [36], the geodesic property of d’; will allow us to obtain in Propo-
sition 3.3 below, an integral representation of the length functional generalizing formula (3.1) to the
measurable case. In general the resulting integrand has no reason to be the square root of a quadratic
form (of the §—variable) as in (3.1) but it still enjoys some homogeneity and convexity properties.
The proof of Proposition 3.3 follows the one in [31] and it is presented here to introduce some useful
quantities.

Definition 3.2. Let 0 <7 < co. A Borel measurable function £ : Q, x R? — [0, +0c0) is said to be
a (weak) Finsler metric on €, if £(x,-) is positively 1-homogeneous for every z € Q, and convex for
almost every x € ..

Proposition 3.3. For every 0 <r< oo, there is a Finsler metric L7 : Q. x R3 — [0, +00) such that
for any Lipschitz curve v : [0,1] — Q,,

1
R ACCRION? (3.10)

Proof. We set G, = R? x (—1,7+1) and II,. P the projection of P € G, on ... Setting P, = P—1II,.P
for P € G,, we define D : G, x G, — [0,+00) by

DL (P,Q) = dj (I, P,IL,Q) + |PL — Q1. (3.11)
We easily check that D’ defines a distance on G,.. Then we consider for P,Q € G,
D(P,Q) = Inf Lpr, (v), (3.12)

where the infimum is taken over all v € C°([0,1];G,) satisfying 7(0) = P and (1) = Q. We also
easily verify that DQ‘ defines a distance on G, and it follows from Proposition 1.6 in [26] that

Lp, =Lp; on Cc°([0,1); G,). (3.13)

Therefore D', is a geodesic distance on G,.. Moreover we infer from (3.4) that D7, is equivalent to the
Euclidean distance on G,.. Now we consider £ : G, x R? — [0, +00) defined by

. Dr, t
£, (2, ) = lim sup 2A@THH)
t—0* t

By the results in [36], Nz is Borel measurable, positively 1-homogeneous in v for every = € G, and
convex in v for almost every x € G,. By Theorem 2.5 in [19], we have for every Lipschitz curve
7:[0,1] — G,

Lp.

1
0= [ ExGw.so)ae (3.14)
Since D7y = d7 in Q,. x Q,., we deduce from (3.6) that
Lp, =Lpy =La;, on C° ([0,1]; ;). (3.15)

Setting £, to be the restriction of £ to Q, x R3, we obtain (3.10) combining (3.14) and (3.15). H
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3.4. The induced distance on the plane

With the length functional Lg, in hands, we may now consider the induced distance ds on R?
(identified with OR3.) computing lengths of curves lying in the plane. More precisely, for P,Q € R? ~
OR3, we set

Aa(P.Q) =t {L1y(4); 7 € Lipp g (0.11:082) | (3.16)

The following proposition shows us that d4 inherits the geodesic property of da as well as its conse-
quences.

Proposition 3.4. The distance da is geodesic on R? so that Ly, = Lg, on C°([0,1];0R3). In

addition, for any points P,Q € R?, the infimum in (3.16) is achieved by a curve yp g which satisfies

da(3ra(t) Tre(t) = La,(r)lt =] ¥,¢ € [0,1]. (3.17)

Proof. We just show that d4 is geodesic. Then by Proposition 1.6 in [26], L, = L4, on C°([0,1]; 9R3)
and the rest of the proof will follow as in Proposition 3.2. First we infer from (3.9) that

NP —Q|<da(P,Q) <AIP—Q| VP,QcR%: (3.18)

so that R? endowed with d4 defines a complete and locally compact metric space. By Theorem 1.8 in
[26], to show the geodesic character of d, it suffices to prove that for any P,Q € R? and any § > 0,
we can find R € R? satisfying

maX(JA(P,R),JA(R,Q)) < =da(P,Q) +6.

N |

We proceed as follows. For P,Q € R? and § > 0 given, we fix some 75 € Lipp([0,1];0R%) such
that Lg, (vs) < da(P,Q) + 26. By Proposition 3.3, Lg, (75) = fol LY (v5(t),4s(t))dt so that s +—
L5 (75(s),4s(s)) belongs to L'([0,1]). Consequently, F(s) = [ L5 (vs(t),¥s(t))dt is a continuous
function of s € [0, 1] and it satisfies F'(0) = 0 and F(1) = L4, (7s). Hence there exists s, € (0,1) such
that

Sy ) 1 ' 1 1 -
|3 050 35@0)de = [ L5 (s(0)3s(0)dt = 3 Lay(0) < 5 dalP. @)+
0 Sx
We now set R = v;(s,) € R? and for ¢ € [0, 1],

M) = v5(st) and  ya(t) = 5 (sx + (1 — s0)1).

Then v € LippyR([O, 1]; 3]1%3_) and 2 € Lipg ¢ ([0, 1]; BRi). Using Proposition 3.3 and the homogene-
ity of L with respect to the second variable, we derive that

B 1 Sx 1 -
WPR < [ L5005 0) = [ L3 (a0 36(0)dt < 3da(P.Q) .

N | —

1 1
da(R,Q) < / L (2(t), 42 (t)) dt = / LF (75 (), 4s(t))dt < = da(P, Q)+,
0 Sx
and the proof is complete. |

From Proposition 3.1 and the definition of the length functional, one easily see that d4 actually
coincides with the distance 04 defined for P,Q € R? by

54(P.Q) = Int { | VOSTAROE 0 e € Livp o (0.1 aRi)}
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whenever A is continuous. Moreover d4 can be obtained computing lengths of curves lying in @
which are closer and closer to the plane. In other words, §4 is the limit as r — 0 of the distances o
(defined in (3.3)) restricted to R? x R2. This fact, absolutely trivial in the continuous case, remains
true when one deals with a measurable field A.

Proposition 3.5. The family of distances (d7),~o restricted to R? x R? converges locally uniformly
to the distance da as r — 0.

Proof. We start the proof of Proposition 3.5 by showing that the distances d’; locally coincide with
the distance d 4. Then we shall derive that the length functionals Ly, are equal to L, near the plane.
This represents a crucial point of the proof.

Lemma 3.1. Let v > 0 and Py € Q, UORY. There exists n = n(Py,r) > 0 such that B,(Py) NR3. C
Q.U 8Ri and

4y (P,Q) =da(P,Q) YP,Q € B,(Py) NR3. (3.19)
Proof. Let Py € Q, UOR? and § > 0 such that Bs(Pp) ﬂ@ C 9, UORE. We set n = (1+ %)_1(5.
For any points P,Q € B, (P)) NR3 C Q,, we have da(P,Q) < A|P — Q| < 2An. Let 0 < & < 2An be

arbitrary small. By definition, we can find F. = ([a1, £1], - - -, [@n, Bn]) € P(P, Q) such that
EA(.FS) < dA(P7 Q) + e < 4An.

From (1.9) we infer that £4 (]:5) > \H! (UZ:1 [, ﬂk}). Hence H* ( Up_; o, ﬂk]) < 4AT’7 which implies
that UP_, [ou, Bk] C Bs(Po) NRY. In particular, UP_, (o, Bx] C Q, so that F. belongs to P,.(P,Q)
and thus

dy(P,Q) < La(F.) <da(P,Q) +e.

Then we derive that d (P, Q) < da(P, Q) from the arbitrariness of €. On the other hand, the reverse
inequality is trivial and we conclude that (3.19) holds in B, (Py) N R3. Then we recover (3.19) in
B, (Py) NR% by continuity. [ |

Corollary 3.1. For any r > 0, we have

La; (v) =La,(v) Vv € Lip([0,1]; €, UORY). (3.20)

Proof. For r > 0, let Py be an arbitrary point in €, U GRi. By Lemma 3.1, there exists n > 0 such
that B, (P) NR3 C Q, UIRY and d = da on B, (Py) NR%. Consequently, the distances D7) and
D% defined by (3.11) coincide on B, (Py) NG C Gy (we are using the same notations as in the proof
of Proposition 3.3). In particular, we have

Lpr (7) =Lp=(y) Vv € C([0,1]; By(Po) N Go). (3.21)

We claim that the distances D’y and DY defined by (3.12) coincide on B (Py)NG . for some 0 < 7 < 1.
First, we easily check that there exist two positive constants A and A which only depend on A and A,
such that

AP —Q|<D%P,Q) <AP-Q| YP,QeG, ands e {roco}
(here we use (3.4) and that | VII,||e < C for a constant C' independent of s). Then it follows that

ALia(v) < Lps (v) < ALw(y) Vv € C%0,1];G,) and s € {r, o0}
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(recall that Liq(y) stands for the Euclidean length of the curve 7) which leads to
MNP —Q|<D%P,Q)<AP-Q| YP,QeG,ands e {r,oo}. (3.22)
We set 77 = (1+ %)iln. For any points P,Q € Bs(Py) N Goo C Gy, we have D' (P,Q) < 2A7 by
(3.22). Let 0 < & < 2A7) be arbitrary small. By definition, we can find 7. € C°([0,1]; G,.) such that
Y.(0) = P, 7:(1) = @ and
AL1a(7e) < Ly () < DL(P,Q) + & < 4A7.

Hence the Euclidean length of 4. cannot exceed 4/;\\" which implies that v-([0,1]) C B, (Py) N Gs. By
(3.21) we have

DX (P,Q) < Lpee(ve) = Loy (7e) < D% (P,Q) +e.

From the arbitrariness of € we deduce that ﬁfff(P, Q) < DTA (P, Q). The reverse inequality may be
obtained by the same argument inverting the roles of Djff and 13; which completes the proof of the
claim. Since D’y and DY coincide on Bj(Py) N G, we infer that

D", (Py, Py +t DX (Py, Py +t
limsupwzlimsup A(O 0 V)

t—0+ t t—0+ t

Vv e R

By definition of £7, and L5 (see the proof of Proposition 3.3), we conclude that L7 (P, v) = LY (P, v)
for every v € R? and since the points P, is arbitrary in €2, U B]Ri, it yields

W=LY on (Q.UIRY) x R®. (3.23)
Combining (3.23) with Proposition 3.3, we obtain the announced result. |

Proof of Proposition 3.5 completed. First, we observe that it is enough to prove the pointwise conver-
gence of d7y to da, i.e., for any P,Q € R?, d\(P,Q) — da(P,Q) as r — 0. Indeed, one may easily
check (see e.g. [31], Lemma 4.1) that d zo,ge is A-Lipschitz with respect to the Euclidean distance
on R? x R?. Hence the local uniform convergence follows from the Arzela-Ascoli Theorem.

By construction, for any 0 < 71 < ry < oo, d’y > d'? on Q,, xQ,, so that, for any r > 0, L, > La,
on Lip([O, 1]; ﬁr). By Proposition 3.2 and Remark 3.1, for any r > 0, we can find a %|P— Q|-Lipschitz
curve Ypq 1 [0,1] — Q, such that Ypo(0) = P, vpo(1) = Q and dy(P,Q) = Lar, (Vpg)- Let (rn)nen
be an arbitrary sequence of positive numbers such that r, — 0 as n — +o00. By the Arzela-Ascoli
Theorem, we may extract a subsequence, still denoted (r,), such that 7;’}9 et ng uniformly on

[0,1] for some 7%, € Lipp ([0,1]; OR3). Then we infer from the lower semicontinuity of Lg,,
liminf @y (P.Q) = lminf Ly (v7) > lminf Ly, (15) > Ly () > da(P. Q)

On the other hand, by Proposition 3.4 we can find pq € LipP,Q([O, 1]; 8]1%3_) such that da(P,Q) =
La, (7p@). By Corollary 3.1,

da(P,Q) = La,(Yrq) = Lapn (Yrq) > djy' (P,Q) VneN.

Therefore, limsup d'y" (P, Q) < da(P, Q) and the conclusion follows. |

n—-+o0o

Remark 3.4. As already mentioned in the previous proof, d} < d7?2 < ds on R? x R? for any
0 < 7y <7y < oo. In particular, for any P,Q € R?, we have d4(P, Q) = sup d'y(P,Q) .
r>0
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We close this subsection with a stability result in the case of continuous matrix fields. The proof
is a standard combination of compactness properties of geodesics, dominated convergence and lower
semicontinuity of Riemannian length functionals.

Proposition 3.6. Let A € AN CO(@) and {A}leso C AN CO(@) with uniform ellipticity bounds

such that A. — A locally uniformly in Ri as e — 0. Then da, — da locally uniformly in R? x R? as
e —0.

3.5. Hamilton-Jacobi and 1-Lipschitz functions

We close this section with a characterization of 1-Lipschitz functions with respect to the distance
", as subsolutions of a certain eikonal equation involving the matrix field A. As already mentioned,
Proposition 3.7 below plays a central role in the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3.

Proposition 3.7. Let A € A and r € (0,00]. Then for any function ® : Q, — R, the following
properties are equivalent:

(i) |®(P)—2(Q)| < d4(P,Q) VP,Q€Q,,

(ii) ® is Lipschitz continuous and (Cof A)71V®-V® <1 a.e. in (.
Proof. (i) = (ii). Let ® : Q, — R satisfying (i). From Proposition 3.1, we infer that ® is Lipschitz
continuous. Fix Py € Q, and § > 0 such that Bss(Py) C R3. Consider a mollifyer o € C5°(R*;R),
spto C B(0,1), o > 0, fR3 0 =1, and set, for an integer n > 1/6, 0,(2) = n 3p(nz). We define the
smooth function ®,, = g, * ® : Bs(Py) — R. We write

o, (P)= / 0n(2)®(P — 2)dz
Bi/n
and therefore for any distinct points P, Q € Bs(FPp),

Bl/n

S/Bl/n Qn(z)dfq(P—Z,Q*z)dZS/ on(2) LA ([P —2,Q — 2]) d=.

Bi/n

Taking an arbitrary sequence of positive numbers g, — 0 as k — +o0o0 and using Fatou’s lemma, we
get that

@0 (P) — ©,(Q)] <

1
< / Qn(Z)(lim inf — Cof A(z)T - T dm) dz
Bi/n

k—too TEL JE([P—2,Q—z],ex)NRE

1
< liminf —5 / / on(2)y/ CofA(z)T - 7 dadz .
Bi/n E([P—Z,Q—z],sk)ﬂ]Ri

k—-4oc0 TEY

where 7 = %. For k € N sufficiently large, we have Z ([P — z,Q — z],ex) C Bss(FPo) and conse-
quently

/ / 0n(2)\/Cof A(x)T - 7 dzdz =
Bl/n E([P*Z,Q* ],Sk)ﬁRi

= / / on(z) \/CofA(x —2)7 -7 dzdx .
E([P)QLEIC) Bl/n
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Then Cauchy-Schwartz inequality yields

1/2
,/ @M@deAu—drwdz§</‘ %@m&A@_@de%
Bi/n Bi/n
so that, setting M, := o, * (Cof A), we have

|, (P) — ©,,(Q)| < liminf % VM, (z)T -7 de.

k—too MEL J=([P,Qler)

Since x +— /M, (x)7 - 7 is smooth, we derive that
1
— VM ()T 7T dx — M, (s)T-7ds ask— +oo.

e} Ja(p,Qlen) P.q]

Thus for any distinct points P, Q € Bs(P,), we have

P-Q P-Q
@“m_¢“@“€LQ¢M%%P@'WQM&

Then, for any P € Bs(FP), h € S? fixed and ¢t > 0 small,

[®n(P +th) = 2a(P)] L Mo (5)h T ds — \/My(P)h - h
t L Jip,p+th] t—0

and we deduce, letting ¢t — 0, that |V®,,(P)-h| < /M, (P)h - h. By homogeneity and the arbitrariness

of h, we infer that |[V®,,(P) - h| < /M, (P)h-h for all h € R3. From assumption (1.9), we easily

check that M, (P) is invertible so that we can choose h = M, 1(P)V®,,(P) and we conclude from the

arbitrariness of P,

M;'V®, -V, <1 in Bs(P). (3.24)

Since M,, — Cof A and V®,, — V® a.e. in Bs(Py) as n — +oo, we conclude (Cof A)~'V® - VP < 1
a.e. in Bs(Py) letting n — +oo in (3.24). Since Py is arbitrary in R3 , we get the result.

(i) = (i). The reverse implication follows from Lemma 3.2 below. Its proof is similar to the one of
Lemma 2.1 in [31] with minor modifications so that we shall omit it.

Lemma 3.2. Forr € (0,00], let ® : Q. — R be a Lipschitz continuous function. For any distinct
points a,b € Q,. and any € > 0 sufficiently small, we have

1
2(a) - 20) < = |
me? E([a,b],e)NRZ.

Proof of Proposition 3.7 completed. Let ® be a Lipschitz continuous function satisfying (ii). We deduce

Vo(z)- b-a

dr + 2e| V||
gy e+ 22

from Lemma 3.2 and (1.9) that for any F = ([a1,51],-- -, [@n, Bn]) € Pr(P,Q) and any parameters
€1,-..,En > 0 sufficiently small, we have
[(P) = 2(Q)] <D |2(B) — Do)

b
=

" 1

Z (2/ ‘V@(m) 'Tk‘ dzr + 2Aek) :
Tk JE([ar,Belen)

k=1

IN
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Since ® satisfies (4i), we infer that for k = 1,...,n and a.e. z € Z([a, Bk], k),
IV®(z) - 74| = [(Cof A(z)) T/?V®(z) - (Cof A(z))"/*7| <
< V/(Cof A(z))"1V®(z) - V®(2)\/Cof A(z) 73, - T < \/Cof A(z)73, - 1

and consequently,

|®(P) — ®(Q)| < i (7;2 /_([ v/ Cof A(z)1y, - 71 d + 2A€k> .
k=1 k /=

Taking the liminf as ey, — 07 for each parameter i, we derive that |®(P) — ®(Q)| < £ (F). We
obtain the result taking the infimum over all F € P,.(P, Q). Then we conclude that (i) holds in all ,
by continuity. |

ak,Bk],ex)

As a consequence of Proposition 3.7, we may now show that, under a certain structure assumption
on A, the distance d4 and d4 coincide on the plane. Once more, the following result, quite obvious in
the continuous case, requires a specific analysis for a measurable field A.

Corollary 3.2. Assume that A € Ag. Then
JA(P?Q):dA(PvQ) VP7Q€R2~

Proof. First we observe that it is enough to prove that for any r > 0, dy = d4 on Q, x Q,.. Indeed, by
Proposition 3.5, it would lead to da(P,Q) = }13(1) d"y(P,Q) = da(P,Q) for every P,Q € R%. Now we
fix r > 0 and P € Q, and we set for z € Q,., ®(z) = d"y(P,z). Obviously ® is 1-Lipschitz in 2, with
respect to d'y so that by Proposition 3.7, (Cof A)~'V® - V® < 1 a.e. in Q,.. Next we extend ® to Qa,
by setting ®(z1, z2, x3) = ®(x1, z2,2r — x3) for r < xz3 < 2r. Obviously, the resulting ® is a Lipschitz
function. Due to the structure assumption A € Ay, this extension satisfies now (Cof A)~'V® - V® < 1
a.e. in o,.. Then we extend ® to the whole half space by periodicity into a 2r—periodic function in
the last variable, i.e., ®(x1, o, 23 + 2kr) = ®(11, 22, 23) for any x = (71,22, 23) € Q, and any integer
k > 0. We easily check that ® is Lipschitz and by the assumption on A, (Cof A)71V® - V® < 1 a.e.
in Ri. By Proposition 3.7, this implies that ® is 1-Lipschitz in @ with respect to d4. In particular,
d(P,Q) = ®(Q) — ®(P) < da(P,Q) for every Q € €, and from the arbitrariness of P, we conclude
that d’y < d4 in Q, x Q,. On the other hand, the reverse inequality comes from the definition of d4
and d’j so that the proof is complete. |

A straightforward consequence of Proposition 3.7 and Corollary 3.2 is the following result.

Corollary 3.3. Let A € Ay and let ¢ : R? — R. The following properties are equivalent:

(i) l¢(P) = ¢(Q)| < da(P,Q) VP,QER?,
(i) @ is Lipschitz continuous and ® : @ — R, ®(x1,x9,x3) := (21, 22)
satisfies (Cof A)~'V®-V® <1 a.e. in R},

4. Geometric distances vs energetic distances

In this section, we prove Theorem 1.1 using duality arguments similar to [31], [32] to establish the
lower bound and a dipole-type construction based on [33] for the upper bound. As in the two papers
cited above, the measurability of the matrix field forces to work in the context of length structures
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and a delicate and quite indirect dipole-type construction is required. This, combined with the theory
of Hamilton-Jacobi (in)equations in Subsection 3.5, allows us to conclude.

The following lemma is the key point for proving the metric property of p4 and will be repeatedly
used in the paper.

Lemma 4.1. Let f € X and {fn}nen C X such that f, — « a.e. for some constant o € S' as
n — +o0 and sup,, |fnl1/2 < +00. Then

limsup Ea(f fn) < Ea(f) + limsup Ea(fn)-

n—-+oo n—-+oo
Proof. Let u, and u be the A~harmonic extensions of f,, and f respectively. By Proposition 2.7 and
Proposition 2.8, the sequence {uy }nen is bounded in Hl(Ri;Rz) and max{|u,|,|ul} <1 a.e. in R3.
Clearly, f, — a weakly in H'/2 by Theorem 2.5, so that u, — « weakly in H* and locally uniformly
as n — 400 (again by Proposition 2.7 and Proposition 2.8). Due to the pointwise bounds on |u,| and
|u|, we can apply Proposition 2.3 to derive that wu,, € Hl(Ri;Rz) with Tr (uu,) = ff, on R%. An
easy computation leads to the identity

Ea(uuy,) = 1/}1@ {|u2tr(VunA(Vun)t) + |un2tr(VuA(Vu)t)}+ (4.1)

2
“.
R}

Since Tr (uuy,) = f fn, formula (4.1) yields
Ea(ffn) < Eauun) < Ea(u) + Ea(un) + 1y = Ea(f) + Ealfn) + 1.

{Re(uun) tr (Vi A(Vu)') + Im(uu, ) tr(V(iun)A(Vu)t)} =I,+1I,.

Using that u, — a a.e. with |u,| < 1 and Vu, — 0 weakly in L*(R}) as n — +o0, we deduce that
I1I,, — 0. Taking the limsup in n in the previous inequality yields the announced result. |

Proof of Theorem 1.1. Step 1. We start by proving that p defines a distance on R2. Clearly p4 is
nonnegative and symmetric. The nondegeneracy will follow from the equivalence with the Euclidean
distance which will be proved in the next steps. Now we show the triangle inequality. Let P,Q, N €
R? fixed. By definition of p4 and Remark 2.5, we may find sequences {f,gll)}meN,{f,(f)}neN c X
realizing pa(P,Q) and pa(Q, N) respectively. We denote by a; € S! and ay € S! the respective
weak limits of f&l) and f,(f). By Theorem 2.5, we may assume that for ¢ = 1,2, f,(f) — @; a.e. in
R?. Then we consider the sequence hy, , = ,(73)]‘,(12). By Proposition 2.6 and Lemma 4.1, hy, , € X,
limsup,, limsup,, Ea(fn,m) < +oo and T'(hy,,) = 27(dp — dn). By Remark 2.5, we may find a
diagonal sequence hy = hp, n, such that limsup, E4(fx) < limsup, limsup,, Ea(fr.m), hr — a1
as k — +oo weakly in H'/2_ Hence the sequence {hy }ren is admissible for computing pa (P, N). Then
we deduce from Lemma 4.1 that
pa(P,N) < lkiminfé'A(hmkynk) < lim sup lim sup SA(fﬁll)f,(Lz)) <

—+o0 m—-+oo n—-+oo

< limsup E4(fV) + limsup E4(f?) < pa(P, Q) + pa(Q, N)

m——+00 n—-4o0o
and the proof of the triangle inequality is complete.
Step 2. Now we move on the proof of claim (ii). We observe that p4 > mds will imply the lower

inequality in claim (i) between ps and the Euclidean distance since da(P,Q) > AP — Q| for any
P,Q € R? by (3.18).
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To obtain the estimate involving p4, we proceed as follows. Given two points P, Q € R2, consider
f € X arbitrary such that T(f) = 27(0p — dg) and let u € H' be its A-harmonic extension to R3.
A simple computation yields

%tr(VuA(Vu)t) > /det(VuA(Vu)t) = %\/(CofA)H(u) H(u) a.e. inRY. (4.2)

For any ® € Lip(R% ) which is 1—Lipschitz with respect to da, we have \/(Cof A)~1V® - V® < 1 a.e.
in R‘i by Proposition 3.7. Therefore,

EA() = () > 5 | ICEAH) - 1w
> % [ H)-Vo = 7(8(Q) - #(P) (4.3)

Choosing ®(z) = da(P, z), we deduce that E4(f) > mda(P, Q) and the conclusion follows taking the
infimum over f € X satisfying T(f) = 2n(dp — dg).
In order to prove the inequality involving p4, we fix 0 < r < 1 and we introduce a cut-off function
X € C3°(R) such that 0 < x < 1, sptx C (—r,7) and x(¢t) =1 for [¢t| < r/2. Let d’y be the geodesic
distance corresponding to Cof A on the domain 2, = R? x (0,r) as constructed in Section 3. Given
P,Q € R?, we define for z € Q,,
T

o= (Far@ - ayrn) - (3w - a@n) (1.0

Clearly @ is 1—Lipschitz in 2, with respect to dy, so that, by Proposition 3.7, \/(Cof A)~1V® - V& < 1
a.e. in Q,. In addition, K := spt® C €, is a compact set. Now, consider {f,},en C X such that
fn — a € S! weakly in H'/? with T(f,) = —2n(6p — d¢) for every n. Denote by u,, the corresponding
A-harmonic extension. Arguing as in (4.3), we infer that

1

—rdy(PQ) - 5 [
Kn{r/2<zz<r}
Since u, — a in H'(R%;R?) as n — +oo, we derive from Proposition 2.8 that Vu, — 0 in L2 _(R%)
and hence H(u,) — 0 in L{ (R3). Going back to (4.5), it yields limJirnf Ea(fn) > md (P, Q). Now

® H(uy) - V. (4.5)

loc

letting » — 0, we recover 1imJirnf Ea(fn) > mdA(P,Q) thanks to Proposition 3.5. Then the conclusion
follows from the arbitrariness of the sequence {f, }nen.

Step 3. In order to show the upper bound pa(P, Q) < mA|P—Q)|, we first observe that E4(u) < AFE14(u)
for any u € H' (Ri; R?) by the uniform ellipticity assumption on A. Thus €4 < A€1q and consequently
p4(P,Q) < Apra(P, Q). Then the conclusion follows from the explicit construction of an optimal dipole
in Lemma 4.2 below. We present in this lemma additional results which will be of importance in Section
5. For a different construction of an optimal dipole see [25], Section 5.

Lemma 4.2. (Euclidean dipole) Let P and Q be two distinct points in R%. There exists a sequence
{fatnen © X N WY R2) such that f, € Lip,.(R2\ {P,Q}), T(f.) = 2n(6p — q) for every n,

,
loc
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fn — (1,0) weakly in HY?, f,, — (1,0) a.e. as n — +oo and

limsup &a(fn) < 7P = Q.

n—-+oo

Moreover, f, = ¥ a.e. in R? for some sequence of compactly supported functions {tn}tnen C
BV (R?%;R) N Lip,,.(R?\ [P,Q)]) satisfying

(i) Y, — 0 a.e. as n — 400,
(i) |n|gy < C|P — Q| for a constant C independent of P, Q and n,

(iii) the singular part of D, is D%y, = 2nvH'__ [P, Q] with v+ = |1€:8\ .

Proof. Due to the invariance and scaling properties of Erq, up to rotations, dilations and translations
in R?, we may assume @ = (1,0,0) and P = (—1,0,0). This shows in particular that the constant
C in claim (7i) does not depend on P and Q. We shall construct a sequence {un }nen C H'(R3;R?)
such that f, = Tru, € X satisfies the conditions above and Eiq(u,) — 27 as n — +o00.

First, we introduce the conformal representation v : Ri — D defined by

v(z)z+i< 3 +123 -1 219

, , 2 =xo+ix3 € R?
a3 + (1 + 23)? x%+(1+x3>2> 2T

Z—i
so that v — 1 as |z| — oo and v(+,0) € Lip(R; S \ {(1,0)}). Moreover, for x5 # 0 we have v(xs,0) =
e?9(®2) for f(x4) = 2arctan(1/x;). Then we introduce a sequence of deformations as follows, using the

complex notation,

v(nxs, nws) if |zo]? + |z3]2 <1
1 if [ao|2 + |22 > 4,
vn(22,23) = 4 "+ laal” 2 (4.6)
et Ome2))2=lz2l) 4§ 1 < || < 2 and 23 =0,
harmonic if 1 < |zof® + |23 <4and 23 >0,

i.e., we glue a pure dilation on the unit half disk with a constant map using two arcs on {z3 = 0}
and an harmonic extension in the remaining half annulus. One easily check that v, € Lip(R%) and
vn(+,0) € Lip(R;SY). In addition, v, (z2,0) = e?¥»(#2) for

1
2 arctan () if0< |z <1,
nro
— 1
O (x2) = 2(2 — |z2|) arctan () if 1 <|zo] <2, (4.7)
nro
0 otherwise.

By construction, ¢, € Lip;,.(R \ {0}), 6, has compact support and finite pointwise variation in
R. Since its left and right limits at 0 are given by —m and m respectively, the singular part of the
distributional derivative of 6,, is given by D®#, = 2wy for every n. Furthermore, we easily see that
sup,, |0n|Bv < +o0.

We observe that the map v, has been constructed in such a way that

/ Vo> — |Vo|? = 27
Ri n—-—+00 R?F
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and |v(nz2, nxs) — v, (22, 23)| — 0 uniformly in R%. Now we define for z = (21,22, 23) € R3,

U, (xg,x3> if |z1| < 1
Up(x) = M (1) N (1) (4.8)
1 if |z1| > 1

where 7, (21) = (1 —|#1])/n . Once more, one may check that u,, € H'(R? R?), u,, is locally Lipschitz
in @ away from {(—1,0,0),(1,0,0)}, and that the corresponding f, := uprz € X N Wli’Cl(RQ),
fn is locally Lipschitz away from the points P and () with degrees —1 and +1 respectively, i.e.,
T(fn) = 2m(6p—0dg). Moreover, f, — (1,0) a.e. in R? as n — +o0 since 1,, — 0. A direct computation,
using the conformal invariance of |V 3 u,|* yields

1 1 [t
Ea(uy) = 5/ Vu,|? = 5/ (/ Vz,gun|2+|81unl2)dw1
Ri -1 Ri
1 1
/ |an|2+f/ (/ |(91un|2)dx1
RZ 2J-1 \Jrz
1 1
-/ |an|2+2( / |m<x1>|2dx1)( / |wn|2<x§+x§>).
Ri -1 Ri

Since by construction, |Vv,|?(23 4+ 23) < 4|Vv,|? and fil [ (21)[2dx1 — 0 as n — +o00, we infer that

limsup E1q(fn) < lil}rl Era(up) = lim |Vu,|? =27 = 7|P - Q.
n—-—+oo

n—-+o00 n—+o0 ]R%r

In particular, sup,, |fn|1/2 < 400, so that f, — (1,0) weakly in H'/2 by Theorem 2.5.
Given #,, as above, we now set

Qn( T2 >, if|I1|<1,.’L‘27éO

Y (21, 22) = (1) (4.9)

0 if |1’1| > 1,

so that 1, has compact support and it satisfies f,, = e!¥" a.e. in R?. Then, taking (4.7) and (4.9) into
account, straightforward computations yield claims (i), (i7) and (i) so the proof is complete. [

Remark 4.1. Due to the invariance properties of Fiq, up to rotation, dilation and translation in R3,
the construction given in the previous lemma still holds if one replace Ri by any half space 2 with
0 € 99. In this case, we consider Erq : H'(Q;R?) — R, defined as in (1.11) and then (-)i4 is the
corresponding seminorm on H'/2(9; R?). The distribution T(f), for f € H'/2(dQ;S"), is defined as
in (1.4) by integrating over . As a consequence, Lemma 4.2 still holds if we consider £4 instead of
&14 for a constant matrix A € S:?_ replacing the Euclidean distance by the Riemannian distance

da(P,Q) = da(P,Q) = \/ (Cof A)(P — Q) - (P - Q) (4.10)

where P = (P,0) and Q = (Q,0) belong to OR? . Indeed, writing A = RDR' where D is a diagonal
matrix made by the eigenvalues of A and R € SO(3), we change variables by setting x = U(y) :=
RD'/2y and then, we apply the construction to the half space Q = ¢! (R3)) and to the points ¥~ (P)
and U1(Q).
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Remark 4.2. Applying additional regularization techniques, we could have constructed the sequence
{fn}nen in Lemma 4.2, such that f,, € X N C,(R?\ {P,Q}) rather than Lipschitz away from the
points P and Q.

Proof of Theorem 1.1. Step 4. Now we give the proof of claim (i) which is based on Lemma 4.2
together with Remark 4.1. We recall that we assume here A € Ay so A(z) = A(Z) where x = (&, z3).
Fix a point Qo € R? and let us define for an arbitrary point P € R2, £(P) = pa(P,Qp) so that
¢ € Lip(R?) by claim (). Consider a standard mollifyer ¢ € C$°(R%*R), i.e., o > 0, ng o =1, and set,
for £ > 0, p-(2) = £20(2/¢). We define
EP) =04 E(P) = [ o(-2)¢(P+2)dz.
R
Clearly & € C*°(R?) N Lip(R?) and the family {&.}.~¢ is equilipschitz. Moreover, £, — ¢ locally
uniformly and V&, — V¢ a.e. in R? as ¢ — 0. Similarly, let
A (8) = 0e x A(Z) = / 0:(—2)A(Z + 2)dz,
R2
so that A, — A a.e. as ¢ — 0. One easily check that for every ¢ > 0, A. € Ay and A. conserves the
ellipticity bounds of A, i.e., AId < A.(#) < Ald (as quadratic forms) for every & € R2.
For any points P, Q € R?, we have

£(P) =& < [ a(-2le(P+2) - 6@+ 2]

< [ ed-2paP+ 2@+ 2)ds (4.11)
RQ

since ¢ is 1-Lipschitz with respect to p4. Now we shall estimate the contribution of ps(P + z,Q + z)
in the integral above. We proceed as follows. Consider the sequences {f,}neny C X and {up}tnen
constructed in Lemma 4.2 and Remark 4.1 relative to the points P, () and to the constant matrix
A.(P). Then define the map @, (z) = un(z — (2,0)) so that fn = Unrz € X satisfies T(fn) =
21(0py. — 0q4-) and f, — (1,0) weakly in H'/2 as n — +oo. By definition of js(P + z,Q + z) and
EA(fn), we have

pa(P+2,Q+2) < lim inf Ealfn) < lim inf Ea (i) (4.12)
Now we observe that a simple change of variables leads to
1 1
Ealitn) = 5 / (Vi A) (Vi) ) = / 60 (Van A + 2)(Vun)')dy (4.13)
RY RY

where y = (§,ys3). Inserting (4.12) and (4.13) in (4.11), invoking Fatou’s lemma and changing the
order of integration, we derive that

()~ €@ < it 5 | i [, e =2 (V) Al + 2) (T () )y

n—-+00
1
= liminf f/ tr<Vun</ QE(—z)A(y—Fz)dz) (Vun)t)dy
n—+oo 2 RE R2

= lim inf %/ tr(VunAs(@)(Vun)t)dy
R

n—-+o0o 3
T

= lim inf

1
f/ tr(VunAs(;z])(Vun)t)aly7
n=+0 2 ) p o (P)x(0,400)
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since u, is constant outside B p_q|(P) x (0, +-00) for n large enough by construction. Using the partial
order over quadratic forms, we easily see that for any § € B|p_q|(P),

X C.
A(9) < A(P) + C|P - Q|1d < (1 + 1P - Q> A (P)
for a constant C. which only depends on €. Consequently,

P - 6@ < (14 1P = Q) mint 5 [ 6, A(P)Tu) )
R

+oo 3
T

By construction of the sequence {uy,}nen, we have

%/R (Vi Ao (P)(Vun))dy — 7/ (Cof A.(P))(P - Q) - (P - §)

3 n—-—+oo
T

where we used the notation of Remark 4.1, P = (P,0) and Q = (Q,0). Hence,

£(P) — Q) < m/(Cor A(P)(P—Q)- (P—Q) + 2P - QP

Defining =, (21, 22, 23) := & (21, 22) and setting Q = P+ th for some h € R? x {0} and ¢ > 0, we infer
from the above inequality,

‘Es(p + th) — Es(p)|

C.At|h|?
t T

A

<7/ (Cof Ac(P))h - h
and we conclude, letting ¢ — 0, that

IVE.(P) - h| < m\/(Cof A.(P))h-h Vh e R? x {0}. (4.14)

Since A. € Ay, the linear map A.(P) : R? x {0} — R? x {0} acts bijectively, and the same holds for
Cof A.. Then VEE(p) € R? x {0} because Z. is independent of the variable x3. Hence, we may choose
h = (Cof A.(P))"'VZ.(P) in (4.14) which leads to (Cof A.(P))"'VE.(P) - VE.(P) < 2. Since A.
and 2. does not depend on z3 and P is arbitrary, we conclude that (Cof A.)"!'VE, - VE, < 72 in RY.
Now we observe that Cof A. — Cof A and VE, — VZE a.e. in Ri as € — 0 where the function Z is
given by E(z1, 22, x3) = £(x1,22). Then, passing to the limit € — 0 in the previous inequality yields

(Cof A)"'VE.VE <7 ae. inRY.

By Corollary 3.3, ¢ is m-Lipschitz on R? with respect to d4. Since £(Qo) = 0 and £(+) = pa(-, Qo), we
get pa(-, Qo) = £(-) < mda(-,Q%). Thus pa < mda because Qg can be chosen arbitrarily.

Due to the structure assumption A € Ay, we have dy = d4 by Corollary 3.2. As p4 < pa, we infer
from claim (7) that 7da < pa < pa < 7da = md 4, hence equality holds and p4 is a distance.

Step 5. We conclude the proof of Theorem 1.1 with claim (iv). Let P,Q € R? be two distinct points
and {fn}nen C X such that T(f,) = 2n(dp — dg) and pas(P,Q) = mda(P,Q) = lirf Ealfn). Let

u, € H'(R3;R?) be the A-harmonic extension of f,. Up to a subsequence, we may assume that
fn — f and u, — u where u is the A-harmonic extension of f. We define ®(x) as in (4.4) with r = 0o
so that ® is clearly 1-Lipschitz with respect to d4 and has a compact support K. Arguing as in (4.5),
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/ tr(Vun Vun /Hun .
R3\K

/ tr(VunA(Vun) ) + 5 < T(fn) (I)‘Rz >
\K

we derive

gA(fn) =

s
g
N
Y%

N~ N~ N

/ tr(Vu, A(Vuy,)') + 7da(P, Q).
By lower semicontinuity, as n — +oco we infer that

mda(P,Q) > 1/ tr(VuA(Vu)') + mda(P,Q),
2 Jrs\K

thus v has to be constant in ]Ri \ K. Since u in A—harmonic in the whole half space, u = « for some
constant a € R? by Proposition 2.8 claim (i), hence f = UR2 = a € S'. As a consequence, pa(P, Q)
is not attained, pa (P, @) = pa(P, Q) and the conclusion follows from claim (). [ |

We conclude this section with an example showing how gaps may occur between p4 and the metric
distances when A depends on the xz-variable.

Example 4.1. Given 0 < A < A, we consider {4, }nen C A defined as A, (z) = an(x3)Id with
an(r3) = max{\, A — nx3}. One easily checks that for each n > 1 and each distint points P, Q € R?,

AP = Q| <da,(P.Q) <da,(P,Q)=AlP-Q,

hence pa, = mda, by Theorem 1.1, claims () and (4). We claim that for n large enough, 7d 4, (P, Q) <
PA, (Pa Q) < pa, (Pv Q) = ﬂ_dAn (Pv Q) and

lir_ir_l pa, (P,Q) = lil}_l wda, (P,,Q) =7AP—Q|,

for any P,Q € R? with P # Q. The first inequality is a consequence of Theorem 1.1, claims (i)
and (iv). Therefore it suffices to show that limsuppa, (P,Q) < wA|P — @|. An easy application of

n—-+oo

dominated convergence yields limsup €4, (g) = AEa(g) for every g € X, so that limsup pa, (P, Q) <

n—-+o0o n—-+oo

Ap1a(P, Q) = A|P — Q| by Theorem 1.1, claim (i)
5. Sobolev maps and graph currents

5.1 Pre-Jacobians and liftings of H'/?(R?;S')-maps

In order to understand the concentration effects related to the minimization problems (1.6), (1.7) and
(1.8), it is very useful to introduce for each f € X the pre-Jacobian of f as the 1-dimensional current
J(f) € D1(R?) defined by

I)Co= [ (afrai+arno) (51)

R
for every ¢ € D!(R?) where C C1dxy + (oday and (p, (o € C§°(R?). The integral above will be always
understood as an H/2 — H~1/2 quality according to Remark 2.2. One easily check that J (fy=0

whenever f is constant and X > f+ J(f) € D1(R?) is continuous under strong convergence in X
because of the simple estimate

| < J(f1) = J(f2),¢ > | < Clspt OliClon ([ falleyz + I falliy2) [ fr = falliyz, (5.2)
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which is a consequence of Proposition 2.3. In addition dJ(f) = T(f) as distributions, according to
(1.5).
The following elementary property of the operator J will be of importance in the sequel.

Lemma 5.1. Let fy, fo € X.We have
<J(fifa), ¢ >=<J(fr) = J(f2),¢ > V¢ € D'(R?). (5.3)

Proof. First we assume that fi, fo € XN Wli,cl (]RQ) and fy, fo are constant outside a compact set. In
this case, the conclusion comes from a straightforward computation. Then the general case follows by
density, according to Theorem 2.6 and Proposition 2.6. |

Our first goal in this section is to represent the current J(f) in terms of suitable liftings of the
map f. Concerning maps without topological singularities, we have the following result.

Proposition 5.1. For every f € X such that T(f) = 0, there exist ¢ € H1/2(R2;R) and i €
BV (R2;R) satisfying f = ¢"T%) a.e. in R? and

[6l1/2 < Clfl1y2, (5.4)
Wy <CIf13 )9, (5.5)
for an absolute constant C > 0. In addition, for any ( = (1dxy + (adxe € DYH(R?), we have
<J(f),{>= / (= ¢2010 + 1020) +/ (= GD19 + (1 Doy) . (5.6)
R2 R2

Proof. Without loss of generality, we may assume f*° = 1 by Lemma 5.1. Since T'(f) = 0, there
exists { fr Jnen C O (R?;S1) such that f,, — f strongly in H'/? and a.e. in R? by Theorem 2.7. We
may also assume that fo° = 1 for each n. Therefore there exists {1, }nen C C§°(R?;R) such that for
each n we have f,, = ¢ everywhere in R2. Let {Qy}ren be an increasing sequence of open squares,
Qr CR? Q) CC Qpyq for each k, and UpQy = R?, such that spt N C Q. for each n.

According to [9], Theorem 3, we can write 7, = ¢, + ¥, for two functions ¢,, € H/?(Q,,) and

¥, € BV(Q,) such that in terms of f,, = e!(®»+¥n) we have the estimates

|Pnl1/2,0. < Clfnlij2.q, < Clfliy2, (5.7)
[Vnl BV (Qn) < O|fn|%/2,Qn < C|f|?/2~ (5.8)

for some absolute constant C' > 0 independent of f, and @, (indeed, we stress that the constant
C > 0in [9], Theorem 3, is independent of the square). Thus, for a given ( € D}(R?) and kg € N such
that spt ¢ C Qp,, we have for n > ko,

< J(fn)7< >= -/RQ(_C2817771 + <18277n) :~/Q (_<2al¢n + C182¢n) (59)

ko
+ / (_C2D1wn + CIDan) .
Qkq
Taking (5.7) and (5.8) into account, by a standard diagonal argument (possibly subtracting suitable
multiples of 27) we may assume ¢, — ¢ (respectively 1, — 1) both in L] (R?) and a.e. in R? and

weakly in H'/2(Q}) (respectively weakly-x in BV (Qy)) for each k > 1 fixed, as n — -+oo. This way
¢ € H/2(R?), ¢ € BV(R?) and the desired norm bounds (5.4), (5.5) follow by lower semicontinuity.
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In addition, f = e!(?*¥) a.e. since f,, — f a.e.. Finally, as f,, — f strongly in H'/2, (5.2) allows us to
pass to the limit n — +o00 in the left hand side of (5.9) which yields (5.6). [

In order to deal with maps with topological singularities, we need the following lemma.

Lemma 5.2. Let f € X be a dipole map as constructed in Lemma 4.2, i.e., such that f € Lip,,.(R?\
{P,Q}) and f = €' with ¢ € BV (R?;R) N Lip,,.(R? \ [P,Q]) for some distinct points P,Q € R2?,
satisfying :

(i) T(f) = 27(6p — dq) ,

(i6) 1135 + [¥]v < CIP = Q)

(iii) (D*)*- = 2m =2 H'_[P,Q] = 27 QP .

Then

< J(f), ¢ >= /RQ(*CZDlw + Do) + 27 < QP.C >, (5.10)

for any ¢ = (1dxy + (odae € DH(R?).

Proof. As in the proof of Lemma 4.2, up to rotation, translation and dilation we may assume @ =
(1,0) = —P. Let ¢ € DY(R?) and let Q = I; x I C R? a square containing P and @ such that
spt ¢ C Q. Clearly f € HY/?(Q) and

< I(f)C>= /Q (~Cof AOLS + Cuf A Oaf) -

In addition, since f € L?(Iy; HY/?(I5;SY)) N L?(Io; HY2(11;S')) with equivalence of norms (see [35]),

we have
<J(f),<>/szhgmlﬂfhfbclwzf.

By construction f(-,z2) € Lip(I1;S') for a.e. x5 € Iy and f(-, z5) = ¥(%2) with 1(-, 25) € Lip(I1;R)
for a.e. x5 € I5. Hence the standard chain rule for Lipschitz functions gives

—/I2 11C2f/\81f=—/12 IIC2D1¢=—/RQC2D1¢'

Now we recall that ¢ € L'(I;; BV (1)) N LY(Iy; BV(I1)) with equivalence of norms because v €
BV (I x I5) (see [3]). On the other hand, by construction, f(x1,-) € Lip(I2;S!) for a.e. 1 € I;. Hence,
for a.e. z; € I, there exists a lifting function ¢),, € Lip(I,R) such that f(z;,-) = eivar () = giv(@1,)
a.e. in Is. Arguing as above, we infer that

/I1 /12 GfNOf = /R? G D2y + /11 ( i G1D2 (Y, (22) — ¢($1,$2))d$2)d$1 ;

and the lemma is completely proved once we show that
/ ( (1Dq (1;11(1'2) - 1/)(1,‘1,332))d$2) dr; =27 < QP,( > .
I Is

Since 9, () — 1(x1,-) € BV (Iy;2nZ), we may argue as in [33], eq. (3.23), taking into account the
properties of 1, to derive that, for a.e. x1 € Iy,

D (i, () — a1, ) = {‘2”50 diml et

0 otherwise,
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whence the conclusion. [

The main result of this section is the following.

Theorem 5.1. For every f € X, there exist ¢ € HY?(R*:R) and 1 € BV(R%;R) such that
=€) ge inR? and

Pl1/2 < Clfliy2, (5.11)
[Wlev < CIf s (5.12)
for an absolute constant C' > 0. In addition, there exists an integer multiplicity 1-rectifiable current

t € R1(R?) of finite mass M(t) < C’|f|§/2 such that 2r0t = T(f) and for any ¢ = (1dxy + (odzs €
DY(R?), we have

< J(f)ac >= ,/]Rz (_C261¢+C182¢) “r“/RQ (—<2D1’¢+§1D2’(/J) 42 <t,( > . (513)

Proof. Step 1. First we consider the case f € X N Wlf)’cl (R?) with f smooth except at finitely many
points aq,...,ar, and constant outside a compact set. According to Lemma 2.2, we have T'(f) =
-2 Zle d;ba; , where d; = deg(f,a;). Since Zle d; = 0, we may relabel the a;’s, taking the
multiplicity |d;| into account, so that T'(f) = —2« Zil(épj — dg;) with 2N = Zle |d;|, where the
p;’s (resp. the ¢;’s) correspond to singular points with positive (resp. negative) degree. In addition,
we may also relabel the points {¢;} in such a way that

N N
z; lpj —q;] = ;\gé?vz; IPj — Go(i)l -
J= J=

where Sy denotes the set of all permutations of N indices. In view of (1.18) and a well known result
in [13], we have

N
(}\g}s& 21 Ipj = 4oyl = L1a(f) -
=

By an induction argument based on Lemma 4.1 and Lemma 4.2 (see also proof of Proposition 7.3), we
can find for each j = 1,..., N, a dipole map f; such that T'(f;) = —27(0p, —dq;), E1a(fj) < 27[p; — q;]
and Eld(]_[;-\;l fi) <2m Zjvzl Ipj — qj|. Setting g = vazl fj, we infer from Lemma 4.2, Proposition 2.6
and Lemma 7.2 below, that g € X is constant outside a compact set, g € Lip,,.(R? \ {a1,...,an}),
T(g) = T(f) and &1a(g) < 2nL1a(f) < C&a(f) for some absolute constant C' > 0. Now we consider
f = gf. By Proposition 2.6 and the above properties of g, we have f € X, T(f) =0, f=gf ae.
and \f|§/2 < C’\fﬁ/z. In view of Lemma 5.1, Proposition 5.1 and the previous inequality, there exist

$ € HV2(R%R) and § € BV (R%R) such that f = e+ ae., []1/5 < Clfl1ja. [0l sv < CIf[2,, and

< J(f),( >=<J(9),¢ > +/Rz(—C281<13+C182<13) + /R2(—C2D11; + D2, (5.14)

for each ¢ = (1dx1 + (adxs € DY(R?). By Lemma 4.2, for each j = 1,..., N, we have f; = e'¥i, where
¥; € BV(R?%;R) has compact support and |¢;|gy < C|p; — q;]. Thus, setting ¢ = Zjvzl 1; , we have
) € BV(R%R), g = e ae. and

N
[Plev <C Iy — a4l < CIf

Jj=1
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Then we derive from Lemma 5.1 and Lemma 5.2 that

2

N N
<J(9),¢>=)_ < J(f):¢ >:/ (—C2D1th + (1 Do) + 21 < > pi;, ¢ > (5.15)
j=1 R j=1
Finally, we introduce ¢ = ¢ € HY/2(R%,R) , ¢ = ¥+ € BV(R%R) and the current ¢ = Zjvzl pjq; €
R1(R?), we have [¢l1/2 < C|f|1/2, [¥]pv < CIf[} 5 and M(t) < )7, M(p;q;) = Lia(f) < CIf 35
Combining (5.6) with (5.10) the conclusion follows.
Step 2. Now we consider the case of a general f € X. By theorem 2.6, there exists {f,}nen C

XN Wﬁjcl (R?) a sequence of functions, smooth outside finitely many points and constant outside

compact sets, such that f,, — f strongly in H'/2 and a.e. as n — +oo. Since the product is continuous,
up to subsequences, we may always assume that \fnfﬁ/Q < 4*”|f|f/2 for each n > 1. We define g1 = f3

and for j > 2, we set g; = fjfj,l. Clearly g; € XﬂWl’l(RQ), g; is constant outside a compact set and

loc

smooth except at finitely many points. In addition, [1j-,9; = fn and we have \gj|f/2 < C’4*j\f|f/2
writing g; = (f;f)(f f;—1) and applying Proposition 2.6. To each function g;, we may now apply Step
1 to obtain three sequences {¢;}jen C HY2(R%:R), {1h;}jen € BV(R%R) and {f;}jen C R1(R?)
such that g; = €(®s+%3) ace. in R?,

|Bil2 < C277(flya,  ylav < CAT|fI} s, M) < CAT|fL} ) (5.16)
and

< J(g5),¢ >:/R2‘(7 C2D1j + <182¢;j)+ /RQ(* (D1t + C1D21/Afj) + 2w < t;,( > (5.17)

for any j > 1 and any ¢ € D*(R?). Next we define
Gn = on€ HPR%R), vp=> thy € BVRER), tn=> i, € Ri(R?).
j=1 j=1 j=1
Clearly f, = ¢(®»t%n) ae. and we derive from (5.16) that
|¢n|1/2 < C|f|1/2, |¢n|BV < C|f|§/2a M(tn) < C|f|§/2 : (5'18)

Summing up over j in (5.17) and applying Lemma 5.3, we obtain
<J(fn), C>=/2<— (2010 + (1026 +/2(— CoD1n + (1 Daty) + 21 <tpy, (> (5.19)
R R

for any n > 1 and any ¢ € D!(R?). Subtracting suitable multiples of 27 if necessary and passing to
subsequences, we infer from (5.16) that

n—-+o0o

o= lm_én=3"d; and ¢= lm un=3 i
j=1

Jj=1

exist in the weak H'/2—topology, respectively in the weak-+ BV —topology, and a.e. in R2. In addition,
f =€t ae. in R? and (5.11)(5.12) follow from (5.18) by lower semicontinuity. Similarly, (5.16)
and (5.18) yield the existence of
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as a weak limit of currents with M(t) < C’|f|%/2. Finally, we deduce (5.13) letting n — +oo in (5.19)
taking into account the strong convergence of f,, together with (5.2), and the weak convergences of
®n, Pn and 1. u

Using the previous representation formula it is possible to describe the behaviour of pre-Jacobians
under weak convergence. We have the following.

Proposition 5.2. Let f € X and {f.}nen C X such that T(f,) = To € (Lip(R?))" for all n and
fn — f weakly in HY/?. Set M = sup,, | fuli/2. Up to subsequences, there exists an integer multiplicity
L-rectifiable current © € R1(R?) of finite mass, M(0) < CM? for an absolute constant C' > 0, such
that 2100 = Ty — T(f) and for any ¢ = (1dxy + (odrs € DY(R?),

<J(fn),c>n:>m<J(f),g‘>+27r<@,§> ) (5.20)

Proof. Up to subsequence we may assume f, — f a.e. in R%. Let n > 1 be fixed and write f, =
(fuf)(f1f)f, so that J(f,) = J(fuf1) + J(f1f) + J(f) by Lemma 5.3. Since T(f,) = Ty, using
Proposition 2.6 we obtain T'(f,f1) = 0. By Proposition 5.1, there exist ¢, € Hl/z(R2;R), |énl1/2 <
CM, and 1,, € BV (R?;R), ||y < CM?, such that f, fi = e/(®n+¥n) ae. and

SHuFC o= [ (= Goron+00,) + [ (—aDwn+aDu)  (521)

for any ¢ € D'(R?). On the other hand, by Theorem 5.1, there exists ¢ € H'/2(R?;R), |pli/2 < CM,
and ¢p € BV(R%R), |¢|gy < CM?, and a current t € R1(R?), M(t) < CM?, such that f, f = e(¢+¥)
a.e. and

<J(frf), ¢ >= /R (= oo+ (10:0) + /R (= GD1 + (Do) + 21 < t,( > (5.22)

for any ¢ € D!(R?). Up to subsequences (and possibly subtracting suitable multiples of 27), we may
assume ¢, — ¢ weakly in H'/2 and a.e. in R2. Similarly, we may assume 1, — 1) weakly-x in BV
and a.e. in R2. Obviously, ff; = ¢i+%) a.e. and by lower semicontinuity, we have the norm bounds
|¢~5|1/2 < CM, and [¢|gy < CM?. Combining the decomposition of J(f,) given by Lemma 5.1 with
(5.21) and (5.22), we deduce that

Jim < J(fa).¢>= < J(f).¢ > +/ (= C01(0 +0) +102(0 + )+ (5.23)

R2

+/ (_§2D1(1/)+7/;)+C1D2(¢+1;)) +2r < t, (>
R2

for any ¢ € DY(R?). Since 1 = (f1.f)(ff1) = ei(9+1)ei(6+Y) g6, in R2, we have (p+¢)+ (W +19) €
(HY? 4+ BV)(R%2rZ) with the norm bounds [¢ + ¢|1o < CM, |t + 9|py < CM?. Then, the

conclusion follows from Lemma 5.3 below and (5.23) for © =t + . [

Lemma 5.3. Let ¢ € HY?(R%R) and ¢ € BV (R%R) such that (¢ +¢)(-) € Z a.e. in R2. Then
there exist & € BV (R%Z) and an integer multiplicity rectifiable current t € Ri(R2) of finite mass
without boundary such that ¢+ = 0 a.e. in R? and |0|gv < [¢|pv, M(t) < Cl|gv for an absolute
constant C' > 0, and

/Rz (— G019+ C1020) + /Rz (= D1+ (1 Datp) =< £,¢ > (5.24)
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Jor any ¢ = (iday + Coday € DH(R?).

Proof. Let us set 6§ = ¢ + 1, so that 0(z1,z2) € Z a.e. (x1,22), and fix an arbitrary square
Q = IxJ C R? Clearly ¢ € H'/?(Q) and v € BV (Q) with uniform seminorm bound [¢|y /2. < |#]1,2
and |[¢|gyv(q) < |[¢|pv. Clearly 0 € L'(Q) and we claim that § € BV(Q) and 10lsv o) < [¥|Bv(),
whence § € BV(R?;Z) with the desired bound. To prove the claim we argue by slicing. Recall
that (see [35] and [3]) ¢ € L2(I; HY2(J)) N L?(J; HY/?(I)) with equivalence of norms and simi-
larly v € LY(I; BV(J)) N LY(J; BV(I)) with equivalence of norms. Therefore, it is enough to show
that @ € L'(I; BV(J)) N LY (J; BV (I)), i.e., that the slices 6(z1,-) and 6(-, z3) satisfy the seminorm
bounds [} 10(z1,)|pv(ndrr < [, [¥(x1,)|sv(sy and [, 100, z2)lpvndee < [; [0 (- 22)Bv(s)- These
inequalities hold pointwise under integral signs as follows from [33], pag. 265-267, so the claim holds,
ie., § € BV and 0|y < |¢|pv.

Since 0 = ¢ + ¥ a.e., taking the derivatives in the sense of distributions in (5.24), it remains to
prove that for each ¢ € D(R?),

/ (= ¢D10+ 1 D2F)) = 7/ (D0 =<t >
R2 R2

for some integer multiplicity 1-rectifiable current £ € R(R?) of finite mass M(#) < C|f|zy. We
observe that such a current must have zero boundary, as follows from the previous formula taking
derivatives in the sense of distributions.

First, we recall that |0| gy = [, [X{o>¢}|Bvdt < co. Hence if we set for each j € Z, Q; = {|0—j| < 1}
and 0; = jxq,, then 0; € BV(R?), 0 =6, ae. inQj, 0= Z;’;_OC 0; a.e. in R? and Z;’;_w 16| pv =
|0 pv. On the other hand, we have Df; = jn;H'L_0.Q;, where n; is the inward measure theoretic
normal at the points of the reduced boundary. Therefore, t; = D+0; = jniH'l_0,Q; is a 1-

dimensional integer multiplicity rectifiable current of finite mass t; € R1(R?) with M(¢;) = |0,|pv.

k
As a consequence ¢ = klim t; exists as a weak limit of currents and it satisfies M(t) < |0|pv
——+00
j=—k
and T = Z;’;_Oo t; = Z;‘;_Oo D10; = D16 as R?—valued measures, which ends the proof. [

5.2 Graph currents of HI/Q(RQ; SY)-maps

In order to interpret lack of compactness of minimizing sequences in terms of bubbling-off of vertical
current, it is very convenient to consider the graphs of a sequence of maps {f, }nen as two dimensional
currents in the product space R? x S!, as already pursued in [22], [25], in the spirit or the general
theory of Cartesian currents developed in [21]. Our approach here is more direct and essentially based
on Theorem 5.1. For another approach regarding graph currents as integral flat chains see e.g. [25].

Given f € OC°(R?;S!), the graph of f is a 2-dimensional smooth submanifold without bound-
ary, Gy C R? x S', with the natural orientation induced by the parametrization (z1,z2) € R? —
(wl, xa, f(21, ajg)) The graph current Gy associated to f is defined by its action on smooth compactly
supported 2-forms 9 € D?(R? x S!,), s = (z1,x2), through the formula

<Gy,¥ >= . (5.25)
Gy

Clearly, by Stokes theorem, we have

/dﬁz B=0, VB € D'R? xS, (5.26)
Gy aG ¢
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since Gy has no boundary in R? x S
Let w be the standard volume form on S!. Then every 2-form ¢ € D?(R? x S!,) can be uniquely
and globally written as

(s, s') = Fo(s,s")dzy Adzg + (Fi(s,s')dar + Fa(s, s')dzs ) Aw(s') (5.27)
=0%0(s,8') + 011 (s, ),
for suitable smooth functions Fy, Fy, Fy € C§°(R? x S';R). In other words, we have the direct sum

decomposition D?(RZxS!,) = D0 (RZxS!,) @ D' (RZxS!,), with obvious meaning of the summands.

Using decomposition (5.27), we may rewrite (5.25) as

< Gy, ¥ >= /R2 Fy (s,f(s))ds+ (5.28)

# [ [ 19) 106 n02106) = Fatis 19) 106) n 01565 .
R
Clearly, whenever f is smooth, the right hand side of (5.28) defines a current, i.e.,
Gy € Do(R? x SY) = (D*(R? x §1))".

Indeed, if ¥, — ¥ in D*(R? x S'), then the corresponding densities F', F* and Fy' satisfy FJ* — F}
in C§°(R? x SY), j = 0,1,2. Thus, < Gf,9,, >—< G¢,9 >, by uniform convergence of the integrands.
Moreover, by construction, this current coincides with the integration over the graph, i.e., with (5.25).

Since the F}’s, j = 0, 1,2, are compactly supported smooth functions, for each f € X we can take
(5.28) as the definition of the graph current associated to f. Indeed, the first term in the right hand
side of (5.28) is an integral of a bounded measurable function with compact support. We shall see

that the second term can be interpreted as an H'/2 — H~1/2 duality in the sense of Remark 2.2. To
this purpose, we introduce for each F' € C§°(R? x S'), the superposition operator F defined by

FifeXw—Ff()=F( ()€ H*R%R).

Since F' is globally Lipschitz in the s’-variable, uniformly with respect to s € R?, we infer from (1.2)
that the operator F is well-defined and bounded on bounded sets. Indeed, one has the straightforward
estimate

IF 2 < 1Eller (U411 fll2) (5.29)

whence the H'/2-continuity of F(f)(s) = F(s, f(s)) with respect to F follows. On the other hand,
continuity with respect to f € X is a well known consequence of estimate (5.29) (see e.g. [2]). According
to Proposition 2.3, it is clear that the products F} (-, f())f, Jj=1,2,in (5.28) belong to Hl/Q(RQ; R?)
and they are continuous with respect to F; and F5 respectively. By Remark 2.2, the second integral
in the right hand side of (5.28) is well defined and continuous with respect to F; and Fs. Therefore,
(5.28) defines a current for any f € X.

By (5.28) and the continuity of the superposition operators with respect to f, we also deduce that,
if f,, — f strongly in H'/2, then G4, — G as currents.

In contrast with the one dimensional case treated in [33], a graph current Gy for f € X arbitrary,
may have boundary. Indeed, we have the following description.

Lemma 5.4. Let f € X and let Gy be its corresponding graph current. For any (3 € D'(R? x S'), we
have

<0Gy, B >=<T(f),Bo > (5.30)
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where Bo(z1,x2) ::][ B(z1,72,-), Bo € CC(R%;R).
Sl
Proof. Let 3 € D(R? x S1), i.e.,
B(s,s") = (Bi(s, s")dx1 + Ba(s, s')dxs) + Bo(s, s )w(s")

for suitable smooth functions By, By and By € C§°(R? x S!). In other words, 3 = g0 + g% €
DY(R? x St) = DMO(R? x S1) @ DY (R? x S) with obvious meaning of the summands. A trivial
calculation gives

dﬁ = (8132 — 8gBl)dm1 A\ dl’g + (3130 - GS/Bl)dacl VAN W(SI) + (aQBO — as/Bg)dIEg A\ W(S/) s

where 0, denotes the differentiation with respect to the unit tangent field 7, on S! oriented counter-
clockwise. Taking (5.28) into account we have

< 8Gf7ﬂ >=< vadﬁ >:/ (alBZ(xlamQaf) +8S'B2(x17x27f)f/\81f) +
RQ
—/ (02B1(21, 2, f) + O B1(w1, 22, [)f NOof) +
R2

+/ (01Bo(x1, 2, f)f N Oof — 82Bo(w1, 22, f)f NOLS)
R2
=1+ II+1II.

As f € HY/?(R?;S!), slicing in the z; or in the x5 direction, we have have f € Lﬁl(Higz(R; St)) and
similarly f € L2, (H;{Q(]R;Sl)). For f(-,x5) € HY/?(R;S!), using the strong density of smooth maps
(see e.g. [33]) in one dimension, we obtain

I:/ (/ (81B2(3'5175L'2af) +35f32(x1,x2,f)f/\81f)dx1>dx2 -0,
R R

and similarly IT = 0, because both the integrands appearing in the inner integrals (more precisely,
in the inner HY/2 — g~1/2 dualities) are exact derivatives, so they vanish on smooth maps. As a
consequence, we obtain < Gy, 3 >= 0 for any 3 = 10 € DHO(R? x S'). Then for any 3 = %! =
Bo(x1, 79,8 )w(s’) € DY1(R? x St), we have

< 8(;]",ﬁ071 >= /2 (3130(5617362, f)f A a?f - 82Bo($h x2, f)f A alf) . (531)
R
Finally, we recall that HéR(Sl) = R and it is generated by the volume form w on S'. Using the
Hodge decomposition in S!,, we may write 8 = %! + 819 = By(z1, 22)w(s’) + dn(x1, 22, 8') + (B30 —
dsn(z1,xa,5")) for some n € C°(R? x St). Hence,
<0Gy, B> =< 0Gy, fo(x1,x2)w(s") > + < Gy, dn > + <0Gy, B0 —dyn >
=< 0GYy, Bo(w1, x2)w(s") >

because B0 — dsn € DMO(R? x S') and < 0G,dn >=< Gy,d*n >= 0. Then the conclusion follows
from (5.31) together with (1.5) since Sy does not depend on the s'-variable. |

The following result, which parallels Proposition 5.2, describes change of topological singularities
in terms of graph currents.
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Proposition 5.3. Let f € X and {fn}nen C X such that T(f,) = To for each n and f, = f weakly
in HY2. Then, up to subsequences, there is an integer multiplicity 1-rectifiable current © € R1(R?)
of finite mass such that 2100 = Ty — T(f) and

Gy

n

- Gy +0x[S' in Dy(R*xS'). (5.32)

n—-+oo

Proof. In order to prove (5.32), we rely on Proposition 5.2. Let ¢ € D*(R2xSL,), 9(s, ') = 920(s, s')+
91(s,8') as in (5.27). Define ¥ € DY (R?) as J(z1, x2) = Fy (21, 22)dxy + Fo(z1, 79)dws With

Fi(z1,29) :][ Fi(z1,29,8)ds’ and Fy(z1,22) :]Z Fy(x1, 0,5 )ds, (5.33)
St St
so that for each f € X,
< Gf,ﬁ/\w(s') >:/ (F‘l(;vl,xg)f/\agf — F‘g(xl,xg)f/\alf) =< J(f), 9 >. (5.34)
RZ

On the other hand, as in the previous lemma, the Hodge decomposition gives us two functions Hy, Hs €
C§°(R? x S!) such that
Fi(z1, 22,8 )dry Aw(s') = Fi(z1,22)dzy Aw(s') +d( — Hy(z1, 22, 8" )day)
— OoHy(x1, 29,8 )dx1 Adxo,
and
Fy(z1, 32,8 )dzs Aw(s") = Fa(w1, x2)dws Aw(s') + d( — Ha(w1, 2, 8" )dxs)
+ O Ha (1, 72,8 )dx1 A dxsg .
Combining these formulas with (5.27), we conclude that
9=9Aw(s)+dB+n, (5.35)

for some 8 € DYO(R? x St) and n € D?O(R? x S). Since n = P(x1,22,5" )dx1 A dre for some
P € C5°(R? x S1), we derive by dominated convergence that

n—-+o00

< an’n >:/ P($1,$2,fn(l'17$2)) —
R2

— P(ajl,l‘g,f(.ﬁl,xg)) =< Gf +tx [Sl],n > (536)

n—-+00 R2
for any t € R1(IR?) of finite mass. Then, by (5.34) and Proposition 5.2, up to subsequences, we have

<Gy 9 ANw(s) >=< J(fn),0 > —. < J(f),9 > +21 < 0,0 >=

=< G, I Nw(s') >+ <O x S, 9 Aw(s) >
=<Gr+0Ox[S',9Aw(s) >, (5.37)

for some 1-dimensional integer multiplicity rectifiable current © € R1(R?) of finite mass such that
2700 =Ty — T(f). Finally, Lemma 5.4 yields

< Gy,,df >=< 0Gy,,3>=0 Vn (5.38)
and

<0Gy, >=0=<9G; + 00 x [S'],8 >=< G; + O x [S'],dB > (5.39)
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because 3 € DVO(R? x S'). Combining (5.35) to the conclusion follows. [

Remark 5.1. We emphasize that the limiting current © obtained in Proposition 5.3 is precisely the
one given by Proposition 5.2.

6. Concentration effects and quantization of Jacobians

We begin the section with some propositions concerning concentration effects both of topological and
energetic nature. The following quantization property for Jacobians relies on the results of the previous
section.

Proposition 6.1. Let f € X and {fn}nen C X such that T(f,) = Ty € (Lip(R?)) for each n
and f, — f weakly in H'/?. Let u € H'(R3;R?) and {up}nen C H'(RY;R?) such that f = Tru,
fn = Tru, for each n, and u,, — u weakly in H'. Then, up to subsequences, there exists a 1-rectifiable
current © € R1(R?) of finite mass such that 2100 = Ty — T(f) and for any @ € C§(R?;R?) and
T e CY(R3;R3) such that $|R2 = (¢,0), we have

/ (H(un) — H(u)) - & — <O, P>, (6.1)
Proof. Clearly we may assume ¢ and @ smooth since the general case follows by uniform approx-
iglatiom as H(u) € L*(R3) and {H(uy)}nen is bounded in L'(R3). We write @ = (p1,¢2) and
O = (P, Py, P3) and we set ( = p1dx; + wadas. Taking (2.14) into account, a simple integration by
parts (which can be justified by density, due to Theorem 2.2) gives for any g € X and any extension
of g to the half space, v € H'(R3;R?),

H(v)-8:< J(g)7C>+/ (v A Vo) ccurl @

3 3
RS RY

Since u,, — u weakly in H', we infer that

/ (un A Vun) - curl 8 — (u A Vu) - curl 8
3

3
+ R

as n — +o0o and hence

/ (H(un) — H(u)) P =< J(fn) = J(f),¢ > +o(1) asn — +oo.
R}

Thus, the conclusion follows from Proposition 5.2. |
Remark 6.1. We emphasize that the limiting current © obtained in Proposition 6.1 is precisely the
one given by Proposition 5.2.

The following simple proposition deals with energy minimizing sequences for p4.

Proposition 6.2. Let A € A and P,Q € R? two distinct points. Let {fn}neny C X be an optimal
sequence for pa(P,Q) and {up}nen C Hl(Ri_;RQ) the corresponding A—-harmonic extensions. Then,
up to a subsequence, there exists u € M*(Ri) with spt p C 8R‘i such that

1 *
B tr (Vu, A(Vu,)")dz = p asn — +oo (6.2)
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weakly- in the sense of measures. Moreover, if pa(P,Q) < nda(P,Q), then p has compact support.

Proof. Extracting a subsequence if necessary, we may clearly assume that (6.2) holds for some p €
MJ’(@) Since f, — o weakly for some o € S!, we infer that u, — o weakly in H*. By Proposition
2.8, Vu, — 0 in leoc(Ri) and consequently, spt u C 3R3_. To prove the last statement, we shall use
similar arguments to those in the proof of Theorem 1.1, steps 2 and 5. Let us consider the compact
set
K = {xeRi : max (|z — P|,Jz — Q|) < AP—Q|}.
A

By weak-* convergence, we have

lim inf 1/ tr (Vu, A(Vu,)")dz > ,u(ﬁ\ K)
RS \K

n—-+4oo

and therefore

_ — 1
mda(P,Q) > pa(P,Q) > p(R3 \ K) + lim_~i_nf 5/ tr (Vu, A(Vu,)')dz . (6.3)
n—-—+oo K
Then the conclusion follows once we prove that
1 _
liminf 5/ tr (Vu, A(Vuy,))dr > 7da(P,Q) . (6.4)
n—-—+oo K

In order to prove (6.4), we fix 0 < r < 1 and we introduce a cut-off function x € C§°(R) such
that 0 < x < 1, sptx C (=7,7), x(t) = 1 for |[t| < r/2. Consider ® defined on Q, by (4.4). Since
spt ® C K N Q,, we may argue as in the proof of (4.5) to obtain

1 1
f/ tr (Vu, A(Vuy,)")dz > nd)y (P, Q) — f/
2k 2 Kn{r/2<zs<r}
Since Vu,, — 0in L (R?%) the last term in the right hand side vanishes as n — +o0. Then we recover
(6.4) letting » — 0 by Proposition 3.5. |

® H(uy) - Vx.

Proof of Theorem 1.2. Step 1. Since A is continuous in @, d4 coincides with the Riemannian
distance on R? ~ 9R? induced by the (continuous) matrix field Cof A(z1,z2,0). We start with the
proof of claim (7). Observe that it is enough to show pa < md4 since the converse inequality holds by
Theorem 1.1, claim (%i). We shall use a convolution argument with respect to the (z7,x2)-variables,
as in the proof of Theorem 1.1, step 4. We fix Py, Qo € R? ~ 9R3, and define for P € R?, ¢{(P) =
pa(P, Qo) . We introduce a standard mollifyer o € C§°(R?%;R), i.e., 0 > 0, fR2 o =1, and set, for ¢ > 0,
0-(2) = e720(2/¢). We define £, = g, * £ and

A (w20, 23) = / 0e(—21, —22)A(x1 + 21, T2 + 22, x3)d21d 29,
R2

so that A. € A, A, is continuous in RTEF and A, — A locally uniformly in @ as € — 0. Arguing
exactly as in the proof of Theorem 1.1, step 4, we obtain

|VE.(2) - | < 7\/(Cof Ac(z))h-h Vh € R? x {0}, Vz € OR?.

where Z. (21, 2, 23) 1= & (21, 22). Consequently, for any v € Lipp, o, ([0, 1]; OR3 ), we have

€.(Py) — £:(Qu)| < / V2. (v () - 5(#)|dt < 7 / La. (7(8), (1)) dt.
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Taking the infimum over v, we derive |£.(Py) — £-(Qo)| < mda.(Py, Qo) and the conclusion follows
letting € — 0 in view of Proposition 3.6. |

Remark 6.2. We emphasize that the assumption A € Ay is not used in the above proof. In other
words, claim (%) in Theorem 1.2 holds for any A € AN C°(R3).

Remark 6.3. We observe that ps only depends on the trace of A on 8Ri, i.e., pa = par whenever
AA e AN C’O(Ri) with Ajgz = ATR"" Indeed, in such a case Cof Ajg> = CofAT]R2 and the distances
da, da are respectively equal to the induced Riemannian distances on R?, so they coincide.

Proof of Theorem 1.2. Step 2. First, we provide a lower bound for the energetic distance pa(P, Q) in
terms of the Jacobians of the optimal sequence. Let f,, and u,, as in the assumption with f,, — o € S*.
Clearly u, — a weakly in H'. Arguing as in (4.3), we obtain

pA(P,Q) = lim FEu(u,) > limsup1 H(uy,) - 8, (6.5)

n—+o00 n—-+oo R3

for any vector field T e 08(@; R?) satisfying (CofA)_lg> S < 1 in R}. In order to choose T
in (6.5), we claim that, given ¢ € C§(R?;R? x {0}) such that (Cof A)~'p - @ < 1 in R2, there
exists @ € C’g(@; R? x {0}) such that 5)”1@ = ¢ and (CofA)’lg s < 1in R3. This is an easy
consequence of the celebrated Michael’s selection theorem (see [4], Theorem 9.1.2 and Corollary 9.1.3).
Indeed for each 7 > 0 and B, C R? such that spt ¢ C B,, the sets K’ = By, and K = K’ x [0, 27]
are compact and the set-valued map

K3>P~Cp={£€R*x{0} : (CofA(P)) "¢ -£<1}

is a nonempty lower semicontinuous compact convex valued map. The map K’ 3 P +— G (P) is a
continuous selection and hence, it can be extended to a continuous selection s defined on the whole
K. Multiplying 3 by a cut-off function y € CJ(R?) such that 0 <7 <1and n=1on K’ x [0,7], the
claim follows.

Since T'(fn) = 2n(dp — dg) for every n, applying Proposition 6.1 (with f = a and v = « so
that T'(f) = 0 and H(u) = 0), the previous claim and inequality (6.5), we obtain a limiting current
O € R1(R?) such that 90 = §p — dg and

PAPQ)>7<0,¢ > (6.6)

for any @ € CJ(R?;R?) such that (Cof A)~'(F,0)-(F,0) <1 in R2

Since p4(P, Q) = mda(P,Q) and A € Ay, taking the supremum in (6.6) over all admissible &, we
conclude M 4(0) < da(P,Q), where M 4 is the mass of the current © € R(R?) with respect to the
Riemannian structure on R? induced by Cof Ag> restricted to the tangent space. Since © € R (R?)
and 00 = (6p — dg), we also have the lower bound M4(0) > da(P,Q) by standard polyhedral
approximation. Therefore M 4(0©) = d4(P,Q) and consequently, © is (the image of) a minimizing
geodesic running from Q to P, i.e., there is an injective curve v € Lipg p([0,1]; OR3 ) with La(y) =
da(P,Q) such that © = T where T is the 1-rectifiable current relative to oriented curve I := ~([0,1])
running from @ to P. Then, claim (%) follows as a consequence of Proposition 6.1, Proposition 5.3,
Remark 5.1, Remark 6.1 and the explicit form of the limiting current ©.

Step 3. Now we move on the proof of claim (ii). By Proposition 6.2 and Step 1, we may assume

1 *
oy 2= §tr (Vun A(Vu,))dr = p asn — +oo,
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weakly-x in the sense of measures for some compactly supported measure u € M"'(@) such that
spt 1 C OR3 . Without loss of generality, we may also assume that || > 1/2 a.e. in (0, 1) (otherwise we
reparametrize I'). Then , for H'-a.e. € T, the oriented unit tangent vector to I' at x is well defined
and given by

_ @)
B @)

Arguing as in Step 2, we derive that for any ¢ € C’g(@) with 0 < ¢ < 1 and any @ € CJ(R?;R?)
such that (Cof A)71(%,0) - (¥,0) < 1in R? ~ JR3, we have

()

paP.Q) = [vau= i [vdu zn<Tovgs>=r [v7 ran', (6.7)
n—-—+oo T
We claim that there is an admissible sequence {5 }xen such that

Pr-T— \/(Cof AT -7 H'-a.e. on T as k — 4o0. (6.8)

To construct such a sequence, we shall use a regularization procedure. First, we extend v to [—1, 2]
into a Lipschitz curve satisfying |¥| > 1/2 a.e. in (—1,2). Then we consider a sequence dy | 0. From
the uniform ellipticity of A, we infer that the map B : t € [-1,2] — (CofA(v(t)))fl/2 is uniformly
continuous. Hence, we can find ¢; | 0 such that |B(t) — B(s)|| < §; whenever ¢,s € [—1,2] with
|t — s| < k. We define on (—1,2) the 9R3 -valued function

(Cof ALY()))3(8)
V(Cof A(v(1)))4(t) - 4(1)
We easily check that |v| < /A and |Bv| =1 a.e. in (—1,2), and also

v(t) =

v(y(x)) - 7(x) = \/(Cof A(z))7(z) - 7(x) for H'-a.e. z €T, (6.9)

Next we introduce a standard mollifyer o € C§°(R;R), i.e., 0 > 0, spto C (—1,1), fRQ =1, and set
ok (t) = &5, o(t/ey). We define for t € [0, 1], vy (t) = o5, * v(t). Writing

tteg tteg

or(s —t)B(s)v(s)ds + / or(s — t)(B(t) — B(s))v(s)ds,

t—ep

Blow () = [

t—eg
we easily obtain the estimate |B(t)vy(t)] < 14 6,v/A for every t € [0, 1]. Then we consider for 2 € T,
Pr(z) = (1+8vVA) " 'vp(y~(2)). By construction, we have (Cof A)~*(F1,0) - (F1,0) <1onT. By
a similar extension procedure to the one used in Step 2, we may now extend @ to R? in such a way
that the resulting function is continuous, has compact support and satisfies the required constraint
(Cof A)~ (P, 0) - (¥1,0) < 1 in R2 Then, since vy — v a.e. in (0,1), we conclude that (6.8) holds
in view of (6.9).
Plugging the function @y in (6.7) and letting k — +o0, we deduce that

pa(P,Q) > /wdu > 7r/ VLA (x,7,)dH'  for any ¢ € CO(@) wit 0 <o < 1.
r
Therefore p1 > 7L (-, 7(-))H'_T. On the other hand, the length formula and Step 1 yield

pa(P,Q)> u(R3) > (mLa(,7())H' L T)(R3) =7Lla, (v)=7da(P,Q) = pa(P,Q)

so that the two measures have the same mass. Hence u = w4 (-, 7(-))H'L_T.
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Step 4. To complete the proof of Theorem 1.2, we shall need two auxiliary results. The first one gives
a coarea type formula for Jacobians in the spirit of [1] and [27].

Proposition 6.3. Let f € X and u € Hl(Ri; R?) its A-harmonic extension with A € A continuous
in R3. For any b € CJ(D;R), any ¢ € Lip(R*;R) and any ® € Lip(RY;R) such that PRz = o, we

have
/

Proof. Clearly we may assume that both ¢ and ® are smooth and compactly supported, by standard

b(u)H (u) - V& = (ﬁb) <T(f), 0> . (6.10)

3
+

approximation and weak- convergence in L>, and that f # o € S! is nonconstant, otherwise u = o
and (6.10) trivially holds. We also observe that it suffices to prove (6.10) under the extra assumption
A € C*(R3;8T). Indeed, let us assume that (6.10) holds under this assumption. Since A € A is
continuous in @, a usual convolution argument gives a sequence of smooth matrices {4, }men C A
with the ellipticity bounds of A, such that A,, — A in C&C(@). According to Propositions 2.7
and Proposition 2.8, the corresponding sequence {uy, }men of A, —harmonic extensions of f satisfies
Vi, — Vu in LIQOC(@; R?) and (up to subsequences) u,, — u a.e. as m — +o0. Since (6.10) holds
for u,, and every m, the conclusion follows letting m — 4o0.

To prove (6.10) for A smooth, we combine the results of [1] and [27]. First, we observe that by
Propositions 2.7 and Proposition 2.8, we have u € C*°(R%;R?), [u| <1 a.e. in R, ||Vull2 < C|f]1,2
and |ju(-,x3) — f(-)H2LQ(R2) = o(x3) as 3 — 0. Under these assumptions, we can apply the argument

in [27], Section 3, to conclude

1
— < T >= dd
5 <T(f)y /ul(y)

for a.e. y € . Here and in [27], with a slight abuse of notation, u~!(y) represents the integer multiplic-
ity 1-rectifiable current of integration over the the fiber u=1(y) (generically a smooth curve by Sard’s
Theorem). Combining this relation with the oriented coarea formula of [1] (see Section 2, formula 2.6),

/R b(u)H(u)-V<I>:2/Db(y)(/u_l(y) d<I>>dy: <be> <T(f), >,

which is the desired formula. |

we obtain
3
+

The following simple lemma gives a first description of the behaviour of the vorticity sets of minimal

extensions under weak convergence.

Lemma 6.1. Let {f,}nen C X such that f, — a € S* weakly in H'/? and let {u, }nen C Hl(Ri;RQ)
be the corresponding A-harmonic extensions. We set V(un, R) = {z € RY; |u,(z)| < R} for 0 <
R < 1. Then, for any compact set K C Ri, there exists nx > 1 such that V(u,, R)NK = 0 for every
n>ng.

Proof. We argue by contradiction. Assume there exists a sequence of positive integers ny — +o0o as
k — +o0o and z € V(up,,R) N K for every k. By Proposition 2.8, the sequence {uy,, } is compact
in CP(R%;R?). Therefore, up to a subsequence, u,, — a € S' uniformly on K. Hence, |u,, (zx)| —
|a| = 1 which contradicts |un, ()| < R for every k. |

Proof of Theorem 1.2. Step 5. Let {fn}neny € X be an optimal sequence for ps(P,Q), ie., fn —
f=aeS T(f,) =2n(p — o) and Es(fn) — pa(P,Q) as n — +oo. We claim that, for every
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0 < R < 1, we have

lim inf 1/ tr(Vu, A(Vu,)') > nR*d4(P,Q), (6.11)
nEe 2 {Jun (@) <R}

1 _
lim inf f/ tr(Vu, A(Vu,)') > (1 — R*)da(P,Q). (6.12)
n=+%0 2 J{R< un (2)]}

Then the conclusion easily follows from (6.11) and (6.12) together with the equality pa(P,Q) =
7da(P, Q). In order to prove (6.11) ((6.12) can be proved in the same way), we fix b € CJ(D;R) such
that 0 < b < 1 and sptb C {y eD; |yl < R}. Arguing as in the proof of Theorem 1.1, Step 2,
we introduce for each r > 0, the function ® defined by (4.4) and a cut-off function x € C§°(R;R),
0<x<1,sptx C (—rr)and x(¢) =1 for |t| < r/2. Arguing as in (4.5), we infer that

1 1
f/ MV%MVwﬁzf/)WWMmﬂﬂw%V®=
2 J{lun(@)|<R} 2 Jq,

1 1
=5 [, b ) - T02) — 5 b(a ) H (1) - V'
R3 Kn{r/2<z3<r}

where K = spt ® is compact. Taking Lemma 6.1 into account, we may take n so large that, spt b(u,)N
Kn{r/2 <ax3 <r} =0 for every n. Then we derive from Proposition 6.3 that

1 . 1
= tr(Vu, A(Vu,)') > = b(un) H(uy) - V(x®) =
2 Jjun@)<R} 2

3
R

() cromen=o( {1

Taking the supremum over all admissible b’s and letting n — 400, we deduce

Jim inf / tr(Vun A(Vup)) > 7R (P, Q).
{|un(z)|<R}

n—-+oo

Now we recover (6.11) letting » — 0 by Proposition 3.5. [

7. Minimal connections and relaxed energies

This section is devoted to the proof of Theorem 1.3 and is divided into three parts. First we prove the
lower bound of the relaxed energy € 4(f) using the duality argument of Section 4 in combination with
a method developed in [6] and [32]. Next we apply a dipole removing technique (by analogy with [5])
to obtain upper bounds in terms of the energetic distance. We conclude the proof of Theorem 1.3 in
the third part.

7.1 Lower bound for € 4 by lower semicontinuity

In the sequel, we shall denote by F4 the expected lower bound for € 4, i.e., the functional defined for
maps f € X by

Fa(f) =Ealf) + mLa(f).

As we will see in Corollary 7.1, the proof of the lower bound in (1.20) basically reduces to show the
sequential lower semicontinuity of the functional F 4. We start with this later fact.
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Theorem 7.1. The functional F 4 is sequentially lower semicontinuous on X with respect to the weak
HY2topology.

Proof. We introduce the auxiliary functional 77, on X defined for 0 < r < oo by

Falf) = Ealf) +mLu(f)

where L7 (f) denotes the length of minimal connection relative to d7, i.e.,
1 _
L;‘(f)%Sup{ <T(f), ®rz >; ® € Lip(2,, R), (7.1)

B(P) — $(Q)| < d4(P.Q) YP,Q € T, } .

By the results in Section 3, the distance d 4 is the increasing limit of the distances d’; as 7 — 0. In view
of the definition of L4 and L7, one can expected to recover F4 as the pointwise increasing limit of

7 as 7 — 0. We shall see in Proposition 7.2 that it is indeed the case and as a consequence, proving
the lower semicontinuity of F4 reduces to prove it for F7.

Proposition 7.1. For every 0 < r < oo, the functional F'y is sequentially lower semicontinuous on
X with respect to the weak HY2~topology.

Proof. We begin the proof with a very useful lemma.

Lemma 7.1. Let Lipy(Q,,R) be the set of all functions ® € Lip(2,.,R) with compact support in Q.
We have

L (f) = 217rSup{ <T(f),®jrz >; ® € Lipy(Q2r, R), (7.2)

B(P) — B(Q)| < d4(P.Q) VP,Q €1, }

Proof. For 0 < r < oo, we extend any function ® € Lip(Q,,R) to @, by setting ®(z1,x2,23) =
®(x1,x9,7) if 3 > 7. Obviously, we obtain by this process, a globally Lipschitz function ® on the half
space and ||V‘I’||L°°(Ri) = [|[V®|| e (q,)- To prove Lemma 7.1, it suffices to find, for any ® € Lip(£2,,R)
which is 1-Lipschitz Witll respect to d’, a sequence {@n}n@g Lip(R%, R) such that: ®,, is 1-Lipschitz
with respect to d’y in Q,, ®, has a compact support in R3 , ||V<I>n||Loo(Ri) < C for a constant C'
independent of n, ®,, —» ® and V&,, —» V& a.e. in Ri as n — +oo. Indeed, for such a sequence, we
easily obtain by dominated convergence that
lim <T(f),®prz >= lim H(u) -V, = H(u)-V® =<T(f),Pp> > .
n—-+4oo n—+—oo R‘j’r R‘j’r

Given a function ® € Lip(€2,,R) which is 1-Lipschitz with respect to d’;, we construct the sequence
{®,, }nen as follows. We consider for each n € N, the truncated function ®(") defined by

sign(®(x))n otherwise.

Obviously, @™ € L>(R%), & is globally Lipschitz, ®™ — ® and V& — V& a.e. in R}. Since
for every x,y € R%, we have &™) (z) — & (y)| < |®(x) — ®(y)|, we deduce that ||V<I>(”)||L00(R§r) <

IV Lo (RY) and ®( is 1-Lipschitz with respect to d’; in Q,.. Now we consider a sequence of positive
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numbers 6,, < 1 such that 6,, — 1 as n — 400 and a function x : R — R defined by x(r) = 1if |r| < 1,
x(r)=2—|r[if 1 <|r| <2 and x(r) = 0 otherwise. For a sequence of positive numbers R, > 1 that
we shall choose later satisfying R,, — 400 as n — +oo, we define for x € R, (,(z) = 0, x (R, *|z|)
an(LI’n(x) = (n(2)®") (z). Clearly, the function ®,, is globally Lipschitz and has a compact support
in Rﬁ_. Since ®(™ is 1-Lipschitz with respect to d7 in €., we infer from Proposition 3.7 that a.e. in
Qr,
(Cof A)'V®,, - Vb, =¢2(Cof A) T Vo™ . VoM 4+ ((M)2(Cof A)"'VC, - VE,
+2¢, 8™ (Cof A) "' V™ . V¢,
<02 +n2ANT3R 2+ 2nANT3R | VO | e

We also observe that

V@1 @y) < ||V<I’(n)||Lw(Ri) + REIH‘I’(n)HLw(Ri) < Vel o) +nR,".

Choosing R,, such that

2ANT2 4 2nANT3 V|| Lo
anmax{n+1, n +2n VoL }

1-62

we derive that ||V<I>n||Loo(Ri) < ||V<I>HLOC(R1) +1 < C for a constant C' independent of n, and

(CofA) "'V, - Vb, <1 ae. inQ,,

so that ®,, is 1-Lipschitz with respect to d’; in Q, by Proposition 3.7. Since ¢, — 1 and V{, — 0 a.e.
as n — +o00, we trivially have ®,, — ® and V&,, —» V® a.e. in Rﬁ_ as n — +oo and we conclude that
the sequence {®, },en meets the requirement. [ |

Proof of Proposition 7.1 completed. For 0 < r < oo, we extend any function ® € Lip,(Q,, R) to @
by setting ®(x1,x2,x3) = [1 +r — 23]+ P(x1, x2,r) if 3 > r. Trivially, we obtain a globally Lipschitz

function ® with compact support in R% . By Lemma 7.1, for any 0 < r < oo and any f € X, we have

(using the extension convention above)

Fa0) =swdeatn) +3 [ Hlup)- v2: @ € Ling@.R).

B(P) — 9(Q)] < dy(P.Q) ¥P,Q € sz}

Since the supremum of a family of sequentially lower semicontinuous functionals is still lower semi-
continuous, it suffices to show that for any function ® € Lipy(£,, R) which is 1-Lipschitz with respect
to d’y, the functional

Gi®] : fe X — MaX{EA(f)—i—; [ Hlup) Ve, 5A(f)+% 9 H(Uf)~V(—<I>)}

is sequentially lower semi-continuous with respect to the weak H'/2—topology. Consider a sequence
{fn}nen C X and f € X such that f, — f weakly in H'/2 as n — +o0. Without loss of generality,
we may assume that

liminf G4 (0)(f,) = lim _GA[](f,) < +oc

n—-+00
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We denote by u,, and u the respective A-harmonic extensions of f,, and f. Obviously, we have

A

3 [ 1l < Batua) = €a() < Galal(s) < ©

Then Proposition 2.8 tell us that, up to a subsequence, Vu,, = Vu weakly in LQ(R?;) and u, — u
strongly in H'(K) for any compact K C Ri since f, — f. We set v, := u, — u. Assuming that

fRS -V® > 0 (otherwise we use —® instead of @), an easy computation leads to
1
Gal®l(fn) = GAl®I(f) + Balvn) + 5 | H(vn) V4 In+ 1Ly + 111, (7.3)
Y
where

tr(Vud(Vu,)"),

{ 82u A\ 631}”)(91(13 + (83u A\ 811)”)82@ + (61’11, AN 62vn)83 }

+@

e ] o
e,
=L

{ 821;" A\ (9311,)81(1) + (8311n AN 31’&)82(13 + (81% N 82u)83 }

Since Vv, — 0 weakly in L*(R?), we infer that

lim I, = lim II,= lim IIT, =0. (7.4)

n—-+4oo n—-+o0o n—>+oo

On the other hand, v, — 0 strongly in H'(K) for any compact set K C R} and consequently (since
spt @ is compact),

/ H(v,) -V® — 0 asn — +oo. (7.5)
R3 N{z3>r}

Since ® is 1-Lipschitz with respect to d’; in Q,., we derive that a.e. in Q,,

|H(un) - VO| < \/(Cof A)H (uy,) - H(uy) < tr(Vu, A(Vu,)") (7.6)

using Cauchy-Schwartz inequality, Proposition 3.7 and (4.2). Hence
1
Ex(v,) + 5/ H(v,) - V® >0. (7.7)
Q,

Combining (7.3) to (7.7), we conclude that liT GU[®](frn) = G4[®](f) which ends the proof. N

Proposition 7.2. For every f € X, we have L'y(f) — La(f) asr — 0.

Proof. Step 1. First we prove Proposition 7.2 for f € X N Wl1 1(R2) such that f is smooth except
at finitely many points aq,...,ax. In this case, the distribution T(f) can be written as T(f) =
—27 Zle d;0,; where d; = deg(f,a;) is the topological degree of f around its singularity a; and since
|fl1/2 < 0o, we have Zle d; = 0 (see Lemma 2.2). Hence we can relabel the a;’s, taking into account
their multiplicity |d;|, as two lists (p1,...,pn) and (q1,...,qn) of respectively positive and negative
points. In this way, we rewrite T'(f) as

7727{: e — 04) (7.8)
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Consequently, we obtain from (7.1),
N
L4(/) = Sup { S @) - B(g:); @ € Lip(@,R)
i=1

B(P) — B(Q)| < &4(P.Q) VP,Q €1, }

By a well known result in [13], we derive that L" (f) = M‘:lsn Zfil d’y (pi, 4o(iy) where Sy denotes the
OESN

set of all permutations of N indices. Taking an arbitrary sequence of positive numbers r,, — 0, we
deduce that, for each n € N, there exists o,, € Sy such that L'y (f) = Zf;l d'y (Pis 4o, (iy)- Extracting
a subsequence if necessary, we may assume that o, = o, for every n € N and some o, € Sy. Then
we infer from Proposition 3.5 that

N N

Ly (f) =Y d3 (i o) N > dalpi o))
=1 =1

which yields by the same result in [13] and (7.8),

N
lim L% (f) > Ul\élgllv ;dA(puqo(i)) =

n—-+o0o

N
=Sup § > o(pi) — ¢(a:); ¢ € Lip(R*R), [p(P) — 9(Q)| < da(P,Q) VP, Q € R’
{
=1

= oS { <T(7).o > ¢ € L), () - 4(Q) < da(P.Q) VP.Q < B2}
=La(f).

On the other hand d’y < d4 on R? x R? by Remark 3.4 and hence L'y (f) < La(f) for any n € N.
Consequently, lirf L7 (f) = La(f). Then the result follows from the standard argument on the

uniqueness of the limit.

Step 2. To obtain the result for a general map f € X, we shall require the following stability property.
Lemma 7.2. For any fi1, fo € X, we have

|L7y(f1) = Ly (f2)| < CA(If1l1)2 + | f2liy2) |1 — faliye
for some positive constant C independent of v € [0,00] (here we set LY := La).

Proof. Step 1. For r € (0,00] and f1, fo € X, we introduce

Ly(fs fo) = % Sup{ < T(f1) — T(fa), gz >: ® € Lip(, R),
|®(P) —®(Q)| < dy(P,Q) VP,Q € Q, }

and we easily check that

|L%(f1) = Ly (f2)| < Ly (f1, f2)- (7.9)
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Using (1.4), we derive that for any ® € Lip(Q2,, R),

<T(f1) = T(f2), P2 >=/ (H(u1) — H(ug)) - V® <

3
Ry

< 90 [ [H ) - Huw)

RS
+

where u; and us denote the respective harmonic extensions of fi; and fy and here, ® is extended to

the whole half space by setting ®(z1,x2,23) = ®(x1,22,7) if 23 > r. If the function P is chosen to

be 1-Lipschitz in €2, with respect to d’y, then ® is A-Lipschitz in €2, with respect to the Euclidean

distance by (3.4). Hence Hv@”z/oo(Ri) < |IV®[| o (@r) < A and consequently

LTA(fl,fQ) SA/R3 ‘H(ul) —H(Ug)’

Writing u; = (uj, ), we observe that

H(uy) — H(ug) =2V (u} —ud) A Vu? 4+ 2Vus A V(u? — ul).
From Cauchy-Schwartz inequality and Proposition 2.7, we infer that

Ly (f1, f2) < CA(|f1lije + 1 f2lij2) 11 — falije -

Combining this estimate with (7.9) we obtain the announced result.

Step 2. For r =0 and f1, fo € X, we introduce as in Step 1,
1 .
La(f1, f2) = o Sup{ < T(f1)-T(f2),¢ >; ¢ € Lip(R*,R),

[o(P) = ¢(Q)] < da(P.Q) VP,Q € R* }

and then |La(f1) — La(f2)| < La(f1, f2)- By (3.18), any ¢ which is 1-Lipschitz in R? with respect to
d, is also A-Lipschitz in R? with respect to the Euclidean distance. Hence such ¢ can be extended
to the half space into a A—Lipschitz function ® with respect to the Euclidean distance by setting
D(x1,x9,x3) = p(21,22). Consequently, we infer from Step 1,

La(f1, f2) < LZGa(f1, f2) < CA(|f1lij2 + | falij2) | f1 = fali)2
which ends the proof. |

Proof of Proposition 7.2 completed. Let f be an arbitrary map in X. By Theorem 2.6, there exists
a sequence {fntnen € X N W21 (R2) such that f, is smooth except at finitely many points and

loc
|fn — fli/2 — 0 as n — 4o00. Then we infer from Lemma 7.2 that for any r € (0,00] and n € N,

L (fn) = CA(Ifulryze + 1 flj2) [ fn = flije < LL(f) <
<Ly (fn) + CA(Ifaliyz + 1 fli2) | fn = flij2
Letting r — 0 with n fixed, we deduce from Step 1 and Lemma 7.2 that
lilrnj(l)lfLZ(f) > La(fn) = CA(Ifulij2 + [fl1y2) | fa = flij2
> La(f) = 2CA(|fulij2 + 1 flij2) 1 fn = flij2

and similarly,

limsup LY (f) < La(f) +2CA (| fulij2 + 1 fli2) 1 fn = flij2-

r—0
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Now letting n — 400 in the previous inequalities, we conclude that lin% L% (f) = La(f) and the proof
T—

is complete. |

Proof of Theorem 7.1 completed. We infer from Remark 3.4 that L} (f) < L2(f) < La(f) for any

fe X and 0 < rg < r; < oco. On the other hand L7 (f) — La(f) as r — 0 for every f € X by

Proposition 7.2, so that La(f) = sup L (f). Hence Fa(f) = sup F4(f) for all f € X. Since F} is
r>0 r>0

sequentially lower semicontinuous with respect to the weak HY 2_topology for every r > 0, the same
property holds for F4. |

Corollary 7.1. For every f € X, we have

Ealf) = Ealf) +mLa(f).

Proof. Let f € X and consider an arbitrary sequence of smooth maps { f }neny C X such that f, — f
weakly in H'/2 as n — +o0. Since f, is smooth, we have T(f,) = 0 so that La(f,) = 0 for every n.
Then we infer from Theorem 7.1,

lim inf Ea(fn) = liminf Fa(fu) = Falf) = €a(f) +wLa(f).

n—-+o0o

Taking the infimum over all such {f,}nen, we obtain the announced result. [ |

7.2 Upper bound for € 4 by a dipole removing technique

In this subsection, we build the recovery sequence required to prove the upper bound of £ 4(f) stated
in Theorem 1.3. Our main result here is the following.

Theorem 7.2. For every f € X, there exists a sequence of smooth maps {fn}nen C X such that
fn — f weakly in HY2, f, — f a.e. in R? as n — +o0 and
limsup E4(fn) < Ea(f) + 7La(f).
n—-+o0o
The proof of this theorem is based on the preliminary propostion below asserting that maps with
trivial T'(f) can be approximated strongly. This fact has been proved first in [34] for maps defined on
the two-dimensional sphere. Here we follow the method of [9].

Proposition 7.3. Let f € X such that T(f) = 0. Then there exists a sequence {fn}tnen C X N
Cst (R?) such that f, — f a.e. in R?* and |fy, — fl1/2 — 0 as n — +oc.

const

Proof. Let f € X such that T(f) = 0. By Theorem 2.6, there exists a sequence {f,}neny € X N
Wli’cl (R?) such that f,, is smooth except at finitely many points, £, is constant outside a compact set,

fn — f ae. in R? and |f, — flij2 = 0 as n — 4-o0. Since T'(f) = 0, we have Liq(f) = 0 and we infer
from Lemma 7.2 that LId(fn) = |LId(fn) — le(f)| < C‘fn — f‘l/g. Hence

lim  Lya( fn)=0. (7.10)

Since fn is smooth except at finitely many points, we may proceed as in the proof of Proposition 7.2
to write T'(f,,) = —2m Zi\il(&pi —dg,) for some N = N(n) and relabeling the g¢;’s if necessary, we may
assume that

N N )
i — qi| = Mi i = do(i)| = L1a(fn) -
;h? ail UG}SIIIV;W Q(z)| 1d(fn)
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We set fn,o = fn and we define by induction on i € {1,...,N} a map ﬁ” as follows. By the
construction given in the proof of Lemma 4.2 with Remark 4.2 and by Lemma 4.1, we can find
hni € X NWEHR?) N C(R2\ {p;, ¢;}) such that T'(hy, ;) = 27(6p, — 84,), hni is equal to 1 outside a
neighborhood of [pl, q;] of measure less than 27" N~! and &q(hy, an i1) < SId(fn i-1) + 27r|pl qi.
We set fn i = hn, an i-1 € XﬂVVli)Cl(Rz) and at the final step, we relabel the resulting map fn me.
We claim that, up to a subsequence fn — f ae. and |fn flij2 — 0 as n — +o0. The convergence
a.e. (up to a subsequence) of fn to f is clear since 52({fn #* fn}) <2 and f, — f a.e. as n — —+oo.
Then observe that, by construction and (7.10),

Ea(fn) < Ea(fn) + 27 L1a(fn) N Era(f).

On the other hand, we infer from Theorem 7.1 that limJirnf E1a(fn) > Fra(f) = Ewa(f) so that Eg(fn) —

E1a(f) as m — +oo. Setting u,, and u to be the respective harmonic extensions to the half space of fn
and f, we have by classical results, Vu,, = Vu weakly in L2(Ri). Together with
. 1 1
ulf) =5 [, IVl = 5 [, 1Vl = ()
R3 +oo 2
it implies that Vu, — Vu strongly in L?(R%), i.e fn — f\l/g — 0 as n — +oo.
Now observe that the map f, € X N Wlf)cl(]Rz) is smooth away from the points p; and ¢;, it
is constant outside a compact set, and since T(f,) = T(f) — 3., T(hn:) = 0 by Proposition 2.6,
the topological degree of f,, around a point p; or g¢; is equal to 0. Hence the singularities p; and
¢; can be removed by standard techniques (see e.g. [9,16]), i.e., one can find a map smooth map
fn € €, (R2:SY) such that f, agrees with f, outside a nelghborhood of Ui{pi, ¢;} of measure less
then 27" and | f,, — fn|1/2 < 27", Then, up to a sequence, f, — f a.e. in R* and |f, — fl1/2 — 0 as
n — 400 so the proposition is proved. |

Proof of Theorem 7.2. Step 1. We start by proving Theorem 7.2 for f € X N Wlf)cl(Rz) such
that f is smooth except at finitely many points. Then we proceed as in the previous proof to write

T(f) = —2=m Zﬁvzl(épi — d4,) and relabeling the g;’s if necessary, we have

N
0 iy i) = Mi ] vy Yo (1)) - 711
> palpia) aeé%;p*‘(p o)) (7.11)

Since p4 is a distance, we derive from (7.11) and the results in [13],

= Sup { Zgo (p:) , ¢ € Lip(R%,R),

N
[#(P) — ¢(Q)| < 7' pa(P.Q) VPR ER?} = = 3" palpingi).

i=1

By the definition of energetic distance pa, for every i € {l,...,N} there exists a sequence

{Rim, }n;en C X such that (without loss of generality) h;,, — 1 weakly in HY/? as n; — o0,

T(him,) = 2m(0p, — dg,) and hr{s—l Ea(hin,) = pa(pi,¢i)- Up to subsequences, we may assume that
n;——+o00

hin; — 1 a.e. for every ¢ by Theorem 2.5. From Proposition 2.6, we infer that Hi]\ilhi,ni € X and

T i= 1hln ZT ing) = (f)
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Then a straightforward consequence of Lemma 4.1 yields

N
limsup ... limsup limsup E4 (1Y h; ) < lim  E4( iy Qi) -
nN—’+EO n2—>+£ n1—>+£ A( = L) izzlnL—"'FOO A ZPA pi q
By Remark 2.5 in Section 2, we may find a diagonal sequence hy := Hi:1hi,m(k) which satisfies
T(hy) = =T(f), hx — 1 weakly in H'/2, hj, — 1 a.e. as k — 400 and limsup E4(hy) < 7L(f). Next

k— 400
we consider fr = hyf € X and we infer from Lemma 4.1 that
limsup Ea(fr) < Ea(f) +7La(f).
k—-+oco
Since T(fk) =T(ht)+T(f) =0 and fr — f a.e. as k — +oo, we may now apply Proposition 7.3 to
fr and then the diagonalization procedure in Remark 2.5 to obtain the desired sequence of smooth
maps approximating f.

Step 2. To treat the case of a general map f € X, we shall require the following version Lemma 7.2
for the minimal connection relative to the energetic distance p4.

Lemma 7.3. For any fi1, fo € X, we have

|EA(f1) - iA(f2)| < CA(|f1lij2 + | f2lij2) 1 f1 = fali)2
for some positive constant C.

Proof. By Theorem 1.1, any function ¢ which is 1-Lipschitz in R? with respect to 7= 1p4 is also
A-Lipschitz in R? with respect to the Euclidean distance and hence we can proceed exactly as in Step
2, proof of Lemma 7.2. |

Proof of Theorem 7.2 completed. Let f be an arbitrary map in X. By Lemma 2.6, there exists a
sequence { fn}neN cX ﬂWlf)Cl(Rz) such that f, is smooth except at finitely many points, f, — f a.e. in
R? and |f,, — flij2 = 0asn — 4-o0. In particular Ea(fn) — Ea(f) and by Lemma 7.3, L4 (fn) — La(f)
as n — +o0o. By Step 1, for every n, there exists a sequence of smooth maps {f m}men C X such

that f,, m — fn a.e. in R? as m — +oo and limsup E(frm) < EA(fn) +7T.Z/A(f~n). Then we just have
m——+o0
to apply the diagonalization procedure in Remark 2.5 to obtain the required sequence. |

As a direct consequence of Theorem 7.2, we obtain the upper bound of &€ 4(f).

Corollary 7.2. For every f € X, we have
Ealf) < Ealf) +mLa(f).

We close this subsection with the existence of admissible and optimal sequences in the definition
of ma(T'(f)).

Proposition 7.4. For every f € X, there exists a sequence {hy}nen C X such that T(hy,) = T(f)
for every n, hy, — o weakly in HY? and h,, — « a.e. in R% as n — +oco for some constant o € S'. In
particular, mA(T(f)) is well defined for every f € X and moreover, the infimum defining ma(T(f))
s achieved.

Proof. Let f € X. By Theorem 7.2, there exists a sequence of smooth maps {f,}ney C X such
that f, — f a.e. and sup,, Ea(fn) < +oo. We set h, = f,f. By Proposition 2.6, h, € X and
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|hnli2 < |falij2 +1fl1/2 so that E4(h,) < C. Obviously h, — 1 a.e. in R2. Extracting a subsequence
if necessary, we have h,, — 1 weakly in HY? as n — +o0 by Theorem 2.5. The existence of an
optimal sequence realizing m 4 (T'(f)) follows from a standard diagonalization argument together with
Theorem 2.5 and Remark 2.5. |

7.8 Proof of Theorem 1.3.

We start with the following proposition.

Proposition 7.5. For every f € X, we have

Ea(f) < Ealf) +ma(T(f))-

Proof. Let f € X and consider a sequence {h,}nen C X such that T'(h,) = T(f), h, — a € S
weakly in H'/? and nEIJIrloo Ealhn) = ma(T(f)). Such a sequence exists by Proposition 7.4 and we
may assume h,, — « a.e. by Theorem 2.5. Without loss of generality, we may also assume that o = 1.
Then we set f, = hnf € X so that f, — f a.e. in R, T'(f,) = T(f) — T'(hn) = 0 by Proposition 2.6.
We infer from Lemma 4.1,

limsup Ea(f) < Ea(f) + lim Ea(hy) = Ealf) +ma(T(f)).

n— 400 n—-+oo

Since T'( fn) = 0, we may apply Proposition 7.3 to fn and then the diagonalization procedure in
Remark 2.5 to obtain a sequence of smooth maps { f,, }nen C X which satisfies f,, — f weakly in H1/?
and limsup €4 (fn) < Ea(f) +ma(T(f)). Then the conclusion follows from the definition of £4(f). B

n—-+4oo

Proposition 7.6. For every f € X, we have

ma(T(f)) < wLa(f)- (7.12)

Proof. Step 1. In the case f € XN WI})’Cl (R?) such that f is smooth except at finitely many points, we

may construct as in the proof of Theorem 7.2, Step 1, a sequence {h,, }neny C X satisfying T'(h,,) = T(f)

for every n, h,, — 1 weakly in H'/2? and limsup E4(h,) < wLa(f). Hence (7.12) holds by definition
n—-+oo

of ma(T(f)).

Step 2. To treat the case of an arbitrary map f in X, we shall require the following lemma.

Lemma 7.4. Let f € X. For any sequence {fn}nen C X such that fp, — f a.e. and |fn — flij2 — 0
as n — 400, we have
(T (1)) < lminf ma(T(,)).
Proof. Without loss of generality, we may assume that
lminf ma(T(fn)) = lm ma(T(fn)) < 4o0.

n—-+4oo n—-+oo

Let g, = fu.f € X by Proposition 2.6. Clearly |gnl1/2 — 0 as n — oo, because the product in X
is strongly continuous. Now, for every n € N, let h,,,, € X such that h,, — 1 a.e. as m — +oo,
T(hpm) =T(fn) and liIE Ea(hnm) =ma(T(fn)) (as in the proof of Proposition 7.5). We consider

hn,m = hnm gn € X. By Proposition 2.6 we have T(ﬁmm) = T(hpm) + T(g9n) = T(f) and Lemma
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4.1 yields limsup Ea(hpm) < Ealgn) + Mma(T(f,)). Since |9n|1/2 — 0, we infer that £4(g,) — 0 and
m——+oo
hence

lim sup lim sup EA( nm) < lim ma(T(fn))-

n—+00 m—-+4oo n—+o0
Since hy, , — 1 a.e. asm — 400 and g, — 1 a.e. as n — 400, we may apply the procedure in Remark
2.5 to extract a diagonal sequence hk = hnk my, Such that hk — 1 weakly in HY? as k — +o00 and
limsup E(hy) < hIJIrl maA(T(frn)). Then, by definition of m4(T(f)), we have
k—+oco n—+00

mA(T(f)) < limsup E4(hx) < lLim  maA(T(fp))
k——+oco n—-+o00

which completes the proof. |

Proof of Proposition 7.6 completed. Let f be an arbitrary map in X. By Lemma 2.6, there exists a
sequence {f}neny C XN Wli’cl (R?) such that f,, is smooth except at a finite number of point, f,, — f
a.e. and [f, — fl1/2 — 0 as n — +o0. By Step 1, for every n we have

ma(T(fa)) < wLa(fa) < 7La(f) +7|La(fn) = La(f)].

Letting n — +o0o0 in the previous inequality, we conclude from Lemma 7.3 and Lemma 7.4 that
ma(T(f) < wLaf). n

Proof of Theorem 1.3 completed. First we observe that (1.20) comes from the combination of Corollary
7.1 and Corollary 7.2. From Corollary 7.1 and Proposition 7.5, we also deduce that m4(T(f)) >
wLa(f) for every f € X. The upper inequality in (1.21) is given in Proposition 7.6.

Now if we assume that g4 = mdy then Ly = L4. Hence ma(T(-)) = La(-) and (1.22) trivially
follow from (1.20). In order to prove the reverse implication, let us assume that (1.22) holds and fix
P,Q € R? two arbitrary distinct points. We consider f € X such that T'(f) = 27(6p — dg) (see e.g.
Lemma 4.2) and {f,}nen € X a sequence of smooth maps such that f,, — f weakly in HY? f, — f
ae. and E4(fn) — Ea(f) = Ea(f) +7La(f) = Ea(f) +7mda(P,Q) as n — +oo (such a sequence exists
by a standard diagonalization argument together with Theorem 2.5 and Remark 2.5). We denote by
u and u, the respective A-harmonic extensions of f and f,,. By Proposition 2.8, u,, — u locally
uniformly in R%, Vu,, — Vu weakly in L?(R%) and strongly in L (R%) as n — +oo. By definition
of E4(fn) and E4(f), we have

EA(un) n:OOEA(u)—i—?TJA(P,Q). (7.13)

For any R > 0, we introduce the localized energies
1 _
Es(v,Qg) = 5/ tr(VvA(Vv)') ., Ea(v,R3\Qg) = Es(v) — Ea(v,Qg),
Qr

for v = u or v = u, and Qr = R? x (0, R). We claim that for every R > 0,

EA(un,QR) n—>_+)ooEA<u QR) +7TdA(P Q), (7.14)
Ea(un, RS \QR)nijA(u,Ri \ Qr). (7.15)

Indeed, arguing as in the proof of Proposition 7.1, we obtain that for every r > 0,

liminf B4 (un, Qr) > Ea(u, Qr) + 7L (f) = Ea(u,Qr) + 7d’y (P, Q) .

n—-+oo
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Letting » — 0 in this inequality, we derive from Proposition 3.5 that liminf Ea(un,Qr) > Ea(u,Qr)+
mda(P,Q). Hence limsup E 4 (un, R \Qr) < E4(u,R3\Qg) by (7.13) and the reverse inequality with

n—-+o0o

the liminf easily follows by lower semicontinuity. Therefore (7.15) holds and (7.14) is deduced from
(7.13) and (7.15).

Next we consider h,, = ff,,. Exactly as in the proof of Proposition 7.4, we have h,, € X, Ea(h,) <
C, hy, — 1ae. asn — +oo and T'(h,) = T(f) = 2w(0p — dg). By Theorem 2.5, we may assume that
h, — 1 weakly in H'/? (extracting a subsequence if necessary). Hence pa(P, Q) < 1,{9&% Ea(hy) by
definition of the energetic distance p4. We claim that

limiup Ea(hn) <mLA(f) = nda(P, Q). (7.16)

Once the claim is proved, we would get pa(P, Q) < mda(P, Q) so that p4 < md by the arbitrariness
of the points P and . Then the conclusion follows since the reverse inequality holds by Theorem 1.1,
claim (7).
Proof of (7.16). For every R > 0, we construct a comparison map v, r as follows:

utl, in Qg,
'Un,R = . 3 —
Wp,r 1IN R+\QR,

where wy, g is the (finite energy) harmonic extension of ui, to Ri \QR. Since vy, Rjgz = h,, we clearly
have

Ea(hn) < Ea(vn,r) = Ea(ully, Qr) + Ea(wn g, RY \ Qr) . (7.17)

Since Vu,, — Vu weakly in L*(R3) we infer from (7.15) that Vu,, — Vu strongly in L?(R3 \ Qp)
as n — +oo. Then we easily deduce by dominated convergence that V(ui,) — V|u|? strongly in
LQ(Rﬁ’r \ Qr) as n — +o0 . Setting g, r and ggr to be the respective traces of ui, and |u|? on the
plane R? x {R}, it yields

Ea(wy,r,R3\ Qr) < ABq(w,,z,R3\ Qr) = CA|gn,R|§/2 e CA|9R|%/2 .

Since |u|? < 1 and its gradient is square integrable, it turns out that |gg|i/» is a continuous function
of R and |gr|1/2 — 0 as R — 0 because |u|? has a constant trace equal to 1 on R? x {0}. Therefore,
letting first n — +o00 and then R — 0 in (7.17), we obtain

limsup €4(hy,) < limsuplimsup Ea(uty,, Qr)

n—-+00 R—0 n—+oo

so that it remains to prove that

lim sup limsup Ea(ut,, Qr) < mda(P,Q) .
R—0 n—+oo0

Arguing as in (4.1), we have

1
Ea(utiy, Qr) = 5/ {|u|2tr(VunA(Vun)t) + |un|? tr(VuA(Vu)')+
Qr

+ 2Re(uuy,) tr(Va, A(Vu)') + 2Im(uuy, ) tr(V(iﬂn)A(Vu)t)} < Eg(un, Qr)+

+ EA(U,QR) +/
Qr

= EA(un, QR) + EA(“y QR) + In,R

{Re(uun) tr(Va, A(Vu)') + Im(uu,) tr(V (i, ) A(Vu)*) } =
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because |u] <1 and |u,| <1 a.e.. Clearly (7.14) yields
lim sup limsup (Ea(un, Qr) + Ea(u,Qr)) =
R—0 n—+oo

= zlziino (WJA(P, Q) + 2E4(u, QR)) = W(ZA(P,Q)

which is the desired contribution. On the other hand , since Vu,, — Vu weakly in L?(Qr) and u,, — u
a.e. with |u,| < 1, we infer that

limsup limsup I, g = limsup lim I, r =

R—0 n—+oo R—0 Nt
= lim sup/ {Re(u2) tr(VaA(Vu)') + Im(u?) tr(V(iﬂ)A(Vu)t)}
R—0 Qr
<limsup CE4(u,Qr) =0
R—0
and the proof is complete. |

Appendix A.

Proof of Theorem 2.6. Step 1. Consider o : R?> — R a nonnegative radial, smooth function such
that [, 0 =1 and spt o C B1(0). For € > 0, we define g.(z) = e 20(e71z) and f. = g * f. Then f.
defines a smooth function and we easily check that |f.| < 1 in R?. Then standard estimates yield

||f~s*fHL2(R2) <o(e'/?), (A1)
||stHL2(R2) <o(e1?), (A.2)
[fe = Flijp <0(1) ase—0, (A.3)
{I /] < 3/4}| < o(e) (A4)
IV fe(x)] < Coe™t  for every x € R? and for some constant Cp. (A.5)

Step 2. Let (ex) be a sequence of positive numbers such that e — 0 and set fo == fek. We claim
that for & large enough, {|fx| < 1/2} is bounded. Indeed, assume that it is unbounded. Then we can
find a sequence of points {, }men such that &y, 1] > |Zm| + 1 and | fi(2,)| < 1/2 for every m. By
(A.5), we infer that |f.| < 3/4 in Bg, (#,,) with Ry, = 4 /(4Cp). Since |z; —x;| > 1 for i # j, we have
Bp, (x;) N Bg, (z;) = 0 for any i # j and k large enough so that

| U BRk(‘rm)’ = Z |Br,, (€m)| = +00.

meN meN

On the other hand (J,,cy Br, (2m) C {|fx| < 3/4} which has finite measure by (A.4) and we are led
to a contradiction. Hence we may now assume without loss of generality that {|fx| < 1/2} is bounded.

Step 3. Now we proceed as in [9]. Given a € R? with |a] < 1/10, we consider the projection 7, :
R%\ {a} — S! defined by 7,(¢) = a + 0(¢ — a) where § > 0 is determined by |a + (¢ — a)| = 1. Note
that 7,(£) = £ whenever £ € St and

IVa(§)] < vé € R?\ {a}

c
€ —al
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so that 7, is lipschitzian on {|¢| > 1/2} with a Lipschitz constant independent of a. Since fj, is smooth,
we can choose for every k € N, a = a; € By/10 to be a regular value of fj and then

b= {zeR?; fiu(z) = a}

is a locally finite set. Since ¢ C {|fi| < 1/4}, we deduce from Step 2 that ¢ is bounded and therefore
finite. Hence the map

fa,k = 7raofk:]R2*>Sl

is smooth on R? \ X¢ with X¢ finite and in a neighborhood of each singular point o € X}, we have

Therefore f, 1, € Wl’p(R2, St) for any p < 2 and every k € N.

loc

Now we introduce a smooth function 4 : [0,400) — [0,1] such that ¢(¢t) = 0 if ¢ < 1/4 and
P(t) =11if t > 1/2. We write

fase = (U= 0UfuD)) fare + O fx) fae = for+ fip-

We claim that, for every & € N, we can find a regular value aj, € By /¢ of fx such that | faw k= fl1j2 — 0
and fq, x — [ a.e. as k — 400. Obviously, it suffices to find such a point a; such that

|fow kl12 =0 ask — 400, (A.6)
|fop k= flijz — 0 ask — +oo. (A7)

Since we clearly have f7 , — 0 and f; , — fae. in R? as k — +oo, the map fk = fa,. 1 will satisfy
|fk — flij2 — 0 and fe — f ae. as k — +oo.
Proof of (A.6). Since [f; | =[1 — O(|fe])| < X{|fs|<1/2}> We deduce from (A.4) that

1£2 K llney < ole)/?) Wp < +oo. (A.8)
On the other hand, on R? \ ¢ we have
|V fi
|/ — al

Now we use an averaging process due to Hardt, Kinderlehrer and Lin [28]. By Sard’s theorem, the

Viekl <C (1= o)) + 1" DIV Fil < CIV filxg f <12y

regular values of fj, have full measure so that
/ IV for(x)|Pdrda < Cp [ IV fr(z)|Pdz V1 <p<2.
By/10 JR2 {Ifxl<1/2}
Next we fix 1 < pg < 2. Then (A.2), (A.4) and Holder inequality yield

s r 0 r 1_%)
| V@l deda < OIS ol ao) K17 < 1/2) (A.9)
1/10

_Po 1_P0

<ole, Ty 2)=o(g, ™).

Observe that f7, is compactly supported by Step 2. By the homogeneous Gagliardo-Nirenberg in-
equality (see e.g. [15]), we have

Fal 175 < CULaaIy o IV ol r) - (A.10)
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Combining (A.8), (A.9) and (A.10), we obtain
/ 11241778 da < ofelo ™ e = o(1).
Bi/10

Hence we may choose a = ay, € By 19, a regular value of fx such that (A.6) holds.

Proof of (A.7). We consider Lj : R? — R? defined by Ly (£) = 74, (£)1(]€]). By the specific choice of the
function 1, Ly, satisfies a uniform (with respect to k) Lipschitz condition. Observe that Ly (f) = f. Now
we derive exactly as in the proof of statement (5.43) in [9] that |f; , —fli/2 = \Li(fr) —Li(f)lij2 — 0
as n — +oo because of (A.3).

Step 4. According to Theorem 2.5, we have f = g + f> for some constant f> € S'. Then observe
that f, = gr + f°° with gx = 0, * g. We claim that the set {|gi| > 1/2} is bounded. Indeed, one
may argue as in Step 2 using that |Vgx| < Coe; ' by (A.5) and |9k || L+ (r2) < 400 by Proposition 2.1.
Hence there exists r;, > 0 such that

lgel < 1/2 in R*\ B,,. (A.11)
In particular |fi| > 1/2 in R2\ B,, so that fx = Ly(fs) in R?\ B,, and
[fe = 1221 = [Le(fi) = Li(f2)| < Clfi = £ = Clge] in R*\ By,
Therefore fk — > € L*R?) which clearly implies that ( fk)oo = f° for every k. Then we write

fx = gr + f°°. Introducing a cut-off function x € C§°(R,R), 0 < x <1, being supported in [—2, 2]
with xy =1 on [—1, 1], we consider for r >> 7y,

i) =x( ) anto).

We claim that [gr, — grl1/2 — 0 as 7 — +o0. Setting 9 to be the (unique finite energy) harmonic
extension of gy to the half space and 9y, (z) = x(r~'[z|)dx(z), it is enough to show that ||V (., —
oy ”Lz(Ri) — 0 as r — +o00. A straightforward computation yields

J

Clearly I, — 0 since Vo, € L?(R%). Next we infer from Proposition 2.2, claim 2),

C
IV (6r,r — Ox) [Pda < 2/ Ve ?de + = |og[2da =: I + I1,..

3 {|z|>r}nR3 T J{r<lz|<2rinRy

~ 12
II.<C [0

{r<l|z|<2r}nRE > r—oo
and the claim is proved. Setting fkw = gk,r + f°°, we conclude from Step 3 that
lim  lim |fe, = fliz=0 (A.12)

k—-4oc0 r—+o0

Step 5. We observe that (A.11) implies that ©3* C B,, and |gx| < 3/4 in R? \ B,,. In particular,
| fi.r] > 1/4 in Ba, \ B, since r >> 11, and |fi, | = 1 elsewhere by construction. Therefore the map

_ fk,r
|fk,r

is S'-valued, smooth outside the finite set Yer and fr,, = f* outside By,. Moreover, arguing as in

fk,r:

the proof of (A.7), (A.12) yields klir+n hr—? |fr,r — fl1/2 = 0. Hence a suitable diagonal sequence

fn == f, r, satisfies the requirement. u
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