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Abstract. We compute explicitly a relaxed type energy for maps u : @ ¢ R? — S2.
The explicit formula involves the length of a minimal connection relative to some specific
distance connecting the topological singularities of u and associated to a measurable weight

function. This result generalizes a previous result of F. Bethuel, H. Brezis et J.M. Coron.

Résumé. Nous calculons explicitement une énergie de type relaxée pour des applications
u: Q C R> — S2 La formule explicite fait intervenir la longueur d'une connexion
minimale relative a une certaine distance, connectant les singularités topologiques de u et
associée a une fonction de poids mesurable. Ce résultat généralise un résultat antérieur

de F. Bethuel, H. Brezis and J.M. Coron.
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1 Introduction and Main Results
Let  be a smooth bounded and connected open set of R? and let w : @ — R be a
measurable function such that
0< A< w<A ae inQ (1.1)

for some constant A and A. We set Hg1 (Q,Sz) = {u € H! (Q,SQ) , U =g on OQ}, where
g : 00 — S? is a given smooth boundary data such that deg(g) = 0. Our main goal in this

paper is to obtain an explicit formula for the relaxed functional

Ey,(u) = Inf{liminf/Q |V, ()| *w(x)dz, u, € Hgl(Q, Sy ncH(Q), u, — u weakly in Hl} ,

n—-4oo
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defined for u € Hgl(Q, S2). By aresult of F. Bethuel (see [1]), Hgl(Q, S%)NCY(Q) is sequentially
dense for the weak topology in H, gl(Q, 52) and then the functional E,, is well defined.
In [4], F. Bethuel, H. Brezis and J.M. Coron have proved that for w = 1,

Ei(u) = /Q |Vu(z)|*dz + 87L(u),

where L(u) denotes the length of a minimal connection relative to the Euclidean geodesic
distance dg in © connecting the singularities of u (see also M. Giaquinta, G. Modica, J.
Soucek [13]). If u € Hgl(Q, S2) is smooth on ) except at a finite number of points in €2, the

length of a minimal connection relative to dg connecting the singularities of u is given by

L(u) = Min ng P, Nyi)

0ESK “

where (P, ..., Px) and (NVy,..., Ng) are respectively the singularities of positive and nega-
tive degree counted according to their multiplicity (since deg(g) = 0, the number of positive
singularities is equal to the number of negative ones) and Sk denotes the set of all permuta-
tions of K indices. For the definition of L(u) when u is arbitrary in Hg1 (9, 5?), we refer to
(1.6)-(1.7) below. The notion of length of a minimal connection between singularities has its
origin in [9]. We also refer to the results of J. Bourgain, H. Brezis, P. Mironescu [5] and H.
Brezis, P. Mironescu, A.C. Ponce [10] for similar problems involving S!-valued maps.

For u € H'(£2, 5?), the vector field D(u) first introduced in [9] and defined by

ou ou ou ou ou ou )

= —— ANt m— AU o— A o 1.
D(U) <u 8.732/\8$37u 8%3/\83}17u 81‘1/\8$2 ( 2)

plays a crucial role. Indeed, if u is smooth except at a finite number of points (F;, Ni)ili1 in
€2, then (see [9], Appendix B)

K

divD(u) =47 (dp, —dy,) in D'(Q) (1.3)
=1

and if in addition ujpq = g, we have (since deg(g) = 0, see [9], Section IV)
K
L(u) = Sup {Z(C(Pi) - C(Ni))} (1.4)
i=1

where the supremum is taken over all functions ¢ : Q — R which are 1-Lipschitz with respect
to distance dg i.e., |((z) — ((y)| < da(z,y). Note that for any real Lipschitz function ¢,

K
1
;C(B)C(Ni 47T/cth /D vg+47r/ (D(uw)-v)¢  (L.5)

where v denotes the outward normal to 0f). We recall that D(u) - v is equal to the 2 x 2
Jacobian determinant of u restricted to 92 and then it only depends on g. In view of (1.4)
and (1.5), L(u) has been defined in [4] for u € HJ(Q,5%) by

L(u) = — Sup {{T'(u),¢), ¢ : @ — R 1-Lipschitz with respect to dq } (1.6)



where T'(u) € D'(Q2) denotes the distribution defined by its action on real Lipschitz functions
through the formula:

<ﬂw¢w—ADw»vc—8JDw»m<. (1.7)

In a previous paper [14], we have studied the following variational problem: given two
distinct points P and N in 2,

E,(P,N) = Inf {/Q |Vo(x)|*w(z)dz, v € E(P, N)}
where
EP,N)={ve H (2, 5*)NC'(Q\ {P,N}), v = const on 9Q, T(v) = 4n(6p — 5n) in D'(Q)}.
In the case w =1, H. Brezis, J.M. Coron and E. Lieb have shown that (see [9])
By (P,N) = 8mdo(P, N).

For an arbitrary function w, we have proved (see [14]) that Ey,(-,-) defines a distance function
satisfying
8rAda(, ) < Eyl(,-) < 8rAda(--). (1.8)

From (1.8), we infer that E,, extends to € x Q into a distance on . In what follows, we set
for z,y € Q,

1
du(2,y) = o Eu(z,y).

When w is continuous, we also have shown that the distance d,, can be characterized in the

following way: for any =,y € Q,

1
%wszméwwwmww

where the minimum is taken over all Lipschitz curve v : [0,1] — Q verifying v(0) = z and
~v(1) = y. For an arbitrary measurable function w, the previous formula is meaningless since
w is not well defined on curves but a similar characterization of d,, actually holds. We refer

to [14] for more details. We also recall the general result in [14]:

Theorem 1.1. Let (P)E | and (N;)K | be two lists of points in Q and consider

& ((PZvNZ)inl) = { S Hl(Qa 52) mcl (ﬁ\ {(P“NZ)z[il})?
K
v = const on I and T'(v) = 4#253 — 0y, in D'(Q)}.
i=1
Then we have
Inf {/ |Vo(z) Pw(z)dz, v e E ((Pi,Ni)Z-Kl)} = 87 Ly
Q

where Ly, is the length of a minimal connection relative to distance d,, connecting the points

(P;) and (N;) i.e.,
K
L,, = Min dw(-Piv o(i))'

€s
TR



By analogy with the case w = 1, we define for u € Hgl(Q, S?),

L

Lu(u) 4

Sup {(T'(u),¢), ¢ : @ — R 1-Lipschitz with respect to d, }

(note that any real function ¢ which is 1-Lipschitz with respect to d,,, is a Lipschitz function
with respect to dgq since d,, is strongly equivalent to dg and then (T'(u), () is well defined).
When u is smooth except at a finite number of points (B,Ni)fil in Q, it follows as in [9]
that L, (u) is equal to the length of a minimal connection relative to distance d,, connecting

the points (F7;) and (XN;). Our main result is the following.

Theorem 1.2. For any u € Hgl(Q, S?%), we have
Ey(u) = / \Vu(z)|*w(z)de + 87 Ly (u) .
Q

The proof of Theorem 1.2 is presented in Section 3 and is based on a method similar to
the one used in [4] and on a Dipole Removing Technique exposed in the next section. This
technique is mostly inspired from [1] but involves some tools developed in [14] in order to
treat the problem for a non smooth function w.

In Section 4, we prove a stability property of E,,. More precisely, we give some condi-
tions on a sequence (wy)nen under which one can conclude that the sequence of functionals
(Ew

ones in [14]. In Section 5, we present similar results for a relaxed type functional in which

JneN converges pointwise to E,, on H gl(Q, S?2). The results are obtained using previous

n

we do not prescribed any boundary data.
Throughout the paper, a sequence of smooth mollifiers means any sequence (py,)nen sat-
isfying
pn € C®(R3R), Suppp, C B/, /R3 pn =1, pp>0o0n R

2 The Dipole Removing Technique

In this section, we first give a technical result which will be used for the dipole removing

technique in Section 2.2.

2.1 Preliminaries

Let a and 8 be two distinct points in . We denote by p, 5 (€) the projection of ¢ € R3
on the straight line passing by a and 8 and r, g () = dist (z, [, 8]) , where “dist” denotes
the Euclidean distance in R3. For m € N*, we set

la — 3]
a%’ﬂ =

and s?’ﬁ:ja%ﬁ’ for j =0,...,m.

For ¢ € R3 such that p, g (€) € [, 8], we define

B (€) = min [1pas (€) — ol = 577



and we set
Om ([0, 8)) = {€ € R, pus (€) € [, 8] and 10, (§) < 0 ()}

For two points = and y in €, we consider the class Q(z,y) of all finite collections of
segments F = ([ak,ﬂk])zg) such that By = api1, 1 = z, Bur) = ¥, lag, Bk] C Q and
ay # Br. We define the “length” of an element F € Q(z,y) by

B n(F) 1
o (F) = 3 tmint [ g (O w () de
el m ([ag,B])NQ
with ) .
<h$4nk76k (5)) (a%kﬁk)
Eglkyﬁk €)=

((h%ﬁk ©) (as) +12, (5))2 |

Lemma 2.1. Let P be a finite collection of distinct points in Q or P = (). For any distinct
points xg,yo in L\ P and § >0, there exists F5 = ([a, 1], - - -, [an, Bn]) € Q(x0,y0) such that
(PU{yo}) N (UpZ o, Be] U [on, Bul) = 0 and

gw (f) < dw(anyO) + 4.

Proof. Step 1. Assume that w is smooth on ). We are going to prove that for every element
F = ([ahﬁl]a ) [ana ﬂn]) S Q(:U, y), we have

by (F) = / w(s)ds.
Uzzl[ak76k}

It suffices to prove that for any distinct points «, 6 € €2,

lim ~ / (O w(©)de= | w(s)ds. (2.1)
O ()02

m—t+oo [, 8]

Without loss of generality, we may assume that [, 5] = {(0,0)} x [0, R] and we drop the
indices o and g for simplicity. We set for j =0,...,m — 1,

ChF = {f = (§1,62:€3) € O ([, F]), &3 € {Sjﬁj + aﬂ} },

and for j =1,...,m,
erﬁ_ = {g = (51752753) € ®m ([aaﬁ]) ) 53 € |:5] - a7masj:| } .

For &£ € 4T U CYy, we have hy, (€) = |&3 — s;| and we get that for m large enough,

m—1 m
/@m([aﬁ})ﬂQ Ol ]ZO le >



with

2
I,];j'—/ €5 = 51 afnw(ﬁ) 5d for j=0,...,m—1,
O (1gs — 57 at + 72 (©))

12 4
[%—_/j_ €5 = 51" @ (£) 5d§ for j=1,...,m.
C (Ies = ity +12(9)

Using the change of variable z; = Kgﬁi_lsj‘, Zo = ‘&%S]' and z3 = £3, we derive that
~ st arw (|23 — 8|21, |23 — 8|22, 23)
+ 3 71%15 [<3 71%2, <3
rr = / / m (@ 2+ 2 dz1dzo | dzs
85 Ba,, (0) A, T 27 )

am

2 Qa

Sj—‘ri 4
_ - m dzydz | d
/S. (w(0,0, z3) + O(am)) </B o @ T2y 21 z2> 23

7 a

am

Sj-i- 5 9
= 7T/ w(0,0, z3)dzs + O(ay,).

j
By similar computations we get that
. 5j
- = 7r/ w(0,0, 23)dz3 + O(a2,).
Sj—%

Combining this equalities with (2.2), we obtain that

R
/ PO uw©de = [ w(0.0,20)dz + Olan)
O ([, 8])NQ 0

which ends the proof of (2.1).

Step 2. We fix two distinct points xo,yo € Q2 \ P. For any points z,y in Q\ (PU {yo}), let
Q'(z,y) be the class of elements F = ([a1, 1], ..., [an, Bn]) € Q(z,y) such that

Uk=1lo, Bkl € @\ (PU{yo}).
We consider the function Dy, : Q\ (PU{yo}) x @\ (PU{yo}) — Ry defined by

Dwl(z,y) = Inf ((F).
@y =__ o (F)

We are going to show that D, defines a distance function which can be extended to 2x €. Let
z,y € Q\ (PU{yo}) and let F = ([aq, £1],- - -, [@n, Bn]) be an element of Q'(z,y). Assumption

(1.1) and similar computations to those in Step 1 lead to

A k= Brl <l (F) <A oy — By

k=1 k=1

Taking the infimum over all F € Q'(z,y), we infer that

Ado(x,y) < Dy(x,y) < Ado(x,y). (2.3)



From (2.3), we deduce that D, (x,y) = 0 if and only if z = y. Let us now prove that D, is
symmetric. Let z,y € Q\ (PU {yo}) and ¢ >0 arbitrary small. By definition, we can find

Fs = ([041;,82], B [Oémﬂn]) in Ql<1’, y) satisfying

Ion (-7:5) < Dw(xay) + 0.
Then for F§ = ([Bn, an), - .., [B1, a1]) € Q' (y, ), we have
Du(y, @) < bw (F5) = lw (F5) < Du(z,y) + 9.

Since 0 is arbitrary, we obtain Dy, (y, z) < Dy (x,y) and we conclude that Dy, (y, ) = Dy(x,y)
inverting the roles of x and y. The triangle inequality is immediate since the juxtaposition
of F1 € Q'(x, z) with F» € Q'(2,y) is an element of Q'(z,y). Hence D,, defines a distance on
O\ (PU{yo}) verifying (2.3). Therefore distance D,, extends uniquely to Q x Q into a distance
function that we still denote by D,,. By continuity, D,, satisfies (2.3) for any z,y € Q.

Step 3. We consider the function ¢ : Q — R defined by
((x) = Dy(x, x0).

Note that function ( is 1-Lipschitz with respect to distance D,, and therefore A-Lipschitz
with respect to the Euclidean geodesic distance on € by (2.3). We fix an arbitrary point
20 € 2\ (PU{yo}) and some R >0 such that Bsr(zp) C 2\ (PU{yo}). Let (pp)nen be a
sequence of smooth mollifiers. For n>1/R, we consider the smooth function ¢, = p, * ( :
Br(z0) — R. We write

@)= [ o2+ 2)d:
Bl/n
and therefore for all x,y € Bg(20),

[Gn (@) = Cu(y)] pn(=2) |C(x + 2) = ((y + 2)| dz

pn(—2) Dy(x + 2,y + 2)dz

</ =Tl + 2

We remark that O, ([vt + 2,y + 2]) = 2z + O, ([x,y]). For m large enough z 4+ 0, ([z,y]) C

Bsg(z20) and then for any vector § € O, ([x,y]), we have e, .. (§+2) = €', (§). Hence

we obtain for all z € By,(0) and m sufficiently large,

m—-+oo T

by ([x+ 2,y + 2]) = liminf 1/ Eqny () w (§+2) dE.
Om([z.y])

Using Fatou’s lemma, we get that

1
Gl = Gl < [ (=2) (;;gg ey . (5)w(§+z)d£> 0z

< liminf 1/ / pn(=2) epy (§) w(€ + 2)dEdz.
Bl/n Gm([x,y])

m——+oo T



For each m € N sufficiently large we have

! 1
m n(=2) ez, dédz = — m (&) pn d,
T /B1/n /(9m([x7y}) pn(=2)€ Y (O wle +z)dldz /@m([r,y]) "=y (&) P x wi&)de

™

and since p, * w is smooth, we obtain as in Step 1,

1/ Eny (§) pn x w(§)dE — pn *xw(s)ds as m — 4oo.
T @m([a:vy}) [a?,y}

Thus for each z,y € Bgr(z9) we have

Gn(@) = Calw)] < / % 10(3)ds.

[z,y]

Then for x € Br(z0), h € S? fixed and §>0 small, we infer that

‘Cn(l' + 6h) B Cn($)| < 1/
[z,x+3h]

pn *x w(s)ds — P ¥ w(x)

—0

0 )

and we conclude, letting § — 0, that |V, (z) - h| < p, *w(z) for each z € Br(20) and h € S?
which implies that |V(,| < pp*w on Bgr(zg). Since V(, — V( and p,*w — w a.e. on Br(zp)
as n — +o0o, we deduce that |V({| < w a.e. on Bg(zg). Since zp is arbitrary in Q\ (PU{yo}),
we derive

V(] <w a.e. on .

By Proposition 2.3. in [14], it follows that |((x) — ((y)| < dw(z,y) for any z,y € Q and in

particular, we obtain choosing y = x,
Dy(r,10) < dyw(z,70) for all x € Q.

Step 4. End of the Proof. Let 6 >0 be given. We choose some gg € Q\ (P U {yo}) such
that [go,y0] € Q\ P and |59 — yo| < %. By the previous step, we can find an element

‘7:/ - ([Oél, ﬁl]v ey [anv /BTLD S Q/(an QO) Verifying
_ , B )
gw (]:) < dw(x07y0) + g
Then we consider F = (a1, 1], - - -, [@n, Bl [T0, Y0]) € Q(x0,y0). We have
- - , - - 20
Cw (F) < by (F) + A|go — yo| < duw(o, Go) + 3
. 20
< dw (20, Y0) + dw (Yo, Jo) + 3
S dw(x(h yO) + d
and then F satisfies the requirement. ]



2.2 The Dipole Removing Technique

We first present the dipole removing technique for a simple dipole. We then treat the case

of several point singularities.

Lemma 2.2. Let P and N be two distinct points in 0 and consider v € H(,S8%) N
C (Q\{P,N}) with deg (u, P) = +1 and deg (u,N) = —1. Let F = ([a1,51], ..., [on, Bn])
be an element of Q(P,N) such that N ¢ Uz;ll [k, Bk] U [an, Bn]. Then for any 6 >0 small
enough, there exists a map us € C! (ﬁ, 52) such that:

/ |Vus(z) 2w (x)dr < / |Vu(z)|Pw(z)ds + 87ly, (F) + 6
Q Q
and us coincides with u outside a 6-neighborhood of U}_, [, B] included in ).

Proof. Let F = ([a1,61],- .-, [an, Bn]) € Q(P, N) such that N ¢ Uz;ﬂak,ﬁk] U [, Bn[ and
fix some 0 >0 small. We proceed in several steps.

Step 1. We consider a small 0 <ry<d verifying By, (a1) C Q\ {N}. By Lemma A.1 in [1],
we can find v € Ct (Q\ {ou, N}, S%) N HY(Q) (recall that oy = P) satisfying

@) u(z) on 2\ By, (o), 2.4
v(x) = T —a .
R (\x - a1|) on By, (a1),
for some rotation R and
/ Vo(z)2w(z)ds < / V() Pw(z)ds + 6. (2.5)
Q Q

Let W = {x € R3, dist(z, [a1, %1]) < 6}. For § small enough, we have W C Q\ {N}. We
set d = |a; — (31]. We choose normal coordinates such that ay = (0,0,0) and 31 = (0,0,d).
Let 0 <r < 7. Since v is smooth on W \ By (1), we can find a constant o(r) such that
|Vu| < o(r) on W\ By, (a1). For m € N*, we consider

2
all 81 all 81 a?nl’ﬂl al 81
K, = |- x |- :

2 72 2

For m large enough, we have ©,, ([a1,(1]) C K, C W. As in [1], we are going to construct
in the next step a map vy € C* (W \ {61}, 5%) N H(W) verifying v1 = v in a neighborhood
of OW and deg(v1, 1) = +1. For simplicity, we drop the indices a; and ;.

Step 2. We divide K, in m + 1 cubes @/, defined by

; m am 2 1 o1 .
Q%:[_%’%} x[<j—2>am,<j+2>am] for 7 =0,...,m.

Arguing as in [1], we infer from (2.4) that
Z / Vo2 < C A mo(r)a2, ) . (2.6)
=0 8@% Gm
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We are going to make use of a map wy, : B2 (0) C R? — S? defined by

2a?
o (xl,xg, —a%l) +(0,0,1)

W21, 20) = —
s at, + x? + 23

(wr, was first introduced in [8] and we refer to the proof of Lemma 2 in [8] for its main
properties). For j = 1,...,m, we choose an orthonormal direct basis (e{, e%, eé) of R3 such
that

v(0,0,(j —1/2)am,) = (0,0,1) in the basis (e{,eé,eg),
and we define the map v]" : U;’”‘:O@an — S2 by
1) for (w1, 22, 23) € (UPLg0Qh) \ (UL B (0) x {(j — 1/2)am}),

UT($1,$2,$3) = U(.%'l,.l‘g,.ﬁbg),

2) for j =1,...,m and (z1,22,23) € B2, (0) x {(j — 1/2)am},

v (21, T2, T3) = Win <, > in the basis (e, €}, €}),

3) for j = 1,...,m, for (x1,22,23) € (B% (0)\ B2, (0)) x {(j —1/2)a} and using
="

cylindrical coordinates (z1,z2,x3) = (pcosf, psinb, z),

vt (21, 22, x3) = (AIP + By, Aop+ Ba,\/1— (Aip+ By)2 — (Aop + 32)2)

in the basis (e}, e}, e}), where Ay, Ag, By, By are determined to make v} continuous. More

precisely, if we write v = vie] + v2e; + v3es then

a2, A;(0) + Bi(0) = v;(a2, cos@,a?, sin b, (j — 1/2)a,,) i=1,2,
a? 2a3
Zm g B - _“%m
9 1(9) + 1(9) a;ln _|_agn COS 97
a2, 2a3, .
?AQ(G) + By(0) = - sin 6.

The map v]" satisfies by construction v]* = v on 0K,,. Moreover, it follows exactly as in the
proof of Lemma 2 in [1] that deg(v}", dQJ,) = 0 for j = 0,...,m—1 and deg(v}", dQ™) = +1.
Then we extend v} on each cube @7, by setting
m m [ Gm (l‘ - b]) j .
U1 (SU) U1 (2”1’ _ b]”oo + J on Qm or j ) 5 1M,

where b; = (0,0, s;) is the barycenter of Ql, and ||z — billoo = max(|z1], |x2|, |z3 — s5]). We
easily check that v* € H YK, S?), v" = v on 0K,,, v]" is continuous except at the points
b; and Lipschitz continuous outside any small neighborhood of the points b;. We also get

that
deg(vi",by,) =41 and deg(v",b;) =0 forj=0,...,m—1. (2.7)

10



We remark that if we set

D), = B2 (0) x {(j = 1/2)an} U B2 (0) x {(j +1/2)an} forj=1,....,m—1,
Dp, = B2 (0) x {1/2a,,} and Dyt = B2, (0) x {(m — 1/2)an},

2 2

then we have

m . —b; .
U {:c €@, ;H:c(m—b-Hj) +bje D] if x #bjorx=0; otherwise} = O, ([aa, (1))
j=0 J11e0

and if z € @4, N O,, ([o1, B1]) for some j € {0,...,m} then

hm(z) = |x3 — sj] = ||z — bj||oc and r(z) = \/x% —l—x%. (2.8)

Some classical computations (see [1] and [8]) lead to, for j =0,...,m,

/’. _erTsz/’_rvw2+cxa;>
(60Q%.)\Din, QM

and therefore

/_ |V () [Pw(z)dz < ClAam/ |Vl + CoAad,.
m\Om ([a1,61]) 9Qm

Adding these inequalities for j = 0,...,m and combining with (2.6) we obtain

/ Vol (z)[Pw(z)dz < CA (r +mo(r)?al, +a2,) . (2.9)
K \Om ([a1,61])

For € Q%, N Oy, ([o1, 31]) for some j € {0,...,m}, we have

T To ) . i+1 41 1y -
w in the basis (e/7", el ¢! if x3 —5;,>0
(S o) e im0

Wm L ) 2 in the basis (e{7 e%, eg) otherwise.
|$3 — Sj| |l‘3 — Sj|

Following the computations in [6], we infer that

1+ Ca? x1 To 2 .
m 2 < m J )
Vo @) < 1 S, (o ) i Qe o)

Since we have (see [8])

2
()
|3 — 84| |23 — 84

8|zg — sj|4afn
(s — s, a8, + 3 + 24P

we derive that

8lzs — sj|2at,w(x)

Vol (z)|2w(z)de < / sdr + CAdd,.

/anm@mqm,m]) QO (o) (173 — s5[2ap, + a7 + 23)

11



Summing these inequalities for j = 0,...,m and using (2.8) we obtain that
/ Vol () [Pw(z)dz < 8/ oy (T)w(z)dr + CAd?, (2.10)
m([a1,61]) ([o1,81]
Combining (2.9) with (2.10) we conclude that
/ Vol () [Pw(z)dz < 8/ e g, (W)w(x)de + CA (r + mo(r)?ad, + azn) :
K 7”([051751])

Taking the liminf in m, we derive that we can find m; € N large and r small enough such
that

/ Vo™ () |*w(z)dz < 8lim inf/ o gy (T)w(z)dT + 0. (2.11)
Kom, m=+00 Jo,. ([a1,61))

Since vy"' = v on 0K,,,, we may extend vy"' to W by setting v{"* =v on W\ K,,,,. Now we
recall that v]"" is singular only at the points b;, j = 0,...,m (we also recall that b,, = (31).

From (2.7) and the results in [1, 2, 3], we infer that exists a map vy € C* (W \ {61}, 5%) N
H' (W) satisfying v; = v in a neighborhood of OW, deg(vy, 41) = +1 and
/ IVor (2) 2w (z)dz < / Vo™ (o) Pa(z)da + 6. (2.12)
Wi Wi
Since v = u in a neighborhood of W, we may extend v; to by setting v; = u on Q\ W.
Then we conclude that v; € C* (Q\ {81, N}, 5?) NHY(Q), deg(v1, $1) = +1, deg(v1, N) = —1
and by (2.5)-(2.11)-(2.12),

/Vvl )Pw(z d:r</|Vu )2w( d:n+8hm1nf/® ' B])egllﬂl(:v)w(m)dz:—kc&
m{|[®¥1,91

m—-+00

Step 3. Applying Step 1 and Step 2 to v; instead of u and replacing (a1, 1) by (a2, (32)
(recall that 31 = ag), we obtain a map ve € C' (Q\ {82, N}, 5?) N HY(Q2) satisfying va = vy
outside a d-neighborhood of [, B2] included in Q, deg(ve, f2) = +1, deg(ve, N) = —1 and

/]va ) 2w( da;</\Vvl )|?w(z)dz + 8 liminf Eay. g (T)w(2)dx + C6.
M0 SO ([az,f2))

Iterating this process, we ﬁnally obtain a map v,—1 € C' (Q\ {an,ﬁn} 52) N HY(Q) (recall
that 3, = N) verifying v,_1 = u outside a d-neighborhood of U}~ [ak, B] included in €,
deg(vn—luan) - +1’ deg(vn—laﬂn) = _1 and

n—1
/anl(x)|2w(x)dx§/ |Vu(m)|2w(x)dx—|—82hminf/ Eny g, (T)w(T)dx + C6.
Q Q k= @m([ak,ﬁk])

m—-+0o0
1

Asin Step 1, we consider 0 <ry < d such that By, (ay,)N By, (8n) = 0 and By, (ay,)UB,, (8,) C Q
and we construct, using Lemma A1 in [1], a map ¢ € C! (ﬁ\ {an, Bn}, 52) N H(Q) satisfying

u(x) on Q\ By, (an),




for some rotations R, and R_ and

/|V27(m)|2w(:p)da:§/ Vo1 (2)|?w(z)dz + 6.
Q Q

Applying the construction in Step 2 starting from o, we obtain a new map o, (for some
large m,, € N) defined on §-neighborhood W' of [a,, 3,] included in €2, which coincide with
0 near W', which then has only point singularities of degree zero (since deg(v,8,) = —1)

and satisfying

m—-+00

/ Vo () [2w(z)de < / Vo (x) 2w (x)dz + 8lim inf/ o 3 (D)W (x)dT + CO.
! wr Om ([an,Bn])

Since the degree of each singularities of v is zero, we can construct a map v, € Cl(W/, S?)

(see [2, 3]) verifying v, = ¥ in a neighborhood of W’ and
/ Vo (2) 2w (z)de < / Vo (2) 2w (x)da + 6.
w W’
Then we define us :  — S? by

vp—1(z) ifxe Q\ W,

us(z) = _
vp () if e W'

Since v,,_1 = ¥ and ¥ = v,_1 near OW’', we deduce that us € C*(Q, S?). Moreover it follows

by construction that us = u outside a §-neighborhood of U}_, [, 8] included in £ and
/ Vs (2)|2w(z)dz < / V() Pw(z)ds + 877 (F) + C6,
Q Q

which ends the proof since § is arbitrary small. ]

Lemma 2.3. Let (P;, N;)X | be 2K distinct points in Q and consider u € H*(Q,S%)NCH(Q\
UK {P;, N;}) such that deg(u, P;) = +1 and deg(u, N;) = —1 fori=1,..., K. Then There
exists a sequence of maps (un)nen C CH(Q, S?) satisfying Un|pQ = U|9Q;

/ Vi (2)[ 20 (2)d < / V() Pw(@)de + 87 Lo (u) + 277,
Q Q

and

meas ({z € Q, up(z) # u(z)}) <27

Proof. Without loss of generality we may assume that ), d.,(F;, N;) is equal to the length of
a minimal connection relative to d,, between the points (P;) and (V;). As in [1], we are going
to “remove” each dipole (P;, N;). More precisely, for each n € N, we construct successively

7
n

K maps (u )fil satisfying

(a) wi € H'(Q,5%) NnCt (ﬁ\ UZ.+1SjSK{JDj,Nj}) fori=1,..., K,

13



() vl =won Q\ W} and ul, = vt on Q\ Wi for i = 2,..., K where W} is is strictly
included in @\ U, 1<j<r{Pj, Nj} and [Wj| <27"/K,

—n

(c) /Q (Vb (2)|Pw(z)de < /Q \Vu(x)|Pw(z)de + 8ndy(Py, Ny) + 2? and

—n

. , 2
/ |Vl ()| 2w (z)dz < / (Vi (@) Pw(x)dz + 8mdy(P;, N;) + N7a fori=2,... K.
Q Q

We easily check that the sequence (uff),cn then satisfies the requirement since we have
Ly(u) =, dw(P;, N;). We start with the construction of u}.

Construction of ul. By Lemma 2.1, we can find F; = ([a1,51],---, [, B1]) € Q(Pr, Nq)
satisfying
(U, (P, Ny U N 1 (Uheslaws B U, Aul) = 0, (2.13)
and
_ 9—(n+1)

T (F1) < dy(Py. N
(F1) < dw(P1, N1) + Sk

From (2.13), we infer that we can find 6 >0 small enough such that

2777,
Wi = {z e R3, dist(x,UL_,[ag, B]) <6} C Q\UEL{P,, N;} and |W}|< i
By the method described in the proof of Lemma 2.2, we construct a map u’, € H*(Q,5%) N
CLQ\ UE,{P;, N;}) verifying ul, = u outside W} and
_ 9—(n+1)
/ |Vl (2) 2w (z)dramp; < / |Vu(z)|Pw(z)ds + 87ly, (F1) + e
Q Q
2—n
amp; < / |Vu(z)|*w(z)dr + 87dy( Py, Ny) + N7
Q
Construction of ul,, i = 2,..., K. We iterate the previous process i.e., we proceed as for the
construction of u} but starting from u’ ! instead of u. |

3 Proof of Theorem 1.2

3.1 Lower Bound of the Energy

In this section, we denote by F, the functional defined for maps u € H g}(Q, S?) by
P (u) = / V(@) (@) dz + 87 Ly (u).
Q

Proposition 3.1. The functional Fy, is sequentially lower semi-continuous on Hgl(Q, S?) for

the weak H'-topology.

14



Proof. We follow the method in [4]. Since the supremum of a family of sequentially lower
semi-continuous functionals is sequentially lower semi-continuous, it suffices to show that for

any function ¢ : Q — R which is 1-Lipschitz with respect to d,,, the functional
u € H; — /Q |Vu(z)|w(z)de + Q/QD(u) -V(dx

is sequentially lower semi-continuous for the weak H!-topology (the term |, ao(D(u) V)¢ only
depends on g and (). Consider (up)nen C Hgl(Q,S2) and u € Hgl(Q,SQ) such that uw, — u

weakly in H'. Setting v,, = u, — u, we have

/ Vit () 2w () dr = / V() Pu(z)dz +/ V() Pw(z)dz + o(1),
Q Q Q
and writing
2/D(un)-VCdx:An+Bn+Cn
Q
with

A_Q/u %/\&%_{_ﬁ/\%% ﬁ/\%%
" Q " a$2 6$3 8.7)1 0$3 6931 8.7)3 8.%1 61‘2 8.1‘3 ’

B—Q/u vy Ou_ | Ou  Ovn 3<+2/u vy Ou  Ou B IC
" Q " 8$2 8$3 81‘2 8%’3 6$1 o) " 6;1@3 8.1‘1 a:Eg 61'1 8.1‘2
+2/ Ovn  Ou  Ou Ovn) OC
Qun Oxy Oxo Ox1 Oxo) Ox3’
Cn—Q/un-<av”/\8v”aC (%n/\@vn% 81)”/\(‘91),18().
Q

871‘2 (T%g 8.%1 871‘3 87$1 (3.%3 871‘1 8$2 8.%‘3

We easily obtain that A, — 2 [, D(u) - V{ as n — 400 since u,, — u weakx in L> and that

B,, — 0 since v, — 0 weakly in L? and wu,, — u strongly in L?. Now we set

Vo= (w,. 20 7OV OO0 DU DUy
" " 61’2 8.%'37 " 81‘3 81’1’ " 8:131 8:62 '

We have
|cn|=2\/ wvc\ <2 [ Walivel.
Q Q

By Lemma 1 in [4], we know that 2|V},| < |Vv,|? and by Proposition 2.3 in [14], any ¢ : @ — R
which 1-Lipschitz with respect to d,, satisfies |[V(| < w a.e. on Q. Then we obtain

Cal < [ [90a(a) Puta)do
Q
and we conclude that

/Q\Vun(x)Pw(a;)dx—i—2/QD(un)-VCde/Q]Vu(x)]Qw(a;)dx—i—Q/ﬂD(u)-VCda:—i—o(l)
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which clearly implies the result. ]

Proof of “>7 in Theorem 1.2. Let u € H;(Q,SQ) and consider an arbitrary sequence
(Un)nen C H1 (€2, 5?) N CH(Q) such that u, — u weakly in H'. Since u, is smooth in €,
we have T'( un) = 0 and then L, (u,) = 0. We conclude by Proposition 3.1 that

liminf/ |V (z)2w(x)dr = liminf Fy,(u,) > Fy(u /|Vu )2w(z)d + 87 Ly (u).
n—-+4oo n—-+4oo
Since the sequence (uy)nen is arbitrary, we get the announced result. ]

3.2 Upper Bound of the Energy

Proposition 3.2. Let u € H;(Q,Sg). Then there exists a sequence of maps (up)pen C
Hgl(Q, SHNCL(Q) such that u, — u weakly in H' and

. 2 2
hmsup/Q\Vun(x)] w(z)dr < /Q |Vu(x)|“w(x)dr + 87 Ly (u).

n—-—+0o

End of the proof of Theorem 1.2. Let u € H;(Q, S?) and let (uy,)nen be the sequence of maps
given by Proposition 3.2. By definition of E,,(u) and Proposition 3.2, we have

E,(u) <lim inf/Q |V, () 2w (x)dz < /Q |Vu(z) Pw(z)de + 87 Ly, (u),

n—-+o0o

which ends the proof of Theorem 1.2. |

To prove Proposition 3.2, we need the following Lemma. We postpone its proof at the

end of this section.

Lemma 3.1. For any u,v € H;(Q,Sz), we have
|Lw(u) — Ly (v)] < CA (IVul|r2(0) + VO]l 12(0)) VU — Vol 12(0) (3.1)
for a constant C' independent of w.

Proof of Proposition 3.2. Let u € HI(Q S?). By the result in [1, 3], we can find a sequence of
maps (vn)nen C Hy (€2, S?) such that v, € C1(Q\ UK {P;, N;}) for some 2K, distinct points
(P;, N;) in §, deg(vp, P;) = +1 and deg(v,, N;) = —1 for i = 1,..., K,, and such that

IV(on — )| 20y < 27" (3.2)
From this inequality we infer that
meas ({x € Q, |vp(x) — u(x)] <2*"/2}) <Cc2™. (3.3)

Applying Lemma 2.3 to v,, we find a map u,, € C}(Q, S?) satisfying Un|oQ = 9,
/ |V, ()| 2w (x)de < / Vo, (x)2w(z)dz + 87 Ly (vy,) + 27" (3.4)
Q Q
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and

meas ({x € Q, up(z) # vp(x)}) <27 (3.5)

From (3.2) and Lemma 3.1 we deduce that Ly (v,) — Ly(u) as n — 400 and then it follows
that (un)nen is bounded in H'. Moreover we obtain from (3.3) and (3.5) that u, — u a.e.

in Q and we conclude that u, — u weakly in H'. Letting n — +oo in (3.4) leads to

. 2 2
hmsup/Q|Vun(x)| w(z)dr < /Q |Vu(x)|“w(zx)dx + 87 Ly (u),

n—-+o0o

which completes the proof. ]

Proof of Lemma 3.1. To prove Lemma 3.1, we follow the method in [4]. For u,v € Hgl(Q, S?),

we set
Ly(u,v) = Sup {/ (D(u) — D(v)) - V¢, ¢ : © — R 1-Lipschitz with respect to dw} .
Q

Since D(u) - v = D(v) - v on 02 (it only depends on g), we have

/ D(u)-V¢— [ (D(w)-v)¢ = / D) V¢ [ (Dw)-v)C+ / (D(u) - D(v)) - VC.
Q o0 Q o0 Q

and we easily derive that
| L (1) = L (v)| < Luy(u, v).

Similar computations to those in [4], proof of Theorem 1, lead to

/Q (D(u) = D(v)) - VC‘ < C(IVullr2() + IVl r2() Ve = Vol 2@ I VEI| e (9) -

By Proposition 2.3 in [14], any real function ¢ which is 1-Lipschitz with respect to d,, satisfies
V(] < w a.e. on Q. We deduce that (3.1) holds since w < A a.e. on . [ |

4 Stability and Approximation Properties

4.1 A Stability Property

Before stating the result, we need to recall some previous ones obtained in [14]. For any
real measurable function w satisfying assumption (1.1), we may associate to distance d,, the

length functional L, defined by

m—1
L4, (v) = Sup { Z dy (V(t), Y(tet1)), 0 =to<ti1 <...<tm=1,m € N*} ,
k=0

where v : [0,1] — Q is any continuous curve. In [14], we have proved that for any z,y € Q,

dy(z,y) = Inf {Lq, (v), v € Lip([0,1],2), 7(0) = z and v(1) = y} (4.1)
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where Lip([0, 1],€2) denotes the class of all Lipschitz maps from [0, 1] into . We have also

shown that the infimum in (4.1) is in fact achieved.

The following stability result relies on the I'-convergence of the length functionals (we
refer to [11] for the notion of I'-convergence). In the sequel, we endow Lip([0, 1],€2) with the

topology of the uniform convergence on [0, 1].

Theorem 4.1. Let (wy)nen be a sequence of measurable real functions such that
O<cg<w,<Cy a.ce in (4.2)

for some constants cy and Cy independent of n € N. Then the following properties are

equivalent:

(i) the functionals Ly, T-converge to Lq, in Lip([0,1],Q) and

n—-4o0o

/!ch(xﬂzwn(x)dx — /\Vgp(m)|2w(x)d:p for any ¢ € HY(Q,R), (4.3)
Q Q

(ii) for every smooth boundary data g : OQ — S? such that deg(g) = 0,

Proof. (i)=(ii). We fix a smooth boundary data g : Q@ — S? such that deg(g) = 0. Clearly
(4.3) implies that

/ V(@) Pun(@)de — / Vu(a) Pw(e)dr for any u e HI(S,52),
Q

n—-+o0o Q

and by Theorem 1.2, it remains to prove that

Ly, (u) — Ly(u) forany u e H;(Q,SQ). (4.4)

n—-+o0o

Consider u € H}(€,5%). By the result in [1, 3], there exits a sequence of maps (vx)ren C
H}(€,5%) such that vy € C'(Q\ Ujj‘ikl{IDj,Nj},Sz) for some 2Mj, points (Pj, N;) in Q,

deg(vg, P;) = +1 and deg(vg, N;) = —1 for j = 1,..., My, and vy, — u strongly in H'.
We have
Ly, (v Min d and Ly, = Min duy
= ) 1= 3

Since the functionals Lg, ~I-converge to Lg, in Lip([0, 1],€2), we deduce from Theorem 4.1
in [14] that for every k € N, Ly, (vr) — Ly(vg) as n — 400. Now we fix a small 6 >0. Since
vk, — u strongly in H!, we derive from Lemma 3.1 and (4.2) that exists ko € N which only
depends on u, 6 and Cy such that

Ly, (vg) — 6 < Ly, (u) < Ly, (vg) + 6 for any n € N and k > k.

18



Letting n — +o0 in this inequality, we get that

Ly(vg) — 9 < liminf Ly, (u) <limsup Ly, (u) < Ly(vg) +6  for k > ko.

n—+oo n—+400

Passing to the limit in £ and using Lemma 3.1, we obtain

Ly(u) — 0 <liminf Ly, (u) <limsup Ly, (u) < Ly(u) + 6,

n—+00 >0
which leads to the result since ¢ is arbitrary small.
(ii)=(i). First we prove (4.3) for ¢ € C*®(,R). Let ¢ € C®(Q,R) and consider the

smooth map g : 9Q — S? defined by g(z) = (cos(p(x)),sin(p(x)),0). We easily check that
deg(g) = 0. Now consider the map u defined for z € Q by

u(z) = (cos(p(x)),sin(p(x)),0).

We have u € HJ(Q,5?%) N C>®(Q) and then Ly, (u) = Ly(u) = 0 for any n € N. Since
|Vul? = |[Vy|?, we derive from assumption (#i) and Theorem 1.2 that

/ V() Puwn(e)dr  — / V() o
Q n—-400

Let us now prove (4.3) for any ¢ € H'(Q,R). Let ¢ € H'(2,R) and consider a sequence
(0r)ken C C®°(Q, R) such that @), — ¢ strongly in H'. We fix a small § >0. From assumption
(4.2), we infer that exists kg € N which only depends on ¢, § and Cj such that for any n € N
and k > ko,

/ Vo (@) Pwm(2)dz — § < / Vo) 2w (z)dz < / Vo (@) Pm (2)dz: + 6.
Q Q Q

Since ¢y, is smooth, letting n — 400 we obtain for k > ko,

/ Vi (z)[*w(z)de —§ < l1m1nf/ |Veo(2)|?wn (z)dx

n—-+o0o

< limsup/ \Vgo(a:)|2wn(a:)da:§/ |Veor () *w(z)dz + 6.
Q Q

n—-+o0o

Passing to the limit in £ and then § — 0, we conclude

lim /]Vgp(x)\2wn(m)dx:/ V() [*w(z)da

It remains to prove that the functionals Ly, T-converge to Lg, in Lip([0,1],Q). Let P and N
be two distinct points in 2. We take g = (0,0, 1) and consider u € H;(Q, SHNCHQ\{P,N})

(such a map is constructed for instance in [6, 9]). By Theorem 1.2, we have
E,, (u) = / |Vu(z) |*w, (x)dx + 87dy,, (P, N)
Q

and
E,(u) = /Q |Vu(z) *w(z)dr + 87dy, (P, N).
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From (4.3) we get that [, [Vu(z)|?wy(z)dz — [ |[Vu(z)|*w(z)dz and from assumption (ii)
we deduce that
dy, (P,N) — d,(P,N) asn — +oc.

Since the points P and N are arbitrary in {2, we derive that d,,, converges to d,, pointwise
on Q x £ and the conclusion follows by the results in [14] Section 4. [
In the next proposition, we give some sufficient condition on a sequence (wy,),eN converg-

ing pointwise a.e. to w for property (i) in Theorem 4.1 to hold.

Proposition 4.1. Let (wy)nen be a sequence of measurable real functions satisfying (4.2)

and assume that one of the following conditions holds:
(a) wy, > w and w, — w a.e. in €,
(b) wy, — w in L=(Q).

Then property (ii) in Theorem 4.1 holds.

Proof. By Proposition 4.1 and Theorem 4.1 in [14], (a) or (b) implies that the functionals
Lq,, TI-converge to Lg, in Lip([0,1],€2). We also check that (a) or (b) implies (4.3) by

dominated convergence. Then the conclusion follows from Theorem 4.1. ]

w

Remark 4.1. The conclusion of Proposition 4.1 may fails if one only assumes that w, — w
a.e. in € (see Remark 4.1 in [14]).

4.2 Approximation Property

In this section, we show that the functional F,, can be obtain as pointwise limit of a

sequence (Ey, )nen in which the weight function w,, is smooth.

Proposition 4.2. Let (pp)nen be a sequence of smooth mollifiers. Extending w by a suffi-

ciently large constant and setting wy, = pp * w, we have

Ey, (u) — Ey(u) foranyue H;(Q,SQ).

Proof. By construction, (4.3) clearly holds. Then property (i) in Theorem 4.1 follows from
Theorem 4.1 in [14] and Theorem 4.2 in [14] which leads to the result by Theorem 4.1. W

5 The Relaxed Energy without Prescribed Boundary Data
In this section, we consider the relaxed type functional

Ey(u) = Inf{liminf/Q |V, ()| 2w(z)dz, u, € CH(Q, S?), u, — u weakly in Hl}

n—-4oo
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defined for u € H'(€, S?). We recall that F. Bethuel has also proved (see [1]) that C*(€, S?)
is sequentially dense in H'(£2, S?) for the weak H' topology and then E,, is well defined.

As in [4], there is also a notion of length of a minimal connection relative to d,, defined
for any uw € H'(2,5?) :

. 1 _
Ly(u) = e Sup {(T(u), (), ¢ : Q — R 1-Lipschitz with respect to d,, and ( = 0 on 89}.

Since no assumptions are made on u|5q, it may happen that deg(ujgq) # 0 or that deg(u)sq) is
not well defined. But clearly L, (u) always makes sense. When u is smooth except at a finite
number of point in Q, Ly (u) is equal to the length of a minimal connection relative to dy,
between the singularities of u and some virtual singularities on the boundary (see [9]). More
precisely, one adds some virtual singularities on the boundary in such a way that the new
configuration has the same number of positive and negative points and one consider the length
of a minimal connection relative to d,, for this configuration. Then L,,(u) corresponds to the
infimum of these quantities when one varies the position and the number of the boundary

points. There is the variant of Theorem 1.2 for E,.

Theorem 5.1. For any u € H' (2, S?), we have

Bulu) = /Q V() Pw(e)de + 87 Lo ().

5.1 Proof of Theorem 5.1

The inequality ”>” in Theorem 5.1 can be proved using a method similar to the one used
in Section 3.1 and we omit it. We obtain ”"<” as in Section 3.2 using Proposition 5.1 and
Lemma 5.1 below instead of Proposition 3.2 and Lemma 3.1. The proof of Lemma 5.1 is
almost identical to the proof of Lemma 3.1 and we also omit it (note that all the boundary

integrals vanish since ¢ = 0 on 99).
Proposition 5.1. Let u € HY(Q,S?). Then there exists a sequence of maps (up)nen C
CY(Q, S?) such that

Up —u  weakly in H'

and

. 9 9 -
hmsup/Q\Vun(x)] w(z)dr < /Q |Vu(x)|“w(z)dr + 87 Ly (u).

n—-+00
Lemma 5.1. For any u,v € H'(2,5?), we have
|Lu(w) = Lu(®)] < CA (IVull 20y + 90l 220) IV = Vellz2(@), (5.1)
for a constant C' independent of w.

Proof of Proposition 5.1. Let u € H'(£2,8%). By the result in [1, 3], we can find a sequence
(Un)nen C HY(R, §2) such that v, € C1H(Q\ {(a;)X}) for some N,, distinct points ay, ..., an,
in © and

= vl ey < 27" (5.2)
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Since we are working with an approximating sequence, we may assume that | deg(v,,a;)| =1
for i =1,..., N, (see [1]). Since v, is smooth except at a finite number of point in €2, the
length of a minimal connection Ly, (v,) is computed as follows (see [9], part IT). We pair each
singularity a; either to another singularity in € of opposite degree or to a virtual singularity
on the boundary with opposite degree. In other words, we allow connections to the boundary
of . Pairing all the singularities in this way, we take a configuration that minimizes the
sum of the distances between the paired singularities, computing the distances with d,,. We
relabel all the singularities (the a;’s and the virtual singularities on the boundary), according
to their multiplicity for those on the boundary, as a list of positive and negative points say
(P1,...,Pxk,) and (Ny,..., Nk, ) such that
Ky

iw(vn) = Zdw(Pijj)'
j=1
Using Lemma 2 bis in [1], we can find ¢, € H'(£,5%) N CYQ\ U  {P;,N;}) for some
2K, distinct points (]53,]\7 ) in © such that o, = v, outside a small neighborhood of 912,
deg(0n, P;) = +1 and deg(d,, N;) = —1 for j = 1,..., K,, P; = P; (respectively N N;) if
P; € Q (vespectively if N; € Q) and |P; — P;| < 2~ 0therw1se (respectively |N; — N;| < % "),
and

[0 — UnHHl(Q) <27 (5.3)
Note that, for each pair (P;, N;), we necessarily have ]5]- = Pj or Nj = N; and then

Kn Ky
Zdw(Pj>Nj)_Zdw(PjaNj) §C2_n) (54)
j=1 j=1
and from (5.2) and (5.3), we infer that
meas ({a: € Q, [u(z) — on()] <2—n/2}) <Cc2m (5.5)
Applying Lemma 2.3 to ¥, we find a map u, € C*(Q, 5?) satisfying
/ |V, ()| 2w (z)dz < / |V (z)Pw(z)ds + 8772d (Pj, Nj) +27" (5.6)
and
meas ({z € Q, up(x) # Op(x)}) <27 (5.7)

From (5.4) and (5.6), we derive that

(5.6)
/ Vutp (2) 2w () da < / V(@) Pw(z)dz + 87 L (ve) + C 2. (5.8)
Q Q

Since v, — u strongly in H', we deduce from Lemma 5.1 that Ly (v,) — Ly (u) as n — 400
which implies that (uy)nen is bounded in H!. From (5.3) and (5.7) we obtain u,, — u a.e.
in  and then we conclude that u,, — u weakly in H'. Passing to the limit in (5.8) leads to
lim sup/ |V, () 2w (x)dz < / \Vu(z)|Pw(z)de + 87 Ly, (u)
n—+oo JQ Q

and the proof is complete. |
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5.2 Stability and Approximation Properties for E,,
We present in this section the variants for E,, of the results in Section 4.

Theorem 5.2. Let (wy)nen be a sequence of measurable real functions satisfying (4.2) and
assume that (i) in Theorem 4.1 holds. Then we have

Ey,(u) — Ey(u) for anyue HY(Q,S5?). (5.9)

n—-400

Proof. Assumption (4.3) clearly implies that

/]Vu(:v)]an(x)d - /yvu J2w(z)dz for any u € H(Q, S2),
Q n—- 00

and by Theorem 5.1, we just have to prove that

L, (u) — Ly(u) for any u € H'(Q,S?). (5.10)

n—-+00

Consider v € H'(£2, S?). By the result in [1, 3], we can find a sequence (v3)reny C H'(Q, 5?)
such that v, € CH(Q\ Ui]\i’“l{aj},SZ) for some M}, points (a;) in © and vp — w strongly in
H'. We easily check that a minimal connection for v, relative to distance dy, does not
allow more than S M | deg(vg, a;)| connections to the boundary. Therefore, extracting a
subsequence (n;);cn, we can relabel the singularities of v and the virtual singularities on
the boundary given by a minimal connection relative to dwnl’ as a list of positive points
(Pll, cee P[l<k) and a list of negative points (N{, . 7N}<k) with K} independent of [ and such
that

Ky,
T [ l _ [ l
Lwnl v) alé/hgk g dwnl P N, )) g dwnl(P N, (]))
Jj=1

for some permutation o; € Sk, . Extracting another subsequence if necessary, we may assume
that o; = o, is independent of [ € N and that Pl — Pj and N — Njforj=1,... K.

I l—t00 l—400
From the results in [14] Section 4.1, we know that assumption (i) implies that d,,, converges

to d,, uniformly on Q x Q and then we have

l 1
Lo, (vr) Zdwnl PLNL ) = > dw(Pj, Ny )

By definition of L, (v;), we obtain that

Ly (vg )<ll}T Luy,,, (V).

On the other hand, we can also relabel the singularities of vy and the virtual singularities
on the boundary given by a minimal connection relative to d,,, as a list of positive points
(P1,...,P%) and a list of negative points (N1,..., N) such that

K
Lu(v) =3 dulP;. ),



As previously, we have for any [ € N,

Letting | — +00, we obtain

K

liiinoo Lwnl () < Zdw(Pj7 j)

and then we conclude that l lim Ewnl (vg) = Ly, (vg). By uniqueness of the limit, we get that
——+00

the convergence holds for the full sequence i.e.,

Ly, (vg) — I:w(vk).

n—-+o0o

At this stage, we can proceed as in the proof of Theorem 4.2 (i)=(ii) using Lemma 5.1

instead of Lemma 3.1. [ |

We obtain the following variants of Proposition 4.1 and Proposition 4.2 using Theorem 5.2

instead of Theorem 4.1.

Proposition 5.2. Let (wy)nen be a sequence of measurable real functions satisfying (4.2)
and assume that (a) or (b) in Proposition 4.1 holds. Then (5.9) holds.

Proposition 5.3. Let (pp)nen be a sequence of smooth mollifiers. Extending w by a suffi-

ciently large constant and setting wy, = p, * w, then (5.9) holds.
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