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Abstract. We compute explicitly a relaxed type energy for maps u : Ω ⊂ R3 → S2.

The explicit formula involves the length of a minimal connection relative to some specific

distance connecting the topological singularities of u and associated to a measurable weight

function. This result generalizes a previous result of F. Bethuel, H. Brezis et J.M. Coron.

Résumé. Nous calculons explicitement une énergie de type relaxée pour des applications

u : Ω ⊂ R3 → S2. La formule explicite fait intervenir la longueur d’une connexion

minimale relative à une certaine distance, connectant les singularités topologiques de u et

associée à une fonction de poids mesurable. Ce résultat généralise un résultat antérieur

de F. Bethuel, H. Brezis and J.M. Coron.
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1 Introduction and Main Results

Let Ω be a smooth bounded and connected open set of R3 and let w : Ω → R be a
measurable function such that

0 < λ ≤ w ≤ Λ a.e. in Ω (1.1)

for some constant λ and Λ. We set H1
g

(
Ω, S2

)
=

{
u ∈ H1

(
Ω, S2

)
, u = g on ∂Ω

}
, where

g : ∂Ω → S2 is a given smooth boundary data such that deg(g) = 0. Our main goal in this
paper is to obtain an explicit formula for the relaxed functional

Ew(u) = Inf
{

lim inf
n→+∞

∫

Ω
|∇un(x)|2w(x)dx, un ∈ H1

g (Ω, S2) ∩ C1(Ω), un ⇀ u weakly in H1

}
,
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defined for u ∈ H1
g (Ω, S2). By a result of F. Bethuel (see [1]), H1

g (Ω, S2)∩C1(Ω) is sequentially
dense for the weak topology in H1

g (Ω, S2) and then the functional Ew is well defined.

In [4], F. Bethuel, H. Brezis and J.M. Coron have proved that for w ≡ 1,

E1(u) =
∫

Ω
|∇u(x)|2dx + 8πL(u),

where L(u) denotes the length of a minimal connection relative to the Euclidean geodesic
distance dΩ in Ω connecting the singularities of u (see also M. Giaquinta, G. Modica, J.
Souček [13]). If u ∈ H1

g (Ω, S2) is smooth on Ω except at a finite number of points in Ω, the
length of a minimal connection relative to dΩ connecting the singularities of u is given by

L(u) = Min
σ∈SK

K∑

i=1

dΩ(Pi, Nσ(i))

where (P1, . . . , PK) and (N1, . . . , NK) are respectively the singularities of positive and nega-
tive degree counted according to their multiplicity (since deg(g) = 0, the number of positive
singularities is equal to the number of negative ones) and SK denotes the set of all permuta-
tions of K indices. For the definition of L(u) when u is arbitrary in H1

g (Ω, S2), we refer to
(1.6)-(1.7) below. The notion of length of a minimal connection between singularities has its
origin in [9]. We also refer to the results of J. Bourgain, H. Brezis, P. Mironescu [5] and H.
Brezis, P. Mironescu, A.C. Ponce [10] for similar problems involving S1-valued maps.

For u ∈ H1(Ω, S2), the vector field D(u) first introduced in [9] and defined by

D(u) =
(

u · ∂u

∂x2
∧ ∂u

∂x3
, u · ∂u

∂x3
∧ ∂u

∂x1
, u · ∂u

∂x1
∧ ∂u

∂x2

)
(1.2)

plays a crucial role. Indeed, if u is smooth except at a finite number of points (Pi, Ni)K
i=1 in

Ω, then (see [9], Appendix B)

divD(u) = 4π
K∑

i=1

(δPi − δNi) in D′(Ω) (1.3)

and if in addition u|∂Ω = g, we have (since deg(g) = 0, see [9], Section IV)

L(u) = Sup

{
K∑

i=1

(ζ(Pi)− ζ(Ni))

}
(1.4)

where the supremum is taken over all functions ζ : Ω → R which are 1-Lipschitz with respect
to distance dΩ i.e., |ζ(x)− ζ(y)| ≤ dΩ(x, y). Note that for any real Lipschitz function ζ,

K∑

i=1

ζ(Pi)− ζ(Ni) =
1
4π

∫

Ω
divD(u) ζ = − 1

4π

∫

Ω
D(u) · ∇ζ +

1
4π

∫

∂Ω
(D(u) · ν) ζ (1.5)

where ν denotes the outward normal to ∂Ω. We recall that D(u) · ν is equal to the 2 × 2
Jacobian determinant of u restricted to ∂Ω and then it only depends on g. In view of (1.4)
and (1.5), L(u) has been defined in [4] for u ∈ H1

g (Ω, S2) by

L(u) =
1
4π

Sup
{〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz with respect to dΩ

}
(1.6)
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where T (u) ∈ D′(Ω) denotes the distribution defined by its action on real Lipschitz functions
through the formula:

〈T (u), ζ〉 =
∫

Ω
D(u) · ∇ζ −

∫

∂Ω
(D(u) · ν) ζ . (1.7)

In a previous paper [14], we have studied the following variational problem: given two
distinct points P and N in Ω,

Ew(P,N) = Inf
{∫

Ω
|∇v(x)|2w(x)dx, v ∈ E(P, N)

}

where

E(P, N)=
{
v∈H1(Ω, S2) ∩ C1

(
Ω \ {P,N}), v = const on ∂Ω, T (v) = 4π(δP − δN ) in D′(Ω)

}
.

In the case w ≡ 1, H. Brezis, J.M. Coron and E. Lieb have shown that (see [9])

E1(P,N) = 8πdΩ(P, N).

For an arbitrary function w, we have proved (see [14]) that Ew(·, ·) defines a distance function
satisfying

8πλ dΩ(·, ·) ≤ Ew(·, ·) ≤ 8πΛ dΩ(·, ·). (1.8)

From (1.8), we infer that Ew extends to Ω×Ω into a distance on Ω. In what follows, we set
for x, y ∈ Ω,

dw(x, y) =
1
8π

Ew(x, y).

When w is continuous, we also have shown that the distance dw can be characterized in the
following way: for any x, y ∈ Ω,

dw(x, y) = Min
∫ 1

0
w(γ(t))|γ̇(t)|dt

where the minimum is taken over all Lipschitz curve γ : [0, 1] → Ω verifying γ(0) = x and
γ(1) = y. For an arbitrary measurable function w, the previous formula is meaningless since
w is not well defined on curves but a similar characterization of dw actually holds. We refer
to [14] for more details. We also recall the general result in [14]:

Theorem 1.1. Let (Pi)K
i=1 and (Ni)K

i=1 be two lists of points in Ω and consider

E (
(Pi, Ni)K

i=1

)
=

{
v ∈ H1(Ω, S2) ∩ C1

(
Ω \ {(Pi, Ni)K

i=1}
)
,

v = const on ∂Ω and T (v) = 4π
K∑

i=1

δPi − δNi in D′(Ω)
}
.

Then we have
Inf

{∫

Ω
|∇v(x)|2w(x)dx, v ∈ E (

(Pi, Ni)K
i=1

)}
= 8πLw

where Lw is the length of a minimal connection relative to distance dw connecting the points
(Pi) and (Ni) i.e.,

Lw = Min
σ∈SK

K∑

i=1

dw(Pi, Nσ(i)).
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By analogy with the case w ≡ 1, we define for u ∈ H1
g (Ω, S2),

Lw(u) =
1
4π

Sup
{〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz with respect to dw

}

(note that any real function ζ which is 1-Lipschitz with respect to dw, is a Lipschitz function
with respect to dΩ since dw is strongly equivalent to dΩ and then 〈T (u), ζ〉 is well defined).
When u is smooth except at a finite number of points (Pi, Ni)K

i=1 in Ω, it follows as in [9]
that Lw(u) is equal to the length of a minimal connection relative to distance dw connecting
the points (Pi) and (Ni). Our main result is the following.

Theorem 1.2. For any u ∈ H1
g (Ω, S2), we have

Ew(u) =
∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u) .

The proof of Theorem 1.2 is presented in Section 3 and is based on a method similar to
the one used in [4] and on a Dipole Removing Technique exposed in the next section. This
technique is mostly inspired from [1] but involves some tools developed in [14] in order to
treat the problem for a non smooth function w.

In Section 4, we prove a stability property of Ew. More precisely, we give some condi-
tions on a sequence (wn)n∈N under which one can conclude that the sequence of functionals
(Ewn)n∈N converges pointwise to Ew on H1

g (Ω, S2). The results are obtained using previous
ones in [14]. In Section 5, we present similar results for a relaxed type functional in which
we do not prescribed any boundary data.

Throughout the paper, a sequence of smooth mollifiers means any sequence (ρn)n∈N sat-
isfying

ρn ∈ C∞(R3,R), Supp ρn ⊂ B1/n,

∫

R3

ρn = 1, ρn ≥ 0 on R3.

2 The Dipole Removing Technique

In this section, we first give a technical result which will be used for the dipole removing
technique in Section 2.2.

2.1 Preliminaries

Let α and β be two distinct points in Ω. We denote by pα,β (ξ) the projection of ξ ∈ R3

on the straight line passing by α and β and rα,β (ξ) = dist (x, [α, β]) , where “dist” denotes
the Euclidean distance in R3. For m ∈ N∗, we set

aα,β
m =

|α− β|
m

and sα,β
j = j aα,β

m for j = 0, . . . , m.

For ξ ∈ R3 such that pα,β (ξ) ∈ [α, β], we define

hα,β
m (ξ) = min

0≤j≤m

∣∣∣|pα,β (ξ)− α| − sα,β
j

∣∣∣ ,
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and we set

Θm ([α, β]) =
{

ξ ∈ R3, pα,β (ξ) ∈ [α, β] and rα,β (ξ) ≤ aα,β
m hα,β

m (ξ)
}

.

For two points x and y in Ω, we consider the class Q(x, y) of all finite collections of
segments F = ([αk, βk])

n(F)
k=1 such that βk = αk+1 , α1 = x , βn(F) = y, [αk, βk] ⊂ Ω and

αk 6= βk. We define the “length” of an element F ∈ Q(x, y) by

`w (F) =
n(F)∑

k=1

lim inf
m→+∞

1
π

∫

Θm([αk,βk])∩Ω
εm
αk,βk

(ξ)w (ξ) dξ

with

εm
αk,βk

(ξ) =

(
hαk,βk

m (ξ)
)2 (

aαk,βk
m

)4

((
hαk,βk

m (ξ)
)2 (

aαk,βk
m

)4
+ r2

αk,βk
(ξ)

)2 .

Lemma 2.1. Let P be a finite collection of distinct points in Ω or P = ∅. For any distinct
points x0, y0 in Ω \P and δ>0, there exists Fδ = ([α1, β1], . . . , [αn, βn]) ∈ Q(x0, y0) such that
(P ∪ {y0}) ∩

(∪n−1
k=1 [αk, βk] ∪ [αn, βn[

)
= ∅ and

`w (F) ≤ dw(x0, y0) + δ.

Proof. Step 1. Assume that w is smooth on Ω. We are going to prove that for every element
F = ([α1, β1], . . . , [αn, βn]) ∈ Q(x, y), we have

`w (F) =
∫

∪n
k=1[αk,βk]

w(s)ds.

It suffices to prove that for any distinct points α, β ∈ Ω,

lim
m→+∞

1
π

∫

Θm([α,β])∩Ω
εm
k (ξ) w (ξ) dξ =

∫

[α,β]
w(s)ds. (2.1)

Without loss of generality, we may assume that [α, β] = {(0, 0)} × [0, R] and we drop the
indices α and β for simplicity. We set for j = 0, . . . , m− 1,

Cj+
m =

{
ξ = (ξ1, ξ2, ξ3) ∈ Θm ([α, β]) , ξ3 ∈

[
sj , sj +

am

2

]}
,

and for j = 1, . . . , m,

Cj−
m =

{
ξ = (ξ1, ξ2, ξ3) ∈ Θm ([α, β]) , ξ3 ∈

[
sj − am

2
, sj

]}
.

For ξ ∈ Cj+
m ∪ Cj−

m , we have hm (ξ) = |ξ3 − sj | and we get that for m large enough,

∫

Θm([α,β])∩Ω
εm
k (ξ)w (ξ) dξ =

m−1∑

j=0

Ij+
m +

m∑

j=1

Ij−
m (2.2)
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with

Ij+
m =

∫

Cj+
m

|ξ3 − sj |2 a4
mw (ξ)(

|ξ3 − sj |2 a4
m + r2 (ξ)

)2 dξ for j = 0, . . . , m− 1,

Ij−
m =

∫

Cj−
m

|ξ3 − sj |2 a4
mw (ξ)(

|ξ3 − sj |2 a4
m + r2 (ξ)

)2 dξ for j = 1, . . . , m.

Using the change of variable z1 = ξ1
|ξ3−sj | , z2 = ξ2

|ξ3−sj | and z3 = ξ3, we derive that

Ij+
m =

∫ sj+
am
2

sj

(∫

Bam (0)

a4
mw (|z3 − sj |z1, |z3 − sj |z2, z3)

(a4
m + z2

1 + z2
2)2

dz1dz2

)
dz3

=
∫ sj+

am
2

sj

(w(0, 0, z3) +O(am))

(∫

Bam (0)

a4
m

(a4
m + z2

1 + z2
2)2

dz1dz2

)
dz3

= π

∫ sj+
am
2

sj

w(0, 0, z3)dz3 +O(a2
m).

By similar computations we get that

Ij−
m = π

∫ sj

sj−am
2

w(0, 0, z3)dz3 +O(a2
m).

Combining this equalities with (2.2), we obtain that

∫

Θm([α,β])∩Ω
εm
k (ξ) w (ξ) dξ = π

∫ R

0
w(0, 0, z3)dz3 +O(am)

which ends the proof of (2.1).

Step 2. We fix two distinct points x0, y0 ∈ Ω \ P. For any points x, y in Ω \ (P ∪ {y0}), let
Q′(x, y) be the class of elements F = ([α1, β1], . . . , [αn, βn]) ∈ Q(x, y) such that

∪n
k=1[αk, βk] ⊂ Ω \ (P ∪ {y0}).

We consider the function Dw : Ω \ (P ∪ {y0})× Ω \ (P ∪ {y0}) → R+ defined by

Dw(x, y) = Inf
F∈Q′(x,y)

` (F) .

We are going to show that Dw defines a distance function which can be extended to Ω×Ω. Let
x, y ∈ Ω\(P∪{y0}) and let F = ([α1, β1], . . . , [αn, βn]) be an element of Q′(x, y). Assumption
(1.1) and similar computations to those in Step 1 lead to

λ
n∑

k=1

|αk − βk| ≤ `w (F) ≤ Λ
n∑

k=1

|αk − βk|.

Taking the infimum over all F ∈ Q′(x, y), we infer that

λ dΩ(x, y) ≤ Dw(x, y) ≤ Λ dΩ(x, y). (2.3)
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From (2.3), we deduce that Dw(x, y) = 0 if and only if x = y. Let us now prove that Dw is
symmetric. Let x, y ∈ Ω \ (P ∪ {y0}) and δ > 0 arbitrary small. By definition, we can find
Fδ = ([α1, β2], . . . , [αn, βn]) in Q′(x, y) satisfying

`w (Fδ) ≤ Dw(x, y) + δ.

Then for F ′δ = ([βn, αn], . . . , [β1, α1]) ∈ Q′(y, x), we have

Dw(y, x) ≤ `w

(F ′δ
)

= `w (Fδ) ≤ Dw(x, y) + δ.

Since δ is arbitrary, we obtain Dw(y, x) ≤ Dw(x, y) and we conclude that Dw(y, x) = Dw(x, y)
inverting the roles of x and y. The triangle inequality is immediate since the juxtaposition
of F1 ∈ Q′(x, z) with F2 ∈ Q′(z, y) is an element of Q′(x, y). Hence Dw defines a distance on
Ω\(P∪{y0}) verifying (2.3). Therefore distance Dw extends uniquely to Ω×Ω into a distance
function that we still denote by Dw. By continuity, Dw satisfies (2.3) for any x, y ∈ Ω.

Step 3. We consider the function ζ : Ω → R defined by

ζ(x) = Dw(x, x0).

Note that function ζ is 1-Lipschitz with respect to distance Dw and therefore Λ-Lipschitz
with respect to the Euclidean geodesic distance on Ω by (2.3). We fix an arbitrary point
z0 ∈ Ω \ (P ∪ {y0}) and some R > 0 such that B3R(z0) ⊂ Ω \ (P ∪ {y0}). Let (ρn)n∈N be a
sequence of smooth mollifiers. For n > 1/R , we consider the smooth function ζn = ρn ∗ ζ :
BR(z0) → R. We write

ζn(x) =
∫

B1/n

ρn(−z)ζ(x + z)dz

and therefore for all x, y ∈ BR(z0),

|ζn(x)− ζn(y)| ≤
∫

B1/n

ρn(−z) |ζ(x + z)− ζ(y + z)| dz

≤
∫

B1/n

ρn(−z)Dw(x + z, y + z)dz

≤
∫

B1/n

ρn(−z) `w ([x + z, y + z]) dz.

We remark that Θm ([x + z, y + z]) = z + Θm ([x, y]). For m large enough z + Θm ([x, y]) ⊂
B3R(z0) and then for any vector ξ ∈ Θm ([x, y]), we have εm

x+z,y+z (ξ + z) = εm
x,y (ξ). Hence

we obtain for all z ∈ B1/n(0) and m sufficiently large,

`w ([x + z, y + z]) = lim inf
m→+∞

1
π

∫

Θm([x,y])
εm
x,y (ξ) w (ξ + z) dξ.

Using Fatou’s lemma, we get that

|ζn(x)− ζn(y)| ≤
∫

B1/n

ρn(−z)

(
lim inf
m→+∞

1
π

∫

Θm([x,y])
εm
x,y (ξ) w(ξ + z)dξ

)
dz

≤ lim inf
m→+∞

1
π

∫

B1/n

∫

Θm([x,y])
ρn(−z) εm

x,y (ξ) w(ξ + z)dξdz.
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For each m ∈ N sufficiently large we have

1
π

∫

B1/n

∫

Θm([x,y])
ρn(−z) εm

x,y (ξ) w(ξ + z)dξdz =
1
π

∫

Θm([x,y])
εm
x,y (ξ) ρn ∗ w(ξ)dξ,

and since ρn ∗ w is smooth, we obtain as in Step 1,

1
π

∫

Θm([x,y])
εm
x,y (ξ) ρn ∗ w(ξ)dξ →

∫

[x,y]
ρn ∗ w(s)ds as m → +∞.

Thus for each x, y ∈ BR(z0) we have

|ζn(x)− ζn(y)| ≤
∫

[x,y]
ρn ∗ w(s)ds.

Then for x ∈ BR(z0), h ∈ S2 fixed and δ>0 small, we infer that

|ζn(x + δh)− ζn(x)|
δ

≤ 1
δ

∫

[x,x+δh]
ρn ∗ w(s)ds →

δ→0+
ρn ∗ w(x)

and we conclude, letting δ → 0, that |∇ζn(x) ·h| ≤ ρn ∗w(x) for each x ∈ BR(z0) and h ∈ S2

which implies that |∇ζn| ≤ ρn∗w on BR(z0). Since ∇ζn → ∇ζ and ρn∗w → w a.e. on BR(z0)
as n → +∞, we deduce that |∇ζ| ≤ w a.e. on BR(z0). Since z0 is arbitrary in Ω \ (P∪{y0}),
we derive

|∇ζ| ≤ w a.e. on Ω.

By Proposition 2.3. in [14], it follows that |ζ(x) − ζ(y)| ≤ dw(x, y) for any x, y ∈ Ω and in
particular, we obtain choosing y = x0,

Dw(x, x0) ≤ dw(x, x0) for all x ∈ Ω.

Step 4. End of the Proof. Let δ > 0 be given. We choose some ỹ0 ∈ Ω \ (P ∪ {y0}) such
that [ỹ0, y0] ⊂ Ω \ P and |ỹ0 − y0| ≤ δ

3Λ . By the previous step, we can find an element
F ′ = ([α1, β1], . . . , [αn, βn]) ∈ Q′(x0, ỹ0) verifying

`w

(F ′) ≤ dw(x0, ỹ0) +
δ

3
.

Then we consider F = ([α1, β1], . . . , [αn, βn], [ỹ0, y0]) ∈ Q(x0, y0). We have

`w (F) ≤ `w

(F ′) + Λ|ỹ0 − y0| ≤ dw(x0, ỹ0) +
2δ

3

≤ dw(x0, y0) + dw(y0, ỹ0) +
2δ

3
≤ dw(x0, y0) + δ

and then F satisfies the requirement. ¥
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2.2 The Dipole Removing Technique

We first present the dipole removing technique for a simple dipole. We then treat the case
of several point singularities.

Lemma 2.2. Let P and N be two distinct points in Ω and consider u ∈ H1(Ω, S2) ∩
C1

(
Ω \ {P, N}) with deg (u, P ) = +1 and deg (u,N) = −1. Let F = ([α1, β1], . . . , [αn, βn])

be an element of Q(P, N) such that N 6∈ ∪n−1
k=1 [αk, βk] ∪ [αn, βn[. Then for any δ > 0 small

enough, there exists a map uδ ∈ C1
(
Ω, S2

)
such that:

∫

Ω
|∇uδ(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8π`w (F) + δ

and uδ coincides with u outside a δ-neighborhood of ∪n
k=1[αk, βk] included in Ω.

Proof. Let F = ([α1, β1], . . . , [αn, βn]) ∈ Q(P, N) such that N 6∈ ∪n−1
k=1 [αk, βk] ∪ [αn, βn[ and

fix some δ>0 small. We proceed in several steps.

Step 1. We consider a small 0<r0 <δ verifying Br0(α1) ⊂ Ω \ {N}. By Lemma A.1 in [1],
we can find v ∈ C1

(
Ω \ {α1, N}, S2

) ∩H1(Ω) (recall that α1 = P ) satisfying

v(x) =





u(x) on Ω \Br0(α1),

R

(
x− α1

|x− α1|
)

on Br0(α1),
(2.4)

for some rotation R and
∫

Ω
|∇v(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + δ. (2.5)

Let W = {x ∈ R3, dist(x, [α1, β1]) < δ}. For δ small enough, we have W ⊂ Ω \ {N}. We
set d = |α1 − β1|. We choose normal coordinates such that α1 = (0, 0, 0) and β1 = (0, 0, d).
Let 0 < r < r0

2 . Since v is smooth on W \ Br0(α1), we can find a constant σ(r) such that
|∇v| ≤ σ(r) on W \Br0(α1). For m ∈ N∗, we consider

Km =

[
−aα1,β1

m

2
,
aα1,β1

m

2

]2

×
[
−aα1,β1

m

2
, d +

aα1,β1
m

2

]
.

For m large enough, we have Θm ([α1, β1]) ⊂ Km ⊂ W . As in [1], we are going to construct
in the next step a map v1 ∈ C1

(
W \ {β1}, S2

) ∩H1(W ) verifying v1 = v in a neighborhood
of ∂W and deg(v1, β1) = +1. For simplicity, we drop the indices α1 and β1.

Step 2. We divide Km in m + 1 cubes Qj
m defined by

Qj
m =

[
−am

2
,
am

2

]2
×

[(
j − 1

2

)
am,

(
j +

1
2

)
am

]
for j = 0, . . . ,m.

Arguing as in [1], we infer from (2.4) that

m∑

j=0

∫

∂Qj
m

|∇v|2 ≤ C

(
r

am
+ mσ(r)2a2

m

)
. (2.6)

9



We are going to make use of a map ωm : B2
am

(0) ⊂ R2 → S2 defined by

ωm(x1, x2) =
2a2

m

a4
m + x2

1 + x2
2

(
x1, x2,−a2

m

)
+ (0, 0, 1)

(ωm was first introduced in [8] and we refer to the proof of Lemma 2 in [8] for its main
properties). For j = 1, . . . , m, we choose an orthonormal direct basis (ej

1, e
j
2, e

j
3) of R3 such

that
v(0, 0, (j − 1/2)am) = (0, 0, 1) in the basis (ej

1, e
j
2, e

j
3),

and we define the map vm
1 : ∪m

j=0∂Qj
m → S2 by

1) for (x1, x2, x3) ∈ (∪m
j=0∂Qj

m) \ (∪m
j=1B

2
a2

m
(0)× {(j − 1/2)am}),

vm
1 (x1, x2, x3) = v(x1, x2, x3),

2) for j = 1, . . . , m and (x1, x2, x3) ∈ B2
a2

m
2

(0)× {(j − 1/2)am},

vm
1 (x1, x2, x3) = ωm

(
2x1

am
,
2x2

am

)
in the basis (ej

1, e
j
2, e

j
3),

3) for j = 1, . . . , m, for (x1, x2, x3) ∈ (B2
a2

m
(0) \ B2

a2
m
2

(0)) × {(j − 1/2)am} and using

cylindrical coordinates (x1, x2, x3) = (ρ cos θ, ρ sin θ, z),

vm
1 (x1, x2, x3) =

(
A1ρ + B1, A2ρ + B2,

√
1− (A1ρ + B1)2 − (A2ρ + B2)2

)

in the basis (ej
1, e

j
2, e

j
3), where A1, A2, B1, B2 are determined to make vm

1 continuous. More
precisely, if we write v = v1e

j
1 + v2e

j
2 + v3e

j
3 then





a2
mAi(θ) + Bi(θ) = vi(a2

m cos θ, a2
m sin θ, (j − 1/2)am) i = 1, 2,

a2
m

2
A1(θ) + B1(θ) =

2a3
m

a4
m + a2

m

cos θ,

a2
m

2
A2(θ) + B2(θ) =

2a3
m

a4
m + a2

m

sin θ.

The map vm
1 satisfies by construction vm

1 = v on ∂Km. Moreover, it follows exactly as in the
proof of Lemma 2 in [1] that deg(vm

1 , ∂Qj
m) = 0 for j = 0, . . . , m−1 and deg(vm

1 , ∂Qm
m) = +1.

Then we extend vm
1 on each cube Qj

m by setting

vm
1 (x) = vm

1

(
am(x− bj)
2‖x− bj‖∞ + bj

)
on Qj

m for j = 0, . . . ,m,

where bj = (0, 0, sj) is the barycenter of Qj
m and ‖x − bj‖∞ = max(|x1|, |x2|, |x3 − sj |). We

easily check that vm
1 ∈ H1(Km, S2), vm

1 = v on ∂Km, vm
1 is continuous except at the points

bj and Lipschitz continuous outside any small neighborhood of the points bj . We also get
that

deg(vm
1 , bm) = +1 and deg(vm

1 , bj) = 0 for j = 0, . . . , m− 1 . (2.7)
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We remark that if we set

Dj
m = B2

a2
m
2

(0)× {(j − 1/2)am} ∪B2
a2

m
2

(0)× {(j + 1/2)am} for j = 1, . . . ,m− 1,

D0
m = B2

a2
m
2

(0)× {1/2 am} and Dm
m = B2

a2
m
2

(0)× {(m− 1/2)am} ,

then we have
m⋃

j=0

{
x ∈ Qj

m,
am(x− bj)
2‖x− bj‖∞ + bj ∈ Dj

m if x 6= bj or x = bj otherwise
}

= Θm ([α1, β1])

and if x ∈ Qj
m ∩Θm ([α1, β1]) for some j ∈ {0, . . . , m} then

hm(x) = |x3 − sj | = ‖x− bj‖∞ and r(x) =
√

x2
1 + x2

2 . (2.8)

Some classical computations (see [1] and [8]) lead to, for j = 0, . . . ,m,
∫

(∂Qj
m)\Dj

m

|∇vm
1 |2 ≤

∫

∂Qj
m

|∇v|2 +O(a2
m)

and therefore
∫

Qj
m\Θm([α1,β1])

|∇vm
1 (x)|2w(x)dx ≤ C1Λ am

∫

∂Qj
m

|∇v|2 + C2Λ a3
m.

Adding these inequalities for j = 0, . . . , m and combining with (2.6) we obtain
∫

Km\Θm([α1,β1])
|∇vm

1 (x)|2w(x)dx ≤ CΛ
(
r + mσ(r)2a3

m + a2
m

)
. (2.9)

For x ∈ Qj
m ∩Θm ([α1, β1]) for some j ∈ {0, . . . , m}, we have

vm
1 (x) =





ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)

in the basis (ej+1
1 , ej+1

2 , ej+1
3 ) if x3 − sj >0,

ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)

in the basis (ej
1, e

j
2, e

j
3) otherwise.

Following the computations in [6], we infer that

|∇vm
1 (x)|2 ≤ 1 + Ca2

m

|x3 − sj |2
∣∣∣∣∇ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)∣∣∣∣

2

in Qj
m ∩Θm ([α1, β1]).

Since we have (see [8])
∣∣∣∣∇ωm

(
x1

|x3 − sj | ,
x2

|x3 − sj |
)∣∣∣∣

2

=
8|x3 − sj |4a4

m

(|x3 − sj |2a4
m + x2

1 + x2
2)2

,

we derive that
∫

Qj
m∩Θm([α1,β1])

|∇vm
1 (x)|2w(x)dx ≤

∫

Qj
m∩Θm([α1,β1])

8|x3 − sj |2a4
mw(x)

(|x3 − sj |2a4
m + x2

1 + x2
2)2

dx + CΛa3
m.
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Summing these inequalities for j = 0, . . . , m and using (2.8) we obtain that
∫

Θm([α1,β1])
|∇vm

1 (x)|2w(x)dx ≤ 8
∫

Θm([α1,β1])
εm
α1,β1

(x)w(x)dx + CΛa2
m (2.10)

Combining (2.9) with (2.10) we conclude that
∫

Km

|∇vm
1 (x)|2w(x)dx ≤ 8

∫

Θm([α1,β1])
εm
α1,β1

(x)w(x)dx + CΛ
(
r + mσ(r)2a3

m + a2
m

)
.

Taking the lim inf in m, we derive that we can find m1 ∈ N large and r small enough such
that ∫

Km1

|∇vm1
1 (x)|2w(x)dx ≤ 8 lim inf

m→+∞

∫

Θm([α1,β1])
εm
α1,β1

(x)w(x)dx + δ. (2.11)

Since vm1
1 = v on ∂Km1 , we may extend vm1

1 to W by setting vm1
1 = v on W \Km1 . Now we

recall that vm1
1 is singular only at the points bj , j = 0, . . . , m (we also recall that bm = β1).

From (2.7) and the results in [1, 2, 3], we infer that exists a map v1 ∈ C1
(
W \ {β1}, S2

) ∩
H1(W ) satisfying v1 = v in a neighborhood of ∂W , deg(v1, β1) = +1 and

∫

W1

|∇v1(x)|2w(x)dx ≤
∫

W1

|∇vm1
1 (x)|2w(x)dx + δ. (2.12)

Since v = u in a neighborhood of ∂W , we may extend v1 to Ω by setting v1 = u on Ω \W .
Then we conclude that v1 ∈ C1

(
Ω \ {β1, N}, S2

)∩H1(Ω), deg(v1, β1) = +1, deg(v1, N) = −1
and by (2.5)-(2.11)-(2.12),

∫

Ω
|∇v1(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8 lim inf

m→+∞

∫

Θm([α1,β1])
εm
α1,β1

(x)w(x)dx + Cδ.

Step 3. Applying Step 1 and Step 2 to v1 instead of u and replacing (α1, β1) by (α2, β2)
(recall that β1 = α2), we obtain a map v2 ∈ C1

(
Ω \ {β2, N}, S2

) ∩H1(Ω) satisfying v2 = v1

outside a δ-neighborhood of [α2, β2] included in Ω, deg(v2, β2) = +1, deg(v2, N) = −1 and
∫

Ω
|∇v2(x)|2w(x)dx ≤

∫

Ω
|∇v1(x)|2w(x)dx + 8 lim inf

m→+∞

∫

Θm([α2,β2])
εm
α2,β2

(x)w(x)dx + Cδ.

Iterating this process, we finally obtain a map vn−1 ∈ C1
(
Ω \ {αn, βn}, S2

) ∩H1(Ω) (recall
that βn = N) verifying vn−1 = u outside a δ-neighborhood of ∪n−1

k=1 [αk, βk] included in Ω,
deg(vn−1, αn) = +1, deg(vn−1, βn) = −1 and
∫

Ω
|∇vn−1(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx+8

n−1∑

k=1

lim inf
m→+∞

∫

Θm([αk,βk])
εm
αk,βk

(x)w(x)dx+Cδ.

As in Step 1, we consider 0<r0 <δ such that Br0(αn)∩Br0(βn) = ∅ and Br0(αn)∪Br0(βn) ⊂ Ω
and we construct, using Lemma A1 in [1], a map ṽ ∈ C1

(
Ω \ {αn, βn}, S2

)∩H1(Ω) satisfying

ṽ(x) =





u(x) on Ω \Br0(αn),

R+

(
x− αn

|x− αn|
)

on Br0(αn),

−R−

(
x− βn

|x− βn|
)

on Br0(βn),
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for some rotations R+ and R− and
∫

Ω
|∇ṽ(x)|2w(x)dx ≤

∫

Ω
|∇vn−1(x)|2w(x)dx + δ.

Applying the construction in Step 2 starting from ṽ, we obtain a new map ṽmn
n (for some

large mn ∈ N) defined on δ-neighborhood W ′ of [αn, βn] included in Ω, which coincide with
ṽ near ∂W ′, which then has only point singularities of degree zero (since deg(ṽ, βn) = −1)
and satisfying
∫

W ′
|∇vmn

n (x)|2w(x)dx ≤
∫

W ′
|∇ṽ(x)|2w(x)dx + 8 lim inf

m→+∞

∫

Θm([αn,βn])
εm
αn,βn

(x)w(x)dx + Cδ.

Since the degree of each singularities of vmn
n is zero, we can construct a map vn ∈ C1(W ′

, S2)
(see [2, 3]) verifying vn = ṽ in a neighborhood of ∂W ′ and

∫

W ′
|∇vn(x)|2w(x)dx ≤

∫

W ′
|∇vmn

n (x)|2w(x)dx + δ.

Then we define uδ : Ω → S2 by

uδ(x) =





vn−1(x) if x ∈ Ω \W ′,

vn(x) if x ∈ W
′.

Since vn−1 = ṽ and ṽ = vn−1 near ∂W ′, we deduce that uδ ∈ C1(Ω, S2). Moreover it follows
by construction that uδ = u outside a δ-neighborhood of ∪n

k=1[αk, βk] included in Ω and
∫

Ω
|∇uδ(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8π` (F) + Cδ,

which ends the proof since δ is arbitrary small. ¥

Lemma 2.3. Let (Pi, Ni)K
i=1 be 2K distinct points in Ω and consider u ∈ H1(Ω, S2)∩C1(Ω \

∪K
i=1{Pi, Ni}) such that deg(u, Pi) = +1 and deg(u,Ni) = −1 for i = 1, . . . , K. Then There

exists a sequence of maps (un)n∈N ⊂ C1(Ω, S2) satisfying un|∂Ω = u|∂Ω,
∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u) + 2−n,

and
meas ({x ∈ Ω, un(x) 6= u(x)}) ≤ 2−n.

Proof. Without loss of generality we may assume that
∑

i dw(Pi, Ni) is equal to the length of
a minimal connection relative to dw between the points (Pi) and (Ni). As in [1], we are going
to “remove” each dipole (Pi, Ni). More precisely, for each n ∈ N, we construct successively
K maps

(
ui

n

)K

i=1
satisfying

(a) ui
n ∈ H1(Ω, S2) ∩ C1

(
Ω \⋃

i+1≤j≤K{Pj , Nj}
)

for i = 1, . . . , K,
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(b) u1
n = u on Ω \W 1

n and ui
n = ui−1

n on Ω \W i
n for i = 2, . . . , K where W i

n is is strictly
included in Ω \⋃

i+1≤j≤K{Pj , Nj} and |W i
n| ≤ 2−n/K,

(c)
∫

Ω
|∇u1

n(x)|2w(x)dx ≤
∫

Ω
|∇u(x)|2w(x)dx + 8πdw(P1, N1) +

2−n

K
and

∫

Ω
|∇ui

n(x)|2w(x)dx ≤
∫

Ω
|∇ui−1

n (x)|2w(x)dx + 8πdw(Pi, Ni) +
2−n

K
for i = 2, . . . , K.

We easily check that the sequence (uK
n )n∈N then satisfies the requirement since we have

Lw(u) =
∑

i dw(Pi, Ni). We start with the construction of u1
n.

Construction of u1
n. By Lemma 2.1, we can find F1 = ([α1, β1], . . . , [αl, βl]) ∈ Q(P1, N1)

satisfying ( ∪K
i=2 {Pi, Ni} ∪ {N1}

) ∩
(
∪l

k=2[αk, βk] ∪ [α1, β1[
)

= ∅, (2.13)

and

`w (F1) ≤ dw(P1, N1) +
2−(n+1)

8Kπ
.

From (2.13), we infer that we can find δ>0 small enough such that

W 1
δ = {x ∈ R3, dist(x,∪l

k=1[αk, βk]) ≤ δ} ⊂ Ω \ ∪K
i=2{Pi, Ni} and |W 1

δ | ≤
2−n

K
.

By the method described in the proof of Lemma 2.2, we construct a map u1
n ∈ H1(Ω, S2) ∩

C1(Ω \ ∪K
i=2{Pi, Ni}) verifying u1

n = u outside W 1
δ and

∫

Ω
|∇u1

n(x)|2w(x)dxamp;≤
∫

Ω
|∇u(x)|2w(x)dx + 8π`w (F1) +

2−(n+1)

K

amp;≤
∫

Ω
|∇u(x)|2w(x)dx + 8πdw(P1, N1) +

2−n

K
.

Construction of ui
n, i = 2, . . . , K. We iterate the previous process i.e., we proceed as for the

construction of u1
n but starting from ui−1

n instead of u. ¥

3 Proof of Theorem 1.2

3.1 Lower Bound of the Energy

In this section, we denote by Fw the functional defined for maps u ∈ H1
g (Ω, S2) by

Fw(u) =
∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u).

Proposition 3.1. The functional Fw is sequentially lower semi-continuous on H1
g (Ω, S2) for

the weak H1-topology.
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Proof. We follow the method in [4]. Since the supremum of a family of sequentially lower
semi-continuous functionals is sequentially lower semi-continuous, it suffices to show that for
any function ζ : Ω → R which is 1-Lipschitz with respect to dw, the functional

u ∈ H1
g 7→

∫

Ω
|∇u(x)|2w(x)dx + 2

∫

Ω
D(u) · ∇ζ dx

is sequentially lower semi-continuous for the weak H1-topology (the term
∫
∂Ω(D(u) ·ν)ζ only

depends on g and ζ ). Consider (un)n∈N ⊂ H1
g (Ω, S2) and u ∈ H1

g (Ω, S2) such that un ⇀ u

weakly in H1. Setting vn = un − u, we have
∫

Ω
|∇un(x)|2w(x)dx =

∫

Ω
|∇u(x)|2w(x)dx +

∫

Ω
|∇vn(x)|2w(x)dx + o(1),

and writing

2
∫

Ω
D(un) · ∇ζ dx = An + Bn + Cn

with

An = 2
∫

Ω
un ·

(
∂u

∂x2
∧ ∂u

∂x3

∂ζ

∂x1
+

∂u

∂x3
∧ ∂u

∂x1

∂ζ

∂x3
+

∂u

∂x1
∧ ∂u

∂x2

∂ζ

∂x3

)
,

Bn = 2
∫

Ω
un ·

(
∂vn

∂x2
∧ ∂u

∂x3
+

∂u

∂x2
∧ ∂vn

∂x3

)
∂ζ

∂x1
+ 2

∫

Ω
un ·

(
∂vn

∂x3
∧ ∂u

∂x1
+

∂u

∂x3
∧ ∂vn

∂x1

)
∂ζ

∂x2

+ 2
∫

Ω
un ·

(
∂vn

∂x1
∧ ∂u

∂x2
+

∂u

∂x1
∧ ∂vn

∂x2

)
∂ζ

∂x3
,

Cn = 2
∫

Ω
un ·

(
∂vn

∂x2
∧ ∂vn

∂x3

∂ζ

∂x1
+

∂vn

∂x3
∧ ∂vn

∂x1

∂ζ

∂x3
+

∂vn

∂x1
∧ ∂vn

∂x2

∂ζ

∂x3

)
.

We easily obtain that An → 2
∫
Ω D(u) · ∇ζ as n → +∞ since un ⇀ u weak? in L∞ and that

Bn → 0 since vn ⇀ 0 weakly in L2 and un → u strongly in L2. Now we set

Vn =
(

un · ∂vn

∂x2
∧ ∂vn

∂x3
, un · ∂vn

∂x3
∧ ∂vn

∂x1
, un · ∂vn

∂x1
∧ ∂vn

∂x2

)
.

We have
|Cn| = 2

∣∣∣∣
∫

Ω
Vn · ∇ζ

∣∣∣∣ ≤ 2
∫

Ω
|Vn||∇ζ|.

By Lemma 1 in [4], we know that 2|Vn| ≤ |∇vn|2 and by Proposition 2.3 in [14], any ζ : Ω → R
which 1-Lipschitz with respect to dw satisfies |∇ζ| ≤ w a.e. on Ω. Then we obtain

|Cn| ≤
∫

Ω
|∇vn(x)|2w(x)dx

and we conclude that
∫

Ω
|∇un(x)|2w(x)dx + 2

∫

Ω
D(un) · ∇ζ dx ≥

∫

Ω
|∇u(x)|2w(x)dx + 2

∫

Ω
D(u) · ∇ζ dx + o(1)
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which clearly implies the result. ¥

Proof of “≥” in Theorem 1.2. Let u ∈ H1
g (Ω, S2) and consider an arbitrary sequence

(un)n∈N ⊂ H1
g (Ω, S2) ∩ C1(Ω) such that un ⇀ u weakly in H1. Since un is smooth in Ω,

we have T (un) ≡ 0 and then Lw(un) = 0. We conclude by Proposition 3.1 that

lim inf
n→+∞

∫

Ω
|∇un(x)|2w(x)dx = lim inf

n→+∞ Fw(un) ≥ Fw(u) =
∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u).

Since the sequence (un)n∈N is arbitrary, we get the announced result. ¥

3.2 Upper Bound of the Energy

Proposition 3.2. Let u ∈ H1
g (Ω, S2). Then there exists a sequence of maps (un)n∈N ⊂

H1
g (Ω, S2) ∩ C1(Ω) such that un ⇀ u weakly in H1 and

lim sup
n→+∞

∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u).

End of the proof of Theorem 1.2. Let u ∈ H1
g (Ω, S2) and let (un)n∈N be the sequence of maps

given by Proposition 3.2. By definition of Ew(u) and Proposition 3.2, we have

Ew(u) ≤ lim inf
n→+∞

∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u),

which ends the proof of Theorem 1.2. ¥

To prove Proposition 3.2, we need the following Lemma. We postpone its proof at the
end of this section.

Lemma 3.1. For any u, v ∈ H1
g (Ω, S2), we have

|Lw(u)− Lw(v)| ≤ CΛ
(‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

) ‖∇u−∇v‖L2(Ω), (3.1)

for a constant C independent of w.

Proof of Proposition 3.2. Let u ∈ H1
g (Ω, S2). By the result in [1, 3], we can find a sequence of

maps (vn)n∈N ⊂ H1
g (Ω, S2) such that vn ∈ C1(Ω \ ∪Kn

i=1{Pi, Ni}) for some 2Kn distinct points
(Pi, Ni) in Ω, deg(vn, Pi) = +1 and deg(vn, Ni) = −1 for i = 1, . . . , Kn and such that

‖∇(vn − u)‖L2(Ω) ≤ 2−n. (3.2)

From this inequality we infer that

meas
({

x ∈ Ω, |vn(x)− u(x)|<2−n/2
})

≤ C 2−n. (3.3)

Applying Lemma 2.3 to vn, we find a map un ∈ C1(Ω, S2) satisfying un|∂Ω = g,
∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇vn(x)|2w(x)dx + 8πLw(vn) + 2−n (3.4)
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and
meas ({x ∈ Ω, un(x) 6= vn(x)}) ≤ 2−n. (3.5)

From (3.2) and Lemma 3.1 we deduce that Lw(vn) → Lw(u) as n → +∞ and then it follows
that (un)n∈N is bounded in H1. Moreover we obtain from (3.3) and (3.5) that un → u a.e.
in Ω and we conclude that un ⇀ u weakly in H1. Letting n → +∞ in (3.4) leads to

lim sup
n→+∞

∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8πLw(u),

which completes the proof. ¥

Proof of Lemma 3.1. To prove Lemma 3.1, we follow the method in [4]. For u, v ∈ H1
g (Ω, S2),

we set

Lw(u, v) = Sup
{∫

Ω
(D(u)−D(v)) · ∇ζ , ζ : Ω → R 1-Lipschitz with respect to dw

}
.

Since D(u) · ν = D(v) · ν on ∂Ω (it only depends on g), we have
∫

Ω
D(u) · ∇ζ −

∫

∂Ω
(D(u) · ν) ζ =

∫

Ω
D(v) · ∇ζ −

∫

∂Ω
(D(v) · ν) ζ +

∫

Ω
(D(u)−D(v)) · ∇ζ ,

and we easily derive that
|Lw(u)− Lw(v)| ≤ Lw(u, v).

Similar computations to those in [4], proof of Theorem 1, lead to
∣∣∣∣
∫

Ω
(D(u)−D(v)) · ∇ζ

∣∣∣∣ ≤ C
(‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

) ‖∇u−∇v‖L2(Ω)‖∇ζ‖L∞(Ω).

By Proposition 2.3 in [14], any real function ζ which is 1-Lipschitz with respect to dw satisfies
|∇ζ| ≤ w a.e. on Ω. We deduce that (3.1) holds since w ≤ Λ a.e. on Ω. ¥

4 Stability and Approximation Properties

4.1 A Stability Property

Before stating the result, we need to recall some previous ones obtained in [14]. For any
real measurable function w satisfying assumption (1.1), we may associate to distance dw the
length functional Ldw defined by

Ldw(γ) = Sup

{
m−1∑

k=0

dw (γ(tk), γ(tk+1)) , 0 = t0 <t1 <. . .<tm = 1, m ∈ N?

}
,

where γ : [0, 1] → Ω is any continuous curve. In [14], we have proved that for any x, y ∈ Ω,

dw(x, y) = Inf
{
Ldw(γ), γ ∈ Lip([0, 1], Ω), γ(0) = x and γ(1) = y

}
(4.1)
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where Lip([0, 1],Ω) denotes the class of all Lipschitz maps from [0, 1] into Ω. We have also
shown that the infimum in (4.1) is in fact achieved.

The following stability result relies on the Γ-convergence of the length functionals (we
refer to [11] for the notion of Γ-convergence). In the sequel, we endow Lip([0, 1], Ω) with the
topology of the uniform convergence on [0, 1].

Theorem 4.1. Let (wn)n∈N be a sequence of measurable real functions such that

0 < c0 ≤ wn ≤ C0 a.e. in Ω (4.2)

for some constants c0 and C0 independent of n ∈ N. Then the following properties are
equivalent:

(i) the functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω) and

∫

Ω
|∇ϕ(x)|2wn(x)dx →

n→+∞

∫

Ω
|∇ϕ(x)|2w(x)dx for any ϕ ∈ H1(Ω,R), (4.3)

(ii) for every smooth boundary data g : ∂Ω → S2 such that deg(g) = 0,

Ewn(u) →
n→+∞Ew(u) for any u ∈ H1

g (Ω, S2).

Proof. (i)⇒(ii). We fix a smooth boundary data g : Ω → S2 such that deg(g) = 0. Clearly
(4.3) implies that

∫

Ω
|∇u(x)|2wn(x)dx →

n→+∞

∫

Ω
|∇u(x)|2w(x)dx for any u ∈ H1

g (Ω, S2),

and by Theorem 1.2, it remains to prove that

Lwn(u) →
n→+∞Lw(u) for any u ∈ H1

g (Ω, S2). (4.4)

Consider u ∈ H1
g (Ω, S2). By the result in [1, 3], there exits a sequence of maps (vk)k∈N ⊂

H1
g (Ω, S2) such that vk ∈ C1(Ω \ ∪Mk

j=1{Pj , Nj}, S2) for some 2Mk points (Pj , Nj) in Ω,
deg(vk, Pj) = +1 and deg(vk, Nj) = −1 for j = 1, . . . , Mk, and vk → u strongly in H1.
We have

Lwn(vk) = Min
σ∈SMk

Mk∑

j=1

dwn(Pj , Nσ(j)) and Lw(vk) = Min
σ∈SMk

Mk∑

j=1

dw(Pj , Nσ(j))

Since the functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω), we deduce from Theorem 4.1

in [14] that for every k ∈ N, Lwn(vk) → Lw(vk) as n → +∞. Now we fix a small δ>0. Since
vk → u strongly in H1, we derive from Lemma 3.1 and (4.2) that exists k0 ∈ N which only
depends on u, δ and C0 such that

Lwn(vk)− δ ≤ Lwn(u) ≤ Lwn(vk) + δ for any n ∈ N and k ≥ k0.
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Letting n → +∞ in this inequality, we get that

Lw(vk)− δ ≤ lim inf
n→+∞ Lwn(u) ≤ lim sup

n→+∞
Lwn(u) ≤ Lw(vk) + δ for k ≥ k0.

Passing to the limit in k and using Lemma 3.1, we obtain

Lw(u)− δ ≤ lim inf
n→+∞ Lwn(u) ≤ lim sup

n→+∞
Lwn(u) ≤ Lw(u) + δ,

which leads to the result since δ is arbitrary small.

(ii)⇒(i). First we prove (4.3) for ϕ ∈ C∞(Ω,R). Let ϕ ∈ C∞(Ω,R) and consider the
smooth map g : ∂Ω → S2 defined by g(x) = (cos(ϕ(x)), sin(ϕ(x)), 0). We easily check that
deg(g) = 0. Now consider the map u defined for x ∈ Ω by

u(x) = (cos(ϕ(x)), sin(ϕ(x)), 0).

We have u ∈ H1
g (Ω, S2) ∩ C∞(Ω) and then Lwn(u) = Lw(u) = 0 for any n ∈ N. Since

|∇u|2 = |∇ϕ|2, we derive from assumption (ii) and Theorem 1.2 that
∫

Ω
|∇ϕ(x)|2wn(x)dx →

n→+∞

∫

Ω
|∇ϕ(x)|2w(x)dx.

Let us now prove (4.3) for any ϕ ∈ H1(Ω,R). Let ϕ ∈ H1(Ω,R) and consider a sequence
(ϕk)k∈N ⊂ C∞(Ω,R) such that ϕk → ϕ strongly in H1. We fix a small δ>0. From assumption
(4.2), we infer that exists k0 ∈ N which only depends on ϕ, δ and C0 such that for any n ∈ N
and k ≥ k0,

∫

Ω
|∇ϕk(x)|2wn(x)dx− δ ≤

∫

Ω
|∇ϕ(x)|2wn(x)dx ≤

∫

Ω
|∇ϕk(x)|2wn(x)dx + δ.

Since ϕk is smooth, letting n → +∞ we obtain for k ≥ k0,
∫

Ω
|∇ϕk(x)|2w(x)dx− δ ≤ lim inf

n→+∞

∫

Ω
|∇ϕ(x)|2wn(x)dx

≤ lim sup
n→+∞

∫

Ω
|∇ϕ(x)|2wn(x)dx ≤

∫

Ω
|∇ϕk(x)|2w(x)dx + δ.

Passing to the limit in k and then δ → 0, we conclude

lim
n→+∞

∫

Ω
|∇ϕ(x)|2wn(x)dx =

∫

Ω
|∇ϕ(x)|2w(x)dx.

It remains to prove that the functionals Ldwn
Γ-converge to Ldw in Lip([0, 1], Ω). Let P and N

be two distinct points in Ω. We take g ≡ (0, 0, 1) and consider u ∈ H1
g (Ω, S2)∩C1(Ω\{P,N})

(such a map is constructed for instance in [6, 9]). By Theorem 1.2, we have

Ewn(u) =
∫

Ω
|∇u(x)|2wn(x)dx + 8πdwn(P, N)

and
Ew(u) =

∫

Ω
|∇u(x)|2w(x)dx + 8πdw(P, N).
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From (4.3) we get that
∫
Ω |∇u(x)|2wn(x)dx → ∫

Ω |∇u(x)|2w(x)dx and from assumption (ii)
we deduce that

dwn(P, N) → dw(P,N) as n → +∞.

Since the points P and N are arbitrary in Ω, we derive that dwn converges to dw pointwise
on Ω× Ω and the conclusion follows by the results in [14] Section 4. ¥

In the next proposition, we give some sufficient condition on a sequence (wn)n∈N converg-
ing pointwise a.e. to w for property (ii) in Theorem 4.1 to hold.

Proposition 4.1. Let (wn)n∈N be a sequence of measurable real functions satisfying (4.2)
and assume that one of the following conditions holds:

(a) wn ≥ w and wn → w a.e. in Ω,

(b) wn → w in L∞(Ω).

Then property (ii) in Theorem 4.1 holds.

Proof. By Proposition 4.1 and Theorem 4.1 in [14], (a) or (b) implies that the functionals
Ldwn

Γ-converge to Ldw in Lip([0, 1],Ω). We also check that (a) or (b) implies (4.3) by
dominated convergence. Then the conclusion follows from Theorem 4.1. ¥

Remark 4.1. The conclusion of Proposition 4.1 may fails if one only assumes that wn → w

a.e. in Ω (see Remark 4.1 in [14]).

4.2 Approximation Property

In this section, we show that the functional Ew can be obtain as pointwise limit of a
sequence (Ewn)n∈N in which the weight function wn is smooth.

Proposition 4.2. Let (ρn)n∈N be a sequence of smooth mollifiers. Extending w by a suffi-
ciently large constant and setting wn = ρn ∗ w, we have

Ewn(u) →
n→+∞Ew(u) for any u ∈ H1

g (Ω, S2).

Proof. By construction, (4.3) clearly holds. Then property (i) in Theorem 4.1 follows from
Theorem 4.1 in [14] and Theorem 4.2 in [14] which leads to the result by Theorem 4.1. ¥

5 The Relaxed Energy without Prescribed Boundary Data

In this section, we consider the relaxed type functional

Ẽw(u) = Inf
{

lim inf
n→+∞

∫

Ω
|∇un(x)|2w(x)dx, un ∈ C1(Ω, S2), un ⇀ u weakly in H1

}
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defined for u ∈ H1(Ω, S2). We recall that F. Bethuel has also proved (see [1]) that C1(Ω, S2)
is sequentially dense in H1(Ω, S2) for the weak H1 topology and then Ẽw is well defined.

As in [4], there is also a notion of length of a minimal connection relative to dw defined
for any u ∈ H1(Ω, S2) :

L̃w(u) =
1
4π

Sup
{〈T (u), ζ〉, ζ : Ω → R 1-Lipschitz with respect to dw and ζ = 0 on ∂Ω

}
.

Since no assumptions are made on u|∂Ω, it may happen that deg(u|∂Ω) 6= 0 or that deg(u|∂Ω) is
not well defined. But clearly L̃w(u) always makes sense. When u is smooth except at a finite
number of point in Ω, L̃w(u) is equal to the length of a minimal connection relative to dw

between the singularities of u and some virtual singularities on the boundary (see [9]). More
precisely, one adds some virtual singularities on the boundary in such a way that the new
configuration has the same number of positive and negative points and one consider the length
of a minimal connection relative to dw for this configuration. Then L̃w(u) corresponds to the
infimum of these quantities when one varies the position and the number of the boundary
points. There is the variant of Theorem 1.2 for Ẽw.

Theorem 5.1. For any u ∈ H1(Ω, S2), we have

Ẽw(u) =
∫

Ω
|∇u(x)|2w(x)dx + 8πL̃w(u).

5.1 Proof of Theorem 5.1

The inequality ”≥” in Theorem 5.1 can be proved using a method similar to the one used
in Section 3.1 and we omit it. We obtain ”≤” as in Section 3.2 using Proposition 5.1 and
Lemma 5.1 below instead of Proposition 3.2 and Lemma 3.1. The proof of Lemma 5.1 is
almost identical to the proof of Lemma 3.1 and we also omit it (note that all the boundary
integrals vanish since ζ = 0 on ∂Ω).

Proposition 5.1. Let u ∈ H1(Ω, S2). Then there exists a sequence of maps (un)n∈N ⊂
C1(Ω, S2) such that

un ⇀ u weakly in H1

and
lim sup
n→+∞

∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8πL̃w(u).

Lemma 5.1. For any u, v ∈ H1(Ω, S2), we have
∣∣∣L̃w(u)− L̃w(v)

∣∣∣ ≤ CΛ
(‖∇u‖L2(Ω) + ‖∇v‖L2(Ω)

) ‖∇u−∇v‖L2(Ω), (5.1)

for a constant C independent of w.

Proof of Proposition 5.1. Let u ∈ H1(Ω, S2). By the result in [1, 3], we can find a sequence
(vn)n∈N ⊂ H1(Ω, S2) such that vn ∈ C1(Ω\{(ai)Nn

i=1}) for some Nn distinct points a1, . . . , aNn

in Ω and
‖u− vn‖H1(Ω) ≤ 2−n. (5.2)
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Since we are working with an approximating sequence, we may assume that |deg(vn, ai)| = 1
for i = 1, . . . , Nn (see [1]). Since vn is smooth except at a finite number of point in Ω, the
length of a minimal connection L̃w(vn) is computed as follows (see [9], part II). We pair each
singularity ai either to another singularity in Ω of opposite degree or to a virtual singularity
on the boundary with opposite degree. In other words, we allow connections to the boundary
of Ω. Pairing all the singularities in this way, we take a configuration that minimizes the
sum of the distances between the paired singularities, computing the distances with dw. We
relabel all the singularities (the ai’s and the virtual singularities on the boundary), according
to their multiplicity for those on the boundary, as a list of positive and negative points say
(P1, . . . , PKn) and (N1, . . . , NKn) such that

L̃w(vn) =
Kn∑

j=1

dw(Pj , Nj).

Using Lemma 2 bis in [1], we can find ṽn ∈ H1(Ω, S2) ∩ C1(Ω \ ∪Kn
j=1{P̃j , Ñj}) for some

2Kn distinct points (P̃j , Ñj) in Ω such that ṽn = vn outside a small neighborhood of ∂Ω,
deg(ṽn, P̃j) = +1 and deg(ṽn, Ñj) = −1 for j = 1, . . . , Kn, P̃j = Pj (respectively Ñj = Nj) if
Pj ∈ Ω (respectively if Nj ∈ Ω) and |P̃j−Pj | ≤ 2−n

Kn
otherwise (respectively |Ñj−Nj | ≤ 2−n

Kn
),

and
‖ṽn − vn‖H1(Ω) ≤ 2−n. (5.3)

Note that, for each pair (Pj , Nj), we necessarily have P̃j = Pj or Ñj = Nj and then
∣∣∣∣∣∣

Kn∑

j=1

dw(Pj , Nj)−
Kn∑

j=1

dw(P̃j , Ñj)

∣∣∣∣∣∣
≤ C 2−n, (5.4)

and from (5.2) and (5.3), we infer that

meas
(
{x ∈ Ω, |u(x)− ṽn(x)|<2−n/2}

)
≤ C 2−n. (5.5)

Applying Lemma 2.3 to ṽn, we find a map un ∈ C1(Ω, S2) satisfying
∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇ṽn(x)|2w(x)dx + 8π

Kn∑

j=1

dw(P̃j , Ñj) + 2−n (5.6)

and
meas ({x ∈ Ω, un(x) 6= ṽn(x)}) ≤ 2−n. (5.7)

From (5.4) and (5.6), we derive that∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇vn(x)|2w(x)dx + 8πL̃w(vn) + C 2−n. (5.8)

Since vn → u strongly in H1, we deduce from Lemma 5.1 that L̃w(vn) → L̃w(u) as n → +∞
which implies that (un)n∈N is bounded in H1. From (5.3) and (5.7) we obtain un → u a.e.
in Ω and then we conclude that un ⇀ u weakly in H1. Passing to the limit in (5.8) leads to

lim sup
n→+∞

∫

Ω
|∇un(x)|2w(x)dx ≤

∫

Ω
|∇u(x)|2w(x)dx + 8πL̃w(u)

and the proof is complete. ¥
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5.2 Stability and Approximation Properties for Ẽw

We present in this section the variants for Ẽw of the results in Section 4.

Theorem 5.2. Let (wn)n∈N be a sequence of measurable real functions satisfying (4.2) and
assume that (i) in Theorem 4.1 holds. Then we have

Ẽwn(u) →
n→+∞ Ẽw(u) for any u ∈ H1(Ω, S2). (5.9)

Proof. Assumption (4.3) clearly implies that
∫

Ω
|∇u(x)|2wn(x)dx →

n→+∞

∫

Ω
|∇u(x)|2w(x)dx for any u ∈ H1(Ω, S2),

and by Theorem 5.1, we just have to prove that

L̃wn(u) →
n→+∞ L̃w(u) for any u ∈ H1(Ω, S2). (5.10)

Consider u ∈ H1(Ω, S2). By the result in [1, 3], we can find a sequence (vk)k∈N ⊂ H1(Ω, S2)
such that vk ∈ C1(Ω \ ∪Mk

i=1{aj}, S2) for some Mk points (ai) in Ω and vk → u strongly in
H1. We easily check that a minimal connection for vk relative to distance dwn does not
allow more than

∑Mk
i=1 | deg(vk, ai)| connections to the boundary. Therefore, extracting a

subsequence (nl)l∈N, we can relabel the singularities of vk and the virtual singularities on
the boundary given by a minimal connection relative to dwnl

, as a list of positive points
(P l

1, . . . , P
l
Kk

) and a list of negative points (N l
1, . . . , N

l
Kk

) with Kk independent of l and such
that

L̃wnl
(vk) = Min

σ∈SKk

Kk∑

j=1

dwnl
(P l

j , N
l
σ(j)) =

Kk∑

j=1

dwnl
(P l

j , N
l
σl(j)

)

for some permutation σl ∈ SKk
. Extracting another subsequence if necessary, we may assume

that σl = σ? is independent of l ∈ N and that P l
j →

l→+∞
Pj and N l

j →
l→+∞

Nj for j = 1, . . . , Kk.

From the results in [14] Section 4.1, we know that assumption (i) implies that dwn converges
to dw uniformly on Ω× Ω and then we have

L̃wnl
(vk) =

Kk∑

j=1

dwnl
(P l

j , N
l
σ?(j)) →

l→+∞

Kk∑

j=1

dw(Pj , Nσ?(j))

By definition of L̃w(vk), we obtain that

L̃w(vk) ≤ lim
l→+∞

L̃wnl
(vk).

On the other hand, we can also relabel the singularities of vk and the virtual singularities
on the boundary given by a minimal connection relative to dw, as a list of positive points
(P 1, . . . , PK) and a list of negative points (N1, . . . , NK) such that

L̃w(vk) =
K∑

j=1

dw(P j , N j).
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As previously, we have for any l ∈ N,

L̃wnl
(vk) ≤

K∑

j=1

dwnl
(P j , N j).

Letting l → +∞, we obtain

lim
l→+∞

L̃wnl
(vk) ≤

K∑

j=1

dw(P j , N j)

and then we conclude that lim
l→+∞

L̃wnl
(vk) = L̃w(vk). By uniqueness of the limit, we get that

the convergence holds for the full sequence i.e.,

L̃wn(vk) →
n→+∞ L̃w(vk).

At this stage, we can proceed as in the proof of Theorem 4.2 (i)⇒(ii) using Lemma 5.1
instead of Lemma 3.1. ¥

We obtain the following variants of Proposition 4.1 and Proposition 4.2 using Theorem 5.2
instead of Theorem 4.1.

Proposition 5.2. Let (wn)n∈N be a sequence of measurable real functions satisfying (4.2)
and assume that (a) or (b) in Proposition 4.1 holds. Then (5.9) holds.

Proposition 5.3. Let (ρn)n∈N be a sequence of smooth mollifiers. Extending w by a suffi-
ciently large constant and setting wn = ρn ∗ w, then (5.9) holds.
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