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Abstract

In this communication we made a first presentation of a set of results on
the stabilization in a finite time of some mechanical processes where a Coulomb
friction (or solid friction) term coexists with other physical frameworks leading
to oscillations in absence of friction. Here, in particular, we concentrate our
attention in some finite-dimensional dynamical systems which can be obtained
by the modelling of N-coupled oscillators as well as trough a spatial discretization
of a vibrating string equation in presence of a solid friction.

Introduction

The purpose of this work is to made a first presentation of the study made by the
authors on the dynamics of the finite-dimensional system corresponding to vibration of
N -particles of equal mass m located along the interval (0, 1) of the x axis. Each particle
is connected to its neighbors by two harmonic springs of strength k, the elongation of
the left one is given by xi(t) and we assume the motion subject to a resultant friction
force which is the composition of a Coulomb (or solid) friction and other type of
frictions such as, for instance, the one due to the viscosity of an surrounding fluid. The
equations of motion for this system are

(PN)

{
mẍi(t) + k(−xi−1(t) + 2xi(t)− xi+1(t)) + µββ(ẋi(t)) + µgg(ẋi(t)) 3 0
xi(0) = u0,i, ẋi(0) = v0,i

i = 1, . . . , N, where we are assuming that x0(t) = 0, xN+1(t) = 0 for any t ∈ (0, +∞),
µβ, µg are positive constants, the term µββ(ẋi(t)) represents the Coulomb friction, with
β given by the maximal monotone graph in R2

β(r) = {−1} if r < 0, β(0) = [−1, 1], β(r) = {1} if r > 0,

g is a Lipschitz continuous function such that g(0) = 0, µββ(r) + µgg(r) > 0 for all
r > 0 and the reverse inequality for r < 0. The internal initial data (u0,i), (v0,i) are
given in RN .

It is well known that, if we write, for simplicity, k = 1
h2 (with h = 1/(N + 1)) and

m = 1, then problem (PN) arises in the spatial discretization, by finite differences, of



the damped string equation

(P∞)





utt − uxx + µββ(ut) + µgg(ut) 3 0 in (0, 1)× (0, +∞),
u(0, t) = u(1, t) = 0, t ∈ (0, +∞),
u(x, 0) = u0(x), ut(x, 0) = v0(x) x ∈ (0, 1).

In fact, it was by passing to the limit, N →∞ in (PN), how the wave equation (without
friction) was obtained by Jean Le Rond D’Alembert in 1746.

The main goal of this paper is to give several criteria in order to have the stabi-
lization in a finite time for this mechanical system. The study of the special case of a
single oscillator, N = 1, without viscous friction,

mẍ + 2kx + µββ(ẋ) 3 0,

can be found in many textbooks (see, for instance, [17]). It is easy to see then that
the motion stops definitively after a finite time: i.e. there exists Te < +∞ and x∞ ∈
[−µβ

2k
,

µβ

2k
] such that x(t) ≡ x∞ for any t ≥ Te. There are, also, some partial results on

the stabilization to an equilibrium state in a finite time for the solutions of the wave
equation (see [7] and [8] for some particular initial data). The case of arbitrary initial
data u0(x) and v0(x) seems to be, still, an open problem.

Concerning the case of N−particles we can mention the work by Bamberger and
Cabannes [3] in which they prove the stabilization in a finite time in absence of
viscous friction (µg = 0). We point out that this type of friction arises very often
in the applications and that its consideration was already proposed by Lord Rayleigh
(see, e.g. [18]). Concrete expressions for g can be found also in [17]. The case of a
linear damping g(ẋi) = λẋi and the absence of stabilization in a finite time for λ large
enough was commented at the end of the paper [3] but no mention to the possibility
of a simultaneous dichotomy of behaviors was made there.

One of our main goals is to prove that the presence of a viscous friction may
originate a qualitative distinction among the orbits in the sense that the state of the
system x(t) := (x1(t), x2(t), ..., xN(t))T (here hT means, in general, the trasposed vector
of h) may reach an equilibrium state in a finite time or merely in an asymptotic
way (as t → +∞), according the initial data x(0) = x0 := (u0,1, u0,2, ..., u0,N)T and
ẋ(0) = v0 := (v0,1, v0,2, ..., v0,N)T . This dichotomy seems to be new in the literature and
contrasts with the phenomena of finite extinction time for first order (in time) ordinary
and parabolic nonlinear equations (see, for instance, the exposition made in [2]). Some
results exhibiting this alternative, but for the case of a single particle with a non-
Lipschitz friction term β(u) = |u|α−1 u (α ∈ (0, 1)), can be found in [11], [12] and [1]
(problem raised, many year ago, by Häım Brezis). We end the paper by showing that
this alternative may occur also in the case of the wave equation (P∞) in all dimension
in space and under suitable conditions.

On the dichotomy for the N-dimensional system

The system under study can be written, in short, as a vectorial problem

(PN)

{
mẍ(t) + kAx(t) + µβB(ẋ(t)) + µβG(ẋ(t)) 3 0,
x(0) = x0, ẋ(0) = v0



where x(t) := (x1(t), x2(t), ..., xN(t))T , A is the symmetric positive definite matrix of
RN×N given by

A =




2 −1 0 ... 0
−1 2 −1 0 ...
0 −1 2 −1 0
... 0 −1 2 −1
0 ... 0 −1 2




,

B :RN → P( RN) denotes the (multivalued) maximal monotone operator given by
B(y1, . . . , yN) = (β(y1), . . . , β(yN))T and G :RN → RN is the Lipschitz continuous
function defined by G(y1, . . . , yN) = (g(y1), . . . , g(yN))T . In what follows, a ·b denotes
the Euclidian scalar product of a,b ∈RN and ‖ . ‖ the Euclidean norm.

Our first result deals with the existence, uniqueness and asymptotic behavior of
solutions of (PN)

Theorem 1. For any initial datum (x0,v0) ∈ R2N , the Cauchy problem (PN) ad-
mits a unique weak solution x ∈ C1([0, +∞) : RN). Moreover, there exists a unique
equilibrium state x∞ ∈ RN , i.e. satisfying that Ax∞(∈ [−µβ

2k
,

µβ

2k
]N)T , such that

‖ ẋ(t) ‖ + ‖ x(t)− x∞ ‖→ 0 as t → +∞. (1)

Concerning the dichotomy mentioned at the introduction, the following result shows
that the stabilization in a finite time depends of the structural behavior of the viscous
friction g near 0.

Theorem 2. i) Suppose that g(r)r ≤ 0 in some neighborhood of 0. Then all solutions
of (PN) stabilize in a finite time.

ii) Suppose that g(r) = λr with λ ≥ 2
√

λ1mk
µg

, where λ1 denotes the first eigenvalue of

A. Then there exist solutions of (PN) which do not stabilize in any finite time.

iii) Suppose that N = 1, A = 1 ∈ R and g is C1 in some neighborhood of 0. Then, if

g′(0) < 2
√

mk
µg

, all solutions stabilize in finite time but if g′(0) ≥ 2
√

mk
µg

there exist some

solutions which do not stabilize in any finite time.

Remark 1. Notice that the growth condition on g(r), near r = 0, is independent on
µβ. In the case of a single particle (notice that then λ1 = 1) more precise results can
be obtained by using, as in [11], [12], [1], the trajectory equation in the phase space

yx ∈ −kx−µββ(y)−µgg(y)

y
but they will not presented here.

Remark 2. The positive results on stabilization in a finite time remain true for a
general symmetric and positive definite matrix A as well as under the presence of
some impulsive forces f(t) leading to the system

mẍ(t) + kAx(t) + µβB(ẋ(t)) + µβG(ẋ(t)) 3 f(t)

assuming that their amplitude is small enough: more precisely if

∃α > 0 such that µββ(r) + µgg(r) ≥ α and g(−r) = g(r) for any r > 0

then we have to we assume that

f(t) ∈([−α + ε, α− ε]N)T , for some ε ∈ [0, α) and for a.e. t ≥ Tf , for some Tf ≥ 0.



This behavior face up to with the case in which the amplitude of f(t) becomes large
and g′(v) < 0 for any v 6= 0. Then, the dynamics generates a wide range of events
leading to the chaos (see [9]).

Remark 3. The simultaneous possibility of the occurrence of stabilization in a finite
or infinite time does not hold for solutions of scalar first order in time equations of the
form

ut − d∆u + β(u) 3 0 (2)

for β(u) multivalued at u = 0 and d ≥ 0 (see, for instance, [6], [10] and their references).
We assume given homogeneous Dirichlet boundary conditions and an initial datum.
Moreover, if we add an extra term, g(u), such that, g(u)u ≥ 0 for any u ∈ R, then the
solutions of

Ut − d∆U + β(U) + g(U) 3 0 (3)

satisfy that ‖u(t, .)‖Lp(Ω) ≥ ‖U(t, .)‖Lp(Ω) and so, the extinction in a finite time of u(t, .)
implies the same property for U(t, .). The opposite comparison holds when g(u)u ≤ 0.
This explain the important different behaviors among the solutions of problems of first
and second order in time. Notice that if we assume k = 0 in (P1) then we get that
U(t) = ẋ(t) satisfies an equation similar to 3 with d = 0. Notice, also, that if m is very
small then problem (P1) becomes a quasi-static problem (in the terminology of [13])
and then the solutions are closed to the solutions of the first order in time problem

(QSP1)

{
2kx + µββ(ẋ) + µgg(ẋ(t)) 3 0,
x(0) = x0

In that case, g(u)u ≥ 0 implies an opposite comparison to the above mentioned one
with respect the solutions with g = 0. Nevertheless, the multivalued character of β at
u = 0 does not imply, now, the stabilization in a finite time for the solutions of (QSP1).

Proof of Theorem 1. To reformulate (PN) in the framework of nonlinear semi-group
operators theory we introduce the phase space H = (RN , <, >A) × (RN , ·), with <
a,b >A= Aa · b, and we define the operator L in H by

L(x,y) = {−y} × { k

m
Ax +

µβ

m
B(y)} for (x,y) ∈ H. (4)

It is easy to prove that L is maximal monotone in H and since µg

m
G(y) is Lipschitz

continuous, by using the results on Lipschitz perturbations of maximal monotone op-
erators (see [5]) we get the existence and uniqueness of a solution of (PN). Multiplying
the equation by ẋ(t) and integrating in time we get the energy relation

E(t) +

∫ t

0

[
N∑

i=1

µβ

m
|ẋi(s)|+ µg

m
g(ẋi(t))ẋi(t)]ds = E(0), (5)

where

E(t) =
1

2
‖ ẋ(t) ‖2 +

k

2m
Ax(t) · x(t). (6)

By (5), the trajectory (x(t), ẋ(t))t≥0 is compact in H, so, we can find α > 0 such that
µβ|ẋi(t)|+µgg(ẋi(t))ẋi(t) ≥ α|ẋi(t)| for i = 1, . . . , N and all t ≥ 0. By (5), we conclude



that ẋ ∈ L1(R+) which leads to the existence of the limit x∞ := limt→+∞ x(t) and to
limt→+∞ ẋ(t) = 0.¥
In order to prove Theorem 2 it is useful to reformulate the problem in its nondimen-
sional form

Lemma 1. The change of scales x(t) := x̃( t̃ )x∗, t̃ = t
t∗ , x∗ =

µβ

k
, t∗ =

√
m
k
, transforms

(PN) in the nondimensional problem

(P̃N)

{
¨̃x( t̃ ) + Ax̃( t̃ ) + B( ˙̃x( t̃ )) + µg

µβ
G(

µβ√
mk

˙̃x( t̃ )) 3 0,

x̃(0) = x̃0, ˙̃x(0) = ṽ0,

with x̃0 = kx0

µβ
and ṽ0 =

√
mk
µβ

v0.

Proof of Lemma 1. It is enough to check that ẋ(t) = x∗
t∗

dx̃
dt̃

and to use that B(θẋ(t)) =
B(ẋ(t)) for any θ > 0.¥

We come back to the proof of part i) of Theorem 2. In the following we shall

identify (P̃N) with (PN) if no confusion may arises. In view of Theorem 1 and Lemma
1, we have to prove that there exists Te ≥ 0 such that x(t) ≡ x∞ for all t ≥ Te. In
what follows we shall adopt some notation similar to the introduced by Bamberger and
Cabannes in [3]

∆i(t) := (Ax(t))i and ∆∗
i := (Ax∞)i, for i ∈ {1, . . . , N}.

We recall that, since x∞ is an stationary point, we have (∆∗
i )

N
i=1 ∈ [−1, 1]N . We need

an auxiliary lemma describing the behavior of x(t) for large time. In the statement,
the constants may depend on the initial data.

Lemma 2.

i) Suppose that for some i ∈ 1, . . . , N , |∆∗
i | < 1. Then there exists Ti ≥ 0 such that

∀t ≥ Ti, ẋi(t) = 0.

ii) If, for some i ∈ 1, . . . , N , ∆∗
i = 1 (resp. ∆∗

i = −1). Then there exists Ti ≥ 0
such that ∀t ≥ Ti, ẋi(t) ≤ 0 (resp. ẋi(t) ≥ 0).

Proof of Lemma 2. Let 0 < δ << 1 be fixed. By Theorem 1 we can find t0 ≥ 0 such
that

∀t ≥ t0, |∆i(t)| ≤ (1− 2δ) and |g(
µβ√
mk

ẋi(t))| ≤ µβ

µg

δ. (7)

If ẋi(t0) = 0, we conclude that xi(t) ≡ xi(t0) = x∞i for all t ≥ t0 since ∆i(t) ∈ [−1, 1]
for all t ≥ t0. If not, let T = sup{s ≥ t0, |ẋi(t)| > 0 ∀t ∈ [t0, s[}. Multiplying the
i-component of (PN) by ẋi(t) and using (7) we obtain

1

2

d

dt
(|ẋi(t)|2) + δ|ẋi(t)| ≤ 0, for a.e. t ∈ [t0, T [. (8)

Dividing (8) by |ẋi(t)| we get

d

dt
(|ẋi(t)|) + δ ≤ 0 for a.e. t ∈ [t0, T [. (9)

Integrating, we see that ẋi(t0 + |ẋi(t0)|
δ

) = 0. Thus T < +∞ and we conclude, as before,
that xi(t) ≡ xi(T ) = x∞i for any t ≥ T . To prove part ii) we consider, again,



0 < δ << 1 and suppose that ∆∗
i = 1 (the case ∆∗

i = −1 is similar). By Theorem 1 we
can find t0 ≥ 0 such that

∆i(t) ≥ δ and |g(
µβ√
mk

ẋi(t))| ≤ µβ

µg

δ, for a.e. t ≥ t0. (10)

Suppose that ẋi(t0) > 0 and let τ = sup{s > t0, ẋi(t) > 0 ∀t ∈ [t0, s[}. In [t0, τ [ we
have

ẍi(t) + ∆i(t) + 1 +
µg

µβ

g(
µβ√
mk

ẋi(t)) = 0.

From (10), we get that ẍi(t) ≤ −1 in [t0, τ [ and by integration ẋi(t) ≤ ẋi(t0)− (t− t0)
in [t0, τ [. Thus τ < +∞ and we conclude that we can find T ≥ t0 such that ẋi(T ) ≤ 0.
Now suppose that there exists t1 > T such that ẋi(t1) > 0. From the continuity of
ẋi, there exists some interval ]t2, t3[ with t2 > T and ẋi(t2) > 0, where ẋi is strictly
increasing. In ]t2, t3[ we have ẍi = −1−∆i − µg

µβ
g(

µβ√
mk

ẋi). Thus form the choice of δ,

ẋ is strictly decreasing in ]t2, t3[, which is a contradiction. ¥
Proof of Theorem 2 (continuation): i) Let I+ = {i ∈ {1, . . . , N}, ∆∗

i = 1} and
I− = {i ∈ {1, . . . , N}, ∆∗

i = −1}. In view of Lemma 2, we can find T ≥ 0 such
that for all t ≥ T we have that: i) ∀i ∈ {1, . . . , N}, g(

µβ√
mk

ẋi(t))ẋi(t) ≤ 0, ii)

∀i ∈ I+, ẋi(t) ≤ 0, iii) ∀i ∈ I−, ẋi(t) ≥ 0, and iv) ∀i 6∈ I+ ∪ I−, ẋi(t) = 0. We
write the equations of (PN) as

ẍi(t) + ∆i(t)−∆∗
i + 1 + β(ẋi(t)) +

µg

µβ

g(
µβ√
mk

ẋi(t)) 3 0, for i ∈ I+, (11)

(and analogy for i ∈ I−). Multiplying by ẋi(t) and summing over i, we get

ẍ(t) · ẋ(t) + A(x(t)− x∞) · ẋ(t) +
µg

µβ

G(
µβ√
mk

ẋ(t)) · ẋ(t) = 0,∀t ≥ T,

Integrating in time, we have

‖ ẋ(t) ‖2 +A(x(t)− x∞) · (x(t)− x∞) ≥‖ ẋ(T ) ‖2 +A(x(T )− x∞) · (x(T )− x∞) ≥ 0

Letting t → +∞ we obtain ‖ ẋ(T ) ‖2 +A(x(T ) − x∞) · (x(T ) − x∞) = 0. Since A is
a positive definite matrix, we conclude that x(T ) = x∞ and thus x(t) = x∞ for any
t ≥ T .

ii) Assume now that g(r) = λr with λ ≥ 2
√

λ1mk
µg

. In order to construct a solution

of (PN) which does not stabilize in finite time we search a particular solution of the
vectorial linear ODE

Ẍ + AX+
λµg√
mk

Ẋ = 0. (12)

Since A is a symmetric definite positive matrix, we can find a matrix P ∈ RN×N such
that A = PT diag(λ1, · · · , λN)P with 0 < λ1 ≤ λ2 ≤ . . . ≤ λN and PTP = I, the
identity matrix. Writing X = PTY, system (12) is equivalent to the system

ÿi + λiyi +
λµg√
mk

ẏi = 0 for i = 1, . . . , N . (13)



The equation ÿ1 + λ1y1 + λµg√
mk

ẏ1 = 0 admits a solution y1(t) such that ẏ1(t) < 0 for

all t ≥ 0 since λ ≥ 2
√

λ1mk
µg

. We define Y(t) = (y1(t), 0, . . . , 0) which satisfies (13).

Then, X(t) := PTY(t) satisfies (12) and is such that ẋi(t) has a constant sign and
never vanishes or ẋi(t) ≡ 0 . If we denote by ∆∗ the constant vector of RN defined by
∆∗

i = β0(ẋi), i = 1, . . . , N, with β0(r) = β(r) if r 6= 0 and β0(0) = 0, and consider
x∞ as the solution of Ax∞ = −∆∗. Summing X and x∞, we get a solution of (PN)
which never stops.

iii) We suppose N = 1 (and take A = 1). The problem becomes

ẍ + x + β(ẋ) +
µg

µβ

g(
µβ√
mk

ẋ) 3 0. (14)

Firstly, suppose that g′(0) < 2
√

mk
µg

. We want to prove that all solutions of (14) stabilize

in finite time. In view of the previous steps, we only have to consider the case |x(t)| → 1.
By analogy, it is enough to consider the case x(t) → 1. We know that there exists a
time T such that ẋ(t) ≤ 0 for all t ≥ T . If the process does not stop at a time T , then
there exists a t0 ≥ T such that ẋ(t0) < 0. Let τ = sup{t ≥ t0, ẋ(t) < 0}. Since g is

regular near 0 and g′(0) < 2
√

mk
µg

we know by Hartman’s Theorem ([16]) that the point

(1, 0) is a center or a focus for the equation

ü + u− 1 +
µg

µβ

g(
µβ√
mk

u̇) = 0. (15)

Since x(t) satisfies this equation in (t0, τ), we deduce that τ < ∞ and x(τ) < 1 with
ẋ(τ) = 0, thus the process stops at time τ which contradicts that x(t) → 1 as t → +∞.

If we assume, now, that g′(0) ≥ 2
√

mk
µg

, since g is regular near 0, by Hartman’s Theorem,

the point (1, 0) is a node for equation (15) and we can find a solution u(t) such that
u̇(t) < 0 for all t ≥ 0. Such solution is also a solution of (14) which does not stabilize
in any finite time.¥
Remark 4. Similar results also hold for other N-dimensional systems arising when
the spatial discretization of the wave equation is taken by finite elements instead by
finite differences.

The dichotomy for the damped wave equation

As an illustration of possible extensions of ii) of Theorem 2 to other dynamical
systems, we consider the damped wave equation in a bounded regular open set Ω ⊂ RN

utt −∆u + β(ut) + λut 3 0 in Ω× (0, +∞), (16)

with Dirichlet boundary conditions u(., t) = 0 on ∂Ω for t ∈ (0, +∞). Let us assume
that λ ≥ 2

√
λ1 , with λ1 the first eigenvalue of the operator u → −∆u associated to

homogeneous Dirichlet boundary conditions. Then we can find some solutions of (16)
which does not stabilize in any finite time and also some solutions which stabilizes in
a finite time. We construct the first type of solutions in the form

u(x, t) = a(t)v(x) + ξ(x),



where v is a solution of the eigenvalue problem

{ −∆v = λ1v in Ω,
v = 0 on ∂Ω,

such that v > 0 in Ω, the function ξ is defined as the solution of the equation

{
∆ξ = 1 in Ω,
ξ = 0 on ∂Ω,

and a(t) is a solution of the ODE

ä + λ1 a + λȧ = 0, (17)

such that ȧ(t) > 0 for any t > 0 (which is possible since λ ≥ 2
√

λ1 ). Then, we get a
solution which does not stabilize in any finite time. By the contrary, if we choose b(t)
as a solution of (17) such that ḃ(t) > 0 for all t ∈ [0, 1), ḃ(1) = 0 and b(1) = K with
K = 1

λ1‖v‖L∞(Ω)
and take a(t) = b(t) if t ≤ 1 and a(t) = K for t ≥ 1 we get a solution

which attains the stationary state u∞(x) = Kv(x) + ξ(x) after t = 1.¥
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Boston, 2002

[3] A. Bamberger, H. Cabannes, “Mouvements d’une corde vibrante soumise à un
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linéaires”, Proc. of the Roy. Soc. of Ed., 84A , (1979), 213-234.
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