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We continue the analysis started in [14] on a model describing a two-dimensional rotat-
ing Bose–Einstein condensate. This model consists in minimizing under the unit mass
constraint, a Gross–Pitaevskii energy defined in R

2. In this contribution, we estimate
the critical rotational speeds Ωd for having exactly d vortices in the bulk of the conden-
sate and we determine their topological charge and their precise location. Our approach
relies on asymptotic energy expansion techniques developed by Serfaty [20–22] for the
Ginzburg–Landau energy of superconductivity in the high κ limit.
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1. Introduction

Since its first experimental achievement in dilute alkali gases, the phenomenon of
the Bose–Einstein condensation has given rise to a very active area of research in
condensed matter physics. A Bose–Einstein condensate (BEC) is a quantum object
in which every atom is in the lowest quantum state, so that it can be described by
a single wave function. One of the most interesting feature of these systems is their
superfluid behavior (see [10]): above some critical velocity, a BEC rotates through
the existence of vortices, i.e. zeroes of the wave function around which there is a
circulation of phase. When the angular speed gets larger, the number of vortices
increases and they arrange themselves in a regular pattern around the center of the
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condensate. This has been observed experimentally by the ENS group [16, 17] and
by the MIT group [1].

We consider here a two-dimensional model describing a condensate placed
in a trap that strongly confines the atoms in the direction of the rotation axis
(see [10, 11]). In the non-dimensionalized form (see [2, 14]), the wave function min-
imizes the Gross–Pitaevskii (GP) energy

Fε(u) =
∫

R2

{
1
2
|∇u|2 +

1
4ε2

[(|u|2 − a(x))2 − (a−(x))2] − Ωx⊥ · (iu,∇u)
}

dx

(1.1)

under the constraint ∫
R2

|u|2 = 1, (1.2)

where ε > 0 is small and describes the ratio of two characteristic lengths and Ω =
Ω(ε)≥0 is the angular velocity. The function a(x) in (1.1) comes from the existence
of a potential trapping the atoms, and is normalized such that

∫
R2 a+(x) = 1. We

will restrict our attention to the specific case of a harmonic trapping, that is a(x) =
a0 − x2

1 −Λ2x2
2 with a0 =

√
2Λ/π for some constant Λ ∈ (0, 1], which corresponds

to actual experiments (see [16, 17]).
Our goal is to compute an asymptotic expansion of the energy Fε(uε) and to

determine the number and the location of vortices according to the value of the
angular speed Ω(ε) in the limit ε → 0. More precisely, we want to estimate the
critical velocity Ωd for which the dth vortex becomes energetically favorable and
to derive a reduced energy governing the location of the vortices (the so-called
“renormalized energy” by analogy with [8, 20, 21]).

We have started in [14] the analysis of minimizers uε of the functional Fε under
the constraint (1.2) and we have already determined the critical rotational speed
Ω1 =

√
π(1+Λ2)√

2Λ
|ln ε| of nucleation of the first vortex inside the domain

D = {x ∈ R
2 : a(x) > 0}.

In the physical context, the set D represents the region occupied by the condensate
since in the limit ε → 0, the minimization of Fε forces |uε|2 to be close to the func-
tion a+(x)(Fε(uε) remaining small in front of 1/ε2). We proved that for subcritical
velocities Ω ≤ Ω1 − δ ln|ln ε| with −δ < ω�

1 < 0 for some constant ω�
1 , there is no

vortices in the region D and uε behaves as the vortex-free profile η̃εe
iΩS where the

phase function S : R2 → R is given by

S(x) =
Λ2 − 1
Λ2 + 1

x1x2 (1.3)

and η̃ε is the (unique) positive solution of the minimization problem

Min
{
Eε(u) : u ∈ H, ‖u‖L2(R2) = 1

}
(1.4)
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with

Eε(u) =
∫

R2

1
2
|∇u|2 +

1
4ε2

[(|u|2 − a(x))2 − (a−(x))2] and

H =
{

u ∈ H1(R2, C) :
∫

R2
|x|2|u|2 < ∞

}
.

In this contribution which constitutes the sequel of [14], we push forward the
study of minimizers uε. First, we prove the following estimate on the critical speed
Ωd for any integer d ≥ 1 in the asymptotic ε → 0 ,

Ωd =
1 + Λ2

a0
(|ln ε| + (d − 1) ln|ln ε|) =

√
π(1 + Λ2)√

2Λ
(|ln ε| + (d − 1) ln|ln ε|) .

Then, we show that for velocities ranged between Ωd and Ωd+1, any minimizer has
exactly d vortices of degree +1 inside D. Establishing an asymptotic expansion of
Fε(uε) as ε → 0, we derive the distribution of vortices within D as a minimizing
configuration of the reduced energy given by (1.5) below. We also improve the result
stated in [14] for the non-existence of vortices in the subcritical case by showing
that the best constant is ω�

1 = 0, that is subcritical velocities go up to Ω1−δ ln|ln ε|
for any δ > 0.

Our main theorem can be stated as follows:

Theorem 1.1. Let uε be any minimizer of Fε in H under the constraint (1.2) and
let 0 < δ 	 1 be any small constant.

(i) If Ω ≤ Ω1 − δ ln|ln ε|, then for any R0 <
√

a0, there exists ε0 = ε0(R0, δ) > 0
such that for any ε < ε0, uε is vortex free in BΛ

R0
=
{
x ∈ R2 : |x|2Λ =

x2
1 + Λ2x2

2 < R2
0

}
, i.e. uε does not vanish in BΛ

R0
. In addition,

Fε(uε) = Fε(η̃εe
iΩS) + o(1).

(ii) If Ωd + δ ln|ln ε| ≤ Ω ≤ Ωd+1 − δ ln|ln ε| for some integer d ≥ 1, then for any
R0 <

√
a0, there exists ε1 = ε1(R0, d, δ) > 0 such that for any ε < ε1, uε has

exactly d vortices xε
1, . . . , x

ε
d of degree one in BΛ

R0
. Moreover,

|xε
j | ≤ C Ω−1/2 for any j = 1, . . . , d, and

|xε
i − xε

j | ≥ C Ω−1/2 for any i 
= j,

where C > 0 denotes a constant independent of ε. Setting x̃ε
j =

√
Ω xε

j , the
configuration (x̃ε

1, . . . , x̃
ε
d) tends to minimize, as ε → 0, the renormalized energy

w(b1, . . . , bd) = −πa0

∑
i�=j

ln|bi − bj| +
πa0

1 + Λ2

d∑
j=1

|bj |2Λ. (1.5)
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In addition,

Fε(uε) = Fε(η̃εe
iΩS) − πa2

0d

1 + Λ2
(Ω − Ω1) +

πa0

2
(d2 − d) ln|ln ε|

+ Min
b∈R2d

w(b) + Qd,Λ + o(1), (1.6)

where Qd,Λ is a constant depending only on d and Λ.

These results are in agreement with the study made by Castin and Dum [11] who
have looked for minimizers in a reduced class of functions. More precisely, we find
the same critical angular velocities Ωd as well as a distribution of vortices around
the origin at a scale Ω−1/2 . The minimizing configurations for the renormalized
energy w(·) have been studied in the radial case Λ = 1 by Gueron and Shafrir
in [12]. They prove that for d ≤ 6, regular polygons centered at the origin and stars
are local minimizers. For larger d, they numerically found minimizers with a shape
of concentric polygons and then, triangular lattices as d increases. These figures are
exactly the ones observed in physical experiments (see [16, 17]).

Our approach, suggested in [2] by Aftalion and Du, strongly relies on techniques
developed by Serfaty [20–22] for the Ginzburg–Landau (GL) energy of superconduc-
tivity in the high κ limit. We point out that Serfaty has already applied the method
to a simplified GP energy (the study is made in a ball instead of R

2 with a(x) ≡ 1
and the minimization is performed without mass constraint) and has obtained in
[23] a result analogue to Theorem 1.1 which shows that the simple model captures
the main features of the full model concerning vortices. We emphasize once more
that we treat here the exact physical model without any simplifying assumptions.
The outline of our proof follows Serfaty’s method but many technical difficulties
arise from the specificities of the problem such as the unit mass constraint or the
degenerate behavior of the function a(x) near the boundary of D. As we shall see, a
very delicate analysis is required so that we prefer sometimes to write all the details
even if some proofs follow closely to other authors. More precisely, we also make use
of the following results on the GL functional [3–5, 9, 15, 18, 19, 24], starting from
the pioneering work of Bethuel, Brezis and Hélein [8]. We finally refer to our first
part [14] for additional references on mathematical studies of vortices in BECs.

For the convenience of the reader, we recall now some results already established
in [14]. First, we have proved the existence and smoothness of any minimizer uε of
Fε under the constraint (1.2) in the regime

Ω ≤ 1 + Λ2

a0
(|ln ε| + ω1 ln|ln ε|) (1.7)

for a constant ω1 ∈ R, as well as some qualitative properties: Eε(uε) ≤ C|ln ε|2,
|uε| �

√
a+ in any compact K ⊂ D and |uε| decreases exponentially fast to 0 out-

side D. We have also showed the existence and uniqueness of the positive minimizer
η̃ε of Eε under the mass constraint (1.2) for every ε > 0. Concerning the Lagrange
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multiplier kε ∈ R associated to η̃ε and the qualitative properties of η̃ε, we have
obtained:

|kε| ≤ C|ln ε| , (1.8)

Eε(η̃ε) ≤ C|ln ε| for ε small and η̃ε →
√

a+ in L∞(R2) ∩ C1
loc(D) as ε → 0. Using

a splitting technique introduced by Lassoued and Mironescu [15], we were able to
decouple into two independent parts the energy Fε(u) for any u ∈ H . The first part
corresponds to the energy of the vortex-free profile η̃εe

iΩS and the second part to
a reduced energy of v = u/(η̃εe

iΩS), i.e.

Fε(u) = Fε(η̃εe
iΩS) + F̃ε(v) + T̃ε(v), (1.9)

where the functionals F̃ε and T̃ε are defined by

F̃ε(v) = Ẽε(v) + R̃ε(v) , (1.10)

Ẽε(v) =
∫

R2

η̃2
ε

2
|∇v|2 +

η̃4
ε

4ε2
(|v|2 − 1)2,

R̃ε(v) =
Ω

1 + Λ2

∫
R2

η̃2
ε∇⊥a · (iv,∇v),

(1.11)

T̃ε(v) =
1
2

∫
R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
η̃2

ε(|v|2 − 1). (1.12)

Since the function η̃ε does not vanish, the vortex structure of any minimizer uε can
be studied via the map

vε = uε/(η̃εe
iΩS),

applying the Ginzburg–Landau techniques to the weighted energy Ẽε(vε). It is intu-
itively clear that difficulties will arise in the region where η̃ε is small and we will
require the following properties of vε inherited from uε and η̃ε: Ẽε(vε) ≤ C|ln ε|2,∣∣T̃ε(vε)

∣∣ ≤ o(1), |R̃ε(vε)| ≤ C|ln ε|2, |∇vε| ≤ CKε−1 and |vε| � 1 in any com-
pact K ⊂ D. In the sequel, it will be more convenient to replace in the different
functionals the function η̃2

ε by its limit a+(x). We denote by Fε, Eε and Rε the
corresponding functionals (see notations below). In the regime (1.7), we have com-
puted in [14] some fundamental bounds for the energy of vε in a domain slightly
smaller than D:

Fε(vε,Dε) ≤ o(1), (1.13)

Eε(vε,Dε) ≤ Cω1|ln ε|, (1.14)

Eε(vε,Dε\{|x|Λ < 2|ln ε|−1/6}) ≤ Cω1 ln|ln ε|, (1.15)

where

Dε = {x ∈ D : a(x) > νε|ln ε|−3/2} (1.16)

and νε is a chosen parameter in the interval (1, 2) (see Proposition 2.13). These
estimates represent the starting point of our analysis here.
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The plan of the paper is as follows. In Sec. 2, we prove that the subset of D
where |vε| is smaller than 1/2 can be covered by a family of disjoint discs such that
each radius vanishes as ε → 0, the cardinal of this family is uniformly bounded with
respect to ε and vε has a non-vanishing degree around each disc of the family. We
will call such a collection of discs a fine structure of vortices and a vortex one of
these discs (identified with their center). In Sec. 3, we establish various lower energy
estimates namely inside a vortex and away from the vortices. In Sec. 4, we prove
Theorem 1.1 matching the lower energy estimates with upper estimates coming
from the construction of trial functions. These constructions are presented in Sec. 5
which can be read independently from the rest of the paper. Finally, we prove in
the Appendix, an auxiliary result that we shall use in the proof of Theorem 1.1.

Notations. Throughout the paper, we denote by C a positive constant independent
of ε and we use the subscript to point out a possible dependence on the argument.
For x = (x1, x2) ∈ R2, we write

|x|Λ =
√

x2
1 + Λ2x2

2 and BΛ
R = {x ∈ R

2, |x|Λ < R}

and for A ⊂ R
2,

Ẽε(v,A) =
∫
A

1
2

η̃2
ε |∇v|2 +

η̃4
ε

4ε2
(1 − |v|2)2 ,

Eε(v,A) =
∫
A

1
2

a|∇v|2 +
a2

4ε2
(1 − |v|2)2,

R̃ε(v,A) =
Ω

1 + Λ2

∫
A

η̃2
ε∇⊥a · (iv,∇v) , (1.17)

Rε(v,A) =
Ω

1 + Λ2

∫
A

a∇⊥a · (iv,∇v),

F̃ε(v,A) = Ẽε(v,A) + R̃ε(v,A) ,

Fε(v,A) = Eε(v,A) + Rε(v,A).

We do not write the dependence on A when A = R2.

2. Fine Structure of Vortices

The main goal of this section is to construct a fine structure of vortices away from
the boundary of D. The analysis here follows the ideas in [8, 9]. The main difficulty
in our situation is due to the presence in the energy of the weight function a(x)
which vanishes on ∂D and it does not allow us to construct the structure up to the
boundary because of the resulting degeneracy in the energy estimates. Throughout
this paper, we assume that Ω satisfies (1.7), so that (1.13)–(1.15) hold. We will
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prove the following results for the map vε = uε/(η̃εe
iΩS):

Theorem 2.1. (1) For any R ∈
(√a0

2 ,
√

a0

)
, there exists εR > 0 such that for any

ε < εR,

|vε| ≥
1
2

in BΛ
R\BΛ√

a0
2

.

(2) There exist some constants N ∈ N, λ0 > 0 and ε0 > 0 (which only depend
on ω1) such that for any ε < ε0, one can find a finite collection of points{
xε

j

}
j∈Jε

⊂ BΛ√
a0
4

such that Card(Jε) ≤ N and

|vε| ≥
1
2

in B̄Λ√
a0
2

∖
 ⋃

j∈Jε

B(xε
j , λ0ε)


 .

Remark 2.2. The statement of Theorem 2.1 also holds if the radius
√

a0

2 is replaced
by an arbitrary r ∈ (0, R) but then the constants in Theorem 2.1 depend on r. For
the sake of simplicity, we prefer to fix r =

√
a0

2 .

In the next proposition, we replace as in [20] the discs {B(xε
j , λ0ε)}j∈Jε obtained

in Theorem 2.1 by slightly larger discs B(xε
j , ρ) (deleting some of the points xε

j , if
necessary), in order to get a precise information on the behavior of vε on ∂B(xε

j , ρ).
The resulting family of discs will represent the vortices of the map vε (and hence,
the vortices of uε also).

Proposition 2.3. Let 0 < β < µ < 1 be given constants such that µ̄ := µN+1 > β

and let {xε
j}j∈Jε be the collection of points given by (2) in Theorem 2.1. There exists

0 < ε1 < ε0 such that for any ε < ε1, we can find J̃ε ⊂ Jε and ρ > 0 verifying

(i) λ0ε ≤ εµ ≤ ρ ≤ εµ̄ < εβ,

(ii) |vε| ≥
1
2

in B̄Λ√
a0
2

\∪j∈J̃ε
B(xε

j , ρ),

(iii) |vε| ≥ 1 − 2
|ln ε|2 on ∂B(xε

j , ρ) for every j ∈ J̃ε,

(iv)
∫

∂B(xε
j ,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ C(β, µ)

ρ
for every j ∈ J̃ε,

(v) |xε
i − xε

j | ≥ 8ρ for every i, j ∈ J̃ε with i 
= j.

Moreover, for each j ∈ J̃ε, we have

Dj := deg
(

vε

|vε|
, ∂B(xε

j , ρ)
)


= 0 and |Dj | ≤ C (2.1)

for a constant C independent of ε.

Remark 2.4. We point out that for every j ∈ J̃ε, the disc B(xε
j , ρ) carries at least

one zero of vε since the degree Dj 
= 0.
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2.1. Some local estimates

We start with a fundamental lemma. It strongly relies on Pohozaev’s identity and
it will play a similar role as in [8, Theorem III.2]. In our situation, we only derive
local estimates as in [3, 9, 24]. Some of the arguments used in the proof are taken
from [3, 9].

Lemma 2.5. For any 0 < R <
√

a0 and 2
3 < α < 1, there exists a positive constant

CR,α such that

1
ε2

∫
B(x0,εα)

(1 − |vε|2)2 ≤ CR,α for any x0 ∈ BΛ
R.

Proof. Step 1. Set ũε = uεe
−iΩS . We claim that

Eε(ũε,Dε) ≤ C|ln ε|, (2.2)

where Dε is defined in (1.16). Indeed, since ũε = η̃εvε, we get that

|∇ũε|2 ≤ C
(
η̃2

ε |∇vε|2 + |vε|2|∇η̃ε|2
)
.

By [14, Propositions 2.2 and 3.3], |vε| ≤ C in Dε, η̃2
ε ≤ Ca in Dε and Eε(η̃ε) ≤

C|ln ε| and consequently,∫
Dε

|∇ũε|2 ≤ C

(∫
Dε

a(x)|∇vε|2 +
∫
Dε

|∇η̃ε|2
)

≤ C|ln ε|

by (1.14). On the other hand, we also have

1
ε2

∫
Dε

(a(x) − |ũε|2)2 ≤ C

ε2

∫
Dε

[
(a(x) − η̃2

ε)2 + η̃4
ε(1 − |vε|2)2

]

≤ C

ε2

(∫
Dε

(a(x) − η̃2
ε)2 +

∫
Dε

a2(x)(1 − |vε|2)2
)

≤ C|ln ε|

and therefore (2.2) follows.

Step 2. We are going to show that one can find a constant CR,α > 0, independent
of ε, such that for any x0 ∈ BΛ

R, there is some r0 ∈ (εα, εα/2+1/3) satisfying

Eε(ũε, ∂B(x0, r0)) ≤
CR,α

r0
.

We proceed by contradiction. Assume that for all M > 0, there is xM ∈ BΛ
R such

that

Eε(ũε, ∂B(xM , r)) ≥ M

r
, for any r ∈ (εα, εα/2+1/3). (2.3)

Obviously, for ε small, B(xM , εα/2+1/3) ⊂ Dε. Integrating (2.3) for r ∈
(εα, εα/2+1/3), we derive that

Eε(ũε,Dε) ≥ M

∫ εα/2+1/3

εα

dr

r
= M(α/2 − 1/3)|ln ε|

which contradicts Step 1 for M large enough.
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Step 3. Fix x0 ∈ BΛ
R and let r0 ∈ (εα, εα/2+1/3) be given by Step 2. We recall that

any minimizer uε of Fε in
{
u ∈ H, ‖u‖L2(R2) = 1

}
satisfies

−∆uε + 2iΩx⊥ · ∇uε =
1
ε2

(a(x) − |uε|2)uε + 
εuε in R
2,

where 
ε denotes the Lagrange multiplier. Therefore, we have

−∆ũε =
1
ε2

(a(x0) − |ũε|2)ũε +
1
ε2

(a(x) − a(x0))ũε + 2iΩ(∇S − x⊥) · ∇ũε

+ (
ε + 2Ω2x⊥ · ∇S − Ω2|∇S|2)ũε in B(x0, r0). (2.4)

As in the proof of the Pohozaev identity, we multiply (2.4) by (x − x0) · ∇ũε and
we integrate by parts in B(x0, r0). We have∫

B(x0,r0)

−∆ũε · [(x − x0) · ∇ũε] =
r0

2

∫
∂B(x0,r0)

|∇ũε|2 − r0

∫
∂B(x0,r0)

∣∣∣∣∂ũε

∂ν

∣∣∣∣
2

(2.5)

and
1
ε2

∫
B(x0,r0)

(a(x0) − |ũε|2)ũε · [(x − x0) · ∇ũε]

=
1

2ε2

∫
B(x0,r0)

(a(x0) − |ũε|2)2 −
r0

4ε2

∫
∂B(x0,r0)

(a(x0) − |ũε|2)2 (2.6)

(where ν is the outer normal vector to ∂B(x0, r0)). From (2.4)–(2.6), we derive that
1
ε2

∫
B(x0,r0)

(a(x0) − |ũε|2)2

≤ C

(
r0

∫
∂B(x0,r0)

|∇ũε|2 + r0ε
−2

∫
∂B(x0,r0)

(a(x0) − |ũε|2)2

+ r0ε
−2

∫
B(x0,r0)

|a(x) − a(x0)||ũε||∇ũε| + Ωr0

∫
B(x0,r0)

|∇ũε|2

+ (Ω2 + |
ε|)r0

∫
B(x0,r0)

|ũε||∇ũε|
)

.

Then, we estimate each integral term in the right-hand side of the previous inequal-
ity. By [14, Proposition 3.2], we have |
ε| ≤ Cε−1|ln ε| and |ũε| ≤ C in R2. According
to (2.2), we obtain

ε−2

∫
∂B(x0,r0)

(a(x0) − |ũε|2)2 ≤ Cε−2

∫
∂B(x0,r0)

[
(a(x0) − a(x))2 + (a(x) − |ũε|2)2

]

≤ Cε−2

∫
∂B(x0,r0)

(a(x) − |ũε|2)2 + CRε
3
2 α−1,

and

Ωr0

∫
B(x0,r0)

|∇ũε|2 ≤ 2Ωr0Eε(ũε,Dε) ≤ CRεα/2+1/3|ln ε|2,
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and

r0ε
−2

∫
B(x0,r0)

|a(x) − a(x0)||ũε||∇ũε| ≤ CRr2
0ε

−2

∫
B(x0,r0)

|∇ũε|

≤ CRr3
0ε

−2[Eε(ũε,Dε)]1/2

≤ CRε
3
2 α−1|ln ε|1/2,

and

(Ω2 + |
ε|)r0

∫
B(x0,r0)

|ũε||∇ũε| ≤ CRε−1|ln ε|r2
0 [Eε(ũε,Dε)]1/2

≤ CR εα− 1
3 |ln ε|3/2

(here we use that |a(x)− a(x0)| ≤ CR r0 for any x ∈ B(x0, r0)). We finally get that

1
ε2

∫
B(x0,r0)

(a(x0) − |ũε|2)2 ≤ CR,α

(
1 + r0Eε

(
ũε, ∂B(x0, r0))

)
for some constant CR,α independent of ε. By Step 2, we conclude that

1
ε2

∫
B(x0,εα)

(a(x0) − |ũε|2)2 ≤ CR,α. (2.7)

Since ‖η̃ε −
√

a‖C1(BΛ
R) ≤ CRε2|ln ε| by [14, Proposition 2.2], we have

1
ε2

∫
B(x0,εα)

(1 − |vε|2)2 ≤ CR

ε2

∫
B(x0,εα)

(η̃2
ε − |ũε|2)2

≤ CR

ε2

∫
B(x0,εα)

(a(x) − |ũε|2)2 + o(1)

≤ CR

ε2

∫
B(x0,εα)

(a(x0) − |ũε|2)2 + o(1) ≤ CR,α

and we conclude with (2.7).

The next result will allow us to define the notion of a bad disc as in [8].

Proposition 2.6. For any 0 < R <
√

a0, there exist two positive constants λR and
µR such that if

1
ε2

∫
B(x0,2l)

(1 − |vε|2)2 ≤ µR with x0 ∈ BΛ
R,

l

ε
≥ λR and l ≤

√
a0 − R

2
,

then |vε| ≥ 1/2 in B(x0, l).

Proof. In [14, Proposition 3.3], we proved the existence of a constant CR > 0
independent of ε such that

|∇vε| ≤
CR

ε
in BΛ√

a0+R

2
.

Then, the result follows as in [8, Theorem III.3].
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Definition 2.7. For 0 < R <
√

a0 and x ∈ BΛ
R, we say that B(x, λRε) is a bad

disc if
1
ε2

∫
B(x,2λRε)

(1 − |vε|2)2 ≥ µR.

Now we can give a local version of Theorem 2.1. We will see that Lemma 2.5
plays a crucial role in the proof.

Proposition 2.8. For any 0 < R <
√

a0 and 2
3 < α < 1, there exist positive

constants NR,α and εR,α such that for every ε < εR,α and x0 ∈ BΛ
R, one can find

x1, . . . , xNε ∈ B(x0, ε
α) with Nε ≤ NR,α verifying

|vε| ≥
1
2

in B(x0, ε
α)

∖(
Nε⋃
k=1

B(xk, λRε)

)
.

Proof. We follow the ideas in [8, Chapter IV]. Consider a family of discs{
B(xi, λRε)

}
i∈F such that

xi ∈ B(x0, ε
α), (2.8)

B

(
xi,

λRε

4

)
∩ B

(
xj ,

λRε

4

)
= ∅ for i 
= j, (2.9)

B(x0, ε
α) ⊂

⋃
i∈F

B(xi, λRε).

Obviously, the discs
{
B(xi, 2λRε)

}
i∈F cannot intersect more that C times (where

C is a universal constant) and⋃
i∈F

B(xi, 2λRε) ⊂ B(x0, ε
α′

)

with α′ = 1
2 (α + 2

3 ). We denote by F ′ the set of indices i ∈ F such that B(xi, λRε)
is a bad disc. We derive from Definition 2.7 that

µR Card(F ′) ≤
∑
i∈F

1
ε2

∫
B(xi,2λRε)

(1 − |vε|2)2 ≤ C

ε2

∫
B(x0,εα′ )

(1 − |vε|2)2.

The conclusion now follows by Lemma 2.5 and Proposition 2.6.

Remark 2.9. By the proof of Proposition 2.8, it follows that any family of discs{
B(xi, λRε)

}
i∈F satisfying (2.8) and (2.9) cannot contain more than NR,α bad

discs.

In the sequel, we will require the following crucial lemma to prove that vortices
of degree zero do not occur. This result has its source in [3, 9] and the proof is
based on the construction of a suitable test function. Hence, the main difference
and difficulty in our case come from the mass constraint we have to take into account
in the construction of test functions.
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Lemma 2.10. Let D > 0, 0 < β < 1 and γ > 1 be given constants such that
γβ < 1. Let 0 < R <

√
a0 and 0 < ρ < εβ be such that ργ > λRε. We assume that

for x0 ∈ BΛ
R,

(i)
∫

∂B(x0,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 <

D

ρ
,

(ii) |vε| ≥
1
2

on ∂B(x0, ρ),

(iii) deg
(

vε

|vε|
, ∂B(x0, ρ)

)
= 0.

Then, we have

|vε| ≥
1
2

in B(x0, ρ
γ).

Proof of Lemma 2.10. We are going to construct a comparison function as in [3]
or [9] to obtain the following estimate:∫

B(x0,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ Cβ,R. (2.10)

Since the degree of vε restricted to ∂B(x0, ρ) is zero, we may write on ∂B(x0, ρ)

vε = |vε|eiφε ,

where φε is a smooth map from ∂B(x0, ρ) into R. Then, we define v̂ε : R2 → C by{
v̂ε = χεe

iψε in B(x0, ρ),

v̂ε = vε in R
2\B(x0, ρ),

where ψε is the solution of {
∆ψε = 0 in B(x0, ρ),

ψε = φε on ∂B(x0, ρ),

and χε has the form, written in polar coordinates centered at x0,

χε(r, θ) = (|vε(ρeiθ)| − 1)ξ(r) + 1

and ξ is a smooth function taking values in [0, 1] with small support near ρ with
ξ(ρ) = 1. By [14, Proposition 3.3], we know that |vε(x)| ≤ 1 + Cε1/3 for x ∈ D
with |x|Λ ≥ √

a0 − ε1/8 and we deduce that 0 ≤ χε ≤ 1 + Cε1/3. Arguing as in [7,
proof of Theorem 2], we may prove that∫

B(x0,ρ)

|∇ψε|2 ≤ Cρ

∫
∂B(x0,ρ)

∣∣∣∣∂φε

∂τ

∣∣∣∣
2

≤ Cρ

∫
∂B(x0,ρ)

|∇vε|2 (2.11)

and∫
B(x0,ρ)

|∇χε|2 +
1
ε2

(1 − χ2
ε)

2 ≤ Cρ

∫
∂B(x0,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 + O(ρ).

(2.12)
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From (2.11), (2.12) and assumption (i), we infer that∫
B(x0,ρ)

|∇v̂ε|2 +
1

2ε2
(1 − |v̂ε|2)2 ≤ C. (2.13)

We set ṽε = m−1
ε v̂ε with mε = ‖η̃εv̂ε‖L2(R2). Clearly, η̃εe

iΩS ṽε ∈ H and
‖η̃εe

iΩS ṽε‖L2(R2) = 1. Since uε = η̃εe
iΩSvε minimizes the functional Fε under the

constraint (1.2), we have Fε(uε) ≤ Fε(η̃εe
iΩS ṽε) and by (1.9), it yields

F̃ε(vε) + T̃ε(vε) ≤ F̃ε(ṽε) + T̃ε(ṽε). (2.14)

We claim that

F̃ε(ṽε) ≤ F̃ε(v̂ε) + Cρ|ln ε|2 and
∣∣T̃ε(vε) − T̃ε(ṽε)

∣∣ = O
(
ρ2|ln ε|2

)
. (2.15)

Indeed, we have already established in the proof of [14, Proposition 3.3] that

Ẽε(vε) ≤ C|ln ε|2 and
∣∣R̃ε(vε)

∣∣ ≤ C|ln ε|2 (2.16)

so that, using (2.13), ‖η̃εvε‖L2(R2) = 1, v̂ε = vε in R2\B(x0, ρ) and (2.16), we obtain

m2
ε = 1 +

∫
B(x0,ρ)

η̃2
ε

(
|v̂ε|2 − 1

)
+
∫

B(x0,ρ)

η̃2
ε

(
1 − |vε|2

)
= 1 + O(ρ ε|ln ε|). (2.17)

From (2.13), (2.16) and (2.17), we derive∫
R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫
R2

η̃2
ε |∇v̂ε|2 =

∫
R2

η̃2
ε |∇v̂ε|2 + O(ρε|ln ε|3) (2.18)

and

R̃ε(ṽε) = m−2
ε R̃ε(v̂ε) = R̃ε(v̂ε) + O(ρε|ln ε|3). (2.19)

Since uε remains bounded in R
2 and Eε(uε) ≤ C|ln ε|2 by [14, Proposition 3.3], we

infer from (2.16),

1
ε2

∫
R2

η̃4
ε(1 − |ṽε|2)2 =

1
ε2

∫
R2

η̃4
ε(1 − |v̂ε|2)2 +

2(1 − m−2
ε )

ε2

∫
R2

η̃2
ε(1 − |v̂ε|2)|η̃εv̂ε|2

+
(1 − m−2

ε )2

ε2

∫
R2

|η̃εv̂ε|4

≤ 1
ε2

∫
R2

η̃4
ε(1 − |v̂ε|2)2

+ Cρ|ln ε|
(

1
ε2

∫
R2\B(x0,ρ)

η̃4
ε(1 − |vε|2)2

)1/2

×
(∫

R2\B(x0,ρ)

|uε|4
)1/2

+ Cρ2|ln ε|2

≤ 1
ε2

∫
R2

η̃4
ε(1 − |v̂ε|2)2 + Cρ|ln ε|2. (2.20)
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Finally, we obtain in the same way,∣∣T̃ε(vε) − T̃ε(ṽε)
∣∣ ≤ ∣∣T̃ε(vε) − T̃ε(v̂ε)

∣∣+ ∣∣T̃ε(v̂ε) − T̃ε(ṽε)
∣∣ (2.21)

≤ C|ln ε|2
(∫

B(x0,ρ)

(1 + |x|2)η̃2
ε + |1 − m−2

ε |
∫

R2
(1 + |x|2)η̃2

ε |v̂ε|2
)

≤ Cρ2|ln ε|2. (2.22)

From (2.18)–(2.21), we conclude that (2.15) holds.
Since v̂ε = vε in R

2\B(x0, ρ), we get from (2.14) and (2.15) that

F̃ε(vε, B(x0, ρ)) ≤ F̃ε(v̂ε, B(x0, ρ)) + Cρ|ln ε|2.

By (2.13), we have Ẽε(v̂ε, B(x0, ρ)) ≤ C and therefore,
∣∣R̃ε(v̂ε, B(x0, ρ))

∣∣ ≤ CΩ
∫

B(x0,ρ)

|∇v̂ε| ≤ CΩρ‖∇v̂ε‖L2(B(x0,ρ)) = O(ρ|ln ε|).

(2.23)

Hence, F̃ε(v̂ε, B(x0, ρ)) ≤ C and we conclude that

F̃ε(vε, B(x0, ρ)) ≤ Cβ .

As for (2.23), using (2.16), we easily derive that |R̃ε(vε, B(x0, ρ))| = O(ρ|ln ε|2) and
we finally get that Ẽε(vε, B(x0, ρ)) ≤ Cβ which clearly implies (2.10) since η̃2

ε → a+

uniformly as ε → 0 (see [14, Proposition 2.2]).
We deduce from (2.10) that∫ ρ

2ργ

(∫
∂B(x0,s)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2

)
ds ≤ Cβ,R.

Since
∫ ρ

2ργ
ds

s|ln s|1/2 ≥ Cγ |ln ε|1/2, we derive that for small ε there exists s0 ∈ [2ργ , ρ]
such that ∫

∂B(x0,s0)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

s0|ln s0|1/2
.

Repeating the arguments used to prove (2.10), we find that∫
B(x0,s0)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

|ln s0|1/2
.

In particular, we have

1
ε2

∫
B(x0,2ργ)

(1 − |vε|2)2 = o(1)

and the conclusion follows by Proposition 2.6.

We obtain as in [9, Proposition IV.3] the following result which gives us an
estimate of the contribution in the energy of any vortex. We reproduce here the
proof for completeness.
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Proposition 2.11. Let 0 < R <
√

a0 and 2
3 < α < 1. Let x0 ∈ BΛ

R and assume
that |vε(x0)| < 1

2 . Then there exists a positive constant CR,α (which only depends
on R, α and ω1) such that ∫

B(x0,εα)

|∇vε|2 ≥ CR,α|ln ε|.

Proof. Let NR,α and x1, . . . , xNε ∈ B(x0, ε
α) be as in Proposition 2.8. We set

δα =
α1/2 − α

3(NR,α + 1)

and for k = 0, . . . , 3NR,α + 2, we consider

αk = α1/2 − kδα, Ik = [εαk , εαk+1 ] and Ck = B(x0, ε
αk+1)\B(x0, ε

αk).

Then, there is some k0 ∈ {1, . . . , 3NR,α + 1} such that

Ck0 ∩


Nε⋃

j=1

B(xj , λRε)


 = ∅. (2.24)

Indeed, since Nε ≤ NR,α and 2λRε < |Ik| for small ε, the union of Nε intervals of
length 2λRε

Nε⋃
j=1

(
|xi − x0| − λRε, |xi − x0| + λRε

)
cannot intersect all the intervals Ik of disjoint interior, for 1 ≤ k ≤ 3NR,α +1. From
(2.24), we deduce that

|vε(x)| ≥ 1
2

for any x ∈ Ck0 .

Therefore, for every ρ ∈ Ik0 ,

dk0 = deg
(

vε

|vε|
, ∂B(x0, ρ)

)

is well defined and does not depend on ρ. We claim that

dk0 
= 0. (2.25)

By contradiction, we suppose that dk0 = 0. According to (1.14), it results that∫
BΛ√

a0+R
2

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ CR|ln ε|.

Using the same argument as in Step 2 of the proof of Lemma 2.5, there is a constant
CR,α such that∫

∂B(x0,ρ0)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ CR,α

ρ0
for some ρ0 ∈ Ik0 .



May 2, 2006 15:57 WSPC/148-RMP J070-00260

134 R. Ignat & V. Millot

According to Lemma 2.10
(
with β = αk0+1 and γ = αk0−1

αk0

)
, we should have

|vε(x0)| ≥ 1
2 which is a contradiction.

By (2.25), we obtain for every ρ ∈ Ik0 ,

1 ≤ |dk0 | =
1
2π

∣∣∣∣∣
∫

∂B(x0,ρ)

1
|vε|2

(
vε ∧

∂vε

∂τ

)∣∣∣∣∣ ≤ C

∫
∂B(x0,ρ)

|∇vε|

(we use that |vε| ≥ 1
2 in Ck0). Then, the Cauchy–Schwarz inequality yields∫

∂B(x0,ρ)

|∇vε|2 ≥ C

ρ
for any ρ ∈ Ik0

and the conclusion follows integrating on Ik0 .

2.2. Proofs of Theorem 2.1 and Proposition 2.1

The part (1) in Theorem 2.1 follows directly from Lemma 2.12 below.

Lemma 2.12. There exists a constant εR > 0 such that for any 0 < ε < εR,

|vε| ≥
1
2

in BΛ
R\BΛ√

a0
5

.

Proof. First, we fix some α ∈ (2
3 , 1). We proceed by contradiction. Suppose that

there is some x0 ∈ BΛ
R\BΛ√

a0
5

such that |vε(x0)| < 1/2. Then, for any ε sufficiently

small, we have B(x0, ε
α) ⊂ Dε\{|x|Λ < 2|ln ε|−1/6} and therefore, by (1.15), we get

that ∫
B(x0,εα)

|∇vε|2 ≤ CR Eε

(
vε,Dε\

{
|x|Λ < 2|ln ε|−1/6

})
≤ CR ln|ln ε|

which contradicts Proposition 2.11 for ε small enough.

Proof of (2) in Theorem 2.1. We fix some 2
3 < α < 1. As in the proof of

Proposition 2.8, we consider a finite family of points {xj}j∈J satisfying

xj ∈ BΛ√
a0
2

B

(
xi,

λ0ε

4

)
∩ B

(
xj ,

λ0ε

4

)
= ∅ for i 
= j,

BΛ√
a0
2

⊂
⋃
j∈J

B(xj , λ0ε),

where λ0 := λ√
a0
2

(
defined in Proposition 2.6 with R =

√
a0

2

)
and we denote by Jε

the set of indices j ∈ J such that B(xj , λ0ε) contains at least one point yj verifying

|vε(yj)| <
1
2
. (2.26)
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Obviously, B(xj , λ0ε) is a bad disc for every j ∈ Jε. Applying Lemma 2.12 (with
R = 3

√
a0

4 ), we infer that there exists ε0 such that for any 0 < ε < ε0,

B(xj , λ0ε) ⊂ BΛ√
a0
4

for any j ∈ Jε. (2.27)

Then, it remains to prove that Card(Jε) is bounded independently of ε. Using
Proposition 2.11 (with R =

√
a0

2 ), we derive that for any j ∈ Jε and any point yj

satisfying (2.26) in the ball B(xj , λ0ε),∫
B(xj,2εα)

|∇vε|2 ≥
∫

B(yj,εα)

|∇vε|2 ≥ Cα|ln ε| (2.28)

for some positive constant Cα which only depends on α. We set for ε small enough,

W =
⋃

j∈Jε

B(xj , 2εα) ⊂ BΛ√
a0
3

.

We claim that there is a positive integer Mα independent of ε such that any y ∈ W

belongs to at most Mα balls in the collection {B(xj , 2εα)}j∈Jε . Indeed, for each
y ∈ W , consider the subset Ky ⊂ Jε defined by

Ky =
{
j ∈ Jε : y ∈ B(xj , 2εα)

}
.

We have for every j ∈ Ky,

xj ∈ B(y, 2εα) ⊂ B(y, εα′
) ⊂ BΛ√

a0
2

with α′ =
1
2

(
α +

2
3

)
. (2.29)

Since the family of discs {B(xj , λ0ε)}j∈Ky is a subcover of B(y, εα′
) satisfying (2.8)

and (2.9), we conclude from Remark 2.9 that

Card(Ky) ≤ Mα

with Mα = N√
a0
2 ,α′ . From (2.28), we infer that∫

BΛ√
a0
2

|∇vε|2 ≥
∫

W

|∇vε|2 ≥ 1
Mα

∑
j∈Jε

∫
B(xj ,2εα)

|∇vε|2 ≥ Cα Card(Jε)|ln ε|.

(2.30)

On the other hand, we know by (1.14),∫
BΛ√

a0
2

|∇vε|2 ≤ C

∫
BΛ√

a0
2

a(x)|∇vε|2 ≤ C|ln ε| (2.31)

for a constant C independent of ε. Matching (2.30) and (2.31), we conclude that
Card(Jε) is uniformly bounded.

In the following, we will prove Proposition 2.3. We proceed exactly as in [20,
Theorem 2.1] and an adaptation of [3, Theorem V.1]. Before starting our proof, we
recall, for the convenience of the reader, a result obtained in [14, Proposition 4.1],
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by a method due to Sandier [18] and Sandier–Serfaty [19]:

Proposition 2.13 [14]. There exists a positive constant K0 such that for ε suf-
ficiently small, there exist νε ∈ (1, 2) and a finite collection of disjoint balls{
Bi

}
i∈Iε

:=
{
B(pi, ri)

}
i∈Iε

satisfying:

(i) for every i ∈ Iε, Bi ⊂⊂ Dε =
{
x ∈ R2, a(x) > νε|ln ε|−3/2

}
,

(ii)
{
x ∈ Dε, |vε(x)| < 1 − |ln ε|−5

}
⊂ ∪i∈IεBi,

(iii)
∑
i∈Iε

ri ≤ |ln ε|−10,

(iv)
1
2

∫
Bi

a(x)|∇vε|2 ≥ πa(pi)|di|
(
|ln ε| − K0 ln|ln ε|

)
,

where di = deg
(

vε

|vε| , ∂Bi

)
for every i ∈ Iε.

Proof of Proposition 2.3. By Theorem 2.1, we have for ε small enough,⋃
j∈Jε

B(xε
j , λ0ε) ⊂ BΛ√

a0
3

.

From (iii) in Proposition 2.13, there exists a radius rε ∈ (
√

a0

3 ,
√

a0

2 ] such that

B̄i ∩ ∂BΛ
rε

= ∅ for every i ∈ Iε. (2.32)

Hence, we have

|vε| ≥ 1 − |ln ε|−5 on ∂BΛ
rε

.

The existence of a subset J̃ε ⊂ Jε satisfying (i)–(v) can now be proved identically as
in [20, Proposition 3.2] and it remains to prove (2.1). From the proof of Theorem 2.1,
we know (by construction) that each disc B(xε

k, λ0ε), k ∈ Jε, contains at least one
point yk such that |vε(yk)| < 1

2 . Therefore, each disc B(xε
j , ρ), j ∈ J̃ε, contains at

least one of the yk’s with |xε
j −yk| < λ0ε. Assume now that Dj = 0. By Lemma 2.10

with γ = µ−1/2, it would lead to |vε| ≥ 1
2 in B(xε

j , ρ
γ) and then |vε(yk)| ≥ 1

2 for ε

small enough, contradiction. We also find a bound on the degrees Dj :

|Dj | =
1
2π

∣∣∣∣∣
∫

∂B(xε
j ,ρ)

1
|vε|2

(
vε ∧

∂vε

∂τ

)∣∣∣∣∣ ≤ C‖∇vε‖L2(∂B(xε
j ,ρ))

√
ρ ≤ C

by (iv) in Proposition 2.3.

3. Some Lower Energy Estimates

In this section, we obtain various lower energy estimates for vε in terms of the vortex
structure defined in Sec. 2, Proposition 2.3. We start by proving a lower bound on
the kinetic energy away from the vortices which brings out the interaction between
vortices. The method that we use is based on the techniques developed in [3, 8, 20,
21]. As in the previous section, the main difficulty is due to the degenerate behavior
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near the boundary of D of the function a(x) since the method involves in our case the
operator −div(a−1∇) which is not uniformly elliptic in D. To avoid this problem, we
shall establish our estimates in BΛ

R for an arbitrary radius R ∈ [
√

a0/2,
√

a0 ). The
underlying idea here is to let R → √

a0 at the end of the analysis. To emphasize the
possible dependence on R in the “error term”, we will denote by OR(1) (respectively,
oR(1)) any quantity which remains uniformly bounded in ε for fixed R (respectively,
any quantity which tends to 0 as ε → 0 for fixed R). In the sequel, we will also
write J̃ε = {1, . . . , nε}.

Proposition 3.1. For any R ∈ [
√

a0

2 ,
√

a0 ), let Θρ = BΛ
R\∪nε

j=1B(xε
j , ρ). We have

1
2

∫
Θρ

a(x)|∇vε|2 ≥ π

nε∑
j=1

D2
j a(xε

j)|ln ρ|

+ WR,ε

(
(xε

1, D1), . . . , (xε
nε

, Dnε)
)

+ OR(1), (3.1)

where

WR,ε

(
(xε

1, D1), . . . , (xε
nε

, Dnε)
)

= −π
∑
i�=j

DiDja(xε
j) ln|xε

i − xε
j | − π

nε∑
j=1

DjΨR,ε(xε
j)

and ΨR,ε is the unique solution of


div
(

1
a
∇ΨR,ε

)
= −

nε∑
j=1

Dja(xε
j)∇

(
1
a

)
· ∇
(
ln|x − xε

j |
)

in BΛ
R,

ΨR,ε = −
nε∑

j=1

Dja(xε
j) ln|x − xε

j | on ∂BΛ
R.

(3.2)

Moreover, if ρ
|xε

i−xε
j | → 0 as ε → 0 for any i 
= j, then the term OR(1) in (3.1) is

in fact oR(1).

Remark 3.2. We point out that the dependence on R in the interaction term WR,ε

only appears in the function ΨR,ε. Moreover, for ΨR,ε to be well defined, 1/a(x) has
to be bounded inside BΛ

R so that we cannot pass to the limit R → √
a0 in (3.1)

without an a priori deterioration of the error term.

Proof of Proposition 3.1. We consider the solution Φρ of the linear problem


div
(

1
a
∇Φρ

)
= 0 in Θρ,

Φρ = 0 on ∂BΛ
R,

Φρ = const. on ∂B(xε
j , ρ),∫

∂B(xε
j ,ρ)

1
a

∂Φρ

∂ν
= 2πDj for j = 1, . . . , nε,
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and ΦR,ε the solution of


div
(

1
a
∇ΦR,ε

)
= 2π

nε∑
j=1

Dj δxε
j

in BΛ
R,

ΦR,ε = 0 on ∂BΛ
R.

(3.3)

For x ∈ Θρ, we set wε(x) = vε(x)
|vε(x)| and

S =
(
−wε ∧

∂wε

∂x2
+

1
a

∂Φρ

∂x1
, wε ∧

∂wε

∂x1
+

1
a

∂Φρ

∂x2

)
.

We easily check that div S = 0 in Θρ and
∫

∂BΛ
R
S · ν =

∫
∂B(xε

j ,ρ)
S · ν = 0. By [8,

Lemma I.1], there exists H ∈ C1(Θ̄ρ) such that S = ∇⊥H and hence, we can write
the Hodge–de Rham type decomposition

wε ∧∇wε =
1
a
∇⊥Φρ + ∇H.

Consequently,∫
Θρ

a(x)|∇wε|2 =
∫

Θρ

1
a(x)

|∇Φρ|2 + 2
∫

Θρ

∇⊥Φρ · ∇H +
∫

Θρ

a(x)|∇H |2

≥
∫

Θρ

1
a(x)

|∇Φρ|2 + 2
∫

Θρ

∇⊥Φρ · ∇H.

We observe that the last term is in fact equal to zero since it is the integral of a
Jacobian and Φρ is constant on ∂Θρ. Hence,∫

Θρ

a(x)|∇wε|2 ≥
∫

Θρ

1
a(x)

|∇Φρ|2.

Since |∇vε|2 ≥ |vε|2|∇wε|2 in Θρ, we derive that∫
Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1
a(x)

|∇Φρ|2 + T1 + 2T2

with

T1 =
∫

Θρ

(
|vε|2 − 1

) 1
a(x)

|∇Φρ|2 and T2 =
∫

Θρ

(
|vε|2 − 1

)
∇Φ⊥

ρ · ∇H.

Arguing as in [3] (see Step 4 in the proof of Theorem 6), it turns out that T1 = oR(1)
and T2 = oR(1) and therefore,∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1
a(x)

|∇Φρ|2 + oR(1). (3.4)

On the other hand, by integrating by parts, we obtain∫
Θρ

1
a(x)

|∇Φρ|2 =
∫

∂Θρ

1
a(x)

∂Φρ

∂ν
Φρ = −2π

nε∑
j=1

DjΦρ(zj)
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for any point zj ∈ ∂B(xε
j , ρ). Since nε and each Dj remain uniformly bounded in ε

by Proposition 2.3, we may rewrite this equality as∫
Θρ

1
a(x)

|∇Φρ|2 = −2π

nε∑
j=1

DjΦR,ε(zj) + O
(
‖ΦR,ε − Φρ‖L∞(Θρ)

)
. (3.5)

Using an adaptation of [8, Lemma I.4] (see, e.g., [6, Lemma 3.5]), we derive that

‖ΦR,ε − Φρ‖L∞(Θρ) ≤
nε∑

j=1

(
sup

∂B(xε
j ,ρ)

ΦR,ε − inf
∂B(xε

j ,ρ)
ΦR,ε

)
. (3.6)

To estimate the right-hand side term in (3.6), we introduce for x ∈ BΛ
R,

ΨR,ε(x) = ΦR,ε(x) −
nε∑

j=1

Dj a(xε
j) ln|x − xε

j |.

Since ΦR,ε solves (3.3), we deduce that ΨR,ε may be characterized as the solution
of Eq. (3.2). By elliptic regularity, we infer that ‖ΨR,ε‖W 2,p(BΛ

R) ≤ CR,p for any
1 ≤ p < 2 (here we used that {xε

j}nε

j=1 ⊂ BΛ√
a0
4

by Theorem 2.1). In particular, ΨR,ε

is uniformly bounded with respect to ε in C0,1/2(BΛ
R) and hence,

sup
∂B(xε

j ,ρ)

ΨR,ε − inf
∂B(xε

j ,ρ)
ΨR,ε ≤ CR

√
ρ = oR(1).

Since |xε
j − xε

i | ≥ 8ρ, we derive from (2.1),

sup
∂B(xε

j ,ρ)

(
nε∑
i=1

Dia(xε
i ) ln|x − xε

i |
)

− inf
∂B(xε

j ,ρ)

(
nε∑
i=1

Dia(xε
i ) ln|x − xε

i |
)

≤ ρ

nε∑
i=1, i�=j

a(xε
i ) sup

∂B(xε
j ,ρ)

|Di|
|x − xε

i |
≤ O(1),

(respectively, ≤ o(1) if ρ
|xε

i−xε
j | → 0 as ε → 0 for any i 
= j). Coming back to (3.6),

we obtain that ‖ΦR,ε − Φρ‖L∞(Θρ) ≤ OR(1) (respectively, ≤ oR(1) if ρ
|xε

i−xε
j | → 0

as ε → 0 for any i 
= j). Inserting this estimate in (3.5), we get that∫
Θρ

1
a(x)

|∇Φρ|2 = −2π

nε∑
j=1

DjΦR,ε(zj) + OR(1)

= −2π

nε∑
j=1

DjΨR,ε(zj) − 2π
∑
i�=j

DiDja(xε
i ) ln|zj − xε

i |

+ 2π

nε∑
j=1

D2
j a(xε

j)|ln ρ| + OR(1) (3.7)

(respectively, + oR(1) as ε → 0). Since ΨR,ε is uniformly bounded with respect to
ε in C0,1/2(BΛ

R), we have |ΨR,ε(zj) − ΨR,ε(xε
j)| ≤ CR

√
ρ = oR(1). Moreover, using
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(2.1) and |xε
j − xε

i | ≥ 8ρ, we derive that∣∣∣∣∣
∑
i�=j

DiDja(xε
i )(ln|zj − xε

i | − ln|xε
j − xε

i |)
∣∣∣∣∣ ≤
∑
i�=j

|Di||Dj | ln
∣∣∣∣∣1 +

zj − xε
j

xε
j − xε

i

∣∣∣∣∣
≤
∑
i�=j

|Di||Dj |
ρ

|xε
j − xε

i |
≤ O(1)

(respectively, ≤ o(1) as ε → 0). Hence, (3.7) yields∫
Θρ

1
a(x)

|∇Φρ|2 = −2π

nε∑
j=1

DjΨR,ε(xε
j) − 2π

∑
i�=j

DiDja(xε
i ) ln|xε

j − xε
i |

+ 2π

nε∑
j=1

D2
j a(xε

j)|ln ρ| + OR(1)

(respectively, + oR(1) as ε → 0). Combining this estimate with (3.4), we obtain the
announced result.

Arguing as in [20, 21], we estimate the contribution in the energy of each vortex
which yields the following lower bounds for Eε(vε):

Lemma 3.3. For any R ∈
[√a0

2 ,
√

a0

)
, we have

Eε(vε, B
Λ
R) ≥ π

nε∑
j=1

D2
j a(xε

j)|ln ρ| + π

nε∑
j=1

|Dj |a(xε
j) ln

ρ

ε
+ WR,ε + OR(1) (3.8)

and

Eε(vε, B
Λ
R) ≥ π

nε∑
j=1

|Dj |a(xε
j) ln

ρ

ε
+ O(1). (3.9)

Proof. In view of Proposition 3.1, it suffices to show that

Eε(vε, B(xε
j , ρ)) ≥ π|Dj |a(xε

j) ln
ρ

ε
+ O(1) for j = 1, . . . , nε,

which is equivalent to

1
2

∫
B(xε

j ,ρ)

|∇vε|2 +
a(xε

j)
2ε2

(1 − |vε|2)2 ≥ π|Dj | ln
ρ

ε
+ O(1) for j = 1, . . . , nε

(3.10)

(we used that |a(x) − a(xε
j)| ≤ Cρ for x ∈ B(xε

j , ρ) and Eε(vε, B
Λ
R) ≤ CR|ln ε|).

Setting

v̂(y) = vε(ρy + xε
j) for y ∈ B(0, 1) and ε̂ =

ε

ρ
√

a(xε
j)

,
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we infer from Proposition 2.3 that |v̂| ≥ 1 − 2
|ln ε|2 on ∂B(0, 1),

1
2

∫
∂B(0,1)

|∇v̂|2 +
1

2ε̂2
(1 − |v̂|2)2 =

ρ

2

∫
∂B(xε

j ,ρ)

|∇vε|2 +
a(xε

j)
2ε2

(1 − |vε|2)2 ≤ C

(3.11)

and

1
2

∫
B(0,1)

|∇v̂|2 +
1

2ε̂2
(1 − |v̂|2)2 =

1
2

∫
B(xε

j ,ρ)

|∇vε|2 +
a(xε

j)
2ε2

(1 − |vε|2)2.

As in the proof of [3, Lemma VI.1], (3.11) yields for ε small enough,

1
2

∫
B(0,1)

|∇v̂|2 +
1

2ε̂2
(1 − |v̂|2)2 ≥ π|Dj | |ln ε̂| + O(1) = π|Dj | ln

ρ

ε
+ O(1)

and hence, (3.10) holds.

As in [14, Proposition 4.2], we may compute an asymptotic expansion of
Rε(vε,Dε) in terms of vortices which leads, in view of Lemma 3.3, to lower expan-
sions of Fε(vε,Dε):

Lemma 3.4. For any R ∈ [
√

a0

2 ,
√

a0), we have

Fε(vε,Dε) ≥ π

nε∑
j=1

D2
j a(xε

j)|ln ρ| + π

nε∑
j=1

|Dj |a(xε
j) ln

ρ

ε

− πΩ
1 + Λ2

nε∑
j=1

a2(xε
j)Dj + WR,ε + OR(1) (3.12)

and

Fε(vε,Dε) ≥ π

nε∑
j=1

|Dj |a(xε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)Dj + O(1). (3.13)

Proof. We consider the family of balls {Bi}i∈Iε given in Proposition 2.13. As in
the proof of Proposition 2.3, we can find rε ∈ [R, (R +

√
a0 )/2] such that (2.32)

holds. Setting

I+
R =

{
i ∈ Iε, |pi|Λ > rε and di ≥ 0

}
and

I−R =
{
i ∈ Iε, |pi|Λ > rε and di < 0

}
, (3.14)

we have B̄i ⊂ Dε \ B̄Λ
rε

for any i ∈ I+
R ∪ I−R . By Theorem 2.1, Propositions 2.3

and 2.13, we infer that for ε small enough,

|vε| ≥
1
2

in Ξε := Dε

∖ ⋃
i∈I+

R∪I−
R

Bi ∪
nε⋃

j=1

B(xε
j , ρ)


 .
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Arguing exactly as in [14, Proposition 4.2], we obtain that

Rε(vε, Ξε) =
−πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)Dj

− πΩ
1 + Λ2

∑
i∈I+

R∪I−
R

(
a2(pi) − ν2

ε |ln ε|−3
)
di + oR(1). (3.15)

We recall that we have showed in the proof of [14, Proposition 4.2] that
Rε(vε,∪i∈I+

R∪I−
R

Bi) = o(1). In the same way, we may prove that
Rε(vε,∪nε

j=1B(xε
j , ρ)) = o(1). From (iv) in Proposition 2.13 and (3.15), we deduce

that

Fε(vε,Dε) ≥ Eε


vε,Dε

∖ ⋃
i∈I+

R∪I−
R

Bi




+
∑

i∈I+
R∪I−

R

1
2

∫
Bi

a(x)|∇vε|2 + Rε(vε, Ξε) + oR(1)

≥ Eε(vε, B
Λ
R) − πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)Dj

+ π
∑

i∈I+
R∪I−

R

a(pi)|di|
(
|ln ε| − K0 ln|ln ε|

)

− πΩ
1 + Λ2

∑
i∈I+

R∪I−
R

(
a2(pi) − ν2

ε |ln ε|−3
)
di + oR(1). (3.16)

Since pi 
∈ B̄Λ
rε

for i ∈ I+
R ∪ I−R , we have a(pi) 	 a0 and we deduce that for ε small

enough,

π
∑

i∈I+
R∪I−

R

a(pi)|di|
(
|ln ε| − K0 ln|ln ε|

)
− πΩ

1 + Λ2

∑
i∈I+

R∪I−
R

(
a2(pi) − ν2

ε |ln ε|−3
)
di ≥ 0

which leads to

Fε(vε,Dε) ≥ Eε(vε, B
Λ
R) − πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)Dj + oR(1). (3.17)

Combining (3.8) and (3.17), we obtain (3.12). Similarly, the inequality (3.17) applied
with R =

√
a0/2, and (3.9) yield (3.13).

4. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1 in terms of the map vε. We
start by showing that vortices must be of degree one. This yields a fundamental
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improvement of the estimates obtained in the previous section. Then, we treat
separately the points (i) and (ii) of Theorem 1.1.

4.1. Vortices have degree one

Lemma 4.1. Whenever ε is small enough, Dj = +1 for j = 1, . . . , nε.

Proof. By [14, Proposition 3.5], we have Fε(vε,Dε) ≤ o(1). According to (3.13),
it yields

π

nε∑
j=1

|Dj |a(xε
j) ln

ρ

ε
− πa0Ω

1 + Λ2

∑
Dj>0

a(xε
j)Dj ≤ π

nε∑
j=1

|Dj |a(xε
j) ln

ρ

ε

− πΩ
1 + Λ2

nε∑
j=1

a2(xε
j)Dj ≤ O(1).

From (1.7), we derive that
nε∑

j=1

|Dj |a(xε
j) ln

ρ

ε
≤
∑

Dj>0

Dja(xε
j)|ln ε| + o(|ln ε|).

Since ρ ≥ εµ, it leads to (we recall that Dj 
= 0)

(1 − µ)
∑

Dj<0

|Dj |a(xε
j)|ln ε| ≤ µ

∑
Dj>0

|Dj|a(xε
j)|ln ε| + o(|ln ε|).

By Theorem 2.1, a(xε
j) ≥ a0/2 and consequently,

∑
Dj<0

|Dj| ≤
2µ

1 − µ

∑
Dj>0

|Dj | + o(1) ≤ Cµ

1 − µ
+ o(1).

Choosing µ sufficiently small, it yields Dj > 0 for j = 1, . . . , nε whenever ε is small
enough. Since |xε

j | ≤ C and Dj > 0, we may now assert that

−π
∑
i�=j

DiDja(xε
j) ln|xε

i − xε
j | ≥ O(1)

and thus, W√
a0
2 ,ε

≥ −π
∑nε

j=1 DjΨ√
a0
2 ,ε

(xε
j) = O(1). Hence, the inequality (3.12)

(applied with R =
√

a0/2) together with Fε(vε,Dε) ≤ o(1) leads us to

π

nε∑
j=1

D2
ja(xε

j)|ln ρ| + π

nε∑
j=1

Dja(xε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)Dj ≤ O(1).

As previously, we derive from (1.7),
∑nε

j=1(D
2
j − Dj)a(xε

j)|ln ρ| ≤ o(|ln ε|). Since
ρ ≤ εµ̄ and a(xε

j) ≥ a0/2, we conclude that

µ̄ a0

2

nε∑
j=1

(D2
j − Dj) ≤ o(1)

which yields Dj = +1 whenever ε is small enough.
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As a direct consequence of Lemma 4.1, we obtain the following improvement of
Lemma 3.4:

Corollary 4.2. For any R ∈ [
√

a0

2 ,
√

a0 ), we have

F̃ε(vε) ≥ π

nε∑
j=1

a(xε
j)|ln ε| − πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)

+ WR,ε

(
(xε

1, +1), . . . , (xε
nε

, +1)
)

+ OR(1).

Proof. It follows directly from (3.12) and Lemma 4.1 that for any R ∈
[√a0

2 ,
√

a0

)
,

Fε(vε,Dε) ≥ π

nε∑
j=1

a(xε
j)|ln ε| − πΩ

1 + Λ2

nε∑
j=1

a2(xε
j)

+ WR,ε

(
(xε

1, +1), . . . , (xε
nε

, +1)
)

+ OR(1).

On the other hand, we have proved in the proofs of [14, Propositions 3.4 and 3.5],
that |Fε(vε,Dε) − F̃ε(vε,Dε)| = o(1) and F̃ε(vε, R

2 \Dε) ≥ o(1). Hence, we have
F̃ε(vε) ≥ Fε(vε,Dε) + o(1) and the conclusion follows.

4.2. The subcritical case

We are now able to prove (i) in Theorem 1.1. Following the proof of [14, Theo-
rem 1.1], it suffices to show Proposition 4.3 below.

Proposition 4.3. Assume that (1.7) holds with ω1 < 0. Then, for ε sufficiently
small, we have that

|vε| → 1 in L∞
loc(D) as ε → 0. (4.1)

Moreover,

F̃ε(vε) = o(1) and Ẽε(vε) = o(1). (4.2)

Proof. We fix some
√

a0

2 < R0 <
√

a0 . In the proof of [14, Proposition 3.4], we
have proved that F̃ε(vε) ≤ o(1) so that Corollary 4.2 applied with R =

√
a0

2 leads to

π

nε∑
j=1

a(xε
j)|ln ε| − πa0Ω

1 + Λ2

nε∑
j=1

a(xε
j) ≤ π

nε∑
j=1

a(xε
j)|ln ε| − πΩ

1 + Λ2

nε∑
j=1

a2(xε
j) ≤ O(1).

Since a(xε
j) ≥ a0/2 and ω1 < 0, we deduce that

a0|ω1|nε

2
ln|ln ε| ≤ −ω1

nε∑
j=1

a(xε
j)ln|ln ε| ≤ O(1)
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and then nε ≤ o(1) which implies that nε ≡ 0 whenever ε is small enough. Using
the notation (3.14), we derive from (3.16) that

Fε(vε,Dε) ≥ π
∑

i∈I+
R0

∪I−
R0

a(pi)|di|
(
|ln ε| − K0 ln|ln ε|

)

− πΩ
1 + Λ2

∑
i∈I+

R0
∪I−

R0

(
a2(pi) − ν2

ε |ln ε|−3
)
di.

By [14, Proposition 3.5], we have Fε(vε,Dε) ≤ O(|ln ε|−1). Since a(pi) 	 a0 for
i ∈ I+

R0
∪ I−R0

, we infer that exists c > 0 independent of ε such that

c
∑

i∈I+
R0

∪I−
R0

a(pi)|di||ln ε| ≤ π
∑

i∈I+
R0

∪I−
R0

a(pi)|di|
(
|ln ε| − K0 ln|ln ε|

)

− πΩ
1 + Λ2

∑
i∈I+

R0
∪I−

R0

(
a2(pi) − ν2

ε |ln ε|−3
)
di

≤ O(|ln ε|−1).

Since a(x) ≥ |ln ε|−3/2 in Dε, we finally obtain∑
i∈I+

R0
∪I−

R0

|di| ≤ O(|ln ε|−1/2).

Hence,
∑

i∈I+
R0

∪I−
R0

|di| = 0 for ε sufficiently small and we conclude from (3.15),

Rε(vε,Dε\∪i∈I+
R0

∪I−
R0

Bi) = o(1).

By the proof of [14, Proposition 4.2], we also have Rε(vε,∪i∈I+
R0

∪I−
R0

Bi) = o(1) so

that Rε(vε,Dε) = o(1). Consequently,

Eε(vε,Dε) = Fε(vε,Dε) + o(1) ≤ o(1).

Then the rest of the proof follows as in [14, Proposition 4.3].

4.3. The supercritical case

In this section, we will prove (ii) in Theorem 1.1. Writing

Ω =
1 + Λ2

a0

(
|ln ε| + ω(ε)ln|ln ε|

)
, (4.3)

we assume that

(d − 1) + δ ≤ ω(ε) ≤ d − δ (4.4)

for some integer d ≥ 1 and some positive number δ 	 1 independent of ε. We start
by proving that, in this regime, vε has vortices whenever ε is small enough:

Proposition 4.4. Assume that (4.4) holds. Then, for ε sufficiently small, vε has
exactly d vortices of degree one, i.e. nε ≡ d, and

F̃ε(vε) = −πa0 dω(ε) ln|ln ε| + πa0

2
(d2 − d) ln|ln ε| + O(1). (4.5)
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Proof. Step 1. We start by proving that nε ≥ 1 for ε sufficiently small. By
Theorem 5.1 in Sec. 5 (with d = 1), there exists ũε ∈ H such that ‖ũε‖L2(R2) = 1
and

Fε(ũε) ≤ Fε(η̃εe
iΩS) − πa0ω(ε)ln|ln ε| + O(1).

By the minimizing property of uε and (1.9), we have

Fε(uε) = Fε(ηεe
iΩS) + F̃ε(vε) + T̃ε(vε) ≤ Fε(ũε)

and since |T̃ε(vε)| = o(1) (see [14, Proposition 3.3]), we deduce that

F̃ε(vε) ≤ −πa0ω(ε)ln|ln ε| + O(1).

From here, it turns out by Corollary 4.2 applied with R =
√

a0

2 (recall that W√
a0
2 ,ε

≥
O(1)),

−πa0ω(ε)ln|ln ε| + O(1) ≥ F̃ε(vε) ≥ π

nε∑
j=1

a(xε
j)|ln ε| − πΩ

1 + Λ2

nε∑
j=1

a2(xε
j) + O(1)

≥ π

nε∑
j=1

a(xε
j)

(
−ω(ε)ln|ln ε|+

Ω|xε
j |2Λ

1 + Λ2

)
+ O(1)

≥ −πa0ω(ε)nε ln|ln ε| + O(1).

Hence, nε ≥ 1 + o(1) and the conclusion follows.

Step 2. Now, we show that

F̃ε(vε) ≥ −πa0nεω(ε)ln|ln ε| + πa0

2
(n2

ε − nε)ln|ln ε| + O(1). (4.6)

In the case nε = 1, we have already proved the result in the previous step. Then,
we may assume that nε ≥ 2. Since ‖Ψ√

a0
2 ,ε

‖∞ = O(1), we get from Corollary 4.2

applied with R =
√

a0

2 ,

F̃ε(vε) ≥ π

nε∑
j=1

a(xε
j)


|ln ε| −

nε∑
i=1

i�=j

ln|xε
i − xε

j | −
Ωa(xε

j)
1 + Λ2


+ O(1)

≥ π

nε∑
j=1

a(xε
j)


−ω(ε)ln|ln ε| −

nε∑
i=1

i�=j

ln|xε
i − xε

j | +
Ω|xε

j |2Λ
1 + Λ2


+ O(1). (4.7)
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Since F̃ε(vε) ≤ o(1), we derive that

−
∑
i�=j

ln|xε
i − xε

j | +
Ω

1 + Λ2

nε∑
j=1

|xε
j |2Λ ≤ Cln|ln ε|.

On the other hand, −
∑

i�=j ln|xε
i − xε

j | ≥ O(1) so that |xε
j |2 ≤ C

(
ln|ln ε|

)
|ln ε|−1

and hence,

π

nε∑
j=1

a(xε
j)


−ω(ε)ln|ln ε| −

nε∑
i=1

i�=j

ln|xε
i − xε

j | +
Ω|xε

j |2Λ
1 + Λ2




= −πa0nεω(ε)ln|ln ε| − πa0

∑
i�=j

ln|xε
i − xε

j | +
πa0Ω
1 + Λ2

nε∑
j=1

|xε
j |2Λ + o(1). (4.8)

Setting r = maxj |xε
j |, we remark that

−
∑
i�=j

ln|xε
i − xε

j | +
Ω

1 + Λ2

nε∑
j=1

|xε
j |2Λ ≥ −(n2

ε − nε) ln 2r

+
ΩΛ2r2

1 + Λ2
≥ n2

ε − nε

2
ln|ln ε| + O(1). (4.9)

Combining (4.7)–(4.9), we obtain (4.6).

Step 3. We start by proving that nε ≥ d. The case d = 1 is proved in Step 1 so
that we may assume that d ≥ 2. By Theorem 5.1 in Sec. 5, there exists for ε small
enough, ũε ∈ H such that ‖ũε‖L2(R2) = 1 and

Fε(ũε) ≤ Fε(η̃εe
iΩS) − πa0 dω(ε)ln|ln ε| + πa0

2
(d2 − d)ln|ln ε| + O(1).

As in Step 1, Fε(uε) ≤ Fε(ũε) yields

F̃ε(vε) ≤ −πa0 dω(ε)ln|ln ε| + πa0

2
(d2 − d)ln|ln ε| + O(1). (4.10)

Matching (4.6) with (4.10), we deduce that

−ω(ε)nε +
n2

ε − nε

2
≤ −ω(ε)d +

d2 − d

2
+ o(1)

and it yields

ω(ε)(d − nε) ≤
(d − nε)(d + nε − 1)

2
+ o(1). (4.11)

If assume that nε ≤ d − 1, it would lead to

(d − 1) + δ ≤ d + nε − 1
2

+ o(1) ≤ d − 1 + o(1)

which is impossible for ε small enough.
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Assume now that nε ≥ d + 1. As previously, we infer that (4.11) holds and
therefore,

d − δ ≥ d + nε − 1
2

+ o(1) ≥ d + o(1)

which is also impossible for ε small. Hence, nε ≡ d whenever ε is small enough
which leads to (4.5) by (4.6) and (4.10).

By Proposition 4.4, we may now assume that vε has exactly d vortices. We move
on a first information on their location:

Lemma 4.5. We have

|xε
j | ≤ C|ln ε|−1/2 for j = 1, . . . , d and if d ≥ 2,

|xε
i − xε

j | ≥ C|ln ε|−1/2 for i 
= j.

Proof. Matching (4.5) with (4.7) and (4.8) and using that nε = d, we deduce that

−πa0

∑
i�=j

ln|xε
i − xε

j | +
πa0Ω
1 + Λ2

d∑
j=1

|xε
j |2Λ ≤ πa0(d2 − d)ln

(
|ln ε|1/2

)
+ O(1).

Hence,

d∑
j=1


−

∑
i�=j

ln
(√

|ln ε| |xε
i − xε

j |
)

+
Ω|xε

j |2

2


 ≤ O(1)

and the conclusion follows.

Since ρ
|xε

i−xε
j | = o(1) by Lemma 4.5, we may now improve the lower estimates

obtained in Lemma 3.3 following the method of the proof of Proposition 5.2 in
[20, 21].

Lemma 4.6. For any R ∈
[√a0

2 ,
√

a0

)
, we have

Eε(vε, B
Λ
R) ≥ πa0

d∑
j=1

a(xε
j)|ln ε| + WR,ε(xε

1, . . . , x
ε
d) +

πa0d

2
ln a0 + a0 dγ0 + oR(1),

where γ0 is an absolute constant.

Proof. Since ρ
|xε

i−xε
j | = o(1) and Dj = 1, Proposition 3.1 yields

1
2

∫
Θρ

a(x)|∇vε|2 ≥ π
d∑

j=1

a(xε
j)|ln ρ| + WR,ε(xε

1, . . . , x
ε
d) + oR(1) (4.12)

and it remains to estimate Eε(vε, B(xε
j , ρ)) for j = 1, . . . , d. We proceed as follows.

Since Dj = 1, we may write on ∂B(xε
j , ρ) in polar coordinates with center xε

j ,

vε(x) = |vε(x)|ei(θ+ψj(θ)), θ ∈ [0, 2π],
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where ψj ∈ H1([0, 2π], R) and ψj(0) = ψj(2π) = 0. Then, in each disc B(xε
j , 2ρ),

we consider the map v̂ε defined by

v̂ε(x) =




vε(x) if x ∈ B(xε
j , ρ),(

r − ρ

ρ
+

2ρ − r

ρ
|vε(xε

j + ρ eiθ)|
)

× exp i

(
θ + ψj(θ)

2ρ − r

ρ
+ ψj(0)

ρ − r

ρ

)
if x ∈ B(xε

j , 2ρ)\B(xε
j , ρ).

Then, v̂ε = exp i(θ+ψj(0)) on ∂B(xε
j , 2ρ). Exactly as in the proof of Proposition 5.2

in [20, 21], we prove that∣∣Eε(v̂ε, B(xε
j , 2ρ)\B(xε

j , ρ)) − πa(xε
j) ln 2

∣∣ = o(1). (4.13)

Since |a(x) − a(xε
j)| = O(ρ) in B(xε

j , 2ρ), we may write

Eε(v̂ε, B(xε
j , 2ρ)) =

a(xε
j)

2

∫
B(xε

j ,2ρ)

|∇v̂ε|2 +
a(xε

j)
2ε2

(1 − |v̂ε|2)2 + o(1). (4.14)

Now, we shall recall a result in [8]. For ε̃ > 0, we consider

I(ε̃) = Min
u∈C

1
2

∫
B(0,1)

|∇u|2 +
1

2ε̃2
(1 − |u|2)2,

where

C =
{

u ∈ H1(B(0, 1), C), u(x) =
x

|x| on ∂B(0, 1)
}

.

Then, we have

lim
ε̃→0

(
I(ε̃) + π ln ε̃

)
= γ0. (4.15)

Since v̂ε(x) =
x−xε

j

|x−xε
j | eiψj(0) on ∂B(xε

j , 2ρ), we obtain by scaling

1
2

∫
B(xε

j ,2ρ)

|∇v̂ε|2 +
a(xε

j)
2ε2

(1 − |v̂ε|2)2

≥ I


 ε

2ρ
√

a(xε
j)


 = π ln

ρ

ε
+ π ln 2 +

π

2
ln a(xε

j) + γ0 + o(1).

With (4.13) and (4.14), we derive that for j = 1, . . . , d,

Eε(vε, B(xε
j , ρ)) ≥ πa(xε

j) ln
ρ

ε
+

πa(xε
j)

2
ln a(xε

j) + a(xε
j)γ0 + o(1)

≥ πa(xε
j) ln

ρ

ε
+

πa0

2
ln a0 + a0γ0 + o(1).

Combining this estimate with (4.12), we get the result.

We are now able to give the asymptotic expansion of F̃ε(vε) which will allow us
to locate precisely the vortices. This concludes the proof of Theorem 1.1.
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Proposition 4.7. Setting x̃ε
j =

√
Ω xε

j for j = 1, . . . , d, as ε → 0 the x̃ε
j ’s tend to

minimize the renormalized energy w : R2d → R given by

w(b1, . . . , bd) = −πa0

∑
i�=j

ln|bi − bj | +
πa0

1 + Λ2

d∑
j=1

|bj |2Λ.

Moreover, we have

F̃ε(vε) = −πa0 dω(ε) ln|ln ε| + πa0

2
(d2 − d) ln|ln ε|

+ Min
b∈R2d

w(b) + QΛ,d + o(1) (4.16)

where QΛ,d = πa0
2 (d2 − d) ln(1 + Λ2) + πa0d ln a0 − πa0d2

2 ln a0 + a0 dγ0 − πa0d
2
(Λ)

and 
(Λ) is given by (A.2).

Proof. From Lemma 4.6 and (3.17), we infer that for any R ∈ [
√

a0

2 ,
√

a0 ),

Fε(vε,Dε) ≥ π

d∑
j=1

a(xε
j)|ln ε| − πΩ

1 + Λ2

d∑
j=1

a2(xε
j)

+ WR,ε +
πa0d

2
ln a0 + a0 dγ0 + oR(1).

As in the proof of Corollary 4.2, this estimate implies

F̃ε(vε) ≥ π

d∑
j=1

a(xε
j)|ln ε|− πΩ

1 + Λ2

d∑
j=1

a2(xε
j)+WR,ε +

πa0d

2
ln a0 +a0 dγ0 + oR(1).

Expanding Ω and a(xε
j), we derive that

F̃ε(vε) ≥ π

d∑
j=1

a(xε
j)
(
−ω(ε)ln|ln ε|+

Ω|xε
j |2Λ

1 + Λ2

)
+WR,ε +

πa0d

2
ln a0 +a0 dγ0+oR(1)

and by Lemma 4.5, it yields

F̃ε(vε) ≥ −πa0 dω(ε)ln|ln ε| + πa0

1 + Λ2

d∑
j=1

Ω|xε
j |2Λ

+ WR,ε +
πa0d

2
ln a0 + a0 dγ0 + oR(1). (4.17)

By Lemma 4.5, we also have

WR,ε = −πa0

∑
i�=j

ln|xε
i − xε

j | − π
d∑

j=1

ΨR,ε(xε
j) + o(1). (4.18)

Since Dj = 1 for all j, the function ΨR,ε satisfies the equation


div
(

1
a
∇ΨR,ε

)
= −

d∑
j=1

a(xε
j)∇

(
1
a

)
· ∇(ln |x − xε

j |) in BΛ
R,

ΨR,ε = −
d∑

j=1

a(xε
j)ln|x − xε

j | on ∂BΛ
R.

(4.19)
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We infer from Lemma 4.5 that for j = 1, . . . , d,

a(xε
j)∇

(
1
a

)
· ∇(ln |x − xε

j |) =
−2a0|x|2Λ
a2(x)|x|2 + f j

ε (x),

where f j
ε satisfies

‖f j
ε‖Lp(BΛ

R) = oR(1) for any p ∈ [1, 2)

and

∥∥a0ln|x| − a(xε
j) ln |x − xε

j |
∥∥

C1(∂BΛ
R)

= o(1).

Letting ΨR to be the solution of the equation




div
(

1
a
∇ΨR

)
=

−2|x|2Λ
a2(x)|x|2 in BΛ

R,

ΨR = −ln|x| on ∂BΛ
R,

(4.20)

it follows by classical results that ‖ΨR,ε−a0dΨR‖L∞(BΛ
R) = oR(1). Hence, we obtain

from (4.18),

lim
ε→0

{
WR,ε(xε

1, . . . , x
ε
d) + πa0

∑
i�=j

ln|xε
i − xε

j |
}

= −πa0d
2ΨR(0). (4.21)

Combining (4.17) and (4.21), we are led to

lim inf
ε→0

{
F̃ε(vε) + πa0 dω(ε)ln|ln ε| + πa0

∑
i�=j

ln|xε
i − xε

j | −
πa0

1 + Λ2

d∑
j=1

Ω|xε
j |2Λ

}

≥ πa0d

2
ln a0 + a0 dγ0 − πa0d

2ΨR(0).

Setting x̃ε
j =

√
Ωxε

j , it yields

lim inf
ε→0

{
F̃ε(vε) + πa0 dω(ε)ln|ln ε| − πa0

2
(d2 − d)ln|ln ε| − w(x̃ε

1, . . . , x̃
ε
d)
}

≥ πa0

2
(d2 − d) ln(1 + Λ2) + πa0d ln a0 −

πa0d
2

2
ln a0 + a0 dγ0 − πa0d

2ΨR(0).
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Since ΨR(0) → 
(Λ) as R → √
a0 by Lemma A.1 in Appendix A, we conclude that

lim inf
ε→0

{
F̃ε(vε)+πa0ω(ε)d ln|ln ε| − πa0

2
(d2 − d)ln|ln ε|−w(x̃ε

1, . . . , x̃
ε
d)
}

≥ QΛ,d

(4.22)

and hence,

lim inf
ε→0

{
F̃ε(vε) + πa0ω(ε)d ln|ln ε| − πa0

2
(d2 − d)ln|ln ε|

}

≥ Min
b∈R2d

w(b) + QΛ,d. (4.23)

By Theorem 5.1 in Sec. 5, for any δ′ > 0, there exists ũε ∈ H such that ‖ũε‖L2(R2) =
1 and

lim sup
ε→0

{
Fε(ũε) − Fε(η̃εe

iΩS) + πa0 dω(ε)ln|ln ε| − πa0

2
(d2 − d)ln|ln ε|

}

≤ Min
b∈R2d

w(b) + QΛ,d + δ′.

As in the proof of Proposition 4.4, Fε(uε) ≤ Fε(ũε) implies

lim sup
ε→0

{
F̃ε(vε) + πa0 dω(ε)ln|ln ε| − πa0

2
(d2 − d)ln|ln ε|

}

≤ Min
b∈R2d

w(b) + QΛ,d + δ′. (4.24)

Matching (4.23) with (4.24), we conclude that

lim
ε→0

{
F̃ε(vε) + πa0 dω(ε)ln|ln ε| − πa0

2
(d2 − d)ln|ln ε|

}
= Min

b∈R2d
w(b) + QΛ,d

since δ′ is arbitrarily small. Coming back to (4.22), we are led to

Min
b∈R2d

w(b) + QΛ,d − lim sup
ε→0

w(xε
1, . . . , x

ε
d) ≥ QΛ,d

and therefore, limε→0 w(x̃ε
1, . . . , x̃

ε
d) = Min

b∈R2d
w(b) which ends the proof.

Remark 4.8. In the case d = 1, the expansion of the energy takes the simpler
form

F̃ε(vε) = −πa0ω(ε)ln|ln ε| + QΛ,1 + o(1)

and the renormalized energy w(·) reduces to w(b) = (πa0|b|2Λ)/(1 + Λ2). In partic-
ular, if xε denotes the single vortex of vε, we have

√
Ω xε → 0 as ε goes to 0.



May 2, 2006 15:57 WSPC/148-RMP J070-00260

Energy Expansion and Vortex Location 153

5. Upper Bound of the Energy

Here, we give the construction of the test functions used in the previous sections.
The difficulties are twofold: the mass constraint we have to take into account and the
vanishing property of the function a(x) on the boundary of D. Hence, the classical
methods cannot be applied directly. Concerning the mass constraint, we simply
renormalize a suitable trial function. This procedure requires a high precision in
the energy estimates and an almost optimal choice of the preliminary trial function.
To overcome the degeneracy problem induced by the function a(x), we proceed by
upper approximation of a(x). In the sequel, we assume that (1.7) holds. Using
notation (4.3), the result can be stated as follows:

Theorem 5.1. Let d ≥ 1 be an integer. For any δ > 0, there exists (ũε)ε>0 ⊂ H
verifying ‖ũε‖L2(R2) = 1 and

lim sup
ε→0

{
Fε(ũε) − Fε(η̃εe

iΩS) + πa0ω(ε)d ln|ln ε| − πa0

2
(d2 − d) ln|ln ε|

}

≤ Min
b∈R2d

w(b) + QΛ,d + δ,

where the constant QΛ,d is defined in Proposition 4.7.

As mentioned above, the proof of Theorem 5.1 is based on a first construction
which is given by the following proposition. Here, some of the main ingredients are
taken from a previous construction due to André and Shafrir [5].

Proposition 5.2. Let d ≥ 1 be an integer. For any δ > 0, there exists (v̂ε)ε>0 such
that η̃εv̂ε ∈ H and

lim sup
ε→0

{
F̃ε(v̂ε) + πa0ω(ε)d ln|ln ε| − πa0

2
(d2 − d)ln|ln ε|

}

≤ Min
b∈R2d

w(b) + QΛ,d + δ.

Proof. Step 1. Let σ > 0 and κ > 0 be two small parameters that we will choose
later. We consider the function aσ : D̄ → R given by

aσ(x) =

{
a(x) if |x|Λ ≤

√
a0 − σ,

−2
√

a0 − σ |x|Λ + 2a0 − σ otherwise.

It turns out that aσ ∈ C1(D̄), aσ ≥ a and aσ ≥ Cσ2 in D̄ for some positive
constant C. Since aσ does not vanish in D̄, we may define Φσ : D → R the solution
of the equation 


div
(

1
aσ

∇Φσ

)
= 2π dδ0 in D,

Φσ = 0 on ∂D.

(5.1)
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By the results in [8, Chap. I], we may find a map vσ
0 ∈ C2(D̄\{0}, S1) satisfying

vσ
0 ∧∇vσ

0 =
1
aσ

∇⊥Φσ in D\{0}. (5.2)

Set Θκ,ε = D\B(0, κ−1Ω−1/2). By (5.1) and (5.2), we have for ε small enough,∫
Θκ,ε

aσ|∇vσ
0 |2 =

∫
Θκ,ε

1
aσ

|∇Φσ|2 = −
∫

∂B(0,κ−1Ω−1/2)

1
a

∂Φσ

∂ν
Φσ

= −
∫

∂B(0,κ−1Ω−1/2)

a2
0d

2

a

(
∂Ψσ

∂ν
+

1
|x|

)

×
(
Ψσ + ln|x|

)
, (5.3)

where Ψσ(x) = (a0d)−1Φσ(x)− ln |x|. Notice that Ψσ ∈ C1,α(D̄) for any 0 < α < 1,
since it satisfies the equation


div
(

1
aσ

∇Ψσ

)
= fσ(x) in D,

Ψσ = −ln|x| on ∂D
(5.4)

with

fσ(x) = −∇
(

1
aσ(x)

)
· x

|x|2 =




−2|x|2Λ
a2

σ(x)|x|2 if |x| ≤
√

a0 − σ,

−2
√

a0 − σ|x|Λ
a2

σ(x)|x|2 otherwise.

From (5.3), we derive that

lim sup
ε→0

{
1
2

∫
Θκ,ε

a|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}

≤ lim
ε→0

{
1
2

∫
Θκ,ε

aσ|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}

≤ −πa0d
2Ψσ(0).

By Lemma A.1 in Appendix A, Ψσ(0) → 
(Λ) as σ → 0 where the constant 
(Λ) is
defined in (A.2). Consequently, we may choose σ small such that

lim sup
ε→0

{
1
2

∫
Θκ,ε

a|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}
≤ −πa0d

2
(Λ) +
δ

2
. (5.5)

In R2\B(0, κ−1Ω−1/2), we define

v̂ε(x) =




vσ
0 (x) if x ∈ Θκ,

vσ
0

(√
a0 x

|x|Λ

)
if x ∈ R

2\D.
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By [14, Proposition 2.2], we have ‖η̃2
ε‖L∞(R2\Dε) = o(1). Since v̂ε does not depend

on ε in R2\Dε and |v̂ε| = 1 in R2\Dε, we derive that

lim
ε→0

Ẽε(v̂ε, R
2\Dε) = 0. (5.6)

From [14, Proposition 2.2], we also know that

∥∥∥∥a − η̃2
ε

η̃2
ε

∥∥∥∥
L∞(Dε)

≤ Cε1/3 (5.7)

and hence, (5.5) remains valid if one replaces a by η̃2
ε in the left-hand side. Since

vσ
0 is S1-valued, we deduce that

lim sup
ε→0

{
Ẽε(v̂ε, R

2\B(0, κ−1Ω−1/2)) − πa0d
2 ln(κΩ1/2)

}
≤ −πa0d

2
(Λ) +
δ

2
. (5.8)

Step 2. We are going to extend v̂ε to B(0, κ−1Ω−1/2). As in [8], we may write in
a neighborhood of 0 (using polar coordinates),

vσ
0 (x) = exp

(
i(dθ + ψσ(x))

)
,

where ψσ is a smooth function in that neighborhood. Let (b1, . . . , bd) ∈ R2d be a
minimizing configuration for w(·), i.e.

w(b1, . . . , bd) = Min
b∈R2d

w(b) (5.9)

(note that we necesarily have bi 
= bj for i 
= j). We choose κ sufficiently small
such that max |bj| ≤ 1/4κ and we set b

(ε)
j = Ω−1/2 bj. Following the proof of [5,

Lemma 2.6], we write

eiψσ(0)
d∏

j=1

x − b
(ε)
j

|x − b
(ε)
j |

= exp
(
i(dθ + φε(x))

)
for x ∈ Aκ,ε = B(0, κ−1Ω−1/2)\B(0, (2κ)−1Ω−1/2),

where φε is a smooth function satisfying |∇φε(x)| ≤ Cσκ2Ω1/2) and |φε(x) −
ψσ(0)| = Cσ κ2 for x ∈ Aκ,ε. We define in Aκ,ε,

v̂ε(x) = exp
(
i(dθ + ψ̂ε(x))

)
with

ψ̂ε(x) =
(
2 − 2κΩ1/2|x|

)
φε(x) +

(
2κΩ1/2|x| − 1

)
ψσ(x).
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As in [5], we get that (using (5.7)),

lim sup
ε→0

{
Ẽε(v̂ε, Aκ,ε) − πa0d

2 ln 2
}

≤ lim sup
ε→0

{
1
2

∫
Aκ,ε

aσ|∇v̂ε|2 − πa0d
2 ln 2

}
≤ Cσκ2. (5.10)

Next, we define v̂ε in Ξκ,ε = B(0, (2κ)−1Ω−1/2)\∪d
j=1B(b(ε)

j , 2κΩ−1/2) by

v̂ε(x) = eiψσ(0)
d∏

j=1

x − b
(ε)
j

|x − b
(ε)
j |

.

Once more as in [5], we have (using (5.7)),

lim sup
ε→0

Ẽε(v̂ε, Ξκ,ε) ≤ lim sup
ε→0

1
2

∫
Ξκ,ε

aσ|∇v̂ε|2

≤ πa0(d2 + d) ln
1
2κ

− πa0

∑
i�=j

ln|bi − bj| + Cσκ. (5.11)

Finally, in each B
(ε)
j := B(b(ε)

j , 2κΩ−1/2), we set

v̂ε(x) = eiψσ(0)w̃j
ε

(
x − b

(ε)
j

2κΩ−1/2

)
, (5.12)

where w̃j
ε realizes

Min

{
1
2

∫
B(0,1)

|∇v|2 +
1

2ε̂2
(1 − |v|2)2, v(y) =

d∏
i=1

2κy + bj − bi

|2κy + bj − bi|
on ∂B(0, 1)

}

(5.13)

with

ε̂ =
ε

2κ
√

a0 Ω−1/2
.

As in the proof of [5, Lemma 2.3], we derive

lim
ε→0

{
1
2

∫
B(0,1)

|∇w̃j
ε|2 +

1
2ε̂2

(1 − |w̃j
ε|2)2 − π|ln ε̂|

}
= γ0 + X(κ),

where γ0 is defined in (4.15) and X(κ) denotes a quantity satisfying X(κ) → 0 as
κ → 0. By scaling, we obtain

lim
ε→0

{
1
2

∫
B

(ε)
j

|∇v̂ε|2 +
a0

2ε2
(1 − |v̂ε|2)2 − π ln

2κΩ−1/2

ε

}
=

π

2
ln a0 + γ0 + X(κ).

Notice that in B
(ε)
j ,

aσ(x) = a(x) ≤ a0 − (|ln ε| + ω1ln|ln ε|)−1 min
y∈B(bj ,2κ)

a0|y|2Λ
1 + Λ2
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and consequently,

lim sup
ε→0

{
1
2

∫
B

(ε)
j

aσ|∇v̂ε|2 +
a0aσ

2ε2
(1 − |v̂ε|2)2 − πa0 ln

2κΩ−1/2

ε

}

≤ πa0

2
ln a0 + a0γ0 −

πa0|bj |2Λ
1 + Λ2

+ X(κ).

By (5.7), it yields

lim sup
ε→0

{
Ẽε(v̂ε, B

(ε)
j ) − πa0 ln

2κΩ−1/2

ε

}

≤ πa0

2
ln a0 + a0γ0 −

πa0|bj |2Λ
1 + Λ2

+ X(κ). (5.14)

Combining (5.8), (5.10), (5.11) and (5.14), we conclude that for κ small enough,

lim sup
ε→0

{
Ẽε(v̂ε) − πa0d|ln ε| − πa0

2
(d2 − d)ln|ln ε|

}

≤ −πa0

∑
i�=j

ln|bi − bj | −
πa0

1 + Λ2

d∑
j=1

|bj |2Λ + QΛ,d + δ. (5.15)

Step 3. Now, it remains to estimate R̃ε(v̂ε). The Cauchy–Schwartz inequality yields

|R̃ε(v̂ε, R
2\Dε)| ≤ CΩ

(∫
R2\Dε

|x|2η̃2
ε

)1/2 (
Ẽε(v̂ε, R

2\Dε)
)1/2

. (5.16)

By [14, Proposition 2.2], Ω2
∫

R2\Dε
|x|2η̃2

ε → 0 as ε → 0 and according to (5.6), it
leads to

lim
ε→0

∣∣R̃ε(v̂ε) − R̃ε(v̂ε,Dε)
∣∣ = 0. (5.17)

By the results in [8, Chap. IX], for ε̂ sufficiently small and each j = 1, . . . , d, there
exists exactly one disc D̂j

ε ⊂ B(0, 1) with diam(D̂j
ε) ≤ Cε̂ such that |w̃j

ε| ≥ 1/2 in
B(0, 1)\D̂j

ε. By scaling, we infer that exist exactly d discs D1
ε , . . . , D

d
ε with Dj

ε ⊂ B
(ε)
j

and diam(Dj
ε) ≤ Cε such that

|v̂ε| ≥
1
2

in Dε

∖ d⋃
j=1

Dj
ε.

We derive from (5.14) that∣∣∣∣∣∣R̃ε


v̂ε,

d⋃
j=1

Dj
ε



∣∣∣∣∣∣ ≤ CΩε

d∑
j=1

(
Ẽε(v̂ε, B

(ε)
j )
)1/2 −→

ε→0
0,

and by (5.17), it leads to limε→0

∣∣R̃ε(v̂ε) − R̃ε(v̂ε,Dε\∪d
j=1D

j
ε)
∣∣ = 0. From (5.7),

we infer that

lim
ε→0

∣∣∣∣∣∣R̃ε


v̂ε,Dε

∖ d⋃
j=1

Dj
ε


−Rε


v̂ε,Dε

∖ d⋃
j=1

Dj
ε



∣∣∣∣∣∣ = 0
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and hence,

lim
ε→0

∣∣∣∣∣∣R̃ε(v̂ε) −Rε


v̂ε,Dε

∖ d⋃
j=1

Dj
ε



∣∣∣∣∣∣ = 0. (5.18)

To compute Rε(v̂ε,D\∪d
j=1D

j
ε), we proceed as in [14, Proposition 4.2] (here, we use

that Ẽε(v̂ε) ≤ C|ln ε| by (5.15)). It yields

lim
ε→0


Rε


v̂ε,Dε

∖ d⋃
j=1

Dj
ε


+

πΩ
1 + Λ2

d∑
j=1

a2(b(ε)
j )


 = 0

since deg(v̂ε/|v̂ε|, ∂Dj
ε) = +1 for j = 1, . . . , d. Expanding a2(b(ε)

j ) and Ω, we deduce
from (5.18) that

lim
ε→0

(
R̃ε(v̂ε) + πa0d |ln ε| + πa0ω(ε)d ln|ln ε|

)
=

2πa0

1 + Λ2

d∑
j=1

|bj |2Λ. (5.19)

Combining (5.9), (5.15) and (5.19), we obtain the announced result.

Proof of Theorem 5.1. We consider the map v̂ε given in Proposition 5.2 and
we set

ṽε = m−1
ε v̂ε and ũε = η̃εe

iΩS ṽε with mε = ‖η̃εv̂ε‖L2(R2).

We are going to prove that the map ũε satisfies the required property. By [14,
Lemma 3.2], we have

Fε(ũε) = F (η̃εe
iΩS) + F̃ε(ṽε) + T̃ε(ṽε).

In view of Proposition 5.2, it suffices to prove that
∣∣F̃ε(ṽε) − F̃ε(v̂ε)

∣∣ → 0 and
T̃ε(ṽε) → 0 as ε → 0. We first estimate mε. Since |v̂ε| = 1 in R

2 \∪d
j=1B

(ε)
j and

‖η̃ε‖L2(R2) = 1, we have

m2
ε =

∫
R2

η̃2
ε +
∫
∪d

j=1B
(ε)
j

η̃2
ε(|v̂ε|2 − 1) = 1 +

∫
∪d

j=1B
(ε)
j

η̃2
ε(|v̂ε|2 − 1).

Using the Cauchy–Schwarz inequality, we derive from (5.12), (5.13) and [8,
Theorem III.2] that∣∣∣∣∣

∫
∪d

j=1B
(ε)
j

η̃2
ε(|v̂ε|2 − 1)

∣∣∣∣∣ ≤ C|ln ε|−1/2

(∫
∪d

j=1B
(ε)
j

(|v̂ε|2 − 1)2
)1/2

≤ Cε|ln ε|−1/2 (5.20)

and thus

m2
ε = 1 + O(ε|ln ε|−1/2). (5.21)
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Using |v̂ε| = 1 in R
2\∪d

j=1B
(ε)
j , |∇S| ≤ C|x|, |kε| ≤ C|ln ε|, (5.20) and (5.21), we

derive that ∣∣T̃ε(ṽε)
∣∣ ≤ C|ln ε|2

(
|1 − m−2

ε |
∫

R2
(1 + |x|2)η̃2

ε

+
∫
∪d

j=1B
(ε)
j

η̃2
ε

(
|1 − m−2

ε ||v̂ε|2 + (1 − |v̂ε|2)
))

≤ Cε|ln ε|3/2.

Now, we may estimate using (5.15), (5.19) and (5.21),∫
R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫
R2

η̃2
ε |∇v̂ε|2 =

∫
R2

η̃2
ε |∇v̂ε|2 + O(ε|ln ε|1/2), (5.22)

and

R̃ε(ṽε) = m−2
ε R̃ε(v̂ε) = R̃ε(v̂ε) + O(ε|ln ε|1/2). (5.23)

We write

1
ε2

∫
R2

η̃4
ε(1 − |ṽε|2)2 =

1
ε2

∫
R2

η̃4
ε(1 − |v̂ε|2)2 +

2(1 − m−2
ε )

ε2

×
∫
∪d

j=1B
(ε)
j

η̃4
ε(1 − |v̂ε|2)|v̂ε|2

+
(1 − m−2

ε )2

ε2

∫
R2

η̃4
ε |v̂ε|4. (5.24)

We infer from (5.15) and (5.21) that

(1 − m−2
ε )2

ε2

∫
R2

η̃4
ε |v̂ε|4 ≤ C|ln ε|−1, (5.25)

and from (5.20) and (5.21),

|1 − m−2
ε |

ε2

∫
∪d

j=1B
(ε)
j

η̃4
ε |v̂ε|2

∣∣1 − |v̂ε|2
∣∣ ≤ C|ln ε|−1. (5.26)

Combining (5.22)–(5.26), we finally obtain that F̃ε(ṽε) = F̃ε(v̂ε) + o(1) and the
proof is complete.
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Appendix A

In this appendix, we prove that the functions ΨR and Ψσ defined by (4.20) and,
respectively, (5.4) converge to the same limiting function as R → √

a0 and σ → 0.
The proof is based on the construction of suitable barrier functions.

Lemma A.1 For any 0 < R <
√

a0, respectively, any σ > 0, let ΨR be the solution
of Eq. (4.20), respectively, Ψσ the solution of (5.4). Then, ΨR → Ψ� as R → √

a0,

respectively, Ψσ → Ψ� as σ → 0, in C1
loc(D) where Ψ� is the unique solution in

C0(D̄) of 


div
(

1
a
∇Ψ�

)
=

−2|x|2Λ
a2(x)|x|2 in D,

Ψ� = −ln|x| on ∂D.

(A.1)

In particular,

lim
R→√

a0

ΨR(0) = lim
σ→0

Ψσ(0) = Ψ�(0) =: 
(Λ). (A.2)

Proof. Step 1. Uniqueness of Ψ�. Assume that (A.1) admits two solutions Ψ1
� and

Ψ2
� in C0(D̄). Then, the difference Ψ1

�−Ψ2
� satisfies div( 1

a∇(Ψ1
�−Ψ2

�)) = 0 in D and
Ψ1

� −Ψ2
� = 0 on ∂D. By elliptic regularity, we infer that Ψ1

� −Ψ2
� ∈ C2(D)∩C0(D̄).

Hence, it follows Ψ1
� − Ψ2

� ≡ 0 by the classical maximum principle.

Step 2: Existence of Ψ�. We set for y ∈ D,

ΥR(y) = ΨR

(
Ry√
a0

)
− ζ(y) + ln(R/

√
a0),

where ζ is the solution of {
∆ζ = 0 in D,

ζ = − ln |y| on ∂D.

Since ΨR solves (4.20), we deduce that ΥR is the unique solution of
−div

(
1

aR(y)
∇ΥR

)
=

f(y)
a2

R(y)
in D,

ΥR = 0 on ∂D,

(A.3)

where aR(y) = a2
0/R2 − |y|2Λ and

f(y) =
2|y|2Λ
|y|2 + 2(y1, Λ2y2) · ∇ζ(y).

We easily check that y �→ KaR(y), respectively, y �→ −KaR(y), defines a super-
solution, respectively, a subsolution, of (A.3) whenever the constant K satisfies
K ≥ ‖f‖L∞(D)/(Λ2a0). Hence,

|ΥR| ≤ CaR in D (A.4)

for a constant C independent of R. By elliptic regularity, we deduce that ΥR remains
bounded in W 2,p

loc (D) as R → √
a0 for any 1 ≤ p < ∞. Therefore, from any sequence
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Rn → √
a0, we may extract a subsequence, still denoted by (Rn), such that ΥRn →

Υ� in C1
loc(D) where Υ� satisfies

−div
(

1
a(y)

∇Υ�

)
=

f

a2(y)
in D.

We infer from (A.4) that |Υ�(y)| ≤ Ca(y) for any y ∈ D and hence, Υ� ∈ C0(D̄)
with Υ�|∂D = 0. Consequently, the function Ψ� := Υ� +ζ defines a solution of (A.1)
which is continuous in D̄.

Step 3. By the uniqueness of Ψ�, we have that ΥR → Ψ�−ζ in C1
loc(D) as R → √

a0

which clearly implies ΨR → Ψ� in C1
loc(D) as R → √

a0 . To prove that Ψσ → Ψ� in
C1

loc(D) as σ → 0, we may proceed as in Step 2. Indeed, we may show as in Step 2,
that |Ψσ − ζ| ≤ Caσ in D for a constant C independent of σ.
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[10] D. Butts and D. Rokhsar, Predicted signatures of rotating Bose–Einstein condensates,

Nature 397 (1999) 327–329.
[11] Y. Castin and R. Dum, Bose–Einstein condensates with vortices in rotating traps,

Eur. Phys. J. D 7 (1999) 399–412.
[12] S. Gueron and I. Shafrir, On a discrete variational problem involving interacting

particles, SIAM J. Appl. Math. 60 (2000) 1–17.
[13] R. Ignat and V. Millot, Vortices in 2d rotating Bose–Einstein condensate, C. R. Acad.

Sci. Paris Sér. I 340 (2005) 571–576.
[14] R. Ignat and V. Millot, The critical velocity for vortex existence in a two dimensional

rotating Bose–Einstein condensate, J. Funct. Anal. 233 (2006) 260–306.
[15] L. Lassoued and P. Mironescu, Ginzburg–Landau type energy with discontinuous

constraint, J. Anal. Math. 77 (1999) 1–26.
[16] K. Madison, F. Chevy, J. Dalibard and W. Wohlleben, Vortex formation in a stirred

Bose–Einstein condensate, Phys. Rev. Lett. 84 (2000) 806–809.
[17] K. Madison, F. Chevy, J. Dalibard and W. Wohlleben, Vortices in a stirred Bose–

Einstein condensate, J. Modern Opt. 47 (2000) 2715–2723.



May 2, 2006 15:57 WSPC/148-RMP J070-00260

162 R. Ignat & V. Millot

[18] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J.
Funct. Anal. 152 (1998) 119–145.

[19] E. Sandier and S. Serfaty, A rigorous derivation of a free boundary problem arising
in superconductivity, Ann. Sci. Ecole Norm. Sup. 33 (2000) 561–592.

[20] S. Serfaty, Local minimizers for the Ginzburg–Landau energy near critical magnetic
field: Part I, Commun. Contemp. Math. 1 (1999) 213–254.

[21] S. Serfaty, Local minimizers for the Ginzburg–Landau energy near critical magnetic
field: Part II, Commun. Contemp. Math. 1 (1999) 295–333.

[22] S. Serfaty, Stable configurations in superconductivity: Uniqueness, multiplicity, and
vortex-nucleation, Arch. Ration. Mech. Anal. 149 (1999) 329–365.

[23] S. Serfaty, On a model of rotating superfluids, ESAIM Control Optim. Calc. Var. 6
(2001) 201–238.

[24] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg–Landau model
in 2-dimensions, J. Diff. Int. Equations 7 (1994) 1617–1624; Erratum J. Diff. Int.
Equations 8 (1995) 224.


