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1 Probability space

1.1 Definitions

Let Ω be a set. A collection F of its subsets is called a σ-algebra (sometimes also

σ-field) if

(i) Ω ∈ F ,

(ii) for every A ∈ F , we have Ac ∈ F , that is F is closed under taking complements,

(iii) for every sets A1, A2, . . . in F , we have
⋃∞
n=1An ∈ F , that is F is closed under

taking coutable unions.

Note that these imply that ∅ ∈ F and that F is also closed under taking set difference,

countable intersections, etc. For instance, F = {∅,Ω} is the trivial σ-algebra and

F = 2Ω (all the subsets of Ω) is the largest possible σ-algebra.

Suppose F is a σ-algebra on the set Ω. A function

µ : F → [0,+∞]

is called a measure if

(i) µ(∅) = 0,

(ii) µ is countably-additive, that is for every pairwise disjoint sets A1, A2, . . . in F , we

have

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

The measure µ is finite if µ(Ω) <∞, σ-finite if Ω is a countable union of sets in F of

finite measure. The measure µ is a probability measure if µ(Ω) = 1.

A probability space is a triple (Ω,F ,P), where Ω is a set, F is a σ-algebra on Ω and

P is a probability measure on F . The sets in F are called events. The empty set is called

an impossible event because P (∅) = 0. Set operations have natural interpretations, for

instance for “A ∩ B”, we say “A and B occur”, for “A ∪ B”, we say “A or B occurs”,

for “Ac”, we say “A does not occur”, for “
⋂∞
n=1

⋃∞
k=nAk”, we say “infinitely many of

the events Ak occur”, etc.

This definition is a starting point of modern probability theory. It was laid as

foundations by Kolmogorov who presented his axiom system for probability theory in

1933.

We record some basic and useful properties of probability measures.

1.1 Theorem. Let (Ω,F ,P) be a probability space. Let A,B,A1, A2, . . . be events. Then

(i) P (Ac) = 1− P (A),
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(ii) if A ⊂ B, then P (B \A) = P (B)− P (A) and P (A) ≤ P (B),

(iii) P (A ∪B) = P (A) + P (B)− P (A ∩B),

(iv) P (
⋃n
i=1Ai) =

∑
i P (Ai)−

∑
i<j P (Ai ∩Aj) +

∑
i<j<k P (Ai ∩Aj ∩Ak)

− · · ·+ (−1)n−1P (A1 ∩ · · · ∩An),

(v) P (
⋃∞
i=1Ai) ≤

∑∞
i=1 P (Ai),

(vi) if A1, . . . , An are pairwise disjoint, then P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai).

We omit proofs (which are rather standard). Part (iv) is the so-called inclusion-

exclusion formula. Part (v) is the so-called union bound.

We also have the following continuity of measure-type results for monotone events.

1.2 Theorem. Let (Ω,F ,P) be a probability space. Let A1, A2, . . . be events.

(i) if the events An are increasing, that is A1 ⊂ A2 ⊂ . . ., then

P

( ∞⋃
k=1

Ak

)
= lim
n→∞

P (An) ,

(ii) if the events An are decreasing, that is A1 ⊃ A2 ⊃ . . ., then

P

( ∞⋂
k=1

Ak

)
= lim
n→∞

P (An) ,

Proof. (i) It helps consider the events

B1 = A1, B2 = A2 \A1, B3 = A3 \A2, . . .

which are disjoint. We skip the details. Part (ii) can be obtained from (i) by using the

complements.

1.3 Remark. Theorem 1.1 and Theorem 1.2 (i) hold for arbitrary measures (the proofs

do not need the assumption P (Ω) = 1 of the measure P being probabilistic). Theorem

1.2 (ii) holds for arbitrary measures P as long as P (Ak) <∞ for some k.

1.2 Basic examples

1.4 Example. Let Ω = {ω1, ω2, . . .} be a countable set and F = 2Ω (all subsets).

Defining a probability measure on (Ω,F) really amounts to specifying a nonnegative

sequence p1, p2, . . . such that
∑
i pi = 1 and defining P ({ωi}) = pi. Then for every

subset A of Ω,

P (A) =
∑
i:ωi∈A

pi.
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Conversely, since

1 = P (Ω) =
∑
i

P ({ωi}) ,

every probability measure is of this form.

1.5 Example. Let Ω be a finite nonempty set and F = 2Ω. The uniform probability

measure on (Ω,F) (sometimes referred to as classical) is defined as

P (A) =
|A|
|Ω| ,

for every subset A of Ω, where here | · | denotes cardinality.

Our next two examples will require nontrivial constructions. We wish to define two

probability spaces which will be reasonable models of

1) selecting a point uniformly at random on the interval [0, 1]

2) tossing a fair coin infinitely many times.

As much as choosing the ground set Ω is fairly natural, say Ω = [0, 1] for 1), defining

an appropriate σ-algebra and a probability measure on it poses certain challenges. Let

us first try to illustrate possible subtleties.

Let Ω = [0, 1]. If (Ω,F ,P) is meant to be a probability space modelling selecting a

point uniformly at random on [0, 1], for 0 ≤ a < b ≤ 1, we should have P ((a, b)) = b− a
(the probability that a point is in the interval (a, b) equal its length), and more generally,

P should be translation-invariant. Thus F should at the very least contain all intervals.

Thus let F be such a σ-algebra, that is the smallest σ-algebra containing all the intervals

in [0, 1]; we write

F = σ(I),

where I is the family of all the intervals in [0, 1] and in general

F = σ(A)

denotes the σ-algebra generated by a family A of subsets of Ω (the smallest σ-algebra

containing A, which makes sense because intersections σ-algebras are still σ-algebras).

1.6 Example. As a result, for every x ∈ [0, 1], we have

P ({x}) = P

⋂
n≥1

(x− 1/n, x+ 1/n)

 = lim
n→∞

P ((x− 1/n, x+ 1/n)) = lim
n→∞

2

n
= 0

(recall Theorem 1.2 (ii)), that is, of course, probability of selecting a fixed point is

zero. This however indicates why probability measures are defined to be only countably

additive as opposed to fully additive, because if the latter was the case, we would have

1 = P ([0, 1]) = P

 ⋃
x∈[0,1]

{x}

 =
∑

P ({x}) = 0,

a contradiction. �
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Moreover, we cannot just crudely take F = 2Ω because of the following construction

of the Vitali set.

1.7 Example. For x, y ∈ [0, 1], let x ∼ y if and only if x−y ∈ Q. This is an equivalence

relation and let V be the set of representatives of its abstract classes. Without loss of

generality assume that 0 /∈ V . Let x⊕y denote the addition modulo 1, that is x⊕y = x+y

if x+ y ≤ 1 and x⊕ y = x+ y − 1 if x+ y > 1. Consider the translations of V ,

V ⊕ r = {v ⊕ r, v ∈ V }, r ∈ [0, 1] ∩Q.

Note that these sets are pairwise disjoint (because if v1⊕r1 = v2⊕r2 for some v1, v2 ∈ V
and r1, r2 ∈ [0, 1] ∩Q, then v1 − v2 ∈ Q, hence v1 = v2, thus r1 = r2). Moreover,⋃

r∈[0,1]∩Q
V ⊕ r = [0, 1]

(because every point in [0, 1] is in a certain abstract class, hence differs from its repre-

sentative by a rational). Thus, by countable-additivity

1 = P

 ⋃
r∈[0,1]∩Q

V ⊕ r

 =
∑

r∈[0,1]∩Q
P (V ⊕ r) .

If P is translation-invariant, we have P (V ⊕ r) = P (V ) and then the right hand side is

either 0 or +∞, a contradiction. �

Summarising, to model a uniform random point on [0, 1], we take Ω = [0, 1] and

F to be the σ-algebra generated by all the intervals. We know how to define P on

the generators. Carathéodory’s theorem is an important abstract tool which allows

to extend this definition from the generators to the whole σ-algebra F , provided that

certain conditions are met.

A family A of subsets of a set Ω is called an algebra if

(i) Ω ∈ A,

(ii) if A ∈ A, then Ac ∈ A,

(iii) if A,B ∈ A, then A ∪B ∈ A.

1.8 Theorem (Carathéodory). Let Ω be a set and let A be an algebra on Ω. Suppose

a function P : A → [0,+∞) satisfies

(i) P (Ω) = 1,

(ii) P is finitely additive, that is for every A1, . . . , An ∈ A which are pairwise disjoint,

we have

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai) ,
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(iii) for every A1, A2, . . . ∈ A with A1 ⊂ A2 ⊂ . . . such that A =
⋃∞
n=1An is in A, we

have

lim
n→∞

P (An) = P (A) .

Then P can be uniquely extended to a probability measure on the σ-algebra F = σ(A)

generated by A.

1.9 Remark. By considering Bn = A\An, condition (iii) is equivalent to the following:

if B1, B2, . . . ∈ F0 such that B1 ⊃ B2 ⊃ . . . with
⋂
Bn = ∅, then P (Bn)→ 0 as n→∞.

We defer the proof of Carathéodory’s theorem to Appendix A.

1.10 Example. We are ready to construct a probability space modelling a random

point uniform on [0, 1]. Let Ω = [0, 1]. Let

F0 = {(a1, b1] ∪ · · · ∪ (an, bn], n ≥ 1, 0 ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ 1}.

It is easy to check that F0 is an algebra on Ω0 = (0, 1]. For a set F in F0, say

F = (a1, b1] ∪ · · · ∪ (an, bn], we define

P (F ) =

n∑
i=1

(bi − ai).

Clearly P satisfies conditions (i) and (ii) of Theorem 1.8. We now verify (iii) by means

of Remark 1.9. Suppose B1 ⊃ B2 ⊃ . . . are in F0 with
⋂
Bn = ∅. If it is not the

case that P (Bn)→ 0, there is ε > 0 such that P (Bk) > ε for infinitely many k, say for

simplicity for all k ≥ 1. We show that
⋂
Bn 6= ∅. For every k, there is a set Ck in F0

whose closure is a subset of Bk ∩ (0, 1) and P (Bk \ Ck) ≤ ε2−k−1. Then for every n, we

have

P

Bn \ ⋂
k≤n

Ck

 = P

⋃
k≤n

Bn \ Ck

 ≤ P

⋃
k≤n

Bk \ Ck

 ≤∑
k≤n

P (Bk \ Ck)

≤
∑
k≤n

ε2−k−1 < ε/2.

This and P (Bn) > ε together give that P
(⋂

k≤n Ck
)
> ε/2. In particular, for every n,⋂

k≤n Ck is nonempty and consequently Kn =
⋂
k≤n cl(Ck) is nonempty. Thus {Kn}∞n=1

is a decreasing family (K1 ⊃ K2 ⊃ . . .) of nonempty compact sets. By Cantor’s intersec-

tion theorem,
⋂
nKn =

⋂∞
n=1 cl(Cn) is nonempty (recall a simple argument: otherwise⋃

n(cl(Cn))c covers [0, 1] without any finite subcover). Since
⋂
Bn contains

⋂
n cl(Ck),

the argument is finished.

Theorem 1.8 provides a unique extension of P onto the σ-algebra generated by F0.

This extension is nothing but Lebesgue measure on (0, 1], denoted Leb. We can trivially

extend it onto [0, 1] by assigning P ({0}) = 0. �
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Given a metric space (E, ρ), the σ-algebra of subsets of E generated by all open sets

in E is called the Borel σ-algebra on E, denoted B(E). For example, the σ-algebra

constructed in the previous example is exactly B([0, 1]).

1.11 Example. We construct a probability space modelling an infinite sequence of

tosses of a fair coin. Let Ω = {(ω1, ω2, . . .), ω1, ω2, . . . ∈ {0, 1}} be the set of all infinite

binary sequences. We can proceed as for the random point on [0, 1]: we define an algebra

of subsets of Ω on which defining a finitely additive measure will be intuitive and easy.

Let Cyl be the family of all cylinders on Ω, that is sets of the form Aε1,...,εn = {ω ∈
Ω, ωj = εj , j = 1, . . . , n}. We define the algebra of cylinders, that is the family of all

finite unions of cylinders,

F0 = {A1 ∪ · · · ∪Ak, k ≥ 1, A1, . . . , Ak ∈ Cyl}.

For Aε1,...,εn ∈ Cyl, we set

P (Aε1,...,εn) =
1

2n
.

It remains to apply Theorem 1.8. Checking (iii) proceeds similarly and eventually boils

down to a topological argument (by Tikhonov’s theorem Ω = {0, 1} × {0, 1} × . . . is

compact with the standard product topology).

Alternatively, a binary expansion of a random point x ∈ (0, 1] gives a random se-

quence which intuitively does the job, too. Formally, let f : Ω→ [0, 1], f(ω) =
∑∞
i=1

ωi
2i .

We define

F = {f−1(B), B ∈ B([0, 1])},

which is a σ-algebra,

P (A) = Leb(f(A)), A ∈ F ,

which is a probability measure (f is surjective, hence f(f−1(B)) = B for every B).

Note that for cylinders we have that f(Aε1,...,εn) is an interval of length 1
2n . Thus

P (Aε1,...,εn) = 1
2n and this construction also fulfils our intuitive basic requirement. We

need get back to this example when we discuss independence. �

1.3 Conditioning

Given a probability space (Ω,F ,P) and an event B of positive probability, P (B) > 0,

we can define

P (A|B) =
P (A ∩B)

P (B)
, A ∈ F .

It is natural to introduce a σ-algebra of events FB seen by B, that is

FB = {A ∩B, A ∈ F}.

1.12 Theorem. P (·|B)) is a probability measure on F , thus also on FB.
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The new probability measure P (·|B) is referred to as the conditional probability

given B. Introducing it often times makes computations more intuitive. We have several

useful facts.

1.13 Theorem (Chain rule). Suppose that A1, . . . , An are events which satisfy the

condition P (A1 ∩ · · · ∩An−1) > 0. Then

P (A1 ∩ · · · ∩An) = P (A1)P (A2|A1) · . . . · P (An|A1 ∩ · · · ∩An−1) .

1.14 Theorem (Law of total probability). Suppose {Bn, n = 1, 2, . . .} is a finite or

countable family of events which partition Ω and P (Bn) > 0 for each n. Then for every

event A, we have

P (A) =
∑
n

P (A|Bn)P (Bn) .

1.15 Theorem (Bayes’ formula). Suppose {Bn, n = 1, 2, . . .} is a finite or countable

family of events which partition Ω and P (Bn) > 0 for each n. Then for every event A

of positive probability and every k, we have

P (Bk|A) =
P (A|Bk)P (Bk)∑
n P (A|Bn)P (Bn)

.

We leave all the proofs as exercise to the dedicated reader.
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1.4 Exercises

1. If A and B are events, then P (A ∩B) ≥ P (A)− P (Bc).

2. If A1, . . . , An are events, then we have

a) P (
⋃n
i=1Ai) ≤

∑m
k=1(−1)k−1

∑
1≤i1<···<ik≤n P (Ai1 ∩ · · · ∩Aik) for m odd,

b) P (
⋃n
i=1Ai) ≥

∑m
k=1(−1)k−1

∑
1≤i1<···<ik≤n P (Ai1 ∩ · · · ∩Aik) for m even.

These are called Bonferroni inequalities.

3. There are n invitation cards with the names of n different people and n envelopes with

their names. We put the cards at random into the envelopes, one card per envelope.

What is the chance that not a single invitation landed in the correct envelope? What

is the limit of this probability as n goes to infinity?

4. Describe all σ-algebras on a countable set.

5. Is there an infinite σ-algebra which is countable?

6. Show that the number of σ-algebras on the n-element set equals 1
e

∑∞
k=0

kn

k! .

7. Prove Theorems 1.12 – 1.15.

13



2 Random variables

2.1 Definitions and basic properties

Central objects of study in probability theory are random variables. They are simply

measurable functions. To put it formally, let (Ω,F ,P) be a probability space. A function

X : Ω→ R is called a random variable if for every Borel set B in R, B ∈ B(R), we have

X−1(B) ∈ F . In other words, X is a measurable function on (Ω,F ,P). An Rn-valued

random variable, that is a measurable function X : Ω→ Rn is called a random vector.

2.1 Example. Let A be an event. We define

1A(ω) =

1, if ω ∈ A,

0, if ω /∈ A.

This is a random variable called the indicator random variable of the event A.

2.2 Example. Let Ω = [0, 1], F = B([0, 1]) and P = Leb. Define X : Ω → [0, 1] as

X(ω) = ω. This is a random variable which intuitively is uniform on [0, 1]. We will

make this precise soon. On the other hand, if V is the Vitali set from Example 1.7, then

X = 1V is not a random variable because X−1({1}) = V /∈ F .

We record several very basic facts. One piece of notation: we often write {X ≤ t},
or {X ∈ B}, etc. meaning {ω ∈ Ω, X(ω) ≤ t} = X−1((−∞, t]), or {ω ∈ Ω, X(ω) ∈
B} = X−1(B) ,etc. Moreover, {X ∈ A,X ∈ B} means {X ∈ A} ∩ {X ∈ B}.

2.3 Theorem. If X : Ω→ R satisfies: for every t ∈ R,

{X ≤ t} ∈ F ,

then X is a random variable.

Proof. Consider the family {A ⊂ R, X−1(A) ∈ F}. It is not difficult to check that

this is a σ-algebra. By the assumption, it contains the intervals (−∞, t], t ∈ R, which

generate B(R).

2.4 Theorem. If X,Y are random variables (defined on the same probability space),

then X + Y and XY are random variables.

Proof. We use Theorem 2.3. Note that

{X + Y > t} =
⋃
q∈Q
{X > q, Y > t− q}

and the right hand side is in F as a countable union of events. Thus X+Y is a random

variable. Moreover, for t ≥ 0,

{X2 ≤ t} = {−
√
t ≤ X ≤

√
t} = {X ≤

√
t} \ {X < −

√
t} ∈ F

14



so X2 and Y 2 are also random variables. Thus

XY =
1

2

(
(X + Y )2 −X2 − Y 2

)
is a random variable.

2.5 Theorem. If X1, X2, . . . are random variables (defined on the same probability

space), then infnXn, lim infnXn, limnXn (if exists, understood pointwise) are random

variables.

Proof. For instance {infnXn ≥ t} =
⋂
n{Xn ≥ t} justifies that infnXn is a random

variable. We leave the rest as an exercise.

2.6 Theorem. Let X be a random variable. If f : R → R is a (Borel) measurable

function, that is f−1(B) ∈ B(R) for every B ∈ B(R), then f(X) is a random variable.

Proof. We have (f(X))−1(B) = X−1(f−1(B)).

2.7 Example. If X is a random variable, then |X|p, eX , etc. are random variables.

Given a random variable X, we define the σ-algebra generated by X, denoted

σ(X) as the smallest σ-algebra with respect to which X is measurable, that is

σ(X) = σ
(
X−1(B), B ∈ B(R)

)
= {X−1(B), B ∈ B(R)}

(the family on the right is a σ-algebra). Similarly, given a collection of random variables

{Xi}i∈I we define its σ-algebra as the smallest σ-algebra with respect to which every

Xi is measurable, that is

σ(Xi, i ∈ I) = σ
(
X−1
i (B), B ∈ B(R), i ∈ I

)
.

Let X be a random variable. The law of X, denoted µX is the following probability

measure on (R,B(R)),

µX(B) = P (X ∈ B) , B ∈ B(R).

2.8 Example. Let X be a constant random variable a.s., that is P (X = a) = 1 for

some a ∈ R. Its law µX is a very simple measure on R,

µX(A) =

1, if a ∈ A,

0, if a /∈ A.

This measure on R is called the Dirac delta at a, denoted δa.

The cumulative distribution function of X (distribution function or CDF in

short) is the following function FX : R→ [0, 1],

FX(t) = P (X ≤ t) , t ∈ R.

15



It is rather clear that for some two random variable X and Y , µX = µY does not

imply that X = Y (the random variables may even be defined on different probability

spaces). We say that X and Y have the same distribution (law) if µX = µY . Is it clear

that FX = FY implies that X and Y have the same distribution? In other words, do

CDFs determine distribution? To answer this and many other similar questions, it is

convenient to use an abstract tool from measure theory – Dynkin’s theorem on π − λ
systems.

2.2 π − λ systems

A family A of subsets of a set Ω is a π-system if it is closed under finite intersections,

that is for every A,B ∈ A, we have A ∩B ∈ A.

A family L of subsets of a set Ω is a λ-system if

(i) Ω ∈ L,

(ii) if A,B ∈ L and A ⊂ B, then B \A ∈ L,

(iii) for every A1, A2, . . . ∈ L such that A1 ⊂ A2 ⊂ . . ., we have
⋃∞
n=1An ∈ L.

For example, the family of intervals {(−∞, t], t ∈ R} is a π-system. The importance

of this example is that this family generates B(R).

Note that if a family is a π-system and a λ-system, then it is a σ-algebra.

A fundamental and useful result is the following theorem (see Appendix B for the

proof).

2.9 Theorem (Dynkin). If a λ-system L contains a π-system A, then L contains σ(A).

2.3 Properties of distribution functions

Equipped with Dynkin’s theorem, we are able to show that distribution functions indeed

determine the distribution, which reverses the trivial implication that if µX = µY , then

FX = FY .

2.10 Theorem. Let X and Y be random variables (possibly defined on different prob-

ability spaces). If FX = FY , then µX = µY .

Proof. Let A = {(−∞, t], t ∈ R}. This is a π-system and σ(A) = B(R). Consider

L = {A ∈ B(R), µX(A) = µY (A)}.

This is a λ-system (which easily follows from properties of probability measures). The

assumption FX = FY gives L ⊃ A. Thus, by Theorem 2.9, we get L ⊃ σ(A) = B(R).

By the definition of L, this gives µX = µY .
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2.11 Remark. The same proof gives the following: if for some two probability measures

µ, ν defined on the same space, we have µ = ν on a π-system generating a σ-algebra F ,

then µ = ν on F .

We list 3 basic properties of distribution functions.

2.12 Theorem. Let X be a random variable. Then its distribution function FX satisfies

(i) FX is nondecreasing, that is for every s ≤ t, FX(s) ≤ FX(t),

(ii) limt→−∞ FX(t) = 0 and limt→+∞ FX(t) = 1,

(iii) FX is right-continuous, that is for every t ∈ R, lims→t+ FX(s) = FX(t).

Proof. Part (i) follows from the inclusion {X ≤ s} ⊂ {X ≤ t} if s ≤ t. Alternatively,

0 ≤ P (X ∈ (s, t]) = P (X ≤ t)− P (X ≤ s) = FX(t)− FX(s).

Part (ii), (iii) follow from the continuity of probability measures (Theorem 1.2).

These properties in fact characterise distribution functions.

2.13 Theorem. If a function F : R→ [0, 1] satisfies (i)-(iii) from Theorem 2.12, then

F = FX for some random variable X.

Proof. Let Ω = [0, 1], F = B([0, 1]) and P = Leb. The idea is to define X as the inverse

of F . Formally, we set

X(ω) = inf{y, F (y) ≥ ω}, ω ∈ [0, 1].

By the definition of infimum and (i)-(iii), X(ω) ≤ t if and only if ω ≤ F (t) (check!).

Thus

FX(t) = P (X ≤ t) = Leb{ω ∈ [0, 1], ω ≤ F (t)} = F (t).

2.14 Remark. There is another construction, sometimes called canonical, based on

Carathéodory’s theorem. We set Ω = R, F = B(R), define P ((−∞, t]) = F (t) and then

extend P. With such P, the desired random variable is the canonical one, X(x) = x,

x ∈ R.

For a random vector X = (X1, . . . , Xn) in Rn, the cumulative distribution function

of X is the function FX : Rn → [0, 1],

FX(t1, . . . , tn) = P (X1 ≤ t1, . . . , Xn ≤ tn) .

As before, for random vectors X, Y in Rn, FX = FY implies that µX = µY . The char-

acterising properties are almost the same – the monotonicity statement is strengthened.
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2.15 Theorem. Let X be a random vector in Rn. Then its distribution function FX

satisfies

(i) FX is nondecreasing, that is for every s, t ∈ Rn with si ≤ ti, i ≤ n, we have

FX(s) ≤ FX(t). Moreover,∑
ε∈{0,1}n

(−1)
∑n
k=1 εkFX(ε1s1 + (1− ε1)t1, . . . , εnsn + (1− εn)tn) ≥ 0,

(ii) FX(t
(m)
1 , . . . , t

(m)
n ) −−−−→

m→∞
0 provided that infk≤n t

(m)
k −−−−→

m→∞
−∞,

(iii) FX(t
(m)
1 , . . . , t

(m)
n ) −−−−→

m→∞
1 provided that infk≤n t

(m)
k −−−−→

m→∞
+∞,

(iv) FX is right-continuous.

Proof. We only show (i) as the rest is proved in much the same way as in one dimension.

The inequality is nothing but the statement that the probability of X being in the

box
∏n
k=1(sk, tk] is nonnegative (cf. the proof of Theorem 2.13 (i)). To see this, let

A =
⋂
k{Xk ≤ tk} and B =

⋃
k{Xk ≤ sk}. Then

0 ≤ P

(
X ∈

n∏
k=1

(sk, tk]

)
= P (A ∩Bc) = P (A)− P (A ∩B) .

Note that P (A) = FX(t) and P (A ∩B) =
⋃
k({Xk ≤ sk} ∩B). Applying the inclusion-

exclusion formula finishes the proof.

Again, these properties characterise distribution functions of random vectors. The

proof follows a canonical construction sketched in Remark 2.14. We leave the details as

an exercise.

2.16 Theorem. If a function F : Rn → [0, 1] satisfies (i)-(iv) from Theorem 2.15, then

F = FX for some random vector X in Rn.

We end with a simple remark which follows from the right-continuity.

2.17 Remark. For a random variable X and a ∈ R, we have

P (X = a) = P ({X ≤ a} \ {X < a}) = P (X ≤ a)− P (X < a) = FX(a)− FX(a−).

Now, P (X = a) > 0 if and only if FX is discontinuous at a (has a jump) and the value

of the jump is precisely P (X = a). In this case, we say that X has an atom at a.

2.4 Examples: discrete and continuous random variables

2.18 Example. We say that a random variable X is discrete if there is a countable sub-

set A of R such that P (X ∈ A) = 1. Say A = {a1, a2, . . . } and denote pk = P (X = ak).
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We can assume that the pk are all positive (otherwise, we just do not list ak in A). We

have
∑
k pk = 1. The ak are then the atoms of X. The law of X is a mixture of Dirac

deltas at the atoms,

µX =
∑

pkδak .

The CDF of X is a piecewise constant function with jumps at the atoms with the values

being the pk.

2.19 Example. We say that a random variableX is continuous if there is an integrable

function f : R→ R such that

µX(A) =

∫
A

f, A ∈ B(R).

Then f is called the density of X (note it is not unique – we can modify f on a set of

Lebesgue measure zero without changing the above). In particular,

FX(t) = µX((−∞, t]) =

∫ t

−∞
f(x)dx

and necessarily FX is continuous. We collect basic characterising properties of density

functions.

2.20 Theorem. Let X be a continuous random variable and let f be its density function.

Then

(i)
∫
R f = 1

(ii) f ≥ 0 a.e.

(iii) f is determined by X uniquely up to sets of measure 0.

Proof. Plainly,
∫
R f = µX(R) = 1, so we have (i). To see (ii), let An = {f < −1/n} and

A = {f < 0} =
⋃
An. We have

0 ≤ µX(An) =

∫
An

f ≤ − 1

n
Leb(An),

so Leb(An) = 0 and thus Leb(A) = 0. The proof of (iii) is similar.

2.21 Theorem. Suppose a function f : R → R satisfies properties (i)-(ii) of Theorem

2.20. Then there is a continuous random variable X with density f .

Proof. We set F (x) =
∫ x
−∞ f , x ∈ R and use Theorem 2.13.

Of course, it is easy to give examples of random variables which are neither discrete

nor continuous, say F (x) = x
2 1[0,1)(x) + 1[1,+∞)(x) is a distribution function of such a

random variable (it is not continuous because F is not continuous and it is not discrete

because F is not piecewise constant). We finish off this chapter with an interesting

strong example of this sort.
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2.22 Example. Let F : [0, 1] → [0, 1] be the Cantor’s devil’s staircase function (a

continuous nondecreasing function which is piecewise constant outside the Cantor set

C ⊂ [0, 1]). Extend F on R by simply putting 0 on (−∞, 0] and 1 on [1,+∞). Then

F is a distribution function of some random variable. It is not discrete because F is

continuous and if it was continuous, we would have

F (x) =

∫ x

−∞
f

for some integrable function f , but since f(x) = F ′(x) = 0 for x /∈ C (F is constant on

Cc), we would also have

1 =

∫
R
f =

∫
C
f +

∫
Cc

= 0

(the first integral vanishes because C is of measure 0 and the second integral vanishes

because as we just saw f vanishes on Cc), a contradiction. What is this random variable?
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2.5 Exercises

1. Give an example of two different random variables X and Y with µX = µY .

2. Fill out the details in the proof of Theorem 2.13.

3. Prove Theorem 2.16.

4. Show that every random variable has at most countably many atoms.

5. Suppose that a random vector (X,Y ) is such that both X and Y are continuous

random variables. Does the random vector (X,Y ) have to be continuous?

6. Is there a random vector (X,Y, Z) in R3 such that aX+bY +cZ is a uniform random

variable on [−1, 1] for every reals a, b, c with a2 + b2 + c2 = 1?

Hint : Archimedes’ Hat-Box Theorem.

7. Let X be a random variable uniform on [0, 2]. Find the distribution function of

random variables Y = max{1, X}, Z = min{X,X2}.

8. Give an example of an uncountable family of random variables {Xi}i∈I such that

supi∈I Xi is not a random variable.

9. Is there a random variable such that the set of the discontinuity points of its distri-

bution function is dense in R?
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3 Independence

Recall that two events A,B are independent if P (A ∩B) = P (A)P (B), which is equiv-

alent to P (Ac ∩B) = P (Ac)P (B). A good way to generalise this is via σ-algebras.

3.1 Definitions

For an event A ∈ F , we define the σ-algebra generated by it as

σ(A) = {∅,Ω, A,Ac},

that is σ(A) is σ(1A), the σ-algebra generated by the indicator random variable 1A.

The crucial general definition of independence is as follows.

A family {Fi}i∈I of collections of subsets of Ω (typically σ-algebras , π-systems, etc.)

with each Fi being a subset of F is called independent if for every n, i1, . . . , in ∈ I
and every A1 ∈ Fi1 , . . . , An ∈ Fin , we have

P (A1 ∩ · · · ∩An) = P (A1) . . . · . . .P (An) .

A family of events {Ai}i∈I is independent (or simply the events Ai, i ∈ I, are indepen-

dent) if the family of the σ-algebras generated by them, {σ(Ai)}i∈I is independent. A

family of random variables {Xi}i∈I is independent (or simply the random variables Xi,

i ∈ I, are independent) if the family of the σ-algebras generated by them, {σ(Xi)}i∈I is

independent. Note that since σ(A) = σ(1A), the events Ai are independent if and only

if the random variables 1Ai are independent.

As is stated now, to check the independence of say 3 events {A1, A2, A3}, we have

to verify 43 identities of the form P (B1 ∩B2 ∩B3) = P (B1)P (B2)P (B3), where each

Bi is one of the sets ∅,Ω, Ai, Aci . Of course, many of these identities are either trivial of

follow from the other. It turns out that π-systems can help and we have the following

useful general lemma.

3.1 Lemma. Let {Ai}i∈I be a family of π-systems. Then the family {σ(Ai)}i∈I is

independent if and only if the family {Ai}i∈I is independent.

Proof. Since the definition of independence involves only finite sub-families, we can

assume that I = {1, . . . , n}. One implication is clear, so we assume that the π-systems

are independent and want to deduce the independence of the σ-algebras generated by

them. To this end, we shall use Dynkin’s theorem. We define the class

L1 = {B1 ∈ F : ∀A2 ∈A2, . . . , An ∈ An
P (B1 ∩A2 ∩ · · · ∩An) = P (B1)P (A2) · . . . · P (An)}
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By the assumption L1 contains A1. By properties of probability measures, L1 is a

λ-system. Hence, by Dynkin’s theorem (Theorem 2.9), L1 contains σ(A1). It remains

to inductively repeat the same argument: suppose we know for some k < n that

P (B1 ∩ · · · ∩Bk ∩Ak+1 ∩ · · · ∩An) = P (B1) · · ·P (Bk) · P (Ak+1) · · ·P (An) (3.1)

for every Bi ∈ σ(Ai), i ≤ k and Aj ∈ Aj , j > k. Fix some Bi ∈ σ(Ai), i ≤ k. As above,

considering

Lk+1 = {Bk+1 ∈ F : ∀Ak+2 ∈ Ak+2, . . . , An ∈ An
P (B1 ∩ · · · ∩Bk ∩Bk+1 ∩Ak+2 ∩ · · · ∩An)

= P (B1) · · ·P (Bk)P (Bk+1) · P (Ak+2) · · ·P (An)}

shows that (3.1) holds for k + 1. Thus this holds for k = n.

We note two useful results about packaging independence.

3.2 Theorem. Let {Fi}i∈I be a family of independent σ-algebras. Suppose the index

set I is partitioned into nonempty sets {Ij , j ∈ J}. Then the σ-algebras

Gj = σ
(
{Fi, i ∈ Ij}

)
, j ∈ J

are independent.

Proof. For each j ∈ J , define Aj to be the π-system of all finite intersections of the form

Bi1 ∩· · ·∩Bim , where i1, . . . , im ∈ Ij and Bik ∈ Fik , k = 1, . . . ,m. We have σ(Aj) = Gj .
By the assumption, it follows that the families Aj , j ∈ J are independent (check!), so

by Lemma 3.1, the Gj are independent.

3.3 Theorem. Suppose

X1,1, . . . X1,n1 ,

X2,1, . . . X2,n2 ,
...

...
...

Xk,1, . . . Xk,nk

are independent random variables and

f1 : Rn1 → R,
...

fk : Rnk → R

are measurable functions. Then the random variables

Y1 = f1(X1,1, . . . , X1,n1
),

...

Yk = fk(Xk,1, . . . , Xk,nk)

are independent.
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Proof. By Theorem 3.2, the σ-algebras Gi = σ(σ(Xi,1), . . . , σ(Xi,ni)), i ≤ k, are inde-

pendent. The result follows because {Yi ≤ t} ∈ Gi, so σ(Yi) ⊂ Gi.

3.2 Product measures and independent random variables

Given two probability measures µ, ν on (R,B(R)), recall that their product, denoted

µ⊗ ν is the unique measure on (R2,B(R2)) such that

(µ⊗ ν)(A×B) = µ(A)ν(B) for all A,B ∈ B(R)

(see Appendix C for the details). Exploiting Lemma 3.1, we derive convenient and

important equivalent conditions for independence of random variables. For simplicity

we state it just for two random variables, but of course it can be easily generalised to

arbitrary many of them.

3.4 Theorem. The following are equivalent

(i) random variables X,Y are independent,

(ii) F(X,Y )(s, t) = FX(s)FY (t), for all s, t ∈ R,

(iii) µ(X,Y ) = µX ⊗ µY .

Proof. (i)⇒(ii) follows from the definition since {X ≤ s} ∈ σ(X) and {Y ≤ y} ∈ σ(Y ).

(ii)⇒(i) follows from Lemma 3.1 ({X ≤ s}s∈R is a π-system generating σ(X)).

(i)⇒(iii) from the definition, µ(X,Y ) = µ⊗ ν on the π-system of the product sets A×B,

A,B ∈ B(R) which generate B(R2), thus, by Remark 2.11, µ(X,Y ) = µ⊗ ν on B(R2).

(iii)⇒(ii) follows by applying (iii) to A = {X ≤ s}, B = {Y ≤ t}.

For continuous random variables, we have another convenient criterion in terms of

densities.

3.5 Theorem. If X1, . . . , Xn are continuous random variables with densities f1, . . . , fn

respectively, then they are independent if and only if the random vector (X1, . . . , Xn) is

continuous with density

f(x1, . . . , xn) = f1(x1) · · · fn(xn).
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Proof. Suppose we have independence. Then, by Theorem 3.4 (ii) and Fubini’s theorem,

for every Borel sets Ai in R, we have

P ((X1, . . . , Xn) ∈ A1 × · · · ×An) =

n∏
i=1

P (Xi ∈ Ai)

=

n∏
i=1

∫
Ai

fi

=

∫
A1×···×An

f1(x1) . . . fn(xn)dx1 . . . dxn.

This means that f1(x1) . . . fn(xn) is the density of (X1, . . . , Xn). To see the opposite

implication, simply backtrack the above equalities.

We leave it as an exercise to prove a discrete analogue.

3.6 Theorem. If X1, . . . , Xn are discrete random variables with the atoms in some

sets A1, . . . , An respectively, then they are independent if and only if for every sequence

a1, . . . , an with ai ∈ Ai for each i, we have

P (X1 = a1, . . . , Xn = an) = P (X1 = a1) · · ·P (Xn = an) .

3.3 Examples

3.7 Example. Let Ω = {0, 1}n, F = 2Ω, P is uniform, that is P ({ω}) = 2−n for every

ω ∈ Ω (the probability space of n tosses of a fair coin). For k = 1, . . . , n consider the

events

Ak = {ω ∈ Ω, ωk = 0} (kth toss is 0).

We claim that the events A1, . . . , An are independent. For 1 ≤ i1 < . . . < ik ≤ n, we

have

P (Ai1 ∩ . . . ∩Aik) = P ({ω ∈ Ω : ωi1 = . . . = ωik = 0}) =
2n−k

2n
= 2−k =

k∏
j=1

P
(
Aij
)
.

Lemma 3.1 finishes the argument.

3.8 Example. Let Ω = {1, 2, 3, 4}, F = 2Ω, P is uniform, that is P ({ω}) = 1/4 for

every ω ∈ Ω (4 sided fair die). Let Ai = {1, i+ 1}, i = 1, 2, 3. Then

P (Ai) =
1

2
, i = 1, 2, 3,

P (Ai ∩Aj) = P ({1}) =
1

4
= P (Ai)P (Aj) , i 6= j

P (A1 ∩A2 ∩A3) = P ({1}) =
1

4
6= P (A1)P (A2)P (A3) ,

so the events A1, A2, A3 are pairwise independent but not independent.
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3.9 Example. Let Ω = [0, 1]2, F = B([0, 1]2), P = Leb (a random point uniformly

selected from the unit square [0, 1]2). Let A = B = {(x, y) ∈ [0, 1]2, x > y} and

C = {(x, y) ∈ [0, 1]2, x < 1
2}. Then

P (A ∩B ∩ C) = P (A)P (B)P (C) ,

but

P (A ∩B) 6= P (A)P (B) , P (A ∩ C) 6= P (A)P (C) , P (B ∩ C) 6= P (B)P (C) .

3.10 Example. If for events A1, . . . , An and every ε1, . . . , εn ∈ {0, 1}, we have

P (Aε11 ∩ · · · ∩Aεnn ) = P (Aε11 ) · . . . · P (Aεnn ) ,

where Aε = A if ε = 0 and Aε = Ac if ε = 1, then the family {Ai}i≤n is independent.

A simple explanation relies on algebraic manipulations like this one

P (A2 ∩ · · · ∩An) = P (A1 ∩A2 ∩ · · · ∩An) + P (Ac1 ∩A2 ∩ · · · ∩An) .

We skip the details.

3.11 Example. Let Ω = (0, 1], F = B((0, 1]), P = Leb (a random point uniformly

selected from the unit interval (0, 1]). For every point x ∈ (0, 1], we write its binary

expansion,

x =

∞∑
n=1

dn(x)

2n
,

where dn(x) ∈ {0, 1} is the nth digit of x. For uniqueness, say we always write the

expansion that has infinitely many 1’s, e.g. 1
2 = 0.0111 . . .. Consider the events

Ak = {x ∈ [0, 1], dk(x) = 0}, k = 1, 2, . . . .

Claim. P (Ak) = 1
2 and {Ak}k≥1 are independent.

In other words, the probability space (Ω,F ,P) is also a good model for infinitely many

tosses of a fair coin with the events Ak being “kth toss is heads”. To prove that

P (Ak) = 1
2 , just note that Ak is the union of 2k intervals (

∑k
i=1 εi2

−i,
∑k
i=1 εi2

−i+2−k],

ε1, . . . , εk ∈ {0, 1}, each of length 2−k. To prove the independence, note that for fixed

ε1, . . . , εn ∈ {0, 1},

P (Aε11 ∩ . . . ∩Aεnn ) = Leb{x ∈ (0, 1], d1(x) = ε1, . . . , dn(x) = εn}

= Leb

((
n∑
i=1

εi
2i
,

n∑
i=1

εi
2i

+
1

2n

])

=
1

2n

and use Example 3.10.
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To put this important example a bit differently, we have constructed the sequence

d1, d2, . . . of independent, identically distributed random variables (i.i.d. for

short), each one having equal probability of taking the value 0 and 1 (dk tells us the

outcome of the kth toss).

3.12 Example. We construct a sequence X1, X2, . . . of i.i.d. random variables uniform

on [0, 1]. Let as before Ω = (0, 1], F = B((0, 1]), P = Leb. For every ω ∈ Ω we write as

before its (unique) binary expansion

ω =

∞∑
i=1

ωi
2i

= 0.ω1ω2 . . . ,

where ω1, ω2, . . . ∈ {0, 1} are the consecutive digits of ω. We define new functions

X1(ω) = 0.ω1ω3ω6ω10 . . .

X2(ω) = 0.ω2ω5ω9 . . .

X3(ω) = 0.ω4ω8 . . .

X4(ω) = 0.ω7 . . .

. . . . . . . . . . . . . . .

(we put the consecutive indices on the diagonals: 1, then 2, 3, then 4, 5, 6 then 7, 8, 9, 10

and so on). Intuitively

1) X1, X2, . . . are independent random variables

2) each Xi is uniform on [0, 1].

The intuition for 1) is that the rows are built on disjoint sequences of the ωi. The

formal proof follows instantly from Theorem 3.2 about packaging independence.

The intuition for 2) is that each ωi is just a random digit. The formal proof fol-

lows from the observation that for every k ≥ 1 and j = 0, 1, . . . , 2k − 1, we have

P
(
j

2k
< Xi ≤ j+1

2k

)
= 1

2k
, so by the continuity of P, we have P (a < Xi ≤ b) = b − a

for every interval (a, b] ⊂ (0, 1].

3.13 Example. Given probability distribution functions F1, F2, . . ., we construct a

sequence of independent random variables Y1, Y2, . . . such that FYi = Fi for each i. We

take the sequence X1, X2, . . . of i.i.d. uniform random variables uniform on [0, 1] from

Example 3.12. We set

Yi = Gi(Xi),

where Gi : [0, 1]→ R is the inverse function of Fi defined in the proof of Theorem 2.13,

that is

Gi(x) = inf{y ∈ R, Fi(y) ≥ x}.

Then (see the proof of Theorem 2.13), we have

FYi(t) = P (Yi ≤ t) = P (Gi(Xi) ≤ t) = P (Xi ≤ Fi(t)) = Fi(t)
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and the Yi are independent because the Xi are independent.

3.4 Borel-Cantelli lemmas

Recall that for an infinite sequence of events A1, A2, . . ., we define

lim supAn =

∞⋂
n=1

∞⋃
k=n

Ak

(infinitely many Ak occur) and

lim inf An =

∞⋃
n=1

∞⋂
k=n

Ak

(eventually all the Ak occur, that is only finitely many Ak do not occur). Plainly,

(lim supAn)c = lim inf Acn.

The notation is explained by the following identities involving the indicator functions

1An ,

lim supAn = {ω ∈ Ω, lim sup
n→∞

1An(ω) = 1}

and

lim inf An = {ω ∈ Ω, lim inf
n→∞

1An(ω) = 1}.

3.14 Lemma (The first Borel-Cantelli lemma). If A1, A2, . . . are events such that∑
n

P (An) <∞,

then

P (lim supAn) = 0.

Proof. By the monotonicity of the events Bk =
⋃
n≥k An and the union bound, we get

P (lim supAn) = P

(⋂
k

Bk

)
= lim
k→∞

P (Bk) ≤ lim
k→∞

∑
n≥k

P (An) = 0.

3.15 Lemma (The second Borel-Cantelli lemma). If A1, A2, . . . are independent events

such that ∑
n

P (An) =∞,

then

P (lim supAn) = 1.
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Proof. By the monotonicity of the events Bk =
⋂
n≥k A

c
n, we get

P ((lim supAn)c) = P

(⋃
k

Bk

)
= lim
k→∞

P (Bk) .

so it is enough to show that P (Bk) = 0. By independence, for l ≥ k,

P (Bk) ≤ P

 ⋂
l≥n≥k

Acn

 =
∏

k≤n≤l
P (Acn) =

∏
k≤n≤l

(1− P (An)).

Thus, by the inequality 1− x ≤ e−x,

P (Bk) ≤ e−
∑
k≤n≤l P(An).

Letting l→∞ and using that
∑
n≥k P (An) =∞ finishes the proof.

3.16 Example. Let X1, X2, . . . be i.i.d. random variable with the distribution function

specified by the condition P (Xk > t) = e−t, t > 0 for each k. Fix α > 0 and consider

the events An = {Xn > α log n}. Since P (An) = e−α logn = n−α, by the Borel-Cantelli

lemmas, we get

P (Xn > α log n for infinitely many n) =

0, if α > 1,

1, if α ≤ 1.

Let

L = lim sup
n→∞

Xn

log n
.

Thus,

P (L ≥ 1) = P
(
Xn

log n
for infinitely many n

)
= 1

and

P (L > 1) = P

⋃
k≥1

{
L > 1 +

1

k

}
≤
∑
k≥1

P
(
Xn

log n
> 1 +

1

2k
for infinitely many n

)
= 0.

Therefore, L = 1 a.s.

3.5 Tail events and Kolmogorov’s 0− 1 law

For a sequence of random variables X1, X2, . . ., we define its tail σ-algebra by

T =
⋂
n≥1

σ(Xn+1, Xn+2, . . .).
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For example, very natural events such as

{lim
n
Xn exists}, {

∑
Xn converges}, {lim sup

n
Xn > 1}

belong to T . If we have independence, the tail σ-algebra carries only trivial events.

3.17 Theorem (Kolmogorov’s 0-1 law). If X1, X2, . . . is a sequence of independent

random variables and T is its tail σ-algebra, then for every A ∈ T , we have that either

P (A) = 0 or P (A) = 1.

Proof. Define the σ-algebras

Xn = σ(X1, . . . , Xn)

and

Tn = σ(Xn+1, Xn+2, . . .).

We prove the theorem by establishing the following 4 simple claims.

Claim 1. For every n, Xn and Tn are independent.

Indeed, consider the family A of the events of the form {∀i ≤ n, Xi ≤ si}, si ∈ R and

the family B of the events of the form {∀n < i < n+m,Xi ≤ ti}, m ≥ 1, ti ∈ R. These

are π-systems which generate Xn and Tn respectively. Clearly A and B are independent,

hence Xn and Tn are independent (Lemma 3.1).

Claim 2. For every n, Xn and T are independent.

This follows instantly because T ⊂ Tn.

Claim 3. Let X = σ(X1, X2, . . .). Then X and Tn are independent.

Let A =
⋃∞
n=1 Xn. This is a π-system generating X . By Claim 2, A and T are

independent, so X and T are independent (Lemma 3.1).

Claim 4. For every A ∈ T , P (A) ∈ {0, 1}.
Since T ⊂ X , by Claim 3, T is independent o T , thus

P (A) = P (A ∩A) = P (A)P (A) ,

hence the result.
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3.6 Exercises

1. Define the Rademacher functions r1, r2, . . . : [0, 1]→ {−1, 0, 1} by

rn(x) = sgn
(

cos(2nπx)
)
, x ∈ [0, 1],

where sgn is the usual signum function. Consider these functions as random variables

on the probability space ([0, 1],B([0, 1]),Leb). What is the distribution of rn? Show

that the family {rn}n≥1 is independent.

2. Define the Walsh functions wA : {−1, 1}n → {−1, 1} indexed by all subsets A of

{1, . . . , n},

wA(x1, . . . , xn) =
∏
i∈A

xi, x = (x1, . . . , xn) ∈ {−1, 1}n

and w∅ = 1 (a constant function). Consider these functions as random variables on

{−1, 1}n equipped with the uniform probability measure. What is the distribution

of wA? Show that the wA are pairwise independent. Are they independent?

3. For independent events A1, . . . , An,

(1− e−1) min

{
1,

n∑
i=1

P (Ai)

}
≤ P

(
n⋃
i=1

Ai

)
≤ min

{
1,

n∑
i=1

P (Ai)

}
.

4. Prove the so-called infinite monkey theorem: when we toss a fair coin infinitely many

times then the event that “every given finite sequence of heads/tails occurs infinitely

many times” is certain.

5. Suppose events A1, A2, . . . are independent and all have equal probabilities. What is

the probability that infinitely many Ai’s occur?

6. Suppose events A1, A2, . . . are independent and P (An) ∈ (0, 1) for every n. Then

infinitely many An occur with probability 1 if and only if at least one An occurs with

probability 1.

7. Let Ω be the set of positive integers and let Ak be the set of positive integers divisible

by k, k ≥ 1. Is there a probability measure P defined on all the subsets of Ω such

that P (Ak) = 1
k for every k = 1, 2, . . .?

8. Prove Theorem 3.6.

9. Fill out the details in Example 3.10.

10. Let X1, X2, . . . be a sequence of independent random variables and let T be its tail

σ-algebra. If a random variable Y is T -measurable, then Y is a.s. constant.
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11. Let X1, X2, . . . be a sequence of independent random variables. Show that the radius

of convergence of the power series
∑∞
n=1Xnz

n is a.s. constant.

12. Are there two nonconstant continuous functions f, g : [0, 1]→ R which, when viewed

as random variables on the probability space ([0, 1],B([0, 1]),Leb), are independent?
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4 Expectation

4.1 Definitions and basic properties

Let X be a random variable on a probability space (Ω,F ,P). We say that X is inte-

grable, if ∫
Ω

|X(ω)|dP (ω) <∞

and then define its expectation (also called its mean) as

EX =

∫
Ω

X(ω)dP (ω) .

Both integrals are Lebesgue integrals (see Appendix E for a construction and basic

properties). For a random vector X in Rn, its expectation is defined as the following

vector in Rn,

EX =

[ EX1

...
EXn

]
.

We list the most important basic properties

(i) monotonicity: if X is a nonnegative random variable, then EX ≥ 0,

(ii) the triangle inequality: |EX| ≤ E|X|,

(iii) linearity: if X, Y are integrable, then for every a, b ∈ R, aX+ bY is integrable and

E(ax+ bY ) = aEX + bEY .

We also list the most important limit theorems.

4.1 Theorem (Lebesgue’s monotone convergence theorem). If X1, X2, . . . are nonneg-

ative random variables such that for every n, Xn+1 ≥ Xn, then

E
(

lim
n→∞

Xn

)
= lim
n→∞

EXn

(with the provision that the left hand side is +∞ if and only if the right hand side is

+∞)

4.2 Theorem (Fatou’s lemma). If X1, X2, . . . are nonnegative random variables, then

E
(

lim inf
n→∞

Xn

)
≤ lim inf

n→∞
EXn.

4.3 Theorem (Lebesgue’s dominated convergence theorem). If X,X1, X2, . . . are ran-

dom variables such that Xn −−−−→
n→∞

X a.s. and for every n, |Xn| ≤ Y for some integrable

random variable Y , then

E|Xn −X| −−−−→
n→∞

0.

In particular,

EX = E
(

lim
n→∞

Xn

)
= lim
n→∞

EXn.

33



The proofs are in Appendix E.

We turn to the relation between the expectation of a random variable and the integral

against its law.

4.4 Theorem. Let h : R → R be a Borel measurable function. Let X be a random

variable. Then

Eh(X) =

∫
R
h(x)dµX(x).

(The identity should be understood as follows: if the integral on one side exists, then the

other one does and they are equal.)

Proof. We leverage the linearity of both sides in h and use a standard method from

measure theory of complicating h.

I. If h = 1A, for some A ∈ B(R), then

Eh(X) =

∫
Ω

1A(ω)dP (ω) = P (A) = µX(A) =

∫
R

1A(x)dµX(x) =

∫
R
h(x)dµX(x).

II. If h is a simple function, that is h =
∑N
i=1 xi 1Ai for some x1, . . . , xN ∈ R and

A1, . . . , AN ∈ B(R), then the identity follows from the previous step by linearity.

III. If h is a nonnegative function, then there is a sequence of nonnegative simple

functions h1, h2, . . . such that for every n, hn+1 ≥ hn and hn → h (pointwise). Thus, the

identity follows in this case from the previous step by Lebesgue’s monotone convergence

theorem.

IV. If h is arbitrary, we decompose it into its positive and negative part, h+ = max{0, h},
h− = max{0,−h},

h = h+ − h−

and the identity follows from the previous step by linearity and the definition of Lebesgue

integral.

4.5 Remark. Note that the identity we proved is linear in h. The above argument of

gradually complicating h is standard is such situations.

4.6 Corollary. If X is a discrete random variable with pi = P (X = xi) > 0,
∑
i pi = 1,

then since µX =
∑
piδxi , we get

Eh(X) =
∑
i

pih(xi).

If X is a continuous random variable with density f , then since∫
R
h(x)dµX(x) =

∫
R
h(x)f(x)dx

(which can be justified exactly as in the proof of Theorem 4.4), we get

Eh(X) =

∫
R
h(x)f(x)dx.
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4.2 Variance and covariance

For a random variable X with EX2 < ∞ (as we say, square-integrable), we define its

variance as

Var(X) = E(X − EX)2.

Since (X − EX)2 = X2 − 2(EX)X + (EX)2, we have the convenient formula,

Var(X) = EX2 − (EX)2.

Note that by its definition, the variance is shift invariant,

Var(X + c) = Var(X),

for every constant c ∈ R, and scales quadratically,

Var(λX) = λ2 Var(X),

for every constant λ ∈ R. Moreover, if X and Y are random variables with EX2,EY 2 <

∞, then because (X + Y )2 ≤ 2X2 + 2Y 2, we have E(X + Y )2 < ∞ and denoting

X̄ = X − EX, Ȳ = Y − EY , we obtain

Var(X + Y ) = E(X̄ + Ȳ )2 = EX̄2 + EȲ 2 + 2EX̄Ȳ = Var(X) + Var(Y ) + 2EX̄Ȳ .

This motives the following definition of the covariance between such two random vari-

ables,

Cov(X,Y ) = E
(

(X − EX)(Y − EY )
)

= EXY − (EX)(EY ).

By the above identity we also obtain the following formula for the variance of the sum.

4.7 Theorem. Let X1, . . . , Xn be square-integrable random variables. Then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj).

In particular, if the Xi are uncorrelated, that is Cov(Xi, Xj) = 0 for all i 6= j, we

have

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

For a random vector X in Rn with square-integrable components, we define its

covariance matrix as

Cov(X) = [Cov(Xi, Xj)]i,j≤n.

It is convenient to write

Cov(X) = EX̄X̄>,

with X̄ = X−EX (here the expectation of the n×n matrix X̄X̄> is understood entry-

wise). From this and the linearity of expectation, we quickly obtain the following basic

properties of covariance matrices.
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4.8 Theorem. Let X be a random vector in Rn with square-integrable components.

Then

(i) Cov(X) is a symmetric positive semi-definite matrix

(ii) Cov(X + b) = Cov(X), for every (deterministic) vector b ∈ Rn,

(iii) Cov(AX) = ACov(X)A>, for every n× n matrix A,

(iv) if r = rank(Cov(X)), then P (X ∈ H) = 1 for some r-dimensional affine subspace

of Rn.

Proof. We show (iv) and leave the rest as an exercise. Let M = Cov(X). If M has rank

r, then there are n− r linearly independent vectors in its kernel, say v1, . . . , vn−r. Since

Mvi = 0, we have

0 = v>i Mvi = E(v>i X̄X̄
>vi) = E(X̄>vi)

2,

so the nonnegative random variable (X̄>vi)2 whose expecation is 0 therefore has to

be 0 a.s. This holds for every i, thus P
(
∀i ≤ n− r X̄>vi = 0

)
= 1 and we can take

H = {x ∈ Rn, ∀i ≤ n− r (x− EX)>vi = 0}.

4.3 Independence again, via product measures

Given two probability spaces (Ωi,Fi,Pi), i = 1, 2, we define their product by taking, of

course,

Ω = Ω1 × Ω2

and

F = σ(A1 ×A2, A1 ∈ F1, A2 ∈ F2)

which is called the product σ-algebra, denoted

F = F1 ⊗F2.

Then the product measure P, denoted

P = P1 ⊗ P2,

is the unique probability measure on F such that for all A1 ∈ F1, A2 ∈ F2,

P (A1 ×A2) = P1(A1)P2(A2).

Its existence is related to Fubini’s theorem (see Appendix C). It plainly generalises to

finite products.
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4.9 Example. Thanks to separability, we have

B(Rn) = B(R)⊗ · · · ⊗ B(R)

(with the right hand side usually denoted B(R)⊗n). One inclusion relies only on the

definition of the product topology, that is

B(R)⊗n ⊂ B(Rn)

holds because if A1, . . . , An are open, then A1 × · · · × An is open, so the generators of

the left hand side belong to B(Rn). The opposite inclusion,

B(Rn) ⊂ B(R)⊗n

holds because an open set in Rn is a countable union of the sets of the form
∏n
i=1(ai, bi),

by separability, thus the generators of the left hand side belong to B(R)⊗n.

For infinite products, we have the following result, which also gives a canonical

construction of an infinite sequence of i.i.d. random variables with specified arbitrary

laws.

4.10 Theorem. Let µ1, µ2, . . . be probability measures on (R,B(R)). We set

Ω =

∞∏
i=1

R = R× R× . . . ,

Xn(ω1, ω2, . . .) = ωn, (ω1, ω2, . . .) ∈ Ω,

and

F = σ(X1, X2, . . . ).

There is a unique probability measure P on (Ω,F) such that for every k ≥ 1 and

A1, . . . , Ak ∈ B(R), w have

P (A1 × · · · ×Ak × R× . . .) = µ1(A1) · . . . · µk(Ak).

Moreover, X1, X2, . . . are independent random variables on (Ω,F ,P) with µXi = µi.

We defer its proof to Appendix D. It is based on Carathéodory’s theorem.

Recall that random variables X1, . . . , Xn are independent if and only if its joint law

µ(X1,...,Xn) is the product measure µX1
⊗· · ·⊗µXn (Theorem 3.4). Using this, we prove

one of the most significant consequences of independence: the expectation of the product

is the product of the expectations.

4.11 Theorem. Let X1, . . . , Xn be integrable random variables. If they are independent,

then X1 · . . . ·Xn is integrable and

E(X1 · . . . ·Xn) = EX1 · . . . · EXn.
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Proof. We have,

E|X1 · . . . ·Xn| =
∫
Rn
|x1 · . . . · xn|dµ(X1,...,Xn)(x1, . . . , xn)

=

∫
Rn
|x1 · . . . · xn|dµX1(x1) . . . dµXn(xn)

=

n∏
i=1

∫
R
|xi|dµXi(xi),

where in the second equality we use independence and in the last one – Fubini’s theorem.

This shows that X1 · . . . ·Xn is integrable. The proof of the identity then follows exactly

the same lines.

Of course, the converse statement is not true. Take for instance a uniform random

variable X on {−1, 0, 1} and Y = |X|. Then E(XY ) = 0 = EX · EY , but X and Y are

not independent.

As a useful corollary, independent random variables are uncorrelated, so we also

have that the variance of the sum of independent random variables is the sum of their

variances (recall Theorem 4.7).

4.12 Corollary. If X1, X2 are independent, then Cov(X1, X2) = 0. In particular, if

X1, . . . , Xn are independent square-integrable, then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

Since FX determines the law of X, it should be possible to express EX using it.

We finish this chapter with such a formula which is obtained from a simple trick that

x =
∫ x

0
dt, x ≥ 0, combined with Fubini’s theorem.

4.13 Theorem. If X is a nonnegative random variable, then

EX =

∫ ∞
0

P (X > t) dt.

Proof. We have,

EX = E

(∫ X

0

dt

)
= E

∫ ∞
0

1X>t dt =

∫ ∞
0

E1X>t dt =

∫ ∞
0

P (X > t) dt,

where the usage of Fubini’s theorem is justified because 1X>t is a nonnegative function.
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4.4 Exercises

1. An urn contains N balls among which exactly b are yellow. We pick uniformly at

random n (n ≤ N) balls without replacement. Let X be the number of yellow balls

picked. Find the expectation and variance of X.

2. Show that a nonnegative random variable X is integrable if and only if

∞∑
n=1

P (X > n) <∞.

3. Let p > 0. If X is a nonnegative random variable, then

EXp = p

∫ ∞
0

tp−1P (X > t) dt.

Give an analogous formula for Ef(X) for an arbitrary increasing and differentiable

function f : [0,∞)→ [0,∞) with f(0) = 0.

4. Let p > 0 and X be a random variable with E|X|p <∞. Then

lim
t→∞

tpP (|X| > t) = 0.

5. Let X be a random variable satisfying limt→∞ tpP (|X| > t) = 0. Show that for every

0 < δ < 1, we have E|X|1−δ < ∞. Give an example of such a random variable for

which E|X| = +∞.

6. Suppose X and Y are independent random variables and the distribution function of

X is continuous. Then P (X = Y ) = 0.

7. Let X and Y be independent random variables taking values in S = {z ∈ C, |z| = 1}.
If X is uniform, then XY is also uniform.

8. Suppose X and Y are positive random variables with the same distribution. Does it

follow that E X
X+Y = E Y

X+Y ?

9. Let X and Y be bounded random variables. Show that X and Y are independent if

and only if for every positive integers m,n, we have E(XmY n) = EXmEY n.

10. Let X be a square-integrable random variable. Find minx∈R E(X − x)2.

11. Let X be an integrable random variable. Show that minx∈R E|X − x| is attained at

x = Med(X), the median of X, that is any number m for which P (X ≥ m) ≥ 1
2 and

P (X ≤ m) ≥ 1
2 .

12. Let X be a square-integrable random variable. We have, |EX−Med(X)| ≤
√

Var(X).

13. Prove properties (i)-(iii) of covariance matrices from Theorem 4.8.
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14. Suppose there is a countable family of disjoint open disks with radii r1, r2, . . ., all

contained in the unit square [0, 1]2 on the plane. If the family covers [0, 1]2 up to a

set of (Lebesgue) measure 0, then
∑
i ri =∞.
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5 More on random variables

5.1 Important distributions

We list several discrete and continuous laws of random variables that appear very often

in probability theory.

1) The Dirac delta distribution. For a ∈ R, let X be an a.s. constant random variable,

P (X = a) = 1.

Then

µX = δa

is the Dirac delta distribution at a. We have,

EX = a, Var(X) = 0.

2) The Bernoulli distribution. For p ∈ [0, 1], let X be a random variable taking two

values 0 and 1 with probabilities

P (X = 1) = p, P (X = 0) = 1− p.

Then

µX = (1− p)δ0 + pδ1

is the Bernoulli distribution with parameter p. We have,

EX = p, Var(X) = p(1− p).

Notation: X ∼ Ber(p).

3) The binomial distribution. For an integer n ≥ 1 and p ∈ [0, 1], let X be a random

variable taking values {0, 1, . . . , n} with probabilities

P (X = k) =

(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n.

Then

µX =

n∑
k=0

(
n

k

)
pk(1− p)n−kδk

is the Binomial distribution with parameters n and p. It can be directly checked that

X has the same law as X1 + · · ·+Xn,

where X1, . . . , Xn are i.i.d. Bernoulli random variables with parameter p, which gives

a very convenient probabilistic representation of X. In other words,

X is the number of successes in n independent Bernoulli trials.
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We have,

EX = E(X1 + . . .+Xn) = nEX1 = np

and

Var(X) = nVar(X1) = np(1− p).

Notation: X ∼ Bin(n, p).

4) The Poisson distribution. For λ > 0, let X be a random variable taking values

{0, 1, 2, . . .} with probabilities

P (X = k) = e−λ
λk

k!
, k ≥ 0.

Then

µX =

∞∑
k=0

e−λ
λk

k!
δk

is the Poisson distribution with parameter λ. We will see later that this distribution

arises as an appropriate limit of the Binomial distribution with parameters n and

λ/n as n → ∞. In other words, X is “the number of successes in n independent

Bernoulli trials each with probability of success λ
n” as n → ∞, so that the rate of

success is λ. This distribution models well the number of events occuring in a fixed

interval of time if these events occur with a constant mean rate λ, independently of

the time since the last event, say the number of calls in a busy call centre.

We have,

EX = λ, Var(X) = λ.

Notation: X ∼ Poiss(λ).

5) The geometric distribution. For p ∈ [0, 1], let X be a random variable taking values

{1, 2, . . .} with probabilities

P (X = k) = (1− p)k−1p, k ≥ 1.

Then

µX =

∞∑
k=1

(1− p)k−1pδk

is the Geometric distribution with parameter p. It can be directly checked that

X has the same law as inf{n ≥ 1, Xn = 1},

where X1, X2, . . . are i.i.d. Bernoulli random variables with parameter p. In other

words,

X is the number of trials in independent Bernoulli trials until first success.

We have,

EX =
1

p
, Var(X) =

1− p
p2

.

Notation: X ∼ Geom(p).
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6) The uniform distribution. For a Borel set K in Rn of positive finite Lebesgue measure

(volume) |K|, let X be a random variable with density function

f(x) =
1

|K| 1K(x), x ∈ Rn.

Then

µX(A) =

∫
A

f(x)dx =
|A ∩K|
|K| , A ∈ B(Rn).

We say that µX is the uniform measure on K. We have,

EX =
1

|K|

∫
K

xdx (the barycentre of K).

Notation: X ∼ Unif(K).

In particular, if K = [0, 1] in R, X is uniform on the unit interval [0, 1] and we have

EX =
1

2
, Var(X) =

1

12
.

7) The exponential distribution. For λ > 0, let X be a random variable with density

function

f(x) = λe−λx 1(0,∞)(x), x ∈ R.

We say that µX (or X) has the exponential distribution with parameter λ. This is a

continuous analogue of the geometric distribution. It has the so-called memory-less

property: for every s, t > 0,

P (X > s+ t|X > s) = P (X > t)

which characterises it uniquely among continuous distributions (see exercises). We

have,

EX =
1

λ
, Var(X) =

1

λ2
.

Notation: X ∼ Exp(λ).

8) The gamma distribution. For β, λ > 0, let X be a random variable with density

function

f(x) =
λβ

Γ(β)
xβ−1e−λx 1(0,∞)(x), x ∈ R,

where

Γ(β) =

∫ ∞
0

tβ−1e−tdt,

is the Gamma function. We say that µX (or X) has the Gamma distribution with

parameters β and λ. When β = n is a positive integer, we have a nice probabilistic

representation,

X has the same law as X1 + · · ·+Xn,
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where X1, . . . , Xn are i.i.d. exponential random variables with parameter λ. We

have,

EX =
β

λ
, Var(X) =

β

λ2
.

Notation: X ∼ Gamma(β, λ).

9) The beta distribution. For α, β > 0, let X be a random variable with density function

f(x) =
1

B(α, β)
xα−1(1− x)β−1 1(0,1)(x), x ∈ R,

where

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α+ β)
,

is the Beta function. We say that µX (or X) has the Beta distribution with pa-

rameters α, β. This distribution appears naturally as a marginal of a random vector

uniform on the centred unit Euclidean ball. We have,

EX =
α

α+ β
, Var(X) =

αβ

(α+ β)2(α+ β + 1)
.

Notation: X ∼ Beta(α, β).

10) The Cauchy distribution. Let X be a random variable with density function

f(x) =
1

π(1 + x2)
, x ∈ R.

We say that µX (or X) has the standard Cauchy distribution. It has the following

stability property: for every a1, . . . , an ∈ R,

a1X1 + · · ·+ anXn has the same law as (
∑
|ai|)X,

where X1, . . . , Xn are i.i.d. copies of X. Cauchy random variables are not integrable.

Notation: X ∼ Cauchy(1).

11) The Gaussian distribution. Let X be a random variable with density function

f(x) =
1√
2π
e−x

2/2, x ∈ R.

We say that µX (or X) has the standard Gaussian (or normal) distribution. We

have,

EX = 0, Var(X) = 1.

Notation: X ∼ N(0, 1).

For µ ∈ R and σ > 0 consider

Y = µ+ σX.

This a Gaussian random variable with parameters µ and σ. It has density

g(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R.
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We have,

EY = µ, Var(Y ) = σ2.

Notation: Y ∼ N(µ, σ2).

The key property of the Gaussian distribution is that sums of independent Gaussians

are Gaussian. Formally, let Y1 ∼ N(µ1, σ
2
1), Y2 ∼ N(µ2, σ

2
2) be two independent

Gaussian random variables. Then,

Y1 + Y2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2). (5.1)

We prove this later. Because of the central limit theorem, Gaussian random variables

are ubiquitous.

5.2 Gaussian vectors

Let X1, . . . , Xn be i.i.d. standard Gaussian random variables. The vector

X = (X1, . . . , Xn)

is called a standard Gaussian random vector in Rn. It has density

f(x) =

n∏
i=1

1√
2π
e−x

2
i /2 = (2π)−n/2e−|x|

2/2, x ∈ Rn

(here |x| =
√∑

x2
i is the Euclidean norm of x). Note that X enjoys at the same

time two important features: 1) X has independent components (its law is a product

measure), 2) because the density of X is rotationally invariant, so is X, that is for every

orthonormal matrix U ∈ O(n),

UX has the same law as X.

We have,

EX = 0 (∈ Rn), Cov(X) = Idn×n.

Notation: X ∼ N(0, In×n).

We say that a random vector Y in Rm is Gaussian, if

Y has the same law as AX + b,

for some m × n matrix A and vector b ∈ Rm, where X ∼ N(0, In×n). In other words,

Gaussian vectors are defined as affine images of standard Gaussian vectors. We have,

EY = b, Q = Cov(Y ) = AA>.

Notation: Y ∼ N(b,Q).
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In particular, if m = n and A is nonsingular, then Y has density

g(x) =
1√

2π
n√

detQ
e−

1
2〈Q−1(x−b),(x−b)〉, x ∈ Rn

where

〈x, y〉=
n∑
i=1

xiyi

is the standard scalar product on Rn.

All of the claims made here are standard but very important computations and we

leave the details as exercise.

5.3 Sums of independent random variables

Recall that the convolution of two integrable functions f, g : R → R is defined as a

function

x 7→ (f ? g)(x) =

∫
R
f(x− y)g(y)dy

which by Fubini’s theorem is well-defined because w(x, y) = f(x)g(y) is integrable on

R2, so w(x− y, y) is also integrable on R2.

Convolutions appear naturally when we take sums of independent random variables.

5.1 Theorem. Let X and Y be independent random variables. Then the law of X + Y

is given by

µX+Y (A) =

∫
A

µY (A− x)dµX(x) =

∫
A

µX(A− y)dµY (y), A ∈ B(R).

In particular, if X has density f , then X + Y has density

h(x) =

∫
R
f(x− y)dµY (y).

If both X,Y have densities, say f, g respectively, then

X + Y has density f ? g.

Proof. By independence, µ(X,Y ) = µX ⊗ µY , thus

µX+Y (A) = µ(X,Y )

{
(x, y) ∈ R2, x+ y ∈ A

}
=

∫∫
(x,y)∈R2, x+y∈A

dµX(x)dµY (y)

=

∫
x∈R

[∫
y∈A−x

dµY (y)

]
dµX(x),

where the last equality follows by Fubini’s theorem. Since
∫
y∈A−x dµY (y) = µY (A−x),

the first identity follows. Note that swapping the roles of X and Y above gives also the

identity

µX+Y (A) =

∫
R
µX(A− y)dµ(y).
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If X has density f , we have µX(A − y) =
∫
A−y f(x)dx, so by a change of variables

x = z − y and Fubini’s theorem, we get

µX+Y (A) =

∫
R

∫
A−y

f(x)dxdµY (y)

=

∫
R

∫
A

f(z − y)dzdµY (y)

=

∫
A

[∫
R
f(z − y)dµY (y)

]
dz,

so h(z) =
∫
R f(z− y)dµY (y) = Ef(z−Y ) is the density of X +Y . Finally, if Y has also

density, say g, then this becomes h(z) =
∫
R f(z − y)g(y)dy, that is h = f ? g.

Sometimes we use the notation µX ?µY to denote µX+Y . To illustrate this theorem,

we consider the example of sums of independent Gaussians.

5.2 Example. Let X ∼ N(0, 1), Y ∼ N(0, σ2) be independent. The densities of X

and Y are respectively f(x) = 1√
2π
e−x

2/2 and g(y) = 1√
2πσ

e−y
2/2. Thus the density of

X + Y is given by

h(z) =

∫
R
f(z − x)g(x)dx =

1

2πσ

∫
R
e−

1
2 (z−x)2− 1

2σ2
x2

dx

=
1

2πσ

∫
R
e
− 1

2
1+σ2

σ2

(
x−
√

σ2

1+σ2
z
)2

e
− 1

2
1

1+σ2
z2

dx

=
1

2πσ
e
− 1

2
1

1+σ2
z2
∫
R
e−

1
2u

2

du ·
√

σ2

1 + σ2

=
1√

2π
√

1 + σ2
e
− 1

2
1

1+σ2
z2
,

that is

X + Y ∼ N(0, 1 + σ2).

Using this, linearity and the fact that for Y ∼ N(µ, σ2) we can write Y = µ+ σX for a

standard Gaussian X, we can easily deduce (5.1).

5.4 Density

Recall that a random variable X has density f if for every t ∈ R,

FX(t) =

∫ t

−∞
f(x)dx.

How to find out whether X has density and if that is the case, determine it using its

distribution function FX?

5.3 Lemma. Let F : R→ R be a nondecreasing, right-continuous function such that F ′

exists a.e. Then for every a < b, we have∫ b

a

F ′ ≤ F (b)− F (a).
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Proof. By Fatou’s lemma,∫ b

a

F ′(t)dt =

∫ b

a

lim inf
δ→0+

F (t+ δ)− F (t)

δ
dt ≤ lim inf

δ→0+

∫ b

a

F (t+ δ)− F (t)

δ
dt

= lim inf
δ→0+

1

δ

(∫ b+δ

b

F (t)dt−
∫ a+δ

a

F (t)dt

)

and the right hand side equals F (b)− F (a) by the right-continuity of F .

5.4 Corollary. Under the assumptions of Lemma 5.3, if additionally limt→−∞ F (t) = 0

and limt→+∞ F (t) = 1, then for every x ∈ R, we have∫ x

−∞
F ′ ≤ F (x) and

∫ ∞
x

F ′ ≤ 1− F (x).

5.5 Theorem. If X is a random variable such that F ′X exists a.e. and
∫∞
−∞ F ′X = 1,

then X is continuous with density

f(x) =

F
′
X(x), if F ′X(x) exists,

0, otherwise.

Proof. By Corollary 5.4, it remains to show that for every x ∈ R, we have
∫ x
∞ F ′X ≥ F (x).

This follows from ∫ x

−∞
F ′X +

∫ ∞
x

F ′X =

∫ ∞
−∞

F ′X = 1

and
∫∞
x
F ′X ≤ 1− FX(x).

48



5.5 Exercises

1. There are n different coupons and each time you obtain a coupon it is equally likely

to be any of the n types. Let Yi be the additional number of coupons collected,

after obtaining i distinct types, before a new type is collected (including the new

one). Show that Yi has the geometric distribution with parameter n−i
n and find the

expected number of coupons collected before you have a complete set.

2. The double exponential distribution with parameter λ > 0 has density f(x) =

λ
2 e
−λ|x|. Find its distribution function, sketch its plot, find the mean and variance.

Let X and Y be i.i.d. exponential random variables with parameter 1. Find the

distribution of X − Y .

3. Let X and Y be independent Poisson random variables with parameters µ and λ.

Show that X + Y is a Poisson random variable with parameter µ+ λ.

4. Let X be a uniform random variable on (0, 1). Find the distribution function and

density of Y = − lnX. What is the distribution of Y called?

5. Let X be a Poisson random variable with parameter λ. Show that P (X ≥ k) =

P (Y ≤ λ), for k = 1, 2, . . ., where Y is a random variable with the Gamma distribu-

tion with parameter k.

6. Let X and Y be independent exponential random variables with parameters λ and

µ. Show that min{X,Y } has the exponential distribution with parameter λ+ µ.

7. Let X1, X2, . . . be independent exponential random variables with parameter 1. Show

that for every n, the distribution of X1 + . . .+Xn is Gamma(n). Generalise this to

sums of independent random variables with Gamma distributions: if X1, . . . , Xn are

independent with Xi ∼ Γ(βi), then
∑n
i=1Xi ∼ Γ(

∑n
i=1 βi).

8. Let (X,Y ) be a random vector in R2 with density f(x, y) = cxy 10<x<y<1. Find c

and P (X + Y < 1). Are X and Y independent? Find the density of (X/Y, Y ). Are

X/Y and Y independent?

9. Let X and Y be independent standard Gaussian random variables. Show that X/Y

has the Cauchy distribution.

10. Let X = (X1, . . . , Xn) be a random vector in Rn uniformly distributed on the simplex

{x ∈ Rn, x1 + . . .+xn ≤ 1, x1, . . . , xn ≥ 0}. Find EX1, EX2
1 , EX1X2, the covariance

matrix of X and its determinant.

11. Let U1, . . . , Un be a sequence of i.i.d. random variables, each uniform on [0, 1]. Let

U∗1 , . . . , U
∗
n be its nondecreasing rearrangement, that is U∗1 ≤ . . . ≤ U∗n. In par-

ticular, U∗1 = min{U1, . . . , Un} and U∗n = max{U1, . . . , Un}. Show that the vector

49



(U∗1 , . . . , U
∗
n) is uniform on the simplex {x ∈ Rn, 0 ≤ x1 ≤ . . . ≤ xn ≤ 1}. Find EU∗k

for 1 ≤ k ≤ n.

12. Show the lack of memory property characterises the exponential distribution. Specif-

ically, let X be a random variable such that for every positive s and t, P (X > s) > 0

and P (X > s+ t|X > s) = P (X > t) . Show that X has the exponential distribution.

13. Let X be a random variable such that there is a function g : R → R such that

FX(t) =
∫ t
−∞ g(x)dx for every t ∈ R. Then X is continuous and g is the density of

X.

14. Let U1, U2, U3 be independent uniform random variables on [−1, 1]. Find the density

of U1 + U2 and U1 + U2 + U3.

15. Let X and Y be independent random variables with densities f and g respectively.

Show that Z = X/Y has density h(z) =
∫∞
−∞ |y|f(yz)g(y)dy, z ∈ R.

16. Let X be a standard Gaussian random variable and Y be an exponential random

variable with parameter 1, independent of X. Show that
√

2Y X has the symmetric

(two-sided) exponential distribution with parameter 1.

17. Let X1, X2, X3 be i.i.d. standard Gaussian random variables. Find the mean and

variance of Y = 3X1 −X2 + 2X3. Find its density.

18. Show that a continuous Gaussian random vector in Rn has independent components

if and only if they are uncorrelated.

19. Give an example of a random vector (X,Y ) such that X and Y are uncorrelated

Gaussian random variables but X and Y are not independent.

20. Let (X,Y ) be a standard Gaussian random vector in R2. Let ρ ∈ (−1, 1) and define

[ UV ] =

[ √
1+ρ+

√
1−ρ

2 X+
√

1+ρ−
√

1−ρ
2 Y

√
1+ρ+

√
1−ρ

2 Y+
√

1+ρ−
√

1−ρ
2 X

]
.

Find the density of (U, V ). Is this a Gaussian random vector? What is its covariance

matrix? What is the distribution of U and V ? Determine the values of ρ for which

U and V are independent.

21. Let ρ ∈ (−1, 1) and let (U, V ) be a random vector in R2 with density

f(u, v) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(u2 − 2ρuv + v2)

}
, (u, v) ∈ R2.

Is it a Gaussian random vector? Find the covariance matrix of (U, V ). Find the

distributions of the marginals U and V . Determine the values of ρ for which U and

V are independent.
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22. Suppose (X,Y ) is a centred (i.e., EX = EY = 0) Gaussian random vector in R2 with

Cov([XY ]) = [ 2 1
1 1 ]. Find, a) the density of (X,Y ), b) the density of X + 3Y , c) all

α ∈ R for which X + Y and X + αY are independent.

23. Let G be a standard Gaussian vector in Rn and let U be an n×n orthogonal matrix.

Find the density of UG. Are the components of this vector independent?

24. Let g be a standard Gaussian random variable. Show that Eg2m = 1 ·3 · . . . · (2m−1),

m = 1, 2, . . ..

25. Using Fubini’s theorem and the fact that the standard Gaussian density integrates

to 1, find the volume of a Euclidean ball in Rn of radius 1. What is the radius of a

Euclidean ball of volume 1? What is its asymptotics for large n?
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6 Important inequalities and notions of convergence

6.1 Basic probabilistic inequalities

One of the simplest and very useful probabilistic inequalities is a tail bound by expec-

tation: the so-called Chebyshev’s inequality.

6.1 Theorem (Chebyshev’s inequality). If X is a nonnegative random variable, then

for every t > 0,

P (X ≥ t) ≤ 1

t
EX.

Proof. Since X ≥ X 1{X≥t} ≥ t1{X≥t}, taking the expectation yields

EX ≥ Et1{X≥t} = tP (X ≥ t) .

There are several variants, easily deduced from Chebyshev’s inequality by mono-

tonicity of certain functions. For a nonnegative random variable X and t > 0, using the

power function xp, p > 0, we get

P (X ≥ t) = P (Xp ≥ tp) ≤ 1

tp
EXp. (6.1)

For a real-valued random variable X, every t ∈ R and λ > 0, using the exponential

function eλx, we have

P (X ≥ t) = P (λX ≥ λt) ≤ 1

eλt
EeλX . (6.2)

For a real-valued random variable X, every t ∈ R, using the square function x2 and

variance, we have

P (|X − EX| ≥ t) ≤ 1

t2
E|X − EX|2 =

1

t2
Var(X). (6.3)

Another general and helpful inequality is about convex functions. Recall that a

function f : R → R is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for every

λ ∈ [0, 1] and x, y ∈ R. By induction, this can be extended to

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi)

for every λ1, . . . , λn ≥ such that
∑n
i=1 λi = 1 and every x1, . . . , xn ∈ R. The weights λi

can of course be interpreted in probabilistic terms: if X is a random variable taking the

value xi with probability λi, then
∑
λixi = EX, whereas

∑
λif(xi) = Ef(X), so we

have

f(EX) ≤ Ef(X).

This generalises to arbitrary random variables and is called Jensen’s inequality.
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6.2 Theorem (Jensen’s inequality). If f : R → R is a convex function and X is a

random variable such that both EX and Ef(X) exist, then

f(EX) ≤ Ef(X).

We shall present two proofs.

Proof 1. Suppose f is differentiable. Then by convexity, a tangent line at x0 is below

the graph, so

f(x) ≥ f(x0) + f ′(x0)(x− x0)

(which holds for every x0 and x). We set x = X, x0 = EX and take the expectation of

both sides to get

Ef(X) ≥ E [f(EX) + f ′(EX)(X − EX)] = f(EX) + f ′(EX)E(X − EX) = f(EX).

If f is not differentiable, this argument can be rescued by using the fact that convex func-

tions have left and right derivatives defined everywhere (because the divided differences

of convex functions are monotone).

Proof 2. Recall that a function is convex if and only if its epigraph is a convex set. By a

separation type argument, this gives that the convex function is a pointwise supremum

over a countable collection of linear functions. Specifically, let f : R → R be a convex

function and consider the family of linear functions with rational coefficients which are

below f ,

A = {` : R→ R, `(x) = ax+ b, a, b ∈ Q, ` ≤ f}.

Then

f(x) = sup
`∈A

`(x), x ∈ R.

Jensen’s inequality follows: for every ` ∈ A, by linearity, E`(X) = `(EX), thus

Ef(X) = E sup
`∈A

`(X) ≥ sup
`∈A

E`(X) = sup
`∈A

`(EX) = f(EX).

The so-called Hölder’s inequality is a very effective tool used to factor out the ex-

pectation of a product.

6.3 Theorem (Hölder’s inequality). Let p, q > 1 be such that 1
p + 1

q = 1. For random

variables X and Y , we have

E|XY | ≤ (E|X|p)1/p
(E|Y |q)1/q

.

In particular, when p = q = 2, this gives the Cauchy-Schwarz inequality

E|XY | ≤
√
E|X|2

√
E|Y |2.
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Proof 1. We can assume without loss of generality that E|X|p and E|Y |q are finite

(otherwise the right hand side is +∞ and there is nothing to prove). The key ingredient

is an elementary inequality for numbers.

Claim. For p, q ≥ 1 such that 1
p + 1

q = 1 and x, y ≥ 0 , we have

xy ≤ xp

p
+
yq

q
.

Proof. By the concavity of the log function, we have

log

(
xp

p
+
yq

q

)
≥ 1

p
log xp +

1

q
log yq = log xy.

Setting x = |X|p
(E|X|p)1/p

, y = |Y |q
(E|Y |q)1/q , taking the expectation and simplifying yields the

desired inequality.

Proof 2. By homogeneity we can assume that E|X|p = 1 and E|Y |q = 1. We can

also assume that |Y | > 0 a.e. (otherwise we consider max{|Y |, 1
n} and pass to the

limit by Lebesgue’s monotone convergence theorem). Define a new probability measure

P̃(A) = E|Y |q 1A, A ∈ F . In other words, ẼZ = EZ|Y |q for every (P̃-integrable) random

variable Z. Then, by the convexity of x 7→ xp and Jensen’s inequality,

(
E|X||Y |

)p
=
(
Ẽ|X||Y |1−q

)p ≤ Ẽ|X|p|Y |(1−q)p = E|X|p|Y |(1−q)p+q = E|X|p = 1.

6.2 Lp-spaces

Given a probability space (Ω,F ,P) and p ∈ (0,∞), we define

Lp = Lp(Ω,F ,P) = {X : Ω→ R, X is a random variable with E|X|p <∞}

which is called the Lp space (on Ω). Technically, Lp is defined as the set of the abstract

classes of random variables which are equal a.e., but we tacitly assume that and skip

such details. We set

‖X‖p = (E|X|p)1/p, X ∈ Lp.

We also extend this to p =∞ by setting

L∞ = {X : Ω→ R, X is a random variable with |X| ≤M a.s., for some M > 0}

and

‖X‖∞ = ess supX = inf{M ≥ 0, |X| ≤M a.s.}
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(the essential supremum ofX) with the usual convention that inf ∅ = +∞. Equivalently,

‖X‖∞ = inf{t ∈ R, FX(t) = 1}

(exercise). We also have

‖X‖p −−−→
p→∞

‖X‖∞

(another exercise). The quantity ‖X‖p is called the p-th moment of X. It is monotone

in p, which is an easy consequence of Jensen’s inequality.

6.4 Example. Let 0 < p < q. Take r = q
p and f(x) = |x|r which is convex. Thus for a

random variable X which is in Lq, using Jensen’s inequality, we have

E|X|q = Ef(|X|p) ≥ f(E|X|p) = (E|X|p)q/p,

equivalently,

‖X‖q ≥ ‖X‖p.

In other words, the function p 7→ ‖X‖p of moments of the random variable X is nonde-

creasing.

6.5 Example. Hölder’s inequality can be restated as: for random variables X and Y

and p, q ∈ [1,∞] with 1
p + 1

q = 1, we have

E|XY | ≤ ‖X‖p‖Y ‖q. (6.4)

The case p = 1, q =∞ follows by taking the limit in Hölder’s inequality.

Hölder’s inequality gives the following helpful variational formula for pthm moments,

p ∈ [1,∞].

6.6 Theorem. Let p ∈ [1,∞]. For X ∈ Lp, we have

‖X‖p = sup{EXY, Y is a random variable with E|Y |q ≤ 1}, (6.5)

where 1
p + 1

q = 1.

Proof. To see that the supremum does not exceed the pth moment, simply apply The-

orem 6.3. To see the opposite inequality, consider Y = sgn(X)|X|p−1‖X‖−p/qp . Then

EXY = ‖X‖p, so in fact we can write “max ”instead of “sup ”in (6.5). Using this

linearisation, we can effortlessly establish the triangle inequality for the pth moment,

the so-called Minkowski’s inequality.

6.7 Theorem (Minkowski’s inequality). Let p ∈ [1,∞]. Let X and Y be random

variables. Then

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.
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Proof. Invoking (6.5),

‖X + Y ‖p = sup{E(X + Y )Z, E|Z|q ≤ 1}.

By linearity, E(X + Y )Z = EXZ + EY Z. Using that sup{f + g} ≤ sup f + sup g and

applying again (6.5) finishes the proof.

6.8 Remark. For every 0 < p < 1 Minkowski’s inequality fails (for instance, take X

and Y to be i.i.d. Ber(α)). Let us derive its analogue. Observe that for 0 < p < 1 and

every real numbers x, y, we have

|x+ y|p ≤ |x|p + |y|p. (6.6)

If x+ y = 0, the inequality is trivial. Otherwise, note that |t|p ≥ |t| for |t| ≤ 1, so using

this and the triangle inequality yields( |x|
|x+ y|

)p
+

( |y|
|x+ y|

)p
≥ |x|
|x+ y| +

|y|
|x+ y| =

|x|+ |y|
|x+ y| ≥

|x+ y|
|x+ y| = 1.

Given two random variables, applying (6.6) for x = X(ω), y = Y (ω) and taking the

expectation gives

E|X + Y |p ≤ E|X|p + E|Y |p, p ∈ (0, 1]. (6.7)

In other words,

‖X + Y ‖pp ≤ ‖X‖pp + ‖Y ‖pp, p ∈ (0, 1]. (6.8)

The next two theorems justify that Lp are in fact Banach spaces (normed spaces

which are complete, that is every Cauchy sequence converges).

6.9 Theorem. For every p ∈ [1,∞], (Lp, ‖ · ‖p) is a normed space.

Proof. To check that X 7→ ‖X‖p is a norm on Lp, it is to be verified that

1) ‖X‖p ≥ 0 with equality if and only if X = 0 a.s.

2) ‖λX‖p = |λ|‖X‖p, for every λ ∈ R

3) ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

1) and 2) follow easily form the properties of integral and essential supremum. 3) follows

from Minkowski’s inequality.

6.10 Theorem. Let p ∈ [1,∞]. If (Xn)n≥1 is a Cauchy sequence in Lp, that is for

every ε > 0, there is a positive integer N such that for every n,m ≥ N , we have

‖Xn −Xm‖p ≤ ε, then there is a random variable X in Lp such that ‖Xn −X‖p → 0.

In other words, (Lp, ‖ · ‖p) is complete, hence it is Banach space.
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Proof. Assume first that 1 ≤ p < ∞. By the Cauchy condition, there is a subsequence

nk such that

‖Xnk+1
−Xnk‖p ≤ 2−k, k = 1, 2, . . .

Let

Yk =

k∑
j=1

|Xnj+1 −Xnj |.

The sequence (Yk) is nondecreasing, hence it pointwise converges, say to Y , limk→∞ Yk =

Y . Since ‖Yk‖p ≤ 1, by Fatou’s lemma,

EY p = E lim inf Y pk ≤ lim inf EY pk ≤ 1,

that is Y ∈ Lp. In particular, Y <∞ a.s. Consequently, the sequence

Xnk = Xn1
+
∑
j<k

(Xnj+1
−Xnj )

converges a.s., say to X. It remains to show that ‖Xn −X‖p → 0. For a fixed m, by

Fatou’s lemma, we get

E|Xm −X|p = E lim inf
k
|Xm −Xnk |p ≤ lim inf

k
E|Xm −Xnk |p,

thus by the Cauchy condition, for every ε > 0, there is N such that for every m > N ,

E|Xm −X|p ≤ ε.

This finishes the argument.

For p =∞, we consider the sets

Ak = {|Xk| > ‖Xk‖∞}

Bn,m = {|Xm −Xn| > ‖Xm −Xn‖∞}.

Their union E is of measure zero, whereas on Ec, the variables Xn converge uniformly

to a bounded random variable X (because R is complete).

The case p = 2 is the most important because L2 is Hilbert space. The scalar product

〈·, ·〉 : L2 × L2 → R is defined by

〈X,Y 〉= EXY, X, Y ∈ L2.

Then

‖X‖2 =
√
〈X,X〉.

Crucially, we have the parallelogram identity: for X,Y ∈ L2, we have

‖X + Y ‖22 + ‖X − Y ‖22 = 2(‖X‖22 + ‖Y ‖22). (6.9)

A consequence of this is that balls in L2 are round and orthogonal projection is well

defined.
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6.11 Theorem. Let H be a complete linear subspace of L2. Then for every random

variable X in L2, there is a unique random variable Y ∈ H such that the following two

conditions hold

(i) Y is closest to X in H, that is

‖X − Y ‖2 = inf{‖X − Z‖2, Z ∈ H},

(ii) for every Z ∈ H, 〈X − Y, Z〉= 0, that is X − Y is orthogonal to H.

The uniqueness is understood as follows: if Ỹ ∈ H satisfies either (i) or (ii), then

‖Y − Ỹ ‖2 = 0, that is Y = Ỹ a.s.

Proof. Let d denote the infimum in (i). Then, there are Yn ∈ H such that ‖Yn−X‖2 → d.

By the parallelogram law,

‖X − Yn‖22 + ‖X − Ym‖22 = 2

(∥∥∥∥X − Yn + Ym
2

∥∥∥∥2

2

+

∥∥∥∥Yn − Ym2

∥∥∥∥2

2

)
≥ 2d+ ‖Yn − Ym‖2.

Since the left hand side converges to 2d as m,n→∞, we conclude that (Yn) is a Cauchy

sequence in H. Since H is assumed to be complete, ‖Yn − Y ‖2 → 0 for some Y ∈ H.

Thus, ‖X − Y ‖2 = d, which establishes (i).

To get (ii), fix Z ∈ H and note that for every t ∈ R, by (i), we have

‖X − (Y + tZ)‖2 ≥ ‖X − Y ‖2,

which after squaring and rearranging gives

t2‖Z‖22 − 2t〈X − Y, Z〉≥ 0.

Since this holds for all small t (both positive and negative), necessarily the linear term

has to vanish, that is 〈X − Y,Z〉= 0.

For the uniqueness, suppose Ỹ satisfies (i). Then, by the parallelogram law,

2d = ‖X − Y ‖22 + ‖X − Ỹ ‖22 = 2

∥∥∥∥∥X − Y + Ỹ

2

∥∥∥∥∥
2

2

+

∥∥∥∥∥Y − Ỹ2

∥∥∥∥∥
2

2


≥ 2d+ ‖Y − Ỹ ‖22,

so ‖Y − Ỹ ‖22 ≤ 0, hence ‖Y − Ỹ ‖2 = 0 and consequently, Ỹ = Y a.s. If Ỹ satisfies (ii),

then since Ỹ − Y ∈ H, we get
〈
X − Ỹ , Ỹ − Y

〉
= 0. Since also

〈
X − Y, Ỹ − Y

〉
= 0, we

get
〈
Ỹ − Y, Ỹ − Y

〉
= 0, so Ỹ = Y a.s.
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6.3 Notions of convergence

A sequence of random variables (Xn) converges to a random variable X

a) almost surely if P ({ω ∈ Ω, limn→∞Xn(ω) = X(ω)}) = 1, denoted Xn
a.s.−−−−→
n→∞

X

b) in probability if for every ε > 0, P (|Xn −X| > ε) −−−−→
n→∞

0, denoted Xn
P−−−−→

n→∞
0

c) in Lp, p > 0, if E|Xn −X|p −−−−→
n→∞

0, denoted Xn
Lp−−−−→

n→∞
X.

For instance, let Ω = {1, 2} and P (1) = P (2) = 1
2 , Xn(1) = −1/n, Xn(2) = 1/n.

We have

a) Xn
a.s.−−−−→
n→∞

0 because Xn(ω)→ 0 for every ω ∈ Ω,

b) Xn
P−−−−→

n→∞
0 because P (|Xn| > ε) = P

(
1
n > ε

)
→ 0,

c) Xn
Lp−−−−→

n→∞
0 because E|Xn|p = 2 1

2
1
np → 0.

We have two results, saying that the convergence in probability is the weakest among

the three.

6.12 Theorem. If a sequence of random variables (Xn) converges to X a.s. then it

also converges in probability, but in general not conversely.

Proof. By the definition of the limit of a sequence,

{lim
n
Xn = X} =

⋂
l≥1

⋃
N≥1

⋂
n≥N

{
|Xn −X| <

1

l

}
.

For any events Al, P
(⋂

l≥1Al

)
= 1 if and only if P (Al) = 1 for all l ≥ 1. Therefore,

Xn
a.s.−−−−→
n→∞

0 is equivalent to: for every l ≥ 1,

P

 ⋃
N≥1

⋂
n≥N

{
|Xn −X| <

1

l

} = 1.

By monotonicity with respect to N ,

P

 ⋃
N≥1

⋂
n≥N

{
|Xn −X| <

1

l

} = lim
N→∞

P

 ⋂
n≥N

{
|Xn −X| <

1

l

} .

Finally, observe that by the inclusion
⋂
n≥N

{
|Xn −X| < 1

l

}
⊂
{
|XN −X| < 1

l

}
, we

have

1 = lim
N→∞

P

 ⋂
n≥N

{
|Xn −X| <

1

l

} ≤ lim
N→∞

P
({
|XN −X| <

1

l

})
,
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so passing to the complements, for every l ≥ 1,

0 ≤ lim
N→∞

P
({
|XN −X| ≥

1

l

})
≤ 0.

Therefore, for every ε > 0, limN→∞ P ({|XN −X| ≥ ε}) = 0, that is Xn
P−−−−→

n→∞
0. The

following example of a sequence convergent in probability but not a.s. finishes the proof.

6.13 Example. Let Ω = [0, 1] and P (·) be the uniform probability measure. Let

X1 = 1, X2 = 1[0,1/2], X3 = 1[1/2,1], X4 = 1[0,1/4], X5 = 1[1/4,1/2], X6 = 1[1/2,3/4],

X7 = 1[3/4,1], etc., X2n , X2n+1, . . . , X2n+1−1 are indicators of a wandering interval of

length 2−n shifting to right by 2−n every increment of the index. We have

a) Xn
P−−−−→

n→∞
0 because for every ε > 0, P (|Xn| > ε) ≤ 2−k when 2k ≤ n < 2k+1, which

goes to 0 as n goes to ∞.

b) Xn
a.s9 0 because for every ω ∈ (0, 1), the sequence (Xn(ω)) contains infinitely many

0 and 1, so it is not convergent; moreover, if Xn
a.s−−−−→
n→∞

X for some random variable

X other than 0, then by Theorem 6.12, Xn
P−−−−→

n→∞
X and from the uniqueness of

limits in probability (homework!), X = 0 a.s., contradiction.

c) Xn
Lp−−−−→

n→∞
0 because E|Xn|p = 2−kp when 2k ≤ n < 2k+1, which goes to 0 as n goes

to ∞.

6.14 Theorem. If a sequence of random variables (Xn) converges to X in Lp for some

p > 0, then it also converges in probability, but in general not conversely.

Proof. By Chebyshev’s inequality (6.1),

P (|Xn −X| > ε) ≤ 1

εp
E|Xn −X|p −−−−→

n→∞
0,

so Xn
P−−−−→

n→∞
X. The following example of a sequence convergent in probability but not

in Lp finishes the proof.

6.15 Example. Let Ω = [0, 1] and P (·) be the uniform probability measure. Let

Xn = n1/p 1[0,1/n]. We have

a) Xn
P−−−−→

n→∞
0 because for every ε > 0, P (|Xn| > ε) ≤ 1

n which goes to 0 as n goes to

∞

b) Xn
Lp9 0 because E|Xn|p = n 1

n = 1; moreover, if Xn
Lp−−−−→

n→∞
X for some random

variableX other than 0, then by Theorem 6.14, Xn
P−−−−→

n→∞
X and from the uniqueness

of limits in probability (homework!), X = 0 a.s., contradiction.
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c) Xn
a.s.−−−−→
n→∞

0 because for every ω > 0, the sequence Xn(ω) becomes eventually con-

stant 0.

Theorems (6.12), (6.14) and Examples 6.13, 6.15 can be summarised in the following

diagram.

a.s. in Lp

in P

\\

\ \

We record a few basic algebraic properties of the three notions of convergence.

1) If Xn converges to X a.s./in probability/in Lp and Yn converges to Y a.s./in proba-

bility/in Lp, then Xn + Yn converges to X + Y a.s./in probability/in Lp.

2) If Xn converges to X a.s./in probability and Yn converges to Y a.s./in probability,

then Xn · Yn converges to X · Y a.s./in probability.

3) If 0 < p < q and Xn converges to X in Lq, then Xn converges to X in Lp.

Immediately, 1) and 2) for the almost sure convergence follow from those statements

for sequences of numbers since the intersection of two events of probability 1 is of

probability 1.

Property 1) for Lp convergence follows from Minkowski’s inequality (Theorem 6.7)

and Property 3) follows from the monotonicity of moments (Example 6.4).

Establishing 1) and 2) directly from definition is cumbersome. Instead, we first prove

a convenient equivalent condition for convergence in probability in terms of almost sure

convergence.

6.16 Theorem (Riesz). If a sequence (Xn) of random variables converges to a random

variable X in probability, then there is a subsequence (Xnk)k which converges to X

almost surely.

Proof. Since for every ε, P (|Xn −X| > ε) → 0, then we can find an index n1 such

that P
(
|Xn1

−X| > 2−1
)
< 2−1. By the same logic, we can find an index n2 > n1

such that P
(
|Xn2

−X| > 2−2
)
< 2−2, etc. We get a subsequence (Xnk)k such that

P
(
|Xnk −X| > 2−k

)
< 2−k for every k. Since the series

∑∞
k=1 P

(
|Xnk −X| > 2−k

)
converges, by the first Borel-Cantelli lemma (Lemma 3.14), with probability 1 only

finitely many events Ak = {|Xnk −X| > 2−k} occur. When this happens, Xnk → X, so

Xnk −−−−→
k→∞

X.
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6.17 Theorem. A sequence (Xn) of random variables converges to a random variable

X in probability if and only if every subsequence (Xnk)k contains a further subsequence

(Xnkl
)l which converges to X almost surely.

Proof. (⇒) It follows directly from Theorem 6.16.

(⇐) If (Xn) does not converge to X in probability, then there is ε > 0 such that

P (|Xn −X| > ε) 9 0. Consequently, there is ε′ > 0 and a subsequence (Xnk) for which

P (|Xnk −X| > ε) > ε′. By the assumption, there is a subsequence (Xnkl
)l convergent

to X almost surely, in particular, in probability, so P
(
|Xnkl

−X| > ε
)
→ 0. This

contradiction finishes the proof.

Going back to the algebraic properties 1) and 2) for convergence in probability, we

can easily justify them using that they hold for convergence almost surely. For 1), say

Sn = Xn + Yn does not converge in probability to S = X + Y . Then as in the proof of

Theorem 6.17, P (|Snk − S| > ε) > ε′ for some ε, ε′ > 0 and a subsequence (nk). Using

Theorem 6.17, there is a further subsequence (nkl) such that (Xnkl
)l converges to X

a.s. and a further subsequence (for simplicity, denote it the same) such that (Ynkl )l

converges to Y a.s.. Then Snkl
a.s.−−→ S, which contradicts P (|Snk − S| > ε) > ε′.
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6.4 Exercises

1. Show that the probability that in n throws of a fair die the number of sixes lies

between 1
6n−

√
n and 1

6n+
√
n is at least 31

36 .

2. Let X be a random variable with density 1
2e
−|x| on R. Show that for every p ≥ 1,

c1p ≤ ‖X‖p ≤ c2p for some absolute constants c1, c2 > 0.

3. Let g be a standard Gaussian random variable. Show that for every p ≥ 1, we have

c1
√
p ≤ ‖g‖p ≤ c2√p for some universal constants c1, c2 > 0.

4. Show that for every random variable X, we have ‖X‖∞ = inf{t ∈ R, FX(t) = 1}.

5. Show that for every random variable X, we have ‖X‖p −−−→
p→∞

‖X‖∞.

6. If E|X|p0 <∞ for some p0 > 0, then E log+ |X| <∞ and

(E|X|p)1/p −−−−→
p→0+

eE log |X|

(log+ x = max{log x, 0}, log− x = max{− log x, 0}, we set E log |X| = E log+ |X| −
E log− |X| ∈ [−∞,∞) and use the convention that e−∞ = 0). Thus it makes sense

to define the 0th moment as ‖X‖0 = eE log |X|.

7. Let X be a random variable with values in an interval [0, a]. Show that for every t

in this interval, we have

P (X ≥ t) ≥ EX − t
a− t .

8. Prove the Payley-Zygmund inequality: for a nonnegative random variable X and

every θ ∈ [0, 1], we have

P (X > θEX) ≥ (1− θ)2 (EX)2

EX2
.

9. Prove that for nonnegative random variables X and Y , we have

E
X

Y
≥ (E

√
X)2

EY
.

10. Let p ∈ (0, 1) and q < 0 be such that 1
p + 1

q = 1. Then for every random variables X

and Y , we have

E|XY | ≥ (E|X|p)1/p(E|Y |q)1/q.

11. Let X1, X2, . . . be i.i.d. positive random variables with EX3
1 <∞. Let

an = E
(
X1 + . . .+Xn

n

)3

.

Prove that a2
n ≤ an−1an+1, n ≥ 2.
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12. Let X,X1, X2, . . . be identically distributed random variables such that P (X > t) > 0

for every t > 0. Suppose that for every η > 1, we have limt→∞
P(X>ηt)
P(X>t) = 0. For

n ≥ 1, let an be the smallest number a such that nP (X > a) ≤ 1. Show that for

every ε > 0, we have maxi≤nXi ≤ (1 + ε)an with high probability as n → ∞, i.e.

P (maxi≤nXi ≤ (1 + ε)an) −−−−→
n→∞

1.

13. Let X be a random variable such that Eeδ|X| < ∞ for some δ > 0. Show that

E|X|p <∞ for every p > 0.

14. Let X be a random variable such that EetX < ∞ for every t ∈ R. Show that the

function t 7→ logEetX is convex on R.

15. Let X be a random variable such that E|X|p < ∞ for every p > 0. Show that the

function p 7→ log ‖X‖1/p is convex on (0,∞).

16. Let ε1, . . . , εn be independent random signs, that is P (εi = −1) = 1
2 = P (εi = 1),

i ≤ n. Prove that there is a positive constant c such that for every n ≥ 1 and real

numbers a1, . . . , an, we have

P

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ > 1

2

√√√√ n∑
i=1

a2
i

 ≥ c.
17. Let ε1, ε2, . . . be i.i.d. symmetric random signs. Show that there is a constant c > 0

such that for every n ≥ 1 and reals a1, . . . , an, we have

P

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

a2
i

 ≥ c.
18. Let ε1, ε2, . . . be i.i.d. symmetric random signs. Show that there is a constant c > 0

such that for every n ≥ 1 and reals a1, . . . , an, we have

P

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ ≥
√√√√ n∑

i=1

a2
i

 ≥ c.
19. The goal is to prove Bernstein’s inequality : for every n, every real numbers a1, . . . , an

and t > 0, we have

P

(∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ > t

)
≤ 2 exp

{
− t2

2
∑n
i=1 a

2
i

}
,

where ε1, . . . , εn are i.i.d. symmetric random signs.

a) Show that cosh(t) ≤ et2/2, t ∈ R.

b) Find Eeaiεi .

c) Let S =
∑
aiεi. Show that for every t, λ > 0, we have P (S > t) ≤ e−λtEeλt.
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d) Optimising over λ conclude that P (S > t) ≤ e−t2/(2
∑
a2i ).

e) Using symmetry, conclude that P (|S| > t) ≤ 2e−t
2/(2

∑
a2i ).

20. Hoeffding’s lemma: for a random variable X such that a ≤ X ≤ b a.s. for some

a < b, we have Eeu(X−EX) ≤ exp
{
u2(b−a)2

8

}
, u ∈ R.

21. Hoeffding’s inequality : for independent random variables X1, . . . , Xn such that ai ≤
Xi ≤ bi a.s. for some ai < bi, i ≤ n, we have

P

(∣∣∣∣∣
n∑
i=1

Xi − E
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

{
− 2t2∑n

i=1(bi − ai)2

}
, t ≥ 0.

22. Khinchin’s inequality : for every p > 0, there are positive constants Ap, Bp which

depend only on p such that for every n and every real numbers a1, . . . , an, we have

Ap

(
n∑
i=1

a2
i

)1/2

≤
(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤ Bp
(

n∑
i=1

a2
i

)1/2

,

where ε1, . . . , εn are i.i.d. symmetric random signs.

23. Let ε1, ε2, . . . be i.i.d. symmetric random signs. Show that

P
(

lim sup
n→∞

ε1 + . . .+ εn√
2n log n

≤ 1

)
= 1.

24. Let X be an integrable random variable and define

Xn =


−n, X < −n

X, |X| ≤ n

n, X > n.

Does the sequence Xn converge a.s., in L1, in probability?

25. Show that if Xn
P−−−−→

n→∞
X and Xn

P−−−−→
n→∞

Y , then P (X = Y ) = 1 (in other words,

the limit in probability is unique).

26. Let X1, X2, . . . be i.i.d. integrable random variables. Prove that 1
n maxk≤n |Xk|

converges to 0 in probability.

27. Show that if Xn
P−−−−→

n→∞
X and Yn

P−−−−→
n→∞

Y , then XnYn
P−−−−→

n→∞
XY .

28. Prove that a sequence of random variables Xn converges a.s. if and only if for every

ε > 0, limN→∞ P
(⋂

n,m≥N |Xn −Xm| < ε
)

= 1 (the Cauchy condition).

29. Prove that a sequence of random variables Xn converges in probability if and only if

for every ε > 0, limn,m→∞ P (|Xn −Xm| > ε) = 1 (the Cauchy condition).

30. Does a sequence of independent random signs ε1, ε2, . . . converge a.s.?
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31. Let X1, X2, . . . be independent random variables, Xn ∼ Poiss(1/n). Does the se-

quence Xn converge a.s., in L1, in L2, in probability?

32. Show that if for every δ > 0 we have
∑∞
n=1 P (|Xn −X| > δ) <∞, then Xn

a.s.−−−−→
n→∞

X.

33. Show that if there is a sequence of positive numbers δn convergent to 0 such that∑∞
n=1 P (|Xn −X| > δn) <∞, then Xn

a.s.−−−−→
n→∞

X.

34. Let X1, X2, . . . be i.i.d. random variables such that P (|Xi| < 1) = 1. Show that

X1X2 · . . . ·Xn converges to 0 a.s. and in L1.

35. Let V be the linear space of all random variables on a probability space (Ω,F ,P) (two

random variables are considered equal if they are equal a.s.). Define ρ : V × V → R,

ρ(X,Y ) = E
|X − Y |

1 + |X − Y | .

Show that this a metric on V , (V, ρ) is complete and Xn
P−−−−→

n→∞
X if and only if

ρ(Xn, X)→ 0.

36. Let (Ω,F ,P) be a discrete probability space. Show that for every sequence of random

variables (Xn) on this space, Xn
P−−−−→

n→∞
X if and only if Xn

a.s.−−−−→
n→∞

X.

37. Show that in general almost sure convergence is not metrisable.

38. Weierstrass theorem. Let f : [0, 1] → R be a continuous function. For x ∈ [0, 1] and

an integer n ≥ 1, let Sn,x be a binomial random variable with parameters n and x.

Let

Qn(x) = Ef
(
Sn,x
n

)
.

(a) Show that Q is a polynomial of degree n (in x) (Bernstein’s polynomial of f).

(b) Using that f is bounded and uniformly continuous, combined with Chebyshev’s

inequality, show that for every ε > 0, there is n0 such that for all n ≥ n0 and

x ∈ [0, 1], we have

E
∣∣∣∣f (Sn,xn

)
− f(x)

∣∣∣∣ < ε.

(c) Conclude that for every ε > 0, there is a polynomial Q such that supx∈[0,1] |f(x)−
Q(x)| < ε.
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7 Laws of large numbers

Suppose we roll a die n times and the outcomes are X1, X2, . . . , Xn. We expect that the

average X1+...+Xn
n should be approximately 3.5 (the expectation of X1) as n becomes

large. Laws of large numbers establish that rigorously, in a fairly general situation.

Formally, we say that a sequence of random variables X1, X2, . . . satisfies the weak

law of large numbers if X1+...+Xn
n − EX1+...+Xn

n converges to 0 in probability and

the sequence satisfies the strong law of large numbers if the convergence is almost

sure. In particular, for a sequence of identically distributed random variables, we ask

whether X1+...+Xn
n −−−−→

n→∞
EX1. Consider two examples when no reasonable law of large

numbers holds and the opposite.

7.1 Example. Let X1, X2, . . . be i.i.d. standard Cauchy random variables. Then it can

be checked that S̄n = X1+...+Xn
n has the same distribution as X1, so S̄n is a “well spread

out” random variable which in no reasonable sense should be close to its expectation

(which in fact does not exists!), or any other constant.

7.2 Example. Let ε1, ε2, . . . be i.i.d. symmetric random signs, that is P (εi = ±1) = 1
2 .

Let S̄n = ε1+...+εn
n . By Bernstein’s inequality (Exercise 6.19), P

(
|S̄n| > t

)
≤ 2e−nt

2/2,

so the series
∑∞
n=1 P

(
|S̄n| > t

)
converges, so S̄n

a.s.−−−−→
n→∞

0 = Eε1 (check!). In other words,

the sequence (εn) satisfies the strong law of large numbers.

7.1 Weak law of large numbers

Using the second moment, we can easily get a very simple version of the weak law of

large numbers for uncorrelated random variables with uniformly bounded variance.

7.3 Theorem (The L2 law of large numbers). Let X1, X2, . . . be random variables such

that E|Xi|2 <∞ for every i. If

1

n2
Var(X1 + . . .+Xn) −−−−→

n→∞
0,

then denoting Sn = X1 + . . .+Xn,

Sn
n
− E

Sn
n

L2−−−−→
n→∞

0.

In particular, this holds when the Xi are uncorrelated with bounded variance, that is

Var(Xi) ≤M for every i for some M .

Proof. We have

E
∣∣∣∣Snn − E

Sn
n

∣∣∣∣2 =
1

n2
E|Sn − ESn|2 =

1

n2
Var(X1 + . . .+Xn) −−−−→

n→∞
0.

Since

Var(X1 + . . .+Xn) =

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n
Cov(Xi, Xj),
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when the Xi are uncorrelated with bounded variance, we have

1

n2
Var(X1 + . . .+Xn) ≤ Mn

n2
=
M

n

which goes to 0 as n→∞.

Since convergence in L2 implies convergence in probability, the above is in fact

stronger then a weak law of large numbers.

7.4 Example. Let X be a random vector in Rn uniformly distributed on the cube

[−1, 1]n, that is X = (X1, . . . , Xn) with the Xi being i.i.d. uniform on [−1, 1]. The

assumptions of the above L2 law of large numbers are satisfied for X2
1 , X

2
2 , . . ., so in

particular
X2

1 + . . .+X2
n

n
− EX2

1
P−−−−→

n→∞
0

Note that EX2
1 = 1

3 . By definition, this convergence in probability means that for every

ε > 0,

P
(∣∣∣∣X2

1 + . . .+X2
n

n
− 1

3

∣∣∣∣ > ε

)
−−−−→
n→∞

0,

or equivalently,

P
(√

n(1/3− ε) <
√
X2

1 + . . .+X2
n <

√
n(1/3 + ε)

)
−−−−→
n→∞

1.

In words, a random point in a high dimensional cube is typically near the boundary of

the Euclidean ball centered at 0 of radius
√
n/3.

7.5 Example. Let X1, X2, . . . be i.i.d. random variables uniform on {1, . . . , n}. For

k ≥ 1, let

τk = inf{m ≥ 1, |{X1, . . . , Xm}| = k}.

This random variable can be though of as the first index (time) when we have collected

k coupons if the Xi are though of as coupons given to us one by one and selected

uniformly at random (with replacement) among n different coupons. We are interested

in the behaviour of τn as n→∞ (the time needed to collect the entire set of n coupons).

For convenience we set τ0 = 0 and of course τ1 = 1. Let

Tk = τk − τk−1, k ≥ 1,

which is time we wait to get a coupon of a next type after we have collected k − 1

different coupons. We have,

P (Tk = l) =

(
k − 1

n

)l−1(
1− k − 1

n

)
, l = 1, 2, . . . ,

that is

Tk ∼ Geom

(
1− k − 1

n

)
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and T1, . . . , Tn are independent. Plainly,

τn = T1 + . . .+ Tn.

Thus

Eτn =

n∑
k=1

Eτk =

n∑
k=1

(
1− k − 1

n

)−1

= n

n∑
k=1

1

n− k + 1
= n

n∑
k=1

1

k
,

so for large n, we have Eτn ∼ n log n. Moreover, thanks to independence,

Var(τn) =

n∑
k=1

Var(Tk) ≤
n∑
k=1

(
1− k − 1

n

)−2

= n2
n∑
k=1

1

k2
< 2n2.

If we let

tn =
τn

n log n
,

we obtain

E(tn − 1)2 =
1

n2 log2 n
E(τn − n log n)2 ≤ 2

n2 log2 n

(
E(τn − Eτn)2 + (Eτn − n log n)

2
)

≤ 4

log2 n
+

2

log2 n
.

This gives that tn → 1 in L2 and in probability.

Our goal is to prove the weak law of large numbers for i.i.d. sequences under optimal

assumptions on integrability.

7.6 Theorem (The weak law of large numbers). If X1, X2, . . . are i.i.d. random vari-

ables such that

tP (|X1| > t) −−−→
t→∞

0, (7.1)

then
X1 + . . .+Xn

n
− µn P−−−−→

n→∞
0, (7.2)

where µn = EX1 1{|X1|≤n}.

7.7 Remark. The assumption is optimal in the following sense: condition (7.1) is

necessary for existence of a sequence an such that

X1 + · · ·+Xn

n
− an P−−−−→

n→∞
0

(see exercises).

To prove the theorem, we first establish a fairly general lemma.

7.8 Lemma. Let {Xn,k}n≥1,1≤k≤n be a triangular array of random variables such that

for every n, Xn,1, . . . , Xn,n are independent (i.e. they are independent within each row).

Let (bn) be a sequence of positive numbers such that bn →∞. Let

X̃n,k = Xn,k 1{|Xn,k|≤bn}

69



and

S̃n =

n∑
k=1

X̃n,k.

If the following two conditions are satisfied

(i)
∑n
k=1 P (|Xn,k| > bn) −−−−→

n→∞
0,

(ii) b−2
n

∑n
k=1 EX̃2

n,k −−−−→n→∞
0,

then
Sn − ES̃n

bn

P−−−−→
n→∞

0,

where Sn =
∑n
k=1Xn,k.

Proof. Fix ε > 0. First note that

P

(∣∣∣∣∣Sn − ES̃n
bn

∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣Sn − ES̃n
bn

∣∣∣∣∣ > ε, Sn 6= S̃n

)

+ P

(∣∣∣∣∣Sn − ES̃n
bn

∣∣∣∣∣ > ε, Sn = S̃n

)

≤ P
(
Sn 6= S̃n

)
+ P

(∣∣∣∣∣ S̃n − ES̃n
bn

∣∣∣∣∣ > ε

)
.

We show that each of the two terms on the right hand side goes to 0 as n goes to ∞.

For the first term, since Sn 6= S̃n implies that for some k, Xn,k 6= X̃n,k which in turn

implies that |Xn,k| > bn, by the union bound, we have,

P
(
Sn 6= S̃n

)
≤

n∑
k=1

P
(
Xn,k 6= X̃n,k

)
≤

n∑
k=1

P (|Xn,k| > bn) −−−−→
n→∞

0,

by (i). It remains to handle the second term. By Chebyshev’s inequality, the indepen-

dence of the X̃n,k and a simple bound Var(Y ) ≤ EY 2, we get

P

(∣∣∣∣∣ S̃n − ES̃n
bn

∣∣∣∣∣ > ε

)
≤ 1

ε2
E

∣∣∣∣∣ S̃n − ES̃n
bn

∣∣∣∣∣
2

=
1

ε2b2n
Var(S̃n) =

1

ε2b2n

n∑
k=1

Var(X̃n,k)

≤ 1

ε2b2n

n∑
k=1

EX̃2
n,k.

The right hand side goes to 0 as n goes to ∞ thanks to (ii). This finishes the proof.

Proof of Theorem 7.6. We use Lemma 7.8 with Xn,k = Xk and bn = n. Then

X̃n,k = Xk 1|Xk|≤n

which has the same law as X1 1|X1|≤n. It suffices to check (i) and (ii) of Lemma 7.8

because its assertion is exactly (7.2), due to the fact that

ES̃n =

n∑
k=1

EXk 1|Xk|≤n = nµn.
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For (i), we simply have

n∑
k=1

P (|Xn,k| > bn) =

n∑
k=1

P (|Xk| > n) = nP (|X1| > n) −−−−→
n→∞

0,

by (7.1). For (ii), we have

b−2
n

n∑
k=1

EX̃2
n,k =

1

n2

n∑
k=1

EX2
k 1|Xk|≤n =

1

n
EX2

1 1|X1|≤n .

We compute

EX2
1 1|X1|≤n = E

∫ ∞
0

2t1{t≤|X1|, |X1|≤n} dt ≤
∫ n

0

2tP (|X1| > t) dt.

Let f(t) = tP (|X1| > t). It thus remains to show that

1

n

∫ n

0

f(t)dt −−−−→
n→∞

0.

This is a consequence of two properties of f : f(t) ≤ t and f(t) −−−→
t→∞

0 (by (7.1)). These

in turn imply that M = sup f < ∞. Thus the following standard Cesáro-type lemma

finishes the proof.

7.9 Lemma. Let f : [0,+∞)→ [0,+∞) be a bounded function with f(t) −−−→
t→∞

0. Then

1

n

∫ n

0

f(t)dt −−−−→
n→∞

0.

Proof. Let M = sup f . We fix ε > 0 and choose L such that f(t) < ε for all t > L.

Then,

1

n

∫ n

0

f(t)dt =
1

n

(∫ L

0

f +

∫ n

L

f

)
≤ 1

n

(
LM + (n− L)ε

)
<
LM

n
+ ε < 2ε,

provided that n > LM
E . This finishes the proof.

7.10 Remark. The same argument gives a similar result for sequences: if for a sequence

(an) of real numbers we have an → a, then

a1 + · · ·+ an
n

→ a.

7.11 Remark. Our weak law of large numbers – Theorem 7.6 – in particular gives the

following: if X1, X2, . . . are i.i.d. random variables with E|X1| <∞, then

Sn
n
− EX1

P−−−−→
n→∞

0

(which will be strengthen to a.s. convergence in the next section, which is the content

of the strong law of large numbers). Indeed,

tP (|X1| > t) = E(t1|X1|>t) ≤ E(|X1|1|X1|>t) −−−−→
t→)∞

0
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by Lebesgue’s dominated convergence theorem: pointwise |X1|1|X1|>t −−−→t→∞
0 and |X1|

is an integrable majorant (see also Exercise 4.4). Moreover, similarly,

µn = EX1 1|X1|≤n −−−−→n→∞
EX1,

which combined with the conclusion of Theorem 7.6,

Sn
n
− µn P−−−−→

n→∞
0,

gives
Sn
n
− EX1

P−−−−→
n→∞

0.

7.12 Remark. Recall Exercise 4.5: if limt→∞ tpP (|X1| > t) = 0, then for every 0 < δ <

1, we have E|X1|1−δ < ∞. This shows that assumption (7.1) of Theorem 7.6 “almost”

implies thatX1 is integrable. An example of a random variable with P (|X1| > t) = 1
t log t ,

t > e, shows that the weak law still holds ((7.1) is fulfilled), even though the expectation

does not exist. Note that if X1 is a standard Cauchy random variable, then for t > 1,

we have

tP (|X1| > t) = 2t

∫ ∞
t

dx

π(1 + x2)
≥ 2t

∫ ∞
t

dx

2πx2
=

1

π
,

so (7.1) does not hold. As discussed in Example 7.1, in this case no reasonable law-of-

large-numbers-type convergence should hold.

7.13 Example. We shall describe the so-called St. Petersburg paradox. Let X1, X2, . . .

be i.i.d. random variables with the following discrete distribution

P
(
X1 = 2k

)
= 2−k, k = 1, 2, . . .

Such distribution models this simple casino game: you sit down and they toss a coin

until the first head shows up, which finishes the game and your pay is 2k dollars, where

k is the number of tosses. The expected value of your payout is thus

EX1 =
1

2
· 2 +

1

22
· 22 + · · · = +∞.

How much should the casino charge for this game? Is there any fair charge? (Obviously,

they cannot charge “+∞”.) Suppose you want to play n games, n is large. Your payout

after n games is

Sn = X1 + · · ·+Xn.

A fair charge per game should be a “typical value” of Sn/n. we cannot apply Theorem

7.6. Instead, we can estimate it using Lemma 7.8 which gives us extra flexibility in the

choice of the normalising constant bn. We want to choose bn as small as possible with

conditions (i) and (ii) of the lemma being satisfied. Since

P (X1 ≥ 2m) =

∞∑
j=m

2−j = 2−m+1,
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the quantity in (i) for bn = 2mn equals

nP (X1 ≥ bn) = n · 2−mn+1.

If we thus choose mn = log2 n + ωn with 0 < ωn → ∞ slowly and such that mn is

an integer, we get that nP (X1 > bn) → 0. Moreover, for the quantity in (ii), since

bn = n2ωn , we have

n

b2n
EX2

1 1X1≤bn =
n

b2n
EX2

1 1X1≤2mn =
n

b2n

∑
j≤mn

22j · 2−j < n

b2n
2mn+1 =

2n

bn
=

2

2ωn
→ 0.

Thus, by Lemma 7.8,
Sn − ES̃n

bn

P−−−−→
n→∞

0.

It remains to find ES̃n. We have,

ES̃n = nEX1 1X1≤bn = n
∑
j≤mn

2j · 2−j = nmn.

Consequently, choosing ωn to be asymptotically log2 log2 n, that is such that ωn
log2 log2 n

→
1, we get

Sn − ES̃n
bn

=
Sn − nblog2 nc

n · 2ωn =
Sn

n · 2ωn −
blog2 nc

2ωn
,

thus,
Sn

n log2 n

P−−−−→
n→∞

1.

As a result, Sn/n is typically like log2 n, so a fair charge for playing n games should be

log2 n per game.

7.2 Strong law of large numbers

Strong laws of large numbers concern a.s. convergence. The following simple lemma

turns out to be quite useful in such situations (see Exercises 6.31 and 6.32).

7.14 Lemma. Let X1, X2, . . . be a sequence of random variables such that for every ε,

we have ∞∑
n=1

P (|Xn| > ε) <∞. (7.3)

Then,

Xn
a.s.−−−−→
n→∞

0.

This also holds if for some sequence ε1, ε2, . . . of positive numbers convergent to 0, we

have ∞∑
n=1

P (|Xn| > εn) <∞. (7.4)
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Proof. From (7.3), by the first Borel-Cantelli lemma, we get

∀ε > 0 P (|Xn| > ε for infinitely many n) = 0,

or, equivalently,

∀ε > 0 P (|Xn| ≤ ε eventually) = 1.

Since the intersection of countably many certain events is a certain event, we get

P
(
∀k = 1, 2, . . . |Xn| ≤

1

k
eventually

)
= 1.

By the definition of a limit, this implies that P (Xn → 0) = 1. Similarly, by (7.4), we

get

P (|Xn| ≤ εn eventually) = 1.

Since en → 0, by the sandwich theorem, Xn → 0 with probability 1.

As a warm-up we show the strong law of large numbers under the generous assump-

tion of a finite 4th moment. Even though we shall not need this result to prove it under

optimal assumptions, the technique employed here of analysing high enough moments

is quite useful and important.

7.15 Theorem. Let X1, X2, . . . be independent random variables such that for all i,

E|Xi|4 ≤ C and EXi = µ for some constants C > 0 and µ ∈ R. Then

X1 + · · ·+Xn

n

a.s.−−−−→
n→∞

µ.

Proof. Without loss of generality, we can assume that µ = 0 (otherwise, we consider

Xi−µ; for the assumption, we can use the triangle inequality, ‖Xi−µ‖4 ≤ ‖Xi‖4 +µ).

We have,

E(X1 + · · ·+Xn)4 =
n∑

i,j,k,l=1

EXiXjXjXk.

There are 5 types of terms: EX4
i , EX2

iX
2
j , EXiXjX

2
k , EXiX

3
j , EXiXjXkXl with i, j, k, l

distinct here. By independence and µ = 0, the last 3 types vanish, thus

E(X1 + · · ·+Xn)4 =

n∑
i=1

EX4
i + 3

∑
i6=j

EX2
i EX2

j ≤ nC + 3n2C ≤ 4Cn2,

where we use in the estimate that EX2
i = ‖Xi‖22 ≤ ‖Xi‖24 ≤ C1/2 (by the monotonicity

of moments – Example 6.4). Consequently, for ε > 0, by Chebyshev’s inequality,

P
(∣∣∣∣X1 + · · ·+Xn

n

∣∣∣∣ > ε

)
≤ 1

ε4

E(X1 + · · ·+Xn)4

n4
≤ 1

ε4

4C

n2
.

Lemma 7.14 finishes the proof.

Our major goal here is to show Etemadi’s strong law of large numbers which assumes

only pairwise independence.
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7.16 Theorem (Etemadi). Let X1, X2, . . . be pairwise independent identically dis-

tributed random variables such that E|X1| <∞. Let µ = EX1. Then,

X1 + · · ·+Xn

n

a.s.−−−−→
n→∞

µ.

Proof. Since Xn = X+
n −X−n and both the positive part X+

n and the negative part X−n

of Xn satisfy the same assumptions as Xn, we can assume that Xn ≥ 0 for every n.

As we have seen in Theorem 7.15, it is useful to be able to control higher moments

to prove a.s. convergence. Since here we only assume existence of the first moment, we

employ the technique of truncating (as in the weak law – Theorem 7.6). We divide the

whole proof into several steps.

Step I (truncation). Let

X̃k = Xk 1|Xk|≤k, k ≥ 1

and

Sn = X1 + · · ·+Xn, S̃n = X̃1 + · · ·+ X̃n.

We claim that for Sn
n

a.s.−−−−→
n→∞

µ, it suffices to show that

S̃n
n

a.s.−−−−→
n→∞

µ. (7.5)

We have,

∞∑
k=1

P
(
Xk 6= X̃k

)
=

∞∑
k=1

P (|Xk| ≥ k) =

∞∑
k=1

P (|X1| ≥ k) ≤
∫ ∞

0

P (|X1| ≥ t) dt

= E|X1| <∞.

Thus, by the first Borel-Cantelli lemma,

P
(
Xn = X̃n eventually

)
= 1.

Since on the event “Xn = X̃n eventually”, we have∣∣∣∣∣X1 + · · ·+Xn

n
− X̃1 + · · ·+ X̃n

n

∣∣∣∣∣ ≤ R

n

for some (random) R, our claim about (7.5) follows.

Step II (variance bounds). Here we show that

∞∑
k=1

1

k2
Var(X̃k) <∞. (7.6)

75



First note that

Var(X̃k) ≤ EX̃2
k =

∫ ∞
0

2tP
(
|X̃k| ≥ t

)
dt

=

∫ k

0

2tP
(
|X̃k| ≥ t

)
dt+

∫ ∞
k

2tP
(
|X̃k| ≥ t

)
dt

≤
∫ k

0

2tP (|Xk| ≥ t) dt

=

∫ k

0

2tP (|X1| ≥ t) dt.

Thus,

∞∑
k=1

1

k2
Var(X̃k) ≤

∞∑
k=1

1

k2

∫ k

0

2tP (|X1| ≥ t) dt

=

∞∑
k=1

∫ ∞
0

1

k2
1t<k ·2tP (|X1| ≥ t) dt

=

∫ ∞
0

(∑
k>t

1

k2

)
· 2tP (|X1| ≥ t) dt.

It is an elementary exercise to show that
∑
k>t

1
k2 ≤ 2

t . Then the right hand side get

upper-bounded by 4
∫∞

0
P (|X1| ≥ t) dt = 4E|X1|, so (7.6) follows.

Step III (convergence on a subsequence). Fix α > 1. Let kn = bαnc. Our goal in this

step is to show that
S̃kn
kn

a.s.−−−−→
n→∞

µ,

that is (7.5) holds on the subsequence kn. In the next step, thanks to the monotonicity

of Sn (recall we assume that the Xn are nonnegative), we will extend this from the

subsequence kn to the convergence on all the terms.

Fix ε > 0. We have,

∞∑
n=1

P

(∣∣∣∣∣ S̃kn − ES̃kn
kn

∣∣∣∣∣ > ε

)
≤ ε−2

∞∑
n=1

Var(S̃kn)

k2
n

= ε−2
∞∑
n=1

1

k2
n

kn∑
j=1

Var(X̃j),

where in the last equality we use pairwise independence. Changing the order of sum-

mation gives,

ε−2
∞∑
n=1

1

k2
n

kn∑
j=1

Var(X̃j) = ε−2
∞∑
j=1

Var(X̃j)
∑

n:kn≥j

1

k2
n

.

By a simple estimate αn ≥ kn ≥ αn

2 ,∑
n:kn>j

1

k2
n

≤
∑

n:αn≥j

4

α2n
≤ 4

j2

1

1− α−2
,

and, as a result,

∞∑
n=1

P

(∣∣∣∣∣ S̃kn − ES̃kn
kn

∣∣∣∣∣ > ε

)
≤ 4

ε2(1− α−2)

∞∑
j=1

1

j2
Var(X̃j) <∞,
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by (7.6). Therefore, by virtue of Lemma 7.14,

S̃kn − ES̃kn
kn

a.s.−−−−→
n→∞

0.

Moreover,

ES̃kn
kn

=
EX̃1 + · · ·+ EX̃kn

kn
=

EX1 + · · ·+ EXkn

kn
− EX1 1X1>1 + · · ·+ EXkn 1Xkn>kn

kn

= µ− EX1 1X1>1 + · · ·+ EX1 1X1>kn

kn
−−−−→
n→∞

µ

because EX1 1X1>n → 0 as n→ 0 (recall the Cesàro-type lemma – Remark 7.10).

Step IV (convergence on all terms). For every positive integer m, there is n such that

kn ≤ m < kn+1 and then

S̃kn
kn+1

≤ S̃m
m
≤ S̃kn+1

kn

(because X̃j ≥ 0 for every j). Thus, for every α > 1, with probability 1,

µα−1 = lim inf
n→∞

S̃kn
kn+1

≤ lim inf
m→∞

S̃m
m
≤ lim sup

m→∞

S̃m
m
≤ lim sup

n→∞

S̃kn+1

kn
= µα.

Taking, say α = 1 + 1
l and letting l→∞, we get that with probability 1,

µ ≤ lim inf
m→∞

S̃m
m
≤ lim sup

m→∞

S̃m
m
≤ µ.

This shows (7.5) and finishes the proof.

7.17 Remark. The assumption of integrability in the strong law of large numbers,

Theorem 7.16, is necessary: if X1, X2, . . . are i.i.d. random variables such that there

is a constant c ∈ R for which P
(
limn→∞

X1+···+Xn
n = c

)
> 0, then E|X1| < ∞ and

c = EX1. We leave the proof as an exercise.

7.18 Remark. If we know that the expectation is infinite, the strong law in some

sense still holds, but the limit is also infinite: if X1, X2, . . . are i.i.d. random variables

such that one of the expectations EX+
1 ,EX

−
1 is +∞ and the other one is finite, then

lim supn→∞
∣∣X1+···+Xn

n

∣∣ = +∞ a.s. We leave the proof as an exercise.

7.19 Remark. Let (Ω0,F0,P0) be the infinite product of a probability space (Ω,F ,P).

Fix an event A ∈ F . By the strong law of large numbers, for P0-a.e. point ω =

(ω1, ω2, . . .) ∈ Ω0, we have

1A(ω1) + · · ·+ 1A(ωn)

n
−−−−→
n→∞

E1A = P (A) .

In other words, the probability of A is the limit of its frequency as the number of trials

goes to ∞. This justifies the so-called frequential definition of probability.

We refer to the exercises for additional extensions and applications of the strong law

of large numbers.
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7.3 Exercises

1. Let X be a random variable and let X ′ be its independent copy. Show that for every

t ≥ 0,

P (|X −X ′| > 2t) ≤ 2P (|X| > t) .

Moreover, if a ≥ 0 is chosen such that P (X ≤ a) ≥ u and P (X ≥ −a) ≥ u for some

u ∈ [0, 1], then

P (|X −X ′| > t) ≥ uP (|X| > t+ a) .

In particular, if m is a median of X, then

P (|X −X ′| > t) ≥ 1

2
P (|X −m| > t) .

2. Let X1, . . . , Xn be independent symmetric random variables, that is Xi has the same

distribution as −Xi. Then for every t ≥ 0,

P (|X1 + . . .+Xn| > t) ≥ 1

2
P
(

max
j≤n
|Xj | > t

)
.

In particular, if the Xi are identically distributed, then

P (|X1 + . . .+Xn| > t) ≥ 1

2

[
1− exp {−nP (|X1| > t)}

]
.

3. Using the symmetrisation from Exercise 7.1 and inequalities from Exercise 7.2, justify

Remark 7.7.

4. Let X1, X2, . . . be independent random variables with

P (Xn = n+ 1) = P (Xn = −(n+ 1)) =
1

2(n+ 1) log(n+ 1)
,

P (Xn = 0) = 1− 1

(n+ 1) log(n+ 1)
, n ≥ 1.

Show that (Xn)∞n=1 satisfies the weak law of large numbers, that is X1+...+Xn
n con-

verges in probability. Show that
∑∞
n=1 P (|Xn| > n) =∞ and conclude that (Xn)∞n=1

does not satisfy the strong law of large numbers.

5. Let X1, X2, . . . be i.i.d. integrable random variables with distribution function F .

Define the sequence of empirical distribution functions by

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}

(which are random). Show that for every x ∈ R, we have P (Fn(x)→ F (x)) = 1.

6. Let X1, X2, . . . be i.i.d. random variables such that P (|Xi| < 1) = 1. Show that

X1X2 · . . . ·Xn converges to 0 a.s. and in L1.

7. Let X1, X2, . . . be i.i.d. exponential random variables with parameter λ. Show that
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a) Yn = X1+···+Xn
X2

1+···+X2
n

b) Zn = X1X2+X2X3+···+XnXn+1

n

converge a.s. and find their limits.

8. Let X1, X2, . . . be i.i.d. random variables with density g which is positive. Show that

for every continuous function f such that
∫
R |f | < ∞, we have 1

n

∑n
i=1

f(Xi)
g(Xi)

a.s.−−−−→
n→∞∫

R f . (This provides a method of numerical integration.)

9. Let f be a continuous function on [0, 1] taking values in [0, 1]. LetX1, Y1, X2, Y2, . . . be

independent random variables uniformly distributed on [0, 1]. Let Zi = 1{f(Xi)>Yi}.

Show that 1
n

∑n
i=1 Zi converges almost surely to

∫ 1

0
f .

10. Let X1, X2, . . . be i.i.d. random variables such that P (Xi = 1) = p = 1−P (Xi = −1)

with 1
2 < p < 1. Let Sn = X1 + . . .+Xn (a random walk with a drift to the right).

Show that Sn
a.s.−−−−→
n→∞

∞.

11. Find

lim
n→∞

∫ 1

0

. . .

∫ 1

0

x3
1 + . . .+ x2

n

x1 + . . .+ xn
dx1 . . . dxn

(or show the limit does not exist).

12. Find

lim
n→∞

1√
n

∫ 1

0

. . .

∫ 1

0

√
x2

1 + . . .+ x2
ndx1 . . . dxn

(or show the limit does not exist).

13. Suppose that f is a continuous function on [0, 1]. Find

lim
n→∞

∫ 1

0

. . .

∫ 1

0

f( n
√
x1 · . . . · xn)dx1 . . . dxn

(or show the limit does not exist).

14. Let X1, X2, . . . be i.i.d. random variables uniform on [−1, 1]. Does the sequence

X1 +X2
2 + · · ·+Xn

n

n
, n = 1, 2, . . . ,

converge a.s.?

15. We say that a number x ∈ [0, 1] is simply normal in an integer base b ≥ 2, if its

sequence of digits is uniform in the sense that each of the digits {0, 1, . . . , b − 1}
occurs with the same density 1/b, that is, formally, for every d ∈ {0, 1, . . . , b− 1}, we

have

lim
n→∞

1

n
|{j ≤ n, dj(x) = d}| = 1

b
,

where x =
∑∞
k=1

dk(x)
bk

with d1(x), d2(x), . . . ∈ {0, 1, . . . , b−1}. Show Borel’s theorem:

almost every number x ∈ [0, 1] is simply normal in every base. On the other hand,
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it is not known whether e− 2, π − 3, or
√

2− 1 are simply normal in any given base

(although, it is of course widely believed so). It is not even known whether
√

2 has

infinitely many 5’s in its decimal expansion!

16. We say that a random variable X is singular if its cumulative distribution function is

continuous and there is a subset A of R of Lebesgue measure 0 with P (X ∈ A) = 1.

Fix p ∈ (0, 1), p 6= 1
2 . Let X1, X2, . . . be i.i.d. random variables with P (Xi = 1) = p,

P (Xi = 0) = 1 − p, i = 1, 2, . . .. Show that Y =
∑∞
n=1

Xn
2n is singular. What is the

distribution of Y when p = 1
2?

17. Let b be an integer, b ≥ 3. LetX1, X2, . . . be i.i.d. random variables with P (Xi = 1) =

P (Xi = 0) = 1
2 , i = 1, 2, . . .. Show that Y =

∑∞
n=1

Xn
bn is singular (in particular, for

b = 3 we get the distribution from 2.22).

18. Justify Remark 7.17.

19. Justify Remark 7.18

20. Give an example of a sequence of i.i.d. random variables X1, X2, . . . for which

X1+...+Xn
n converges in probability but not a.s.

21. Let f : [0,+∞)→ R be a continuous bounded function. Define its Laplace transform

L(t) =

∫ ∞
0

e−txf(x)dx, t > 0.

Show that L is C∞ and L(n)(t) =
∫∞

0
(−x)ne−txf(x)dx. Let Sn be the sum of n i.i.d.

exponential random variables with parameter t. Show that

Ef(Sn) = (−1)n−1 t
nL(n−1)(t)

(n− 1)!

and deduce the following inversion formula for the Laplace transform

f(y) = lim
n→∞

(−1)n−1 (n/y)nL(n−1)(n/y)

(n− 1)!
, y > 0.
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8 Weak convergence

8.1 Definition and equivalences

We start with a general definition. We say that a sequence (µn) of probability measures

on a metric space (E, d) converges weakly to a Borel probability measure µ on (E, d)

if for every bounded continuous function f : E → R, we have∫
E

fdµn −−−−→
n→∞

∫
E

fdµ.

The following equivalences explain weak convergence on the level of sets. It is some-

times referred to as the Portmanteau theorem.

8.1 Theorem. Let µ, µ1, µ2, . . . be Borel probability measures on a metric space (E, d).

The following are equivalent

(i) µn → µ weakly,

(ii) lim supµn(F ) ≤ µ(F ) for all closed sets F in E,

(iii) lim inf µn(G) ≥ µ(G) for all open sets G in E,

(iv) µn(A)→ µ(A) for all Borel sets A in E with µ(∂A) = 0.

Proof. (i) ⇒ (ii): Fix ε > 0 and let

gε(x) =

(
1− 1

ε
d(x, F )

)
+

, x ∈ E,

where as usual d(x, F ) = inf{d(x, y), y ∈ F} is the distance from x to the set F . We

also define

Fε = {x ∈ E, d(x, F ) ≤ ε},

the ε-enlargement of F . Note that for every x ∈ E,

1F (x) ≤ gε(x) ≤ 1Fε(x).

Moreover, the function gε is bounded and continuous (it is 1/ε-Lipschitz). Thus,

lim supµn(F ) = lim sup

∫
E

1F dµn

≤ lim sup

∫
E

gεdµn

=

∫
E

gεdµ

≤
∫
E

1Fε dµ

= µ(Fε),
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where in the second equality we used (i) and the inequalities follow from the pointwise

bounds 1F ≤ gε ≤ 1Fε . Letting ε → 0 in a decreasing way, we get µ(Fε) → µ(F ), by

continuity of probability measures. This shows (ii).

(ii) ⇔ (iii): We use complements.

(ii) & (iii)⇒ (iv): Let A ⊂ E be a Borel set such that µ(∂A) = 0. Since cl(A) = A∪∂A
and int(A) = A \ ∂A, we get

lim supµn(A) ≤ lim supµn(cl(A)) = µ(cl(A)) = µ(A),

lim inf µn(A) ≥ lim inf µn(int(A)) = µ(int(A)) = µ(A).

These show that limµn(A) = µ(A).

(iv) ⇒ (ii): Let F ⊂ E be a closed set and for ε > 0. We set as before Fε = {x ∈
E, d(x, F ) ≤ ε}. Let Sε = {x ∈ E, d(x, F ) = ε}. Note that ∂Fε ⊂ Sε. Since the sets Sε

are disjoint for different ε, for only countably many ε we can have µ(Sε) > 0. Thus we

can find a decreasing sequence εk → 0 such that µ(Sεk) = 0 for every k. Consequently,

µ(∂Fεk) = 0 for every k. We get by (iv) that

lim supµn(F ) ≤ lim supµn(Fεk) = µ(Fεk)

and µ(Fεk)→ µ(F ) by continuity. These show (ii).

(iii)⇒ (i): Let f : E → R be a bounded continuous function. Suppose f ≥ 0 (otherwise,

we consider f− inf f). Using Fatou’s lemma and (iii) (sets {x ∈ E, f(x) > t} are open),

we get

lim inf

∫
E

fdµn = lim inf

∫ ∞
0

µn({x ∈ E, f(x) > t})dt

≥
∫ ∞

0

lim inf µn({x ∈ E, f(x) > t})dt

≥
∫ ∞

0

µ({x ∈ E, f(x) > t})dt

=

∫
E

fdµ.

Since this inequality holds for an arbitrary function, applying it to −f and combining

the two gives
∫
E
fdµn →

∫
E
fdµ, as required.

The following equivalences show that even the smaller set of all Lipschitz functions

captures the same.

8.2 Theorem. Let µ, µ1, µ2, . . . be Borel probability measures on a metric space (E, d).

The following are equivalent
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(i) µn → µ weakly,

(ii) for every bounded uniformly continuous function f : E → R, we have∫
E

fdµn →
∫
E

fdµ,

(iii) for every bounded Lipschitz function f : E → R, we have∫
E

fdµn →
∫
E

fdµ.

Proof. The implications (i)⇒ (ii)⇒ (iii) are clear. To show (iii)⇒ (i), we use condition

(ii) of Theorem 8.1: let F be a closed set and for ε > 0, let

gε(x) =

(
1− 1

ε
d(x, F )

)
+

, x ∈ E,

which is a bounded Lipschitz function. Therefore using (iii), we can repeat verbatim

the argument “(i) ⇒ (ii)” of the proof of Theorem 8.1 to show that lim supµn(F ) ≤
µ(F ).

We immediately get the following corollaries.

8.3 Corollary. Let µ and ν be Borel probability measures on a metric space (E, d). If∫
E

fdµ =

∫
E

fdν

for every function f : E → R which is bounded and Lipschitz, then µ = ν.

Proof. Letting µ1 = µ2 = . . . = µ, we get by the assumption and Theorem 8.2 (iii) that

µn → ν weakly. Therefore, for every closed set F , we have µ(F ) = lim supµn(F ) ≤ ν(F ).

By symmetry, we get the reverse inequality as well, thus µ(F ) = ν(F ). Since the

closed sets generate the Borel σ-algebra, by Dynkin’s theorem on π-λ systems, we get

µ = ν.

8.4 Corollary. Weak limits are uniquely determined, that is if µn → µ and µn → ν

weakly, then µ = ν.

Proof. It follows from Theorem 8.2 (iii) and the previous corollary.

Convergence in distribution of random variables

We say that a sequence of random variables (Xn) converges to a random variable X in

distribution (or in law), denoted Xn
d−−−−→

n→∞
X, if µXn → µX weakly, that is for every

continuous bounded function f : R→ R, we have

Ef(Xn)→ Ef(X).
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Of course, this definition easily extends to random variables taking values in a metric

space. Note that this notion of convergence only depends on the law of random variables

involved and not on their particular realisations as functions on a probability space (in

fact, they can be defined on different probability spaces). Particularly, if Xn
d−−−−→

n→∞
X

and say X ′ is another random variable with the same distribution as X (i.e. µX′ = µX),

then we can also write Xn
d−−−−→

n→∞
X ′.

In the case of real-valued random variables, there is an intuitive equivalent formula-

tion in terms of distribution functions.

8.5 Theorem. A sequence (Xn) of random variables converges in distribution to a

random variable X if and only if

FXn(t) −−−−→
n→∞

FX(t) for every point of continuity of FX . (8.1)

Proof. (⇒): For parameters t ∈ R and ε > 0 define the continuous bounded functions

gt,ε(x) =


1, x ≤ t,

1− x−t
ε , t < x ≤ t+ ε,

0, x > t+ ε.

The idea is that these functions are continuous approximations of indicator functions.

We have, 1{x≤t} ≤ gt,ε(x) ≤ 1{x≤t+ε}. Consequently,

lim supP (Xn ≤ t) = lim supE1{Xn≤t} ≤ lim supEgt,ε(Xn)

= Egt,ε(X) ≤ E1{X≤t+ε} = P (X ≤ t+ ε) .

Letting ε→ 0 gives

lim supFXn(t) ≤ FX(t).

On the other hand, since

lim inf P (Xn ≤ t) = lim inf E1{Xn≤t} ≥ lim inf Egt−ε,ε(Xn)

= Egt−ε,ε(X) ≥ E1{X≤t−ε} = P (X ≤ t− ε)

after taking ε→ 0, we get

lim inf FXn(t) ≥ FX(t−).

If t is a point of continuity of FX , FX(t−) = FX(t) and we obtain limFXn(t) = FX(t),

which means Xn
d−→ X.

(⇐): We first show a lemma which allows us to relate condition (8.1) to a.s. convergence.

8.6 Lemma. If random variables X,X1, X2, . . . satisfy (8.1), then there are random

variables Y, Y1, Y2, . . . such that Yn has the same distribution as Xn, Y has the same

distribution as X and Yn → Y a.s.

84



Proof. Let Fn = FXn be the distribution function of Xn and let F = FX be the dis-

tribution function of X. Let Ω = (0, 1), F be the Borel subsets of (0, 1) and P (·) be

uniform. For every x ∈ (0, 1) define the “inverse” distribution functions

Yn(x) = sup{y ∈ R, Fn(y) < x}

and similarly

Y (x) = sup{y ∈ R, F (y) < x}.

By the construction, FYn = Fn and FY = F . Note that Yn and Y are nondecreasing

right-continuous functions whose only discontinuities are jumps which happen at at most

countably many points. If we let Ω0 to be the set of points where Y is continuous, then

P (Ω0) = 1. Fix x ∈ Ω0. We claim that Yn(x) → Y (x), which then gives Yn → Y a.s.

We have

1. lim inf Yn(x) ≥ Y (x), for suppose y < Y (x) is a continuity point of F ; then

F (y) < x (since x ∈ Ω0), so for large n, Fn(y) < x and by the definition of the

supremum, y ≤ Yn(x). Taking lim inf, we get lim inf Yn(x) ≥ y for every y < Y (x),

so lim inf Yn(x) ≥ Y (x).

2. Y (x) ≥ lim supYn(x), for suppose y > Y (x) is a continuity point of F ; then

F (y) > x, so for large n, Fn(y) > x which gives y ≥ Yn(x). Taking lim sup finishes

the argument.

Let Yn and Y be as in Lemma 8.6, Yn
a.s.−−→ Y . Let f : R → R be a bounded

continuous function. Since we also have f(Yn)
a.s.−−→ f(Y ), so by Lebesgue’s dominated

convergence theorem (f is bounded),

Eg(Xn) = Eg(Yn)→ Eg(Y ) = Eg(X).

8.7 Example. Let ε be a symmetric random sign. Consider the sequence (Xn)∞n=1 =

(ε,−ε, ε,−ε, . . .). Since −ε has the same distribution as ε, we have FXn = Fε for

every n, so Xn
d−→ ε. On the other hand, the sequence (Xn) does not converge in

probability, for suppose Xn
P−→ X for some random variable X. Then for n,m large

enough P (|Xn −Xm| > 1) ≤ P (|Xn −X| > 1/2) + P (|X −Xm| > 1/2) ≤ 1/4. Taking

n andm of different parity, we get P (|Xn −Xm| > 1) = P (|2ε| > 1) = 1, a contradiction.

8.8 Example. Let X be a random variable and consider the sequence Xn = X + 1
n .

For any reasonable definition of “convergence in distribution” we should have Xn → X.

Note that for a fixed t ∈ R, we have

limFXn(t) = limP (Xn ≤ t) = limP
(
X ≤ t− 1

n

)
= F (t−),
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which is F (t) if and only if t is a continuity point of F . This explains why in the

definition we make this exclusion.

Convergence in distribution is metrisable. For two distribution functions F,G : R→
[0, 1], we let

ρ(F,G) = inf{ε > 0, ∀x ∈ R G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε},

which is called the Lévy metric. We naturally extend this definition for random

variables, setting ρ(X,Y ) = ρ(FX , FY ) for random variables X, Y defined on the same

probability space.

8.9 Theorem. Let L0 be the set of all random variables on a given probability space.

Then ρ is a metric on L0 and (L0, ρ) is separable and complete. Moreover, Xn → X in

distribution if and only if ρ(Xn, X)→ 0.

We leave the proofs as exercises.

8.2 Relations to other notions of convergence and basic alge-

braic properties

Lemma 8.6 explains the relation between convergence in distribution and a.s. conver-

gence. If the random variables are defined on the same probability space, then conver-

gence in distribution is the weakest of all types of convergences we have seen.

8.10 Theorem. Let X,X1, X2, . . . be random variables such that Xn
P−−−−→

n→∞
X. Then,

we also have Xn
d−−−−→

n→∞
X.

Proof. Suppose the assertion does not hold. Then, there is a bounded continuous func-

tion f : R→ R and ε > 0 such that |Ef(Xn)−Ef(X)| > ε for infinitely many n, say for

n1 < n2 < . . .. By Theorem 6.16, there is a subsequence nkl such that Xnkl
converges to

X a.s., but then, by Lebesgue’s dominated convergence theorem, we get a contradiction

with |Ef(Xnkl
)− Ef(X)| > ε.

We record basic algebraic properties and defer their proofs to exercises.

8.11 Theorem. Let (Xn), (Yn) be sequences of random variables such that Xn
d−−−−→

n→∞
X

and Yn
d−−−−→

n→∞
c for some random variable X and a constant c ∈ R. Then

Xn + Yn
d−−−−→

n→∞
X + c

and

XnYn
d−−−−→

n→∞
cX.
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8.12 Remark. There are examples showing that if the sequence (Yn) converges to a

(non-constant) random variable Y , then it is not true that Xn + Yn
d−−−−→

n→∞
X + Y ,

XnYn
d−−−−→

n→∞
XY .

We finish with a simple fact concerning images of convergent sequences under “es-

sentially” continuous maps.

8.13 Theorem. Let h : E → E′ be a Borel function between two metric spaces and let

Dh be the set of its discontinuity points. If X,X1, X2, . . . are E-valued random variables

such that Xn
d−−−−→

n→∞
X and P (X ∈ Dh) = 0, then h(Xn)

d−−−−→
n→∞

h(X).

Proof. We shall use condition (ii) of Theorem 8.1. Let F be a closed set in E′. We have,

lim supP (h(Xn) ∈ F ) = lim supP
(
Xn ∈ h−1(F )

)
≤ lim supP

(
Xn ∈ cl(h−1(F ))

)
≤ P

(
X ∈ cl(h−1(F ))

)
,

where the last inequality follows because Xn
d−−−−→

n→∞
X. Since cl(h−1(F )) ⊂ h−1(F ) ∪

Dh and P (X ∈ Dh) = 0, the right hand side equals P
(
X ∈ h−1(F )

)
= P (h(X) ∈ F ),

showing that h(Xn)
d−−−−→

n→∞
h(X).

8.3 Compactness

Being able to extract convergent subsequences often helps. For real-valued random vari-

ables, we can work with their distribution functions to establish weak convergence. Since

distribution functions are bounded and monotone, extracting convergent subsequences

is always possible, as stated in the next theorem.

8.14 Theorem (Helly’s selection theorem). If (Fn)n is a sequence of distribution func-

tions, then there is a subsequence (Fnk)k and a right-continuous nondecreasing function

F : R→ [0, 1] such that Fnk(t) −−−−→
k→∞

F (t) for every point t of continuity of F .

8.15 Remark. In general, F may not be a distribution function – it may happen that

F (∞) < 1 or F (−∞) > 0.

Proof. To construct the desired subsequence we use a standard diagonal argument. Let

q1, q2, . . . be a sequence of all rationals. Since the sequence Fn(q1) is bounded, it has a

convergent subsequence, say F
n
(1)
k

(q1) converges to G(q1). Then we look at the sequence

F
n
(1)
k

(q2) which is bounded, so it has a convergent subsequence, say F
n
(2)
k

(q2) converges

to G(q2), etc. We obtain subsequences (n
(l)
k ) such that (n

(l+1)
k ) is a subsequence of

(n
(l)
k ) and F

n
(l)
k

(ql) converges to G(ql). Choose the diagonal subsequence nk = n
(k)
k .

Then F
n
(k)
k

(ql) converges to G(ql) for every l. The function G : Q → [0, 1] obtained as

the limit is nondecreasing. We extend it to the nondecreasing function F : R→ [0, 1] by

F (x) = inf{G(q), q ∈ Q, q > x}, x /∈ Q.
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The function F , as monotone, satisfies F (x−) ≤ F (x) ≤ F (x+) for every x. At the

points x, where F is not right-continuous, we modify it and set F (x) = F (x+) (there

are at most countably many such points).

It remains to check that Fnk converges to F at its points of continuity. Let x be

such a point and let q, r be rationals such that q < x < r. Then

F (q) = G(q) = lim inf
k

Fnk(q) ≤ lim inf
k

Fnk(x)

≤ lim sup
k

Fnk(x) ≤ lim sup
k

Fnk(r) = G(r) = F (r).

Letting q, r → x, we get F (q), F (r) → F (x), so lim infk Fnk(x) = lim supk Fnk(x) =

F (x).

To capture when the limiting function is a distribution function of a random variable,

we need the notion of tightness. A sequence (Xn) of random variables is tight if for

every ε > 0, there is M > 0 such that P (|Xn| ≤M) > 1− ε for every n.

8.16 Remark. If there is δ > 0 such that C = supn E|Xn|δ < ∞, then the sequence

(Xn) is tight. Indeed, by Chebyshev’s inequality,

P (|Xn| > M) ≤M−δE|Xn|δ ≤
C

M δ

which is less than ε for M large enough.

The main result of this section is the following compactness type result. It gives a

necessary and sufficient condition for existence of convergent subsequences in distribu-

tion in terms of tightness.

8.17 Theorem. A sequence of random variables (Xn) is tight if and only every subse-

quence (Xnk)k has a subsequent (Xnkl
)l which converges in distribution to some random

variable.

Proof. Let Fn be the distribution function of Xn.

(⇒) By Helly’s theorem applied to (Fnk)k, there is a subsequence (Fnkl )l which

converges to a right-continuous nondecreasing function F : R → [0, 1] pointwise at the

points of continuity of F . It remains to check that F is a distribution function, that

is F (−∞) = 0 and F (+∞) = 1. By tightness, there is M > 0 such that Fn(M) −
Fn(−M) > 1 − ε, for every n and we can further arrange that −M and M are points

of continuity of F . Taking n = nkl and letting l→∞, we get F (M)− F (−M) ≥ 1− ε.
Since ε is arbitrary and F is monotone, this yields F (−∞) = 0 and F (+∞) = 1.

(⇐) If (Xn) is not tight, there is ε > 0 and an increasing sequence of indices nk

such that P (|Xnk | ≤ k) ≤ 1 − ε for every k. By the assumption, Xnkl

d−−−→
l→∞

X. Let

x < 0 < y be points of continuity of FX . Then

FX(y)− FX(x) = lim
l

(Fnkl (y)− Fnkl (x)) ≤ lim sup
l

(Fnkl (kl)− Fnkl (−kl)) ≤ 1− ε.
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Taking x→ −∞ and y →∞ gives 1 ≤ 1− ε, a contradiction.

8.18 Remark. Theorem 8.17 can be greatly generalised to the setting of arbitrary sep-

arable complete metric spaces (the so-called Polish spaces), which is called Prokhorov’s

theorem. As we have seen, in the real-valued case, we take huge advantage of CDFs.

In general, the proof is much more complicated. It can be also quite easily deduced

from the Banach-Alaoglu’s concerning compactness of weak-∗ convergence (which can

be identified with the notion of weak convergence).
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8.4 Exercises

1. Give an example of Borel probability measures µ, µ1, µ2, . . . on R and a Borel set B

in R such that µn → µ weakly and µn(B) 6→ µ(B).

2. Let X1, X2, . . . be random variables such that P
(
Xn = k

n

)
= 1

n , k = 1, . . . , n, n =

1, 2, . . .. Does the sequence (Xn) converge in distribution? If yes, find the limiting

distribution.

3. Let U1, U2, . . . be i.i.d. random variables uniformly distributed on [0, 1]. Let Xn =

min{U1, . . . , Un}. Show that nXn converges in distribution to an exponential random

variable with parameter one.

4. Suppose that X,X1, X2, . . . are nonnegative integer-valued random variables. Show

thatXn
d−−−−→

n→∞
X, if and only if P (Xn = k) −−−−→

n→∞
P (X = k), for every k = 0, 1, 2, . . ..

5. For p ∈ [0, 1], let Xp be a Geometric random variable with parameter p. Show that

the sequence ( 1
nX1/n) converges in distribution to an exponential random variable

with parameter 1.

6. Suppose that a sequence of random variables converges in distribution to a constant.

Then it also converges in probability.

7. Prove Theorem 8.11 and Remark 8.12.

8. Prove Scheffé’s lemma: If X1, X2, . . . is a sequence of continuous random variables

with densities f1, f2, . . . and limn→∞ fn(x) = f(x) for every x ∈ R for some proba-

bility density f , then
∫
R |f −fn| −−−−→n→∞

0. Conclude that then Xn
d−→ X for a random

variable X with density f (in other words, pointwise convergence of densities implies

convergence in distribution). Considering fn(x) = (1 + cos(2πnx)) 1[0,1](x), show

that the converse statement does not hold.

9. Let X1, X2, . . . be i.i.d. random variables uniform on {1, 2, . . . , n}. Let

Nn = min{l ≥ 2, Xk = Xl for some k < l}.

Show that P (Nn > k) =
∏k−1
j=1

(
1− j

n

)
, for every integer k ≥ 1 (the birthday prob-

lem). For every t ≥ 0 show that limn→∞ P
(
Nn√
n
> t
)

= e−t
2/2 and show that the

sequence (Nn√
n

) converges in distribution to a random variable with density function

xe−x
2/2 1{x≥0}.

10. Let X1, X2, . . . be i.i.d. exponential random variables with parameter 1. Let Mn =

max{X1, . . . , Xn}. Show that Mn − log n converges in distribution to a random

variable with the distribution function e−e
−x

, x ∈ R.
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11. Let U1, . . . , U2n+1 be i.i.d. random variables uniform on [0, 1]. Order them in a

nondecreasing way and call the n + 1 term (the middle one) Mn. Show that Mn

has density (2n + 1)
(

2n
n

)
xn(1 − x)n 1[0,1](x). Find EMn and Var(Mn). Show that

√
8n
(
Mn − 1

2

)
converges in distribution to a standard Gaussian random variable.

12. Show that for positive t,
∫∞
t
e−x

2/2dx ≤ 1
t e
−t2/2 and

∫∞
t
e−x

2/2dx ≥ t
t2+1e

−t2/2.

Conclude that for a standard Gaussian random variable Z and positive t,

1√
2π

t

t2 + 1
e−t

2/2 ≤ P (Z > t) ≤ 1√
2π

1

t
e−t

2/2

and

lim
t→∞

P (Z > t)
1√
2π

1
t e
−t2/2 = 1.

13. Let X1, X2, . . . be i.i.d. standard Gaussian random variables. For n = 2, 3, . . . let

bn be such that P (X1 > bn) = 1
n . Show that limn→∞

bn√
2 logn

= 1. Let Mn =

max{X1, . . . , Xn}. Show that bn(Mn − bn) converges in distribution to a random

variable with the distribution function e−e
−x

, x ∈ R.

Hint: Using Exercise 8.12, first show that for every a ∈ R, limt→∞
P(X1>t+

a
t )

P(X1>t)
= e−a.

14. Assume that X1, X2, . . . are i.i.d. standard Gaussian random variables. Define Mn =

max{X1, . . . , Xn}. Show that Mn√
2 logn

P−→ 1.

15. Let (Xn) and (Yn) be two sequences of random variables such that Xn
d−−−−→

n→∞
0 and

XnYn
d−−−−→

n→∞
Z for some random variable Z. Prove that for a function f differentiable

at 0, we have (f(Xn)− f(0))Yn
d−−−−→

n→∞
f ′(0)Z.

16. Prove that if Xn
d−−−−→

n→∞
X, then E|X| ≤ lim inf E|Xn|.

17. Prove that if Xn
d−−−−→

n→∞
X and supn E|Xn|p+ε <∞ for some p, ε > 0, then E|X|p <∞

and E|Xn|p → E|X|p and EXp
n → EXp.

18. Suppose that X1, X2, . . . are nonnegative random variables such that for some 0 <

α < β, we have EXα
n → 1 and EXβ

n → 1 as n→∞. Then Xn → 1 in probability.

19. Prove Theorem 8.9.

20. Let X = (X1, . . . , Xn) be a random vector in Rn uniformly distributed on the sphere

{x ∈ Rn, x2
1 + . . . + x2

n = n}. Show that X1 converges in distribution to a standard

Gaussian random variable.
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9 Characteristic functions

9.1 Definition and basic properties

The characteristic function of a random variable X is the function φX : R → C

defined as

φX(t) = EeitX , t ∈ R.

(For complex valued random variables, say Z = X + iY , we of course define EZ =

EX + iEY provided that E|Z| < ∞.) Since eix = cosx + i sinx, x ∈ R is a complex

number of modulus 1, eitX is a bounded random variable hence its expectation exists,

so φX is well-defined on R. We also use the notation φµ(t) to denote the characteristic

function of a Borel probability measure µ on R (i.e., of a random variable with law µ),

φµ(t) =

∫
R
eitxdµ(x), t ∈ R.

9.1 Example. For a symmetric random sign ε,

φε(t) = Eeitε =
eit + e−it

2
= cos t.

9.2 Example. For an exponential random variable X with parameter λ,

φX(t) = EeitX =

∫ ∞
−∞

eitxfX(x)dx =

∫ ∞
0

λe(it−λ)xdx = λ
e−λxeitx

it− λ

∣∣∣∣∣
∞

0

=
λ

λ− it

(when taking the limit x→∞, we use that eitx is bounded).

We gather several basic properties in the following theorem.

9.3 Theorem. Let X be a random variable with characteristic function φX . Then

(i) |φX(t)| ≤ 1, t ∈ R,

(ii) φX(0) = 1,

(iii) φaX+b(t) = eitbφX(at),

(iv) φX is uniformly continuous,

(v) if E|X|n <∞ for some positive integer n, then the nth derivative φ
(n)
X exists, equals

φ
(n)
X (t) = inEXneitX and is uniformly continuous.

Proof. (i), (ii), (iii): These are easy to directly verify, |φX(t)| = |EeitX | ≤ E|eitX | = 1

and φX(0) = Eei·0·X = 1 and φaX+b(t) = Eeit(aX+b) = eitbφX(at).

(iv): For every t, h ∈ R,

|φX(t+ h)− φX(t)| = |EeitX(eihX − 1)| ≤ E|eihX − 1| −−−→
h→0

0
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where the limit is justified by Lebesgue’s dominated convergence theorem (|eihX−1| → 0

pointwise and the sequence is bounded by 2). This implies the continuity of φX at t.

The continuity is uniform because the bound does not depend on t.

(v): Fix n such that E|X|n <∞. First, we inductively show that for 0 ≤ k ≤ n,

φ
(k)
X (t) = E(iX)keitX .

This is clear for k = 0 and for k < n, inductively, we have

φ
(k+1)
X (t) = lim

h→0

φ
(k)
X (t+ h)− φ(k)

X (t)

h
= lim
h→0

E
[
(iX)keitX

eihX − 1

h

]
= E

[
(iX)keitX lim

h→0

eihX − 1

h

]
.

The last equality is justified by Lebesgue’s dominated convergence theorem because∣∣∣∣(iX)keitX
eihX − 1

h

∣∣∣∣ ≤ |X|k|X| = |X|k+1

and by the assumption E|X|k+1 <∞; we also used that for t ∈ R, |eit − 1| ≤ |t| which

can be justified as follows

|eit − 1| =
∣∣∣∣1i
∫ t

0

eixdx

∣∣∣∣ ≤ ∫ t

0

|eix|dx = t

when t ≥ 0 and similarly for t < 0. Finally, limh→0
eihX−1

h = iX which finishes the

inductive argument. Having the formula, uniform continuity follows as in (iii).

9.4 Example. Let X be a standard Gaussian random variable. We have,

φX(t) =

∫
R
eitxe−x

2/2 dx√
2π

= e−t
2/2

∫
R
e−(x−it)2/2 dx√

2π
= e−t

2/2,

where the last step would need proper justification (e.g., integrating along an appropriate

contour and using
∫
R e
−x2/2 dx√

2π
). Instead, we use Theorem 9.3 (iv),

φ′X(t) = iEXeitX = −EX sin(tX) + iEX cos(tX).

Since X is symmetric and cos is even, EX cos(tX) = 0 and integrating by parts,

φ′X(t) = −EX sin(tX) = −
∫
x sin(tx)e−x

2/2 dx√
2π

=

∫
sin(tx)(e−x

2/2)′
dx√
2π

= −t
∫

cos(tx)e−x
2/2 dx√

2π

which is −tE cos(tX) = −tEeitX = −tφX(t) (by the symmetry of X, again, E sin(tX) =

0), so φ′X(t) = −tφX(t). That is, φ′X(t) = −tφX(t), equivalently, (et
2/2φX(t))′ = 0

which finally gives et
2/2φX(t) = φX(0) = 1.

If Y ∼ N(µ, σ2), then Y = µ+ σX and we thus get

φY (t) = Eeit(µ+σX) = eitµEei(tσ)X = eitµ−σ
2t2/2. (9.1)
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Note a simple but very powerful observation involving independence.

9.5 Theorem. If X and Y are independent random variables, then

φX+Y = φX · φY .

Proof. Clearly, Eeit(X+Y ) = EeitXeitY = EeitXEeitY .

9.2 Inversion formulae

One of the crucial properties of characteristic functions is that they determine the dis-

tribution uniquely. En route to proving that, we establish an inversion formula, quite

standard in Fourier analysis. We first need a lemma.

9.6 Lemma. For two independent random variables X and Y and every t ∈ R, we have

Ee−itY φX(Y ) = EφY (X − t).

Proof. Changing the order of taking expectation, we have

EY e−itY φX(Y ) = EY e−itY EXeiY X = EX,Y eiY (X−t) = EXEY eiY (X−t) = EXφY (X − t).

9.7 Theorem (Inversion formula). For a random variable X, at every point x of con-

tinuity of its distribution function FX , we have

FX(x) = lim
a→∞

∫ x

−∞

(
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds

)
dt.

Proof. Let G be a standard Gaussian random variable, independent of X. For a > 0,

consider Xa = X + a−1G. Since Xa converges pointwise to X as a→∞, by Lebesgue’s

dominated convergence theorem Eg(Xa) → Eg(X) for every bounded continuous func-

tion g, thus Xa
d−→ 0 as a→∞ (Theorem 8.5). Consequently, for every continuity point

x of FX , we have

FX(x) = lim
a→∞

FXa(x).

Let us find the distribution function of Xa. We have,

FXa(x) = P
(
X + a−1G ≤ x

)
= EX,G 1{X+a−1G≤x} = EXEG 1{X+a−1G≤x}

= EXP
(
X + a−1G ≤ x

)
.

For any y ∈ R, the density of y + a−1G at t is a√
2π
e−a

2(t−y)2/2, thus

FXa(x) = EX
∫ x

−∞

a√
2π
e−a

2(t−X)2/2dt =

∫ x

−∞
EX

a√
2π
e−a

2(t−X)2/2dt.
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Note that e−a
2s2/2 is the characteristic function of aG at s (Example 9.4), so by Lemma

9.6,

EX
a√
2π
e−a

2(t−X)2/2 =
a√
2π

EXφaG(X − t) =
a√
2π

Ee−itaGφX(aG).

Writing this explicity using the density of aG yields

a√
2π

Ee−itaGφX(aG) =
a√
2π

1√
2πa

∫ ∞
−∞

e−itsφX(s)e−
s2

2a2 ds

=
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds.

Plugging this back,

FXa(x) =

∫ x

−∞

(
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds

)
dt,

which combined with FX(x) = lima→∞ FXa(x) remarked earlier finishes the proof.

Now we can prove that characteristic functions determine distribution.

9.8 Theorem. Random variables X and Y have the same distribution (that is, FX =

FY ) if and only if they have the same characteristic functions φX = φY .

Proof. By Theorem 9.7, FX(x) = FY (x) for every x ∈ R\B, where B is the union of the

discontinuity points of FX and the discontinuity points of FY . For x ∈ B, take xn > x

such that xn ∈ R \ B and xn → x (it is possible since B is at most countable). Then

FX(xn) = FY (xn) and by right-continuity, FX(x) = FY (x).

The inversion formula from Theorem 9.7 gives us several other interesting corollar-

ies. Since the characteristic function determines distribution, it should be possible to

reconstruct densities from characteristic functions.

9.9 Theorem. If X is a random variable such that
∫
R |φX | < ∞, then X has density

f given by

f(x) =

∫ ∞
−∞

1

2π
e−isxφX(s)ds

which is bounded and uniformly continuous.

9.10 Remark. If X is a continuous random variable with density f , then clearly

φX(t) =

∫ ∞
−∞

eitsf(s)ds

The two formulae have the same form!

Proof. For two continuity points x < y of FX , we have from Theorem 9.7,

FX(y)− FX(x) = lim
a→∞

∫ y

x

(
1

2π

∫ ∞
−∞

e−istφX(s)e−
s2

2a2 ds

)
dt.
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Since |e−istφX(s)e−
s2

2a2 | ≤ |φX(s)|, that is the integrand is dominated by |φX | which is

integrable on [x, y]× R, by Lebesgue’s dominated convergence theorem,

FX(y)− FX(x) =

∫ y

x

(
1

2π

∫ ∞
−∞

e−istφX(s)ds

)
dt

which gives that X has density given by the promised formula. The rest follows as for

characteristic functions (recall the proof of Theorem 9.3 (iii)).

9.11 Corollary. If X is a continuous random variable with density fX and character-

istic function φX which is nonnegative, then
∫
R φX <∞ if and only if f is bounded.

Proof. If
∫
R φX < ∞, then by Theorem 9.9, f is bounded. Conversely, let as in the

proof of Theorem 9.9, G be a standard Gaussian random variable independent of X.

Then the density of X + a−1G at x equals∫
R
fX(x− y)fa−1G(y)dy.

On the other hand, it equals d
dxFXa(x) and from the last identity in the proof of Theorem

9.9, this becomes
1

2π

∫ ∞
−∞

e−isxφX(s)e−
s2

2a2 ds.

For x = 0 we thus get

1

2π

∫ ∞
−∞

φX(s)e−
s2

2a2 ds =

∫
R
fX(−y)fa−1G(y)dy.

If fX is bounded by, say M , we obtain that the right hand side is bounded by M , so

1

2π

∫ ∞
−∞

φX(s)e−
s2

2a2 ds ≤M.

As a→∞, by Lebesgue’s monotone convergence theorem, the left hand side converges

to 1
2π

∫∞
−∞ φX , which proves that

∫
R φX ≤ 2πM .

9.12 Example. Let X1, X2, . . . , Xn be i.i.d. random variables uniform on [−1, 1]. Then

X1 + . . .+Xn for n ≥ 2 has density

f(x) =
1

2π

∫ ∞
−∞

cos(tx)

(
sin t

t

)n
dt.

Indeed, note that φXi(t) = sin t
t , so φX1+...+Xn(t) =

(
sin t
t

)n
which is integrable for n ≥ 2

and the formula follows from Theorem 9.9.

We finish with two Fourier analytic identities.

9.13 Theorem (Parseval’s identities). If X and Y are continuous random variables

with densities fX and fY , then
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(i)
∫
R |φX |2 <∞ if and only if

∫
R f

2
X <∞ and then∫
R
f2
X =

1

2π

∫
R
|φX |2,

(ii) if
∫
R f

2
X <∞ and

∫
R f

2
Y <∞, then∫

R
fXfY =

1

2π

∫
R
φXφY .

Proof. (i) Let X ′ be an independent copy of X. Consider X̃ = X −X ′. We have,

φX̃(t) = φX(t)φ−X′(t) = φX(t)φ−X(t) = φX(t)φX(t) = |φX(t)|2.

On the other hand, X̃ is continuous with density given by convolution,

fX̃(y) = (fX ? f−X)(y) =

∫
R
fX(x)f−X(y − x)dx.

It can be seen from here that if
∫
f2
X <∞, then by the Cauchy-Schwarz inequality, fX̃

is bounded. Then by Corollary 9.11, φX̃ = |φX |2 is integrable. Conversely, if |φX |2 is

integrable, then from Theorem 9.9 applied to X̃, we get

fX̃(0) =
1

2π

∫
R
φX̃ =

1

2π

∫
R
|φX |2.

Since

fX̃(0) = (fX ? f−X)(0) =

∫
R
fX(x)f−X(0− x)dx =

∫
R
fX(x)fX(x)dx =

∫
R
f2
X ,

we get that
∫
f2
X = 1

2π

∫
|φX |2. In particular, f2

X is integrable.

(ii) Apply (i) to the density fX+fY
2 .

9.3 Relations to convergence in distribution

The second crucial property of characteristic functions is that their pointwise conver-

gence captures convergence in distribution. To establish that, we will need to use

compactness-type arguments. We start with a lemma that will help us get tightness.

9.14 Lemma. For a random variable X and δ > 0,

P
(
|X| > 2

δ

)
≤ 1

δ

∫ δ

−δ
[1− φX(t)]dt.

Proof. Note that∫ δ

−δ
[1− φX(t)]dt =

∫ δ

−δ
[1− EeitX ]dt = 2δ − E

∫ δ

−δ
eitXdt = 2δ − E

eiδX − e−iδX
iX

= 2δ − 2E
sin(δX)

X
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(this incidentally shows that the a priori complex number
∫ δ
−δ[1−φX(t)]dt is real). Thus

1

δ

∫ δ

−δ
[1− φX(t)]dt = 2E

[
1− sin(δX)

δX

]
.

Using | sinx| ≤ |x|, we have 1− sin x
x ≥ 0, so

1

δ

∫ δ

−δ
[1− φX(t)]dt ≥ 2E

[(
1− sin(δX)

δX

)
1{|δX|>2}

]
= 2E

[(
1− sin(δ|X|)

δ|X|

)
1{|δX|>2}

]
,

where is the last equality we used that sin x
x is even. Crudely, − sin(δ|X|) ≥ −1, hence

1

δ

∫ δ

−δ
[1− φX(t)]dt ≥ 2E

[(
1− 1

δ|X|

)
1{|δX|>2}

]
≥ 2E

[
1

2
1{|δX|>2}

]
= P (|δX| > 2) .

The main result about convergence in distribution is the following so-called (Lévy’s)

continuity theorem.

9.15 Theorem (Lévy’s continuity theorem). Let (Xn) be a sequence of random variables

such that for every t ∈ R, φXn(t) −−−−→
n→∞

φ(t) for some function φ : R → C which is

continuous at t = 0. Then there is a random variable X such that φ = φX and Xn
d−→ X.

9.16 Remark. The converse to Lévy’s Theorem also holds: if Xn
d−→ X, then φXn(t) −→

φX(t) for every t ∈ R. Indeed, since sin is continuous and bounded, E sin(tXn) →
E sin(tX) and the same for the cos function, so φXn(t) = E cos(tXn) + iE sin(tXn) →
φX(t).

Proof of Theorem 9.15. Since |φXn(t)| ≤ 1 for every t, by taking the limit, we have

|φ(t)| ≤ 1 for every t.

Step 1 (tightness). Since φ is continuous at 0 and φ(0) = limn φXn(0) = 1, for every

ε > 0, there is δ > 0 such that |1− φ(t)| < ε for |t| < δ, so

1

δ

∫ δ

−δ
|1− φ(t)|dt ≤ 2ε.

By Lebesgue’s dominated convergence theorem,

1

δ

∫ δ

−δ
|1− φXn(t)|dt −−−−→

n→∞
1

δ

∫ δ

−δ
|1− φ(t)|dt,

so for large n,
1

δ

∫ δ

−δ
|1− φXn(t)|dt < 3ε.
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By Lemma 9.14, we obtain

P
(
|Xn| >

2

δ

)
< ε.

This shows that the sequence (Xn) is tight. By Theorem 8.17, there is a subsequence

(Xnk) which converges in distribution to a random variable, say X. This is our candidate

for the limit of (Xn).

Step 2 (φ = φX). Since Xnk
d−→ X, we get φXnk → φX at every point (Remark 9.16,

but also φXnk → φ at every point, so φ = φX , which proves that φ is a characteristic

function.

Step 3 (Xn
d−→ X). If this is not the case, then, by the definition, there is a bounded

continuous function g such that Eg(Xn) 9 Eg(X). Therefore, there is ε > 0 and a

sequence mk such that |Eg(Xmk) − Eg(X)| > ε. Since (Xn) is tight, using Theorem

8.17 again, there is a convergent subsequence Xmkl
to some random variable, say X ′.

As in Step 2, φX′ = φ = φX , so X ′ has the same distribution as X (Theorem 9.8) and

|Eg(Xmkl
)− Eg(X ′)| = |Eg(Xmkl

)− Eg(X)| > ε contradicts that Xmkl

d−→ X ′.

9.17 Example. In Levy’s theorem the continuity assumption is necessary. Let G be

a standard Gaussian random variable and consider the sequence Xn = nG. We have

φXn(t) = φnG(t) = φG(nt) = e−n
2t2/2, so

φXn(t)→

0, t 6= 0,

1, t = 0.

The limiting function is discontinuous at 0. The sequence Xn does not converge in

distribution because FXn(t) = P (G ≤ t/n) → P (G ≤ 0) = 1/2, but the limit is not a

distribution function (an alternative argument: by Remark 9.16, if Xn
d−→ X, then φXn

would converge to a characteristic function which is continuous).
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9.4 Exercises

1. In the proof of Theorem 9.5 we implicitly used: if X,Y are complex -valued integrable

random variables which are independent, then EXY = EXEY . Fill out this gap.

Table 1: Characteristic functions of common discrete distributions (see Section 5.1).

Distribution µ Characteristic function φµ(t)

Dirac delta δa eita

Ber(p) 1− p+ peit

Bin(n, p) (1− p+ peit)n

Poiss(λ) exp{λ(eit − 1)}
Geom(p) peit

1−(1−p)eit

Table 2: Characteristic functions of common continuous distributions (see Section 5.1).

Distribution µ Density function fµ(x) Characteristic function φµ(t)

Unif([0, a]) 1
a 1[0,a](x) eiat−1

iat

Exp(λ) λe−λx 1(0,∞)(x) λ
λ−eit

Sym-Exp 1
2e
−|x| 1

1+t2

Cauchy 1
π(1+x2) e−|t|

Gamma(β, λ) λβ

Γ(β)x
β−1e−λx 1(0,∞)(x)

(
1− it

λ

)−β
N(a, σ2) 1√

2πσ
e−

(x−a)2

2σ2 eiat−σ
2t2/2

Hyperbolic cosine 1
π cosh x

1
cosh(πt/2)

2. Justify Table 1.

3. Justify Table 2.

4. Decide whether the following functions are the characteristic functions of some dis-

tributions. If yes, describe the corresponding distribution.

a) cos t,

b) cos2 t,

c) 1
4 (1 + eit)2,

d) 1+cos t
2 ,

e) (2− eit)−1.
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5. Suppose φ1, . . . , φn are characteristic functions of some distributions. Let nonnega-

tive numbers p1, . . . , pn be such that
∑n
j=1 pj = 1. Show that

∑n
j=1 pjφj is also a

characteristic function.

6. Let X1, X2, . . . be i.i.d. with characteristic function φ. Let N be a Poisson random

variable with parameter λ > 0, independent of the Xj . Find the characteristic

function of Y =
∑N
j=1Xj (we adopt the convention that

∑0
j=1Xj = 0).

7. Suppose φ is the characteristic function of some random variable X. Decide whether

the following functions are always characteristic functions

a) φ2,

b) Reφ,

c) |φ|2,

d) |φ|.

8. Show that if φ′′X(0) exists, then EX2 <∞.

9. Let X be a random variable with density f(x) = C
(1+x2) log(e+x2) , x ∈ R. Show that

φ′X(0) exits, but E|X| = +∞.

10. Let X be a random variable such that φX(t) = 1 − ct2 + o(t2) as t → 0 for some

constant c ∈ R. Then EX = 0, EX2 = 2c. In particular, if φX(t) = 1 + o(t2), then

X = 0 a.s. As a corollary, φ(t) = e−|t|
α

is not a characteristic function for any α > 2.

11. For a sequence (Xn) of random variables, Xn
d−→ 0 if and only if there is δ > 0 such

that φXn(t)→ 1 for every t ∈ (−δ, δ).

12. For an integer-valued random variable X and an integer k, we have

P (X = k) =
1

2π

∫ π

−π
e−itkφX(t)dt.

(This is Lemma 11.8.)

13. If X is a continuous random variable, then φX(t)→ 0 as t→∞.

14. These help show that certain important functions are characteristic functions:

a) Show that φ(t) = 2 1−cos t
t2 is the characteristic function of the triangular distri-

bution with density (1 − |x|) 1[−1,1](x) (the distribution of the sum of two i.i.d.

Unif[− 1
2 ,

1
2 ] random variables).

b) Using the inverse formula (Theorem 9.9), show that (1 − |t|a ) 1[−a,a](t) is a char-

acteristic function.
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c) Show that if a function φ : R → R satisfies: φ(0) = 1, φ is even, φ is piece-wise

linear and φ is nonincreasing and convex on [0,+∞, then φ is a characteristic

function.

15. Using Exercises 9.5 and 9.14, show the so-called Pólya’s criterion: every function φ

with φ(0) = 1 which is even, nonincreasing and convex on [0,+∞) is a characteristic

function. In particular, e−|t|
α

is a characteristic function for α ∈ (0, 1].

16. Let 0 < α < 2 and ψ(t) = 1− (1− cos t)α/2. Using the binomial series argue that

ψ(t) =

∞∑
n=1

pn(cos t)n

for nonnegative p1, p2, . . . with
∑∞
n=1 pn = 1. Show that

e−|t|
α

= lim
n→∞

[
ψ(
√

2tn−1/α)
]n

and conclude that e−|t|
α

is a characteristic function.

17. Let Xn be a Poisson random variable with parameter λn > 0. If λn → λ for some

λ > 0, then Xn
d−→ X for a Poisson random variable X with parameter λ.

18. Suppose a sequence of random variables (Xn) converges in law to a random variable

X. Suppose sequences of reals (an) and (bn) converge to a and b, respectively. Show

that anXn + bn
d−→ aX + b.

19. Let (Xn) be a sequence of random variables with P
(
Xn = k

n

)
= 1

n2 , k = 1, . . . , n2.

Does it converge in distribution?

20. Prove that φ(t) = 2
1+et2

is not a characteristic function.

21. Let X1, . . . , Xn be i.i.d. Cauchy random variables, that is with density 1
π(1+x2) ,

x ∈ R. Show that for every reals a1, . . . , an, the weighted sum
∑n
j=1 ajXj has the

same distribution as (
∑n
j=1 |aj |)X1.

22. For a random variable X and a ∈ R, we have

P (X = a) = lim
T→∞

1

2T

∫ T

−T
e−iatφX(t)dt.

23. Let X and Y be i.i.d. random variables. Then

P (X = Y ) = lim
T→∞

1

2T

∫ T

−T
|φX(t)|2dt.

On the other hand,

P (X = Y ) =
∑
x∈R

P (X = x)
2

(of course the set {x, P (X = x) > 0} is at most countable).
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24. Show that a random variable X has no atoms if and only if

lim
T→∞

1

2T

∫ T

−T
|φX(t)|2dt = 0.

In particular, if φX(t)→ 0 as t→∞, then X has no atoms. The converse is not true

(devil’s staircase).

25. Let ε1, ε2, . . . be i.i.d. symmetric random signs. For every a = (a1, a2, . . . ) ∈ `2, i.e.∑
a2
n <∞, the series

∑∞
n=1 anεn converges in probability, hence in distribution (hint:

Cauchy’s condition from Exercise 5.28). Show that the distribution of
∑∞
n=1 εn2−n

is uniform on [−1, 1].

26. Show that for a random variable X the following are equivalent

(a) X is symmetric, that is X and −X have the same distribution

(b) X and εX have the same distribution, where ε is an independent random sign

(c) X and ε|X| have the same distribution, where ε is an independent random sign

(d) the characteristic function of X is real valued.

27. For an integrable random variable X,

E|X| = 2

π

∫ ∞
0

1− ReφX(t)

t2
dt.

28. Prove Shepp’s inequality : if X, Y are i.i.d. integrable random variables, then

E|X − Y | ≤ E|X + Y |.

29. Find an example of two different distributions whose characteristic functions agree

on [−1, 1].

Hint: Consider φ(t) = (1− |t|)+ and ψ(t) defined to be equal to φ(t) on [−1, 1] and

2-periodic.

30. Find an example of 3 random variables X, Y , Z which are independent such that Y

and Z do not have the same distribution, but X + Y and X + Z do.

31. Show that if random variables X, Y are independent and X + Y has the same

distribution as X, then Y = 0 a.s.

32. Cramér’s decomposition theorem. If ξ is a Gaussian random variable and ξ = X + Y

for some independent random variables X and Y , then X and Y are also Gaussian

(point masses are assumed to be Gaussian).

Here is a possible, very analytic approach. A function f : C → C is entire if it

is holomorphic on C. The order of the entire function f is the infimum of ρ > 0
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such that |f(z)| = O(exp(|z|ρ)) as z → ∞. It is a consequence of Hadamard’s

factorisation theorem that an entire function f of order ρ without any zeros is of

the form f(z) = eg(z), where g is a polynomial of degree at most ρ. For instance,

f(z) = ez
2

is entire of order 2.

(a) Using Hadamard’s factorisation theorem show: if for some random variable X

there is a > 0 such that EeaX2

<∞, then φX extends to C, is entire of order at most

2 and if additionally φX(z) 6= 0 for all z ∈ C, then X is Gaussian.

(b) Show that if X + Y is Gaussian for some independent random variables X, Y ,

then Eeδ(X+Y )2 <∞ for some δ > 0.

(c) Deduce from independence that Eeδ(X+c)2 <∞ for some c ∈ R and from (a) that

X is Gaussian.
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10 Central limit theorem

Let X1, X2, . . . be i.i.d. random variables with E|X1|2 <∞. By the strong law of large

numbers,

Yn =
X1 + . . .+Xn

n
− EX1

converges to 0 a.s. By our assumption, we can compute

Var(Yn) =
Var(X1 + . . .+Xn)

n2
=
nVar(X1)

n2
=

Var(X1)

n
,

so Yn concentrates around its expectation, which is 0 and in a sense it is not surprising

that Yn goes to 0. What happens if we zoom in, that is rescale appropriately so that

the variance of Yn is fixed, that is when fluctuations of Yn have a fixed size, as opposed

to decaying like 1/n as earlier? Consider

Zn =
Yn√

Var(Yn)
=
√
n

1√
Var(X1)

(
X1 + . . .+Xn

n
− EX1

)
which has variance 1 for all n. What “limit distribution” does Zn have as n → ∞
(if any)? This is addressed by the central limit theorem which says that the weak

limit exists and is Gaussian! (If it exists and is universal, that is the same for all i.i.d.

sequences, then it has to be Gaussian because when the Xi are standard Gaussian, Zn

is also standard Gaussian.) To establish weak convergence, we shall use characteristic

functions.

10.1 Auxiliary elementary lemmas

To handle the convergence of characteristic functions, we shall need several elementary

estimates for complex numbers.

10.1 Lemma. If z1, . . . , zn and w1, . . . , wn are complex numbers all with modulus at

most θ, then ∣∣∣∣∣∣
n∏
j=1

zj −
n∏
j=1

wj

∣∣∣∣∣∣ ≤ θn−1
n∑
j=1

|zj − wj |.

Proof. We proceed by induction on n. For n = 1, we have equality. For n > 1, we have∣∣∣∣∣∣
n∏
j=1

zj −
n∏
j=1

wj

∣∣∣∣∣∣ =

∣∣∣∣∣∣z1

n∏
j=2

zj − w1

n∏
j=2

wj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣z1

n∏
j=2

zj − z1

n∏
j=2

wj

∣∣∣∣∣∣+

∣∣∣∣∣∣z1

n∏
j=2

wj − w1

n∏
j=2

wj

∣∣∣∣∣∣
= |z1|

∣∣∣∣∣∣
n∏
j=2

zj −
n∏
j=2

wj

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∏
j=2

wj

∣∣∣∣∣∣ |z1 − w1|

≤ θ

∣∣∣∣∣∣
n∏
j=2

zj −
n∏
j=2

wj

∣∣∣∣∣∣+ θn−1|z1 − w1|
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and the inductive assumption allows to finish the proof.

10.2 Lemma. For a complex number z with |z| ≤ 1, we have

|ez − (1 + z)| ≤ |z|2.

Proof. Using the power series expansion of ez, we get

|ez − (1 + z)| =
∣∣∣∣z2

2!
+
z3

3!
+ . . .

∣∣∣∣ ≤ |z|2( 1

2!
+
|z|
3!

+ . . .

)
≤ |z|2

(
1

2!
+

1

3!
+ . . .

)
= |z|2(e− 2).

10.3 Lemma. If (zn) is a sequence of complex numbers such that zn → z for some

z ∈ C, then (
1 +

zn
n

)n
→ ez.

Proof. Fix c > |z|. Then eventually, |zn| < c and consequently,
∣∣1 + zn

n

∣∣ ≤ 1 + c
n ≤ ec/n

and |ezn/n| = eRe(zn)/n ≤ ec/n, so applying Lemma 10.1 with θ = ec/n, for large n,

∣∣∣(1 +
zn
n

)n
− ezn

∣∣∣ =

∣∣∣∣∣∣
n∏
j=1

(
1 +

zn
n

)
−

n∏
j=1

ezn/n

∣∣∣∣∣∣ ≤
(
ec/n

)n−1

n
∣∣∣1 +

zn
n
− ezn/n

∣∣∣ .
Clearly eventually, |zn/n| ≤ 1 , so by Lemma 10.2,∣∣∣(1 +

zn
n

)n
− ezn

∣∣∣ ≤ (ec/n)n−1

n
∣∣∣zn
n

∣∣∣2 ≤ ec c2
n
.

It remains to use continuity, that is that ezn → ez.

10.4 Lemma. For every real number t and n = 0, 1, 2, . . ., we have∣∣∣∣∣eit −
n∑
k=0

(it)k

k!

∣∣∣∣∣ ≤ |t|n+1

(n+ 1)!
.

Proof. We proceed by induction on n. For n = 0, we have

|eit − 1| =
∣∣∣∣∫ t

0

eisds

∣∣∣∣ ≤ |t|.
Suppose the assertion holds for n ≥ 0. Then, we have∣∣∣∣∣eit −

n+1∑
k=0

(it)k

k!

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0

(
eis −

n∑
k=0

(is)k

k!

)
ds

∣∣∣∣∣ ≤
∫ t

0

|s|n+1

(n+ 1)!
ds =

|t|n+2

(n+ 2)!
.
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10.2 Vanilla Central Limit Theorem

10.5 Theorem. Let X1, X2, . . . be i.i.d. random variables with E|X1|2 <∞. Then the

sequence (Zn) of normalised sums

Zn =
X1 + . . .+Xn − nEX1√

nVar(X1)

converges in distribution to a standard Gaussian random variable.

Proof. Let X̄i = Xi−EXi
Var(X1) . Then EX̄i = 0, E|X̄i|2 = 1,

Zn =
X1 + . . .+Xn − nEX1√

nVar(X1)
=
X̄1 + . . .+ X̄n√

n

and by independence

φZn(t) = φX̄1

(
t√
n

)
. . . φX̄n

(
t√
n

)
=

[
φX̄1

(
t√
n

)]n
.

We investigate pointwise convergence of φZn . By Theorem 9.3 (v), φX̄1
is twice con-

tinuously differentiable and we can compute that φ′
X̄1

(0) = iEX̄1 = 0 and φ′′
X̄1

(0) =

i2EX̄2
1 = −1. Thus by Taylor’s formula with Lagrange’s remainder

φX̄1
(t) = φX̄1

(0) + tφ′X̄1
(0) +

t2

2
φ′′X̄1

(ξt)

= 1 + tφ′X̄1
(0) +

t2

2
φ′′X̄1

(0) + t2R(t)

= 1− t2

2
+ t2R(t),

for some ξt between 0 and t and R(t) = 1
2 (φ′′

X̄1
(ξt)− φ′′X̄1

(0)). By the continuity of φ′′
X̄1

(at 0), R(t) −−−→
t→0

0. Note that R(t) may be complex. By Lemma 10.3, for every t ∈ R,

φZn(t) =

[
φX̄1

(
t√
n

)]n
=

[
1− t2

2n
+
t2

n
R(t)

]n
−−−−→
n→∞

e−t
2/2.

By Theorem 9.15, Zn converges in distribution to a random variable whose characteristic

function is e−t
2/2, that is a standard Gaussian random variable.

We have two remarks. The first one shows that other notions of convergence are too

strong to capture the limit behaviour of sequences of sums of i.i.d. random variables,

normalised to have a fixed variance. The second one shows that the finite variance is

really a necessary assumption to make for the weak limit to exist. We defer their proofs

to exercises.

10.6 Remark. Suppose X1, X2, . . . are i.i.d. random variables with mean 0 and finite

variance. Then by the vanilla central limit theorem and Kolmogorov’s 0− 1 law,

lim sup
n→∞

X1 + · · ·+Xn√
n

= +∞ a.s.

Moreover, the sequence (X1+···+Xn√
n

), or any of its subsequences, does not converge in

probability.
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10.7 Remark. Suppose X1, X2, . . . are i.i.d. random variables such that the sequence

(X1+···+Xn√
n

) converges in distribution. Then EX2
1 <∞.

In Appendices F and G, we present two other completely different proofs of the

vanilla central limit theorem.

10.3 Lindeberg’s Central Limit Theorem

The assumption of identical distribution of the summands in the vanilla central limit

theorem can be weakened. The so-called Lindeberg condition is an almost optimal

condition under which the central limit theorem holds.

10.8 Theorem. Let {Xn,}n≥1,1≤k≤n be a triangular array of random variables with

EX2
n,k < ∞ such that for every n ≥ 1, the variables Xn,1, . . . , Xn,n are independent.

Let

X̄n,k =
Xn,k − EXn,k√∑n
k=1 Var(Xn,k)

and for ε > 0, set

Ln(ε) =

n∑
k=1

EX̄2
n,k 1{|Xn,k|>ε} .

If the following Lindeberg condition holds:

for every ε > 0, Ln(ε) −−−−→
n→∞

0, (10.1)

then
n∑
k=1

X̄n,k
d−−−−→

n→∞
Z,

where Z is a standard Gaussian random variable.

10.9 Remark. Condition (10.1) implies that

max
1≤k≤n

Var(X̄n,k) −−−−→
n→∞

0 (10.2)

(individual contributions of the summans in Zn are small). Indeed, for every ε > 0, we

have

Var(X̄n,k) ≤ EX̄2
n,k ≤ EX̄2

n,k 1{|X̄n,k|>ε}+ε ≤ Ln(ε) + ε.

Proof of Theorem 10.8. Denote Zn =
∑n
k=1 X̄n,k and σn,k =

√
Var(X̄n,k). By the

definition of X̄n,k, for every n ≥ 1, we have

n∑
k=1

σ2
n,k = 1. (10.3)

To show Zn
d−−−−→

n→∞
Z, in view of Lévy’s continuity theorem (Theorem 9.15), it is enough

to show that for every t ∈ R, we have

φZn(t) −−−−→
n→∞

e−t
2/2.
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By independence, (10.3) and Lemma 10.1,

∣∣∣φZn(t)− e−t2/2
∣∣∣ =

∣∣∣∣∣
n∏
k=1

φX̄n,k(t)−
n∏
k=1

e−σ
2
n,kt

2/2

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣φX̄n,k(t)− e−σ2
n,kt

2/2
∣∣∣ .

Denoting

sn(t) =

n∑
k=1

∣∣∣∣EeitX̄n,k − 1 +
1

2
σ2
n,kt

2

∣∣∣∣ =

n∑
k=1

∣∣∣∣E [eitX̄n,k − 1− itX̄n,k +
1

2
t2X̄2

n,k

]∣∣∣∣
and

rn(t) =

n∑
k=1

∣∣∣∣1− 1

2
σ2
k,nt

2 − e−σ2
n,kt

2/2

∣∣∣∣ ,
by the triangle inequality we thus have∣∣∣φZn(t)− e−t2/2

∣∣∣ ≤ sn(t) + rn(t).

Fix ε > 0. Splitting the expectation in sn(t) into two: on {|X̄n,k| ≤ ε} and {|X̄n,k| > ε},
we get

sn(t) ≤ s(1)
n (t) + s(2)

n (t)

with

s(1)
n (t) =

n∑
k=1

∣∣∣∣E [eitX̄n,k − 1− itX̄n,k +
1

2
t2X̄2

n,k

]
1{|X̄n,k|≤ε}

∣∣∣∣ ,
s(2)
n (t) =

n∑
k=1

∣∣∣∣E [eitX̄n,k − 1− itX̄n,k +
1

2
t2X̄2

n,k

]
1{|X̄n,k|>ε}

∣∣∣∣ .
Thanks to Lemma 10.4 (the case n = 3),

s(1)
n (t) ≤

n∑
k=1

E
|t|3|X̄n,k|3

6
1{|X̄n,k|≤ε} ≤

|t|3ε
6

n∑
k=1

E|X̄n,k|2 =
|t|3ε

6
.

Thanks to Lemma 10.4 (the case n = 2) and the triangle inequality,

s(2)
n (t) ≤

n∑
k=1

E

(
t2X̄2

n,k

2
+
t2X̄2

n,k

2

)
1{|X̄n,k|>ε} = t2Ln(ε).

To bound rn(t), note that thanks to (10.2), for large enough n and every k ≤ n, we have

σ2
n,kt

2 ≤ 1. Thus, thanks to Lemma 10.2,

rn(t) ≤
n∑
k=1

(
1

4
σ2
n,kt

2

)2

≤ t4

4
max
k≤n

σ2
n,k

n∑
k=1

σ2
n,k =

t4

4
max
k≤n

σ2
n,k.

Putting the bounds on sn(t) and rn(t) together yields∣∣∣φZn(t)− e−t2/2
∣∣∣ ≤ |t|3ε

6
+ t2Ln(ε) +

t4

4
max
k≤n

σ2
n,k

which by (10.1) and (10.2) gives φZn(t)→ e−t
2/2, as desired.
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10.10 Remark. Of course Lindeberg’s central limit theorem implies the vanilla one.

Indeed, if X1, X2, . . . are i.i.d. square integrable random variables, say with mean 0 and

variance 1, then setting Xn,k = Xk/
√
n, we check that the Lindeberg condition (10.1)

holds,

Ln(ε) = nE
X2

1

n
1{|X1|>ε

√
n} = EX2

1 1{|X1|>ε
√
n}

which goes to 0 as n goes to ∞ by Lebesgue’s dominated convergence theorem.

10.11 Remark. The Lindeberg condition (10.1) roughly says that the contribution of

each Xn,k, k = 1, . . . , n to the sum should be “equal and small”. This is not a necessary

condition for the central limit theorem to hold as the following simple example shows.

Let Xn,1 ∼ N(0, 1
2 ) and Xn,k ∼ N(0, σ2

n,k), k = 2, . . . , n with arbitrary σn,k satisfying∑n
k=2 σ

2
n,k = 1

2 . Then, trivially, Zn ∼ N(0, 1), but (10.1) does not hold (because even

its consequence (10.2) fails). Excluding such situations where one of the summands

dominates, it turns out that the Lindeberg condition is necessary for the central limit

theorem to hold, as shown by Feller (we defer its proof to Appendix H).

10.12 Theorem. Let {Xn,}n≥1,1≤k≤n be a triangular array of random variables with

EX2
n,k <∞ such that for every n ≥ 1, the variables Xn,1, . . . , Xn,n are independent. Let

X̄n,k be the normalised sequence and Zn =
∑n
k=1 X̄n,k, as in Theorem (10.8). Assume

(10.2). If the sequence (Zn)n converges in distribution to a standard Gaussian random

variable, then (10.1) holds.

10.4 Multidimensional case

Let X = (X1, . . . , Xd) be a random vector in Rd. We define its characteristic function

φX : Rd → C by

φX(t) = Eei〈t,X〉, t ∈ Rd.

10.13 Example. Let X = (X1, . . . , Xd) be a standard Gaussian random vector in Rd.

Then by the independence of its components,

φX(t) =

d∏
j=1

φXj (tj)e
− 1

2

∑d
j=1 t

2
j , t ∈ Rd.

Let Y = AX + b be an arbitrary Gaussian random vector in Rm, where A is an m× n
matrix and b is a vector in Rm. Then

φY (t) = Eei〈AX+b,t〉= ei〈b,t〉Eei〈X,A>t〉= ei〈b,t〉e−|AX|
2/2 = ei〈b,t〉e−〈AA>t,t〉/2,

thus, in general, we have

φY (t) = ei〈b,t〉−〈Qt,t〉/2, Y ∼ N(b,Q). (10.4)
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Working with the multidimensional CDFs in Rd, we can prove a tightness result

analogous to Theorem 8.17: a sequence (µn)n of Borel probability measures on Rd is

tight if and only if it its every subsequence has a weakly convergent subsequence. We

also have the inversion formula analogous to the one from Theorem 9.7,

FX(x1, . . . , xn) = lim
a→∞

∫ x1

−∞
· · ·
∫ xn

−∞

(
1

2π

∫
Rd
e−i〈s,t〉φX(s)e−

|s|2

2a2 ds

)
dt.

These allow to establish Lévy’s continuity theorem in Rd in a similar fashion and, con-

sequently, the central limit theorem in Rd.

10.14 Theorem. Let (Xn) be a sequence of random vectors in Rd such that for every

t ∈ Rd, φXn(t) −−−−→
n→∞

φ(t) for some function φ : Rd → C which is continuous at t = 0.

Then there is a random vector X in Rd such that φ = φX and Xn
d−→ X.

Proof. Let e1, . . . , ed be the standard basis vectors in Rd. Fix j ≤ d and s ∈ R. By

the assumption, φ〈Xn,ej〉(s) = φXn(ejs) → φX(ejs) = φ〈X,ej〉(s). Consequently, by the

1-dimensional version of Lévy’s theorem (Theorem 9.15), we get the tightness of the

sequence (〈Xn, ej〉)n of each component of Xn, thus of the sequence (Xn). Having the

tightness of (Xn)n, we proceed exactly as in the proof of the 1-dimensional case.

10.15 Theorem (Vanilla version of CLT in Rd). Let X1, X2, . . . be i.i.d. random vectors

in Rd with EX2
i < ∞ for each i, so that the covariance matrix Q = Cov(X) is well-

defined. Then

Zn =
X1 + . . .+Xn − nEX1√

n
−−−−→
n→∞

ZQ,

where ZQ is a Gaussian random vector in Rd with mean 0 and covariance matrix Q.

Proof. By Lévy’s continuity theorem, it is enough to show that for every t ∈ Rd, we

have

φZn(t) −−−−→
n→∞

e−〈Qt,t〉/2.

(recall (10.4)). Since E〈t,X1 − EX1〉2 =〈Qt, t〉and φZn(t) = φ〈Zn,t〉(1), this follows from

the 1-dimensional vanilla CLT (Theorem 10.5) applied to the sequence (〈t, Zn〉)∞n=1.

10.5 Poisson limit theorem

The following result, sometimes called the law of rare events, explains how the Poisson

distribution arises as a limit of the binomial distribution when the expected number of

successes converges to a constant as the number of Bernoulli trials goes to infinity.

10.16 Theorem (Vanilla Poisson limit theorem). Let a sequence of numbers pn ∈ [0, 1]

be such that npn −−−−→
n→∞

λ for some λ > 0. Let Sn be a binomial random variable with

parameters pn and n. Then Sn
d−→ X, where X is a Poisson random variable with

parameter λ.
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Proof. For nonnegative integer-valued random variables convergence in distribution is

equivalent to the pointwise convergence of the probability mass functions (Exercise 8.4).

Thus, Sn
d−→ X if and only if P (Sn = k) −−−−→

n→∞
P (X = k), for every integer k ≥ 0. Fix

then such k and note that as n→∞, we have

P (Sn = k) =

(
n

k

)
pkn(1− pn)n−k =

n(n− 1) . . . (n− k + 1)

k!
pkn(1− pn)n−k

=
1 +O(n−1)

k!
(npn)k(1− pn)n−k.

By the assumption, npn → λ. In particular, pn → 0. Consequently, (1− pn)−k → 1 and

(1− pn)n → e−λ, so

P (Sn = k) −−−−→
n→∞

1

k!
λke−λ = P (X = k) .

There is a generalisation to triangular arrays of Bernoulli random variables satisfying

two assumptions: (i) the means stabilise in the limit and (ii) each random variable has

a small contribution.

10.17 Theorem (Poisson limit theorem). Let {Xn,}n≥1,1≤k≤n be a triangular array of

Bernoulli random variables such that for every n ≥ 1, the variables Xn,1, . . . , Xn,n are

independent. If they satisfy the following two conditions

(i) E
∑n
k=1Xn,k −−−−→

n→∞
λ for some λ ∈ (0,∞),

(ii) max1≤k≤n EXn,k −−−−→
n→∞

0,

then

Xn,1 + · · ·+Xn,n
d−−−−→

n→∞
Z,

where Z is a Poisson random variable with parameter λ.

For now we show a Fourier-analytic proof. In the next chapter, we include another

proof, based on the total variation distance, which gives some quantitative bounds on

the rate of convergence and moreover is quite simple.

1st proof of Theorem 10.17. Let Sn = Xn,1 + · · · + Xn,n and let pn,k = EXn,k be the

parameter of the Bernoulli distribution of Xn,k. We have

φSn(t) =

n∏
k=1

φXn,k(t) =

n∏
k=1

(1 + pn,k(eit − 1))

and

φZ(t) = eλ(eit−1).
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Fix t ∈ R. Assumption (i) is that
∑n
k=1 pn,k −−−−→n→∞

λ, thus

n∏
k=1

epn,k(eit−1) = e(
∑n
k=1 pn,k)(eit−1) −−−−→

n→∞
eλ(eit−1) = φZ(t)

and it suffices to show that

un =

n∏
k=1

(1 + pn,k(eit − 1))−
n∏
k=1

epn,k(eit−1) −−−−→
n→∞

0.

For 0 ≤ p ≤ 1, we have

|ep(eit−1)| = epRe(eit−1) = ep(cos t−1) ≤ 1

and

|1 + p(eit − 1)| = |1− p+ peit| ≤ 1− p+ p|eit| = 1,

so by Lemma 10.1 with θ = 1, we get

|un| =
∣∣∣∣∣
n∏
k=1

(1 + pn,k(eit − 1))−
n∏
k=1

epn,k(eit−1)

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣1 + pn,k(eit − 1)− epn,k(eit−1)
∣∣∣ .

Thanks to assumption (ii), for large enough n, we can use Lemma 10.2 applied to

z = pn,k(eit − 1) and thus get

|un| ≤
n∑
k=1

p2
n,k|eit − 1|2 ≤ 4

n∑
k=1

p2
n,k ≤ 4

(
max

1≤k≤n
pn,k

) n∑
k=1

pn,k −−−−→
n→∞

0.
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10.6 Exercises

1. Let S be the number of ones when throwing a fair die 18000 times. Using the central

limit theorem, find a Gaussian approximation to P (2950 < S < 3050).

2. Let G be a standard Gaussian random vector in Rn. Let ‖G‖ =
√
G2

1 + . . .+G2
n be

its magnitude. Let an = P (
√
n− 1 ≤ ‖G‖ ≤ √n+ 1). Find a = limn→∞ an.

3. For λ > 0, let Xλ be a Poisson random variable with parameter λ. Let (λn) be a

sequence of positive numbers with λn → ∞ as n → ∞. Find the weak limit of the

sequence (
Xλn−λn√

λn
).

4. Show that e−n
∑n
k=1

nk

k! −−−−→n→∞
1
2 .

Hint: Poiss(n) random variable is a sum of n i.i.d. Poiss(1) random variables.

5. LetXn be a Poisson random variable with parameter n. Let Z be a standard Gaussian

random variable. Show that

(i) E
(
Xn−n√

n

)
−

= e−n n
n+1/2

n! ,

(ii)
(
Xn−n√

n

)
−

d−−−−→
n→∞

Z−,

(iii) E
(
Xn−n√

n

)
−
−−−−→
n→∞

EZ−,

(iv) conclude Stirling’s formula, n!
e−nnn+1/2 −−−−→

n→∞

√
2π.

Here, as usual, X− = max{−X, 0} denotes the negative part of X.

6. Suppose that a random variable X with variance one has the following property:

X+X′√
2

has the same distribution as X, where X ′ is an independent copy of X. Show

that X ∼ N(0, 1).

7. Suppose that a random vector X = (X1, X2) in R2 is such that EX2
1 ,EX2

2 <∞, X is

rotationally invariant (UX has the same distribution as X for every 2× 2 orthogonal

matrix U) and X has independent components, that is X1 and X2 are independent.

Show that

(a) X1 has the same distribution as X2 and is symmetric (that is has the same

distribution as −X1)

(b) X1 has the same distribution as X1+X2√
2

(c) Using Exercise 10.6, deduce that X ∼ N(0, σ2I2×2).

Generalise this characterisation of multiples of standard Gaussian vectors to Rn.

8. A roulette wheel has slots numbered 1–36 (18 red and 18 black) and two slots num-

bered 0 and 00 that are painted green. You can bet $1 that the ball will land in a
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red (or black) slot and win $1 if it does. What is the expected value of your winnings

after 361 spins of the wheel and what is approximately the probability that it will be

positive?

9. A biased coin showing heads with probability p is thrown 2500 times. Using the

Poisson or central limit theorem, find approximately the probability of getting no

heads when a) p = 1
2500 , b) p = 1

5? How about the probability of getting 500 heads?

10. Prove Remark 10.6.

11. Prove Remark 10.7. Here is a suggestion how to proceed.

(a) Considering Xi − X ′i instead of Xi, where X ′i is an independent copy of Xi

(independent of all the other random variables), show that we can assume the

Xi are symmetric (Exercise 7.1 may be of use).

(b) Show that for independent symmetric random variables X1, . . . , Xn and every

t, A ≥ 0, we have

P (X1 + · · ·+Xn ≥ t) ≥
1

2
P
(
X1 1|X1|≤A + · · ·+Xn 1|Xn|≤A ≥ t

)
.

To this end, consider S = X1 1|X1|≤A + · · ·+Xn 1|Xn|≤A, T = X1 1|X1|>A + · · ·+
Xn 1|Xn|>A and use that (S, T ) has the same distribution as (±S,±T ), by sym-

metry.

(c) Apply (b) with t = u
√
n and treat the right hand side with the central limit

theorem to show that if EX2
i = +∞ (EX2

i 1 |Xi| ≤ A ↗ EX2
i as A → ∞), then

P (X1 + · · ·+Xn ≥ u
√
n) > 1

5 for large enough n. Choose first u, then A, then

n to reach a contradiction.

12. Let X1, X2, . . . be i.i.d. random variables with mean 0 and variance 1. Show that
√
n(X1 + · · ·+Xn)

X2
1 + · · ·+X2

n

d−−−−→
n→∞

Z

and
X1 + · · ·+Xn√
X2

1 + · · ·+X2
n

d−−−−→
n→∞

Z,

where Z is a standard Gaussian random variable.

13. Let X1, X2, . . . be i.i.d. nonnegative random variables with mean 1 and variance σ2.

Show that

2(
√
X1 + · · ·+Xn −

√
n)

d−−−−→
n→∞

Z,

where Z is a Gaussian random variable with mean 0 and variance σ2.

14. Let a > 0. Let X1, X2, . . . be i.i.d. random variables such that P (Xk = a) =

P (Xk = 1/a) = 1
2 . Investigate the weak convergence of the sequence Zn = (X1 ·

. . . ·Xn)1/
√
n, n ≥ 1.
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15. Let X1, X2, . . . be i.i.d. random variables with mean 0 and variance σ2. Let f : R→ R

be a function differentiable at 0. Show that

√
n

(
f

(
X1 + · · ·+Xn

n

)
− f(0)

)
d−−−−→

n→∞
Z,

where Z is a Gaussian random variable with mean 0 and variance σ2f ′(0)2.

16. Show that the Lindeberg condition (10.1) implies that for every ε > 0, we have

max
1≤k≤n

P
(
|X̄n,k| > ε

)
−−−−→
n→∞

0.

17. Under the notation and assumptions of Theorem 10.8, consider the so-called Lya-

punov condition: there is δ > 0 such that E|Xn,k|2+δ <∞ for all n, k and

n∑
k=1

E|X̄n,k|2+δ −−−−→
n→∞

0.

Show that this implies Lindeberg’s condition (10.1).

18. Let X1, X2, . . . be independent random variables such that for some constant C > 0

and all n, |Xn| ≤ C. If
∑n
k=1 Var(Xk) =∞, then X1+···+Xn−E(X1+···+Xn)√∑n

k=1 Var(Xk)
converges

to a standard Gaussian.

19. Let X1, X2, . . . be i.i.d. random variables with mean 0 and variance 1. Given positive

parameters α and t, find

lim
n→∞

P
(∣∣∣∣X1 + · · ·+Xn

nα

∣∣∣∣ > t

)
.

20. Let X1, X2, . . . be independent random variables with P (Xk = k) = P (Xk = −k) =

1
2 , k ≥ 1. Investigate the convergence in distribution of the sequence

X1 + · · ·+Xn√
Var(X1 + · · ·+Xn)

, n ≥ 1.

21. Let U1, U2, . . . be independent random variables with Uk being uniform on [−ak, ak].

Let σn =
√

Var(X1 + · · ·+Xn). Investigate the convergence in distribution of the

sequence
U1 + · · ·+ Un

σn
, n ≥ 1,

in the following two cases

a) The sequence (an) is bounded and σn →∞ as n→∞.

b)
∑
a2
n <∞.

22. Show that the components Xj of a random vector X = (X1, . . . , Xd) in Rd are

independent if and only if φX(t) =
∏n
k=1 φXk(tk) for every t ∈ Rd.
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23. Show that a random vector X in Rd is Gaussian with mean b ∈ Rd and covariance

matrix Q if and only if for every t ∈ Rd, 〈t,X〉 is a Gaussian random variable with

mean 〈t, b〉 and variance 〈Qt, t〉.

24. Let Tn and Zn be the number of inversions and cycles, respectively, in a permutation

chosen uniformly at random from the set of all permutations on an n-element set.

Show that

6
Sn − n2/4

n3/2

d−−−−→
n→∞

Z

and
Zn − log n

(log n)1/2

d−−−−→
n→∞

Z,

where Z is a standard Gaussian random variable.
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11 Quantitative versions of the limit theorem*

11.1 Berry-Esseen theorem via Stein’s mehtod

Let X1, X2, . . . be i.i.d. random variables with finite variance. Let Zn = X1+...+Xn−nEX1√
nVar(X1)

and let Z be a standard Gaussian random variable. The central limit theorem asserts

that for every t ∈ R,

P (Zn ≤ t) −−−−→
n→∞

P (Z ≤ t) =
1√
2π

∫ t

−∞
e−x

2/2dx.

For practical purposes, we would like to know what is the error we make when we

use P (Z ≤ t) as an approximation to P (Zn ≤ t) for large n. This is possible under an

additional assumption (finite third moment) and is settled in the following theorem,

discovered independently by Berry and Esseen.

11.1 Theorem (Berry-Esseen theorem). Let X1, X2, . . . be i.i.d. random variables with

E|X1|3 <∞. Let

Zn =
X1 + . . .+Xn − nEX1√

nVar(X1)
,

ρ = E

∣∣∣∣∣X1 − EX1√
Var(X1)

∣∣∣∣∣
3

and let Z be a standard Gaussian random variable. There is a universal constant C

such that for every n ≥ 1 and every t ∈ R, we have∣∣P (Zn ≤ t)− P (Z ≤ t)
∣∣ ≤ Cρ√

n
.

11.2 Remark. We present a proof which will give C = 15.2, but this value is far

from optimal. Currently, the best value is C = 0.4774 (estblished via Fourier analytic

methods in [8]). Esseen proved a lower bound: C ≥ 10+
√

3
6
√

2π
= 0.4097 . . .

11.3 Remark. The rate 1/
√
n of the error is optimal. Consider i.i.d. symmetric random

signs ε1, ε2, . . . and let Zn = ε1+...+εn√
n

. For even n, by symmetry, we have

P (Zn ≤ 0) =
1 + P (ε1 + . . .+ εn = 0)

2
=

1

2
+

1

2

(
n

n/2

)
1

2n
,

thus, thanks to Stirling’s formula,

|P (Zn ≤ 0)− P (Z ≤ 0) | =
∣∣∣∣P (Zn ≤ 0)− 1

2

∣∣∣∣ =
1

2

(
n

n/2

)
1

2n
≈ 1

2

√
2√
πn

,

so in this case the error is of the order 1/
√
n.

For the proof the Berry-Esseen theorem, we shall need the following elementary tail

bound for the standard Gaussian distribution.
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11.4 Lemma. For x > 0, we have

(i)
∫∞
x
e−u

2/2du ≤
√

π
2 e
−x2/2,

(ii)
∫∞
x
e−u

2/2du ≤ 1
xe
−x2/2.

Proof. (i) let f(x) =
√

π
2 e
−x2/2−

∫∞
x
e−u

2/2du. Since f ′(x) =
(
1− x

√
π
2

)
e−x

2/2 is first

positive, then negative, f first increases, then decreases. Combined with f(0) = 0 and

f(x) −−−→
t→∞

0, this proves that f(x) ≥ 0.

(ii) We have
∫∞
x
xe−u

2/2du ≤
∫∞
x
ue−u

2/2du = e−u
2/2.

Proof of Theorem 11.1. For t, x ∈ R and λ > 0 define functions

ht(x) = 1(−∞,t](x),

and their continuous linear approximations

ht,λ(x) =


1, x ≤ t,

1− x−t
λ , t < x ≤ t+ λ,

0, x > t+ λ.

We will frequently use the following integral representation

ht,λ(x) =

∫ ∞
x

1

λ
1(t,t+λ)(s)ds.

Given γ ≥ 1, define the class of random variables

Lγ = {X, X is random variable such that EX = 0, EX2 = 1, E|X|3 = γ}

and for n = 1, 2, . . . define two quantities

B0(γ, n) = sup
X1,...,Xni.i.d.,Xi∈Lγ

sup
t∈R
|Eht(Zn)− Eht(Z)|,

B(λ, γ, n) = sup
X1,...,Xni.i.d.,Xi∈Lγ

sup
t∈R
|Eht,λ(Zn)− Eht,λ(Z)|.

Plainly, P (X ≤ t) = E1X≤t = Eht(X), so to prove the theorem, we would like to show

that √
n

γ
B0(γ, n) ≤ C, n ≥ 1, γ ≥ 1.

This is clear for n = 1 with C = 1 because |Eht(Zn)− Eht(Z)| ≤ 1, so from now on we

assume n ≥ 2 and divide the rest of the proof into several steps.

Step 1: regularisation (upper bound for B0 in terms of B). Since ht−λ ≤ ht ≤ ht,λ, we

get

Eht(Zn)− Eht(Z) ≤ Eht,λ(Zn)− Eht(Z)

= Eht,λ(Zn)− Eht,λ(Z) + Eht,λ(Z)− Eht(Z)

≤ Eht,λ(Zn)− Eht,λ(Z) + Eht+λ(Z)− Eht(Z).
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Observe that the first difference is upper bounded by B(λ, γ, n) by its definition. The

second difference is

P (t < Z ≤ t+ λ) =

∫ t+λ

t

e−x
2/2 dx√

2π
≤
∫ t+λ

t

dx√
2π

=
λ√
2π
.

Altogether,

Eht(Zn)− Eht(Z) ≤ B(λ, γ, n) +
λ√
2π
.

Similarly,

Eht(Zn)− Eht(Z) ≥ −B(λ, γ, n)− λ√
2π
.

Thus

B0(γ, n) ≤ B(λ, γ, n) +
λ√
2π
.

Step 2: Stein’s method (“encoding” Eh(Z) into a function). Fix t ∈ R, λ > 0 and set

h = ht,λ. Our goal is to upper bound B, so to upper bound Eh(Zn)−Eh(Z). The heart

of Stein’s method is to rewrite this in terms of Zn only. Let

f(x) = ex
2/2

∫ x

−∞
[h(u)− Eh(Z)]e−u

2/2du.

Then

f ′(x)− xf(x) = h(x)− Eh(Z),

so

Eh(Zn)− Eh(Z) = E
[
f ′(Zn)− Znf(Zn)

]
. (11.1)

Step 3: Estimates for f and f ′. For every x ∈ R, we have

|f(x) ≤
√
π

2
, |xf(x)| ≤ 1, |f ′(x)| ≤ 2 (11.2)

and for every x, y ∈ R, we have

|f ′(x+ y)− f ′(x)| ≤ |y|
(√

π

2
+ 2|x|+ 1

λ

∫ 1

0

1(t,t+λ)(x+ vy)dv

)
. (11.3)

Indeed, since h takes values in [0, 1], we have |h(u) − h(v)| ≤ 1 for any u and v, so for

x < 0,

|f(x)| ≤ ex2/2

∫ x

−∞
|h(u)−Eh(Z)|e−u2/2du ≤ ex2/2

∫ x

−∞
e−u

2/2du = ex
2/2

∫ ∞
−x

e−u
2/2du,

which by Lemma 11.4 (i) is upper bounded by
√

π
2 . For x > 0, notice that

∫∞
−∞[h(u)−

Eh(Z)]e−u
2/2 du√

2π
= 0, so

f(x) = −ex2/2

∫ ∞
x

[h(u)− Eh(Z)]e−u
2/2du
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and as above we get the bound |f(x)| ≤
√

π
2 . To bound xf(x) we proceed the same way

but use Lemma 11.4 (ii). Finally, since f ′(x) = xf(x) + h(x)− Eh(Z) (Step 2), we get

|f ′(x)| ≤ |xf(x)|+ |h(x)− Eh(Z)| ≤ 1 + 1 = 2.

This establishes (11.2). To prove (11.3), we use the formula for f ′ from Step 2 and write

|f ′(x+ y)− f ′(x)| = |(x+ y)f(x+ y) + h(x+ y)− xf(x)− h(x)|

= |yf(x+ y) + x(f(x+ y)− f(x)) + h(x+ y)− h(x)|

≤ |y|
√
π

2
+ 2|x||y|+ |h(x+ y)− h(x)|,

where in the last inequality we used the mean value theorem writing f(x+ y)− f(x) =

f ′(ξ)y and then estimating |f ′(ξ)| ≤ 2. Finally, by the integral representation for h,

|h(x+ y)− h(x)| =
∣∣∣∣ 1λ
∫ x+y

x

1(t,t+λ)(u)du

∣∣∣∣ =

∣∣∣∣ yλ
∫ 1

0

1(t,t+λ)(x+ vy)dv

∣∣∣∣
which after plugging back in the previous inequality finishes the proof of (11.3).

Step 4: Estimates for B(λ, γ, n) via (11.1). To estimate B(λ, γ, n), we need to upper

bound Eh(Zn) − Eh(Z) = E[f ′(Zn) − Znf(Zn)] (recall (11.1) from Step 2). Here we

exploit that Zn = X1+...+Xn√
n

is a sum of i.i.d. random variables. Since the Xi have the

same distribution, by linearity,

EZnf(Zn) = E
∑
Xi√
n
f(Zn) =

√
nEXnf(Zn).

Note also that Zn =
√

n−1
n Zn−1 + Xn√

n
and thus

E[f ′(Zn)− Znf(Zn)] = E[f ′(Zn)−√nXnf(Zn)]

= E
[
f ′(Zn)−√nXn

∫ 1

0

d

du
f

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

−√nXnf

(√
n− 1

n
Zn−1

)]
By independence and EXn = 0 the last term vanishes and after computing the derivative

we get

E[f ′(Zn)− Znf(Zn)] = E

[
f ′(Zn)−X2

n

∫ 1

0

f ′
(√

n− 1

n
Zn−1 + u

Xn√
n

)
du

]

= E

[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]

+ E

[
−X2

n

∫ 1

0

{
f ′
(√

n− 1

n
Zn−1 + u

Xn√
n

)

− f ′
(√

n− 1

n
Zn−1

)}
du

]
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where in the last equality we used independence and EX2
n = 1. We bound the two terms

separately.

Step 4.1: First term. Using Zn =
√

n−1
n Zn−1 + Xn√

n
and (11.3),∣∣∣∣∣E

[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]∣∣∣∣∣
≤ E

∣∣∣∣Xn√
n

∣∣∣∣
(√

π

2
+ 2

√
n− 1

n
|Zn−1|+

1

λ

∫ 1

0

1(t,t+λ)

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

)

Since E|Xn| ≤
√
E|Xn|2 = 1 and similarly E|Zn−1| ≤ 1, as well as trivially

√
n−1
n ≤ 1,

we get∣∣∣∣∣E
[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]∣∣∣∣∣
≤ 1√

n

√
π

2
+ 2

1√
n

+
1

λ
√
n
EXn

[
|Xn|

∫ 1

0

EZn−1
1(t,t+λ)

(√
n− 1

n
Zn−1 + u

Xn√
n

)
du

]
,

where in the last term we used the independence of Xn and Zn−1. Note that

EZn−1 1(t,t+λ)

(√
n− 1

n
Zn−1 + u

Xn√
n

)

= PZn−1

((
t− uXn√

n

)√
n

n− 1
< Zn−1 <

(
t− uXn√

n

)√
n

n− 1
+ λ

√
n

n− 1

)
,

Denoting a =
(
t− uXn√

n

)√
n
n−1 and estimating n

n−1 ≤ 2, we get that this probability is

upper bounded by

P
(
a < Zn−1 < a+ λ

√
2
)

which we rewrite in order to upper bound it in terms of B0,

P
(
a < Zn−1 < a+ λ

√
2
)

= P
(
Zn−1 < a+ λ

√
2
)
− P

(
Z < a+ λ

√
2
)

+ P (Z ≤ a)− P (Zn−1 ≤ a) + P
(
a ≤ Z ≤ a+ λ

√
2
)

≤ 2B0(γ, n− 1) +
λ
√

2√
2π
,

where the last term was crudely bounded using the maximum of standard Gaussian

density. Plugging this back yields∣∣∣∣∣E
[
f ′(Zn)− f ′

(√
n− 1

n
Zn−1

)]∣∣∣∣∣
≤ 1√

n

√
π

2
+ 2

1√
n

+
1

λ
√
n
E

[
|Xn|

(
2B0(γ, n− 1) +

λ√
π

)]

≤ 1√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
≤ γ√

n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.
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Step 4.2: Second term. Using again (11.3) and independence,∣∣∣∣∣E
[
−X2

n

∫ 1

0

{
f ′
(√

n− 1

n
Zn−1 + u

Xn√
n

)
− f ′

(√
n− 1

n
Zn−1

)}
du

]∣∣∣∣∣
≤ EX2

n

|Xn|√
n

∫ 1

0

u

(√
π

2
+ 2

√
n− 1

n
|Zn−1|

+
1

λ

∫ 1

0

1(t,t+λ)

(√
n− 1

n
Zn−1 + uv

Xn√
n

)
dv

)
du

≤ E
|Xn|3√

n

∫ 1

0

u

(√
π

2
+ 2EZn−1

|Zn−1|

+
1

λ

∫ 1

0

EZn−1 1(t,t+λ)

(√
n− 1

n
Zn−1 + uv

Xn√
n

)
dv

)
du

≤ E
|Xn|3√

n

∫ 1

0

u

(√
π

2
+ 2 +

1

λ

(
2B0(γ, n− 1) +

λ√
π

))
du

=
γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.

Putting Steps 4.1 and 4.2 together yields

|E[f ′(Zn)− Znf(Zn)]| ≤ 3γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.

By Step 2, this gives

B(λ, γ, n) ≤ 3γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
.

Step 5: Optimisation of parameters and end of proof. The previous inequality and Step 1

yield

B0(γ, n) ≤ 3γ

2
√
n

(√
π

2
+ 2 +

2B0(γ, n− 1)

λ
+

1√
π

)
+

λ√
2π

=
3γ

2
√
n

(√
π

2
+ 2 +

1√
π

)
+

1

λ

3γB0(γ, n− 1)√
n

+
λ√
2π
.

Set λ = α γ√
n

, α > 0 and multiply both sides by
√
n
γ to get

B0(γ, n)

√
n

γ
≤ 3

2

(√
π

2
+ 2 +

1√
π

)
+

3

α
B0(γ, n− 1)

√
n

γ
+

α√
2π
.

Let

B = sup
γ≥1,n≥2

B0(γ, n)

√
n

γ
.

For n ≥ 2, we have

B0(γ, n− 1)

√
n

γ
= B0(γ, n− 1)

√
n− 1

γ

√
n

n− 1
≤ max

{
√

2, B

√
3

2

}
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(recall that trivially B0(γ, 1) 1
γ ≤ 1). If B > 2√

3
, we thus obtain

B ≤ 3

2

(√
π

2
+ 2 +

1√
π

)
+

3

α
B

√
3

2
+

α√
2π
.

For α > 3
√

3
2 this gives

B ≤ α

α− 3
√

3
2

3

2

(√
π

2
+ 2 +

1√
π

)
+

α2

α− 3
√

3
2

1√
2π
.

The choice of α which equates the two terms on the right hand side gives

B < 15.4.

Optimising over α (which requires more computations) gives a slightly better estimate

B < 15.2.

11.5 Remark. The proof presented here is from [2]. The heart of the argument is based

on Stein’s method (Step 2), introduced by Charles Stein, who developed this influential

technique for teaching purposes of the central limit theorem for his course in statistics.

11.6 Example. Let us apply the Berry-Esseen theorem to i.i.d. Bernoulli random

variables X1, . . . , Xn with parameter 0 < p < 1. We have EXi = p, Var(Xi) = p(1− p)
and we obtain for every real t and every integer n ≥ 1∣∣∣∣∣P

(
X1 + . . .+Xn − np√

np(1− p)
≤ t
)
− P (Z ≤ t)

∣∣∣∣∣ ≤ C ρ√
n
,

where

ρ = E

∣∣∣∣∣ X1 − p√
p(1− p)

∣∣∣∣∣
3

=
p(1− p)3 + (1− p)p3√

p(1− p)3 =
1− 2p(1− p)√

p(1− p)
.

In particular, when np is of the constant order for large n, the Berry-Esseen theorem is

not useful at all because the bound of the error, C ρ√
n

is of the order C√
np(1−p)

which is

constant. This might suggest that the Gaussian approximation is not valid in this case,

which is in fact true in view of the Poisson limit theorem (Theorem 10.16).

11.2 Local central limit theorem

In applications we often need to address the following: suppose X1, X2, . . . are i.i.d.

discrete, say integer-valued random variables and we would like to know for large n

what is the approximate value of P (X1 + . . .+Xn = xn) for some xn ∈ Z. If EX2
i <∞,
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µ = EX1, σ2 = Var(X1) and xn−nµ√
n
≈ y is of constant order for large n, by the central

limit theorem,

P (X1 + . . .+Xn = xn)

= P
(
xn −

1

2
< X1 + . . .+Xn < xn +

1

2

)
= P

(
xn − nµ√

n
− 1

2
√
n
<
X1 + . . .+Xn − nµ√

n
<
xn − nµ√

n
+

1

2
√
n

)
≈ 1√

2πσ

∫ y+ 1
2
√
n

y− 1
2
√
n

e−
t2

2σ2 dt

≈ 1√
n

1√
2πσ

e−
y2

2σ2 ,

obtaining the approximation for P (X1 + . . .+Xn = xn) by the Gaussian density. To

control the error in this approximation, we cannot simply use the Berry-Esseen theorem

here because its error bound O( 1√
n

) is of the same order as the value of our approxima-

tion 1√
n

1√
2πσ

e−y
2/2. The local central limit theorem addresses this deficiency. We only

discuss the discrete case. There are also versions which give approximations to densities

of sums of i.i.d. continuous random variables.

We shall use the common notation a+ bZ for the set {a+ bx, x ∈ Z}.

11.7 Theorem (Local central limit theorem). Let X1, X2, . . . be i.i.d. integer-valued

random variables such that EX2
1 < ∞. Suppose Xi is not supported on any proper

subprogression of Z, that is there are no r > 1, a ∈ R such that P (Xi ∈ a+ rZ) = 1.

Denote µ = EX1, σ =
√

Var(X1) and

pn(x) = P
(
X1 + . . .+Xn − nµ√

n
= x

)
, x ∈ Z− nµ√

n
.

Then

sup
x∈ Z−nµ√

n

∣∣∣∣√npn(x)− 1√
2πσ

e−
x2

2σ2

∣∣∣∣ −−−−→n→∞
0.

11.8 Lemma. For an integer-valued random variable X and an integer k, we have

P (X = k) =
1

2π

∫ π

−π
e−itkφX(t)dt.

Proof. Note that for two integers k and l, we have

1{l=k} =
1

2π

∫ π

−π
eit(l−k)dt.

Thus

P (X = k) = E1{X=k} = E
1

2π

∫ π

−π
eit(X−k)dt =

1

2π

∫ π

−π
e−itkEeitXdt

=
1

2π

∫ π

−π
e−itkφX(t)dt.
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Proof of Theorem 11.7. Applying Lemma 11.8 to X1 + . . .+Xn and changing the vari-

ables yields

pn(x) = P
(
X1 + . . .+Xn = x

√
n+ nµ

)
=

1

2π

∫ π

−π
e−it(x

√
n+nµ)φX1+...+Xn(t)dt

=
1√
n

1

2π

∫ π
√
n

−π√n
e−itx

[
e
−i t√

n
µ
φX1

(
t√
n

)]n
dt.

Using that the characteristic function of a centred Gaussian random variable with vari-

ance 1/σ2 is e−
x2

2σ2 , we have

e−
x2

2σ2 =
σ√
2π

∫ ∞
−∞

eitxe−t
2σ2/2dt,

which gives (by symmetry, we can write e−itx instead of eitx)

1√
2πσ

e−
x2

2σ2 =
1

2π

∫ ∞
−∞

e−itxe−t
2σ2/2dt.

Therefore,∣∣∣∣√npn(x)− 1√
2πσ

e−
x2

2σ2

∣∣∣∣ ≤ 1

2π

∫
|t|≤π√n

∣∣∣∣φX1−µ

(
t√
n

)n
− e−t2σ2/2

∣∣∣∣ dt
+

1

2π

∫
|t|≥π√n

e−t
2σ2/2dt.

Since the right hand side does not depend on x, we need to show that it converges to 0

as n→∞. The second integral clearly does. To deal with the first integral, we change

the variables∫
|t|≤π√n

∣∣∣∣φX1−µ

(
t√
n

)n
− e−t2σ2/2

∣∣∣∣dt =
1

σ

∫
|t|≤πσ√n

∣∣∣∣φX1−µ
σ

(
t√
n

)n
− e−t2/2

∣∣∣∣dt,
let X̄1 = X1−µ

σ (which has mean 0 and variance 1) and break it into two pieces∫
|t|≤ε√n

∣∣∣∣φX̄1

(
t√
n

)n
− e−t2/2

∣∣∣∣dt+

∫
ε
√
n≤|t|≤πσ√n

∣∣∣∣φX̄1

(
t√
n

)n
− e−t2/2

∣∣∣∣dt. (11.4)

Recall from the proof of the central limit theorem that

φX̄1

(
t√
n

)n
−→ e−t

2/2

and by Taylor’s formula,

φX̄1
(t) = 1− t2

2
+ t2R(t),

for some (complex-valued) function R such that R(t)→ 0 as t→ 0. Choose ε < 1 such

that |R(t)| < 1
4 for all |t| < ε. Then for |t| ≤ ε√n,∣∣∣∣φX̄1

(
t√
n

)∣∣∣∣ ≤ ∣∣∣∣1− t2

2n

∣∣∣∣+
t2

4n
= 1− t2

4n
≤ e− t2

4n ,
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so ∣∣∣∣φX̄1

(
t√
n

)n
− e−t2/2

∣∣∣∣ ≤ e−t2/4 + e−t
2/2.

By Lebesgue’s dominated convergence theorem, the first piece in (11.4) converges to 0

as n → ∞. Finally, to handle the second piece, we claim that: |φX̄1
(t)| < cε for all

ε ≤ |t| ≤ πσ for some constant cε < 1. This suffices because then∫
ε
√
n≤|t|≤πσ√n

∣∣∣∣φX̄1

(
t√
n

)n
− e−t2/2

∣∣∣∣dt ≤ ∫
ε
√
n≤|t|≤πσ√n

(cnε + e−t
2/2)dt

and the right hand side clearly goes to 0 as n→∞. Now we use thatX1 is integer-valued,

not concentrated on any proper subprogreesion to show the claim. Since X1 is integer-

valued, φX1 is 2π-periodic and in particular φX1(2π) = 1. Moreover, |φX1(t)| < 1 for all

0 < t < 2π. Otherwise, if |φX1(t0)| = 1 for some 0 < t0 < 2π, then eit0X1 is constant,

say equal to eia. Consequently, X1 ∈ a
t0

+ 2π
t0
Z, which contradicts the assumption. By

periodicity and continuity, there is cε < 1 such that |φX1
(t)| < cε for all ε < |t| ≤ π.

Since φX̄1
(t) = e−i

µ
σ φX1

( tσ ), the claim follows.

Of course, in the proof it was not important that the Xi are integer-valued because by

rescaling we could assume that they take values in a+rZ for some a, r ∈ R. Such random

variables are said to have a lattice distribution. We finish this section by summarising

periodicity properties of their characteristic functions, which played a crucial role in the

proof of the local central limit theorem.

11.9 Lemma. For a random variable X with characteristic function φX the following

are equivalent

(i) φX(s) = 1 for some s 6= 0,

(ii) P
(
X ∈ 2π

s Z
)

= 1,

(iii) φX is |s| periodic.

Proof. (i)⇒ (ii): Since 1 = φX(s) = E cos(sX)+iE sin(sX), we have 0 = E(1−cos(sX)).

Since 1 − cos(sX) is a nonnegative random variable whose expectation is 0, we have

P (cos(sX) = 1) = 1 (see Theorem E.2 (c)), equivalently P (sX ∈ 2πZ) = 1.

(ii) ⇒ (iii): We have

φX(t+ 2π|s|) = Eei(t+|s|)X =
∑
k∈Z

ei(t+|s|)
2π
|s|kP

(
X =

2π

|s| k
)

=
∑
k∈Z

eit
2π
|s|kP

(
X =

2π

|s| k
)

= φX(t).

(iii) ⇒ (i): Plainly, φX(s) = φX(0) = 1.
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11.10 Lemma. Let X be a random variable with characteristic function φX . There are

only 3 possibilities

(i) |φX(t)| < 1 for every t 6= 0,

(ii) |φX(s)| = 1 for some s > 0 and |φX(t)| < 1 for all 0 < t < s and then φX is

s-periodic and X ∈ a+ 2π
s Z a.s. for some a ∈ R,

(iii) |φX(t)| = 1 for every t ∈ R and then we have that φX(t) = eita for some a ∈ R,

that is X = a a.s.

If (ii) holds, X has a lattice distribution and since |φX(t)| < 1 for all 0 < t < s, by

Lemma 11.9, s is the largest r > 0 such that P (X ∈ a+ rZ) = 1. We sometimes call s

the span of the distribution of X.

Proof. Let us first explain the implication in (ii). Suppose |φX(s)| = 1 for some s > 0.

Then φX(s) = eia for some a ∈ R. Since 1 = e−iaφX(s) = φX−a(s), by Lemma 11.9

applied to X−a, we get that X−a ∈ 2π
s Z a.s. and φX−a is s-periodic, so φX = eiaφX−a

is s-periodic.

To prove the trichotomy, suppose (i) and (ii) do not hold. Then there is a positive

sequence tn → 0 such that |φX(tn)| = 1. Consequently, by what we just proved, there are

an ∈ R such that X ∈ an + 2π
tn
Z a.s. and φX is tn-periodic. Without loss of generality,

we can pick an ∈ (− π
tn
, πtn ]. Since tn → 0, we have P

(
X ∈ (− π

tn
, πtn )

)
→ 1, which

combined with X ∈ an + 2π
tn
Z and an ∈ (− π

tn
, πtn ] gives P (X = an)→ 1. Consequently,

there is n0 such that for all n ≥ n0, P (X = an) > 3/4, but then all an, n ≥ n0 have to be

equal, say an = a and P (X = an) → 1 finally gives P (X = a) = 1. Then φX(t) = eita,

consequently (iii) holds.

11.3 Poisson limit theorem

For probability measures µ and ν supported on Z, the total variation distance be-

tween µ and ν is

‖µ− ν‖TV = sup
A⊂Z
|µ(A)− ν(A)|,

where the supremum is over all subsets A of Z.

Our goal is to prove the following quantitative version of Theorem 10.17.

11.11 Theorem. Let {Xn,}n≥1,1≤k≤n be a triangular array of Bernoulli random vari-

ables, Xn,k ∼ Ber(pn,k), such that for every n ≥ 1, the variables Xn,1, . . . , Xn,n are

independent. Let Sn = Xn,1 + · · ·+Xn,n and let Zn be a Poisson random variable with

parameter ESn =
∑n
k=1 pn,k. Then

‖µn − νn‖TV ≤
n∑
k=1

p2
n,k,
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where µn is the law of Sn and νn is the law of Zn.

11.12 Remark. This theorem quantitatively shows when and how close the sum of

Bernoullis Sn is to a Poisson random variable with parameter λn = ESn. For instance,

in the case of Theorem 10.16, when pn,k = pn, we see that the distribution of Sn is close

to Poiss(λn), as long as
∑n
k=1 p

2
n,k = np2

n =
λ2
n

n → 0; in particular, if λn → ∞ with

λn = o(
√
n).

En route to proving Theorem 11.11, we need to develop a few facts related to the

total variation distance.

There is a convenient explicit expression for this distance in terms of the `1 norm of

the sequence of differences of atoms.

11.13 Theorem. For two probability measures µ, ν on Z, we have

‖µ− ν‖TV =
1

2

∑
x∈Z
|µ({x})− ν({x})|.

Proof. For a subset A of Z, by the triangle inequality, we have

2|µ(A)− ν(A)| = |µ(A)− ν(A)|+ |µ(Ac)− ν(Ac)|

=

∣∣∣∣∣∑
x∈A

(
µ({x})− ν({x})

)∣∣∣∣∣+

∣∣∣∣∣∑
x∈Ac

(
µ({x})− ν({x})

)∣∣∣∣∣
≤
∑
x∈Z
|µ({x})− ν({x})|

with equality for A = {x ∈ Z, µ({x}) ≥ ν({x})}.

As a corollary, we easily see that the total variation distance is a metric. Convergence

in the total variation distance is equivalent to pointwise convergence on atoms (this can

be seen as an analogy in this discrete setup to Scheffé’s lemma from Exercise 8.8; the

proofs are of course identical).

11.14 Theorem. Let (µn)n be a sequence of probability measures on Z. For a probability

measure µ on Z, we have

‖µn − µ‖TV −−−−→
n→∞

0 if and only if ∀x ∈ Z µn({x}) −−−−→
n→∞

µ({x}).

Proof. To ease the notation, let pn,x = µn({x}) and px = µ({x}). In view of Theorem

11.13, we want to show that∑
x∈Z
|pn,x − px| −−−−→

n→∞
0 if and only if ∀x ∈ Z pn,x −−−−→

n→∞
px.

Implication “⇒” is clear. For the other one, note that

|px − pn,x| = (px − pn,x)+ + (px − pn,x)−.
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Since

0 = 1− 1 =
∑
x∈Z

(px − pn,x) =
∑
x∈Z

(px − pn,x)+ −
∑
x∈Z

(px − pn,x)−,

we get ∑
x∈Z
|px − pn,x| = 2

∑
x∈Z

(px − pn,x)+.

Moreover, (px−pn,x)+ ≤ px, so Lebesgue’s dominated convergence theorem finishes the

argument.

This in turn easily leads to the conclusion that the weak convergence is equivalent

to convergence in total variation distance.

11.15 Corollary. Let (µn)n be a sequence of probability measures on Z. For a proba-

bility measure µ on Z, we have

‖µn − µ‖TV −−−−→
n→∞

0 if and only if µn
d−−−−→

n→∞
µ.

Proof. “⇒”: Fix a continuous bounded function f : R→ R with M = sup |f |. Then,∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ =

∣∣∣∣∣∑
x∈Z

f(x)(µ({x})− ν({x}))
∣∣∣∣∣ ≤M∑

x∈Z
|µ({x})− ν({x})|

= 2M‖µn − µ‖TV .

“⇐”: Fix x ∈ Z. Let f : R → R be continuous bounded such that f(t) = 0 for all

t ∈ Z \ {x} and f(x) = 1. Then∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ = |µn({x})− µ({x})|

and we conclude by Theorem 11.14.

Of course, the definition of ‖ · ‖TV and the above results extend verbatim from Z to

any countable set.

To prove a quantitative version of the Poisson limit theorem, we need three lemmas.

11.16 Lemma. Let µ1, µ2, ν1, ν2 be probability measures on Z. Then

‖µ1 ⊗ µ2 − ν1 ⊗ ν2‖TV ≤ ‖µ1 − ν1‖TV + ‖µ2 − ν2‖TV .

Proof. By Theorem 11.13 and the triangle inequality, we have

2‖µ1 ⊗ µ2 − ν1 ⊗ ν2‖TV =
∑
x,y∈Z

|µ1({x})µ2({y})− ν1({x})ν2({y})|

≤
∑
x,y∈Z

|µ1({x})µ2({y})− ν1({x})µ2({y})|+
∑
x,y∈Z

|ν1({x})µ2({y})− ν1({x})ν2({y})|

=
∑
y∈Z

µ2({y})
∑
x∈Z
|µ1({x})− ν1({x})|+

∑
x∈Z

ν1({x})
∑
y∈Z
|µ2({y})− ν2({y})|

= 2‖µ1 − ν1‖TV + 2‖µ2 − ν2‖TV .

130



Recall that the convolution of two measures µ and ν on Z is defined as a measure

(µ ∗ ν)(A) =
∑
y∈Z

µ({A− y})ν({y}), A ⊂ Z.

It is the distribution of the sum X + Y of two independent Z-valued random variables

X, Y with law µ, ν respectively.

11.17 Lemma. Let µ1, µ2, ν1, ν2 be probability measures on Z. Then

‖µ1 ∗ µ2 − ν1 ∗ ν2‖TV ≤ ‖µ1 − ν1‖TV + ‖µ2 − ν2‖TV ,

Proof. By Theorem 11.13 and the triangle inequality, we have

2‖µ1 ∗ µ2 − ν1 ∗ ν2‖TV =
∑
x∈Z
|(µ1 ∗ µ2)({x})− (ν1 ∗ ν2)({x})|

=
∑
x∈Z

∣∣∣∣∣∣
∑
y∈Z

µ1({x− y})µ2({y})−
∑
y∈Z

ν1({x− y})ν2({y})

∣∣∣∣∣∣
≤
∑
x∈Z

∑
y∈Z
|µ1({x− y})µ2({y})− ν1({x− y})ν2({y})|

=
∑
x∈Z

∑
y∈Z
|µ1({x})µ2({y})− ν1({x})ν2({y})|

= 2‖µ1 − ν1‖TV + ‖µ2 − ν2‖TV .

11.18 Lemma. Let p ∈ [0, 1]. Let µ be the Bernoulli distribution with parameter p and

let ν be the Poisson distribution with parameter p. Then

‖µ− ν‖TV ≤ p2.

Proof. By Theorem 11.13, we have

2‖µ− ν‖TV = |µ({0})− ν({0})|+ |µ({1})− ν({1})|+
∑
k≥2

ν({k})

= |1− p− e−p|+ |p− pe−p|+ 1− e−p(1 + p)

= e−p − 1 + p+ p− pe−p + 1− e−p(1 + p) = 2p(1− e−p) ≤ 2p2

(we use e−p ≥ 1− p).

Proof of Theorem 11.11. Let µn be the distribution of Sn = Xn,1 + · · · + Xn,n and let

µn,k be the distribution of Xn,k which is Bernoulli with parameter pn,k. Then

µn = µn,1 ∗ · · · ∗ µn,n.
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Let νn be the Poisson distribution with parameter λn = ESn =
∑n
k=1 pn,k and let νn,k

be the Poisson distribution with parameter pn,k. Since sums of independent Poisson

random variables are Poisson, we have

νn = νn,1 ∗ · · · ∗ νn,n.

Thus, by Lemmas 11.17, 11.16 and 11.18,

‖µn − νn‖TV ≤
n∑
k=1

p2
n,k. (11.5)

11.19 Remark. We can quickly deduce Theorem 10.17 from (11.5). Let ν be the

Poisson distribution with parameter λ. As we saw in the proof of Theorem 10.17,

the right hand side of (11.5) goes to 0 as n → ∞. Moreover, by Theorem 11.14,

‖νn − ν‖TV → 0 because λn → λ. Thus, ‖µn − ν‖TV → 0, as desired.

11.20 Remark. When pn,k = 1
n , we have λn = λ = 1 and from the second proof,

‖µn − ν‖TV ≤
1

n
.

On the other hand, since 1 − x ≥ e−x−x
2

and 1 − e−x ≥ x
2 for x ∈ [0, 1

2 ], we have for

n ≥ 2,

|µn({0})− ν({0})| = e−1 −
(

1− 1

n

)n
≥ e−1 − e−1−1/n = e−1

(
1− e−1/n

)
≥ 1

2en
,

which shows that the rate 1
n is optimal here.
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11.4 Exercises

1. Using the Berry-Esseen theorem, how can you bound the error you make in your

approximation in Exercise 10.1?

2. In Exercise 10.2, using the Berry-Esseen theorem, show additionally that |an − a| ≤
15√
n

for all n ≥ 1.

3. For two probability measures on Z, ‖µ − ν‖TV ≤ δ if and only if there are random

variables X, Y with distributions µ, ν, respectively such that P (X 6= Y ) ≤ δ
2 .
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12 Conditional expectation

We begin with a motivating example. Let (Ω,F ,P) be a probability space and suppose

we have two discrete random variables

X : Ω→ {x1, . . . , xm},

Z : Ω→ {z1, . . . , zn},

taking finitely many values. Recall the conditional probabilities

P (X = xi | Z = zj) =
P (X = xi, Z = zj)

P (Z = zj)

and conditional expectations

yj = E(X|Z = zj) =
∑

xiP (X = xi|Z = zj) .

In this simple situation, the conditional expectation of X given Z is a random variable

Y = E(X|Z) defined as

Y (ω) = yj = E(X|Z = zj) on {Z = zj}.

In other words, “knowing” the value of Z amounts to the partitioning Ω =
⋃{Z = zj}

and Y is set to be constant yj on the atoms {Z = zj} of this partitioning. We point out

two features of Y which will be central in the general definition. Let G = σ(Z) be the

σ-algebra generated by Z. Here G is generated by the partitioning {Z = zj}j . Since Y

is constant on the atoms of G,

(1) Y is G-measurable.

Note also that

EY 1{Z=zj} = yjP (Z = zj) =
∑

xiP (X = xi|Z = zj)P (Z = zj)

=
∑

xiP (X = xi, Z = zj) = EX 1{Z=zj} .

Since every element in G is a union of the atoms {Z = zj}, by linearity, we thus have

(2) ∀G ∈ G EY 1G = EX 1G.

12.1 Construction

The following theorem due to Kolmogorov (1933) gives a way to define conditional

expectations.

12.1 Theorem. Let X be a random variable on a probability space (Ω,F ,P) with E|X| <
∞. Let G be a sub-σ-algebra of F . There is a random variable Y with E|Y | < ∞ such

that
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(1) Y is G-measurable,

(2) ∀G ∈ G EY 1G = EX 1G.

Moreover, if Ỹ is another random variable with E|Ỹ | < ∞ satisfying (1) and (2), then

Ỹ = Y a.s.

This random variable Y is called (a version) of the conditional expectation of X

given G, denoted E(X|G). We then write Y = E(X|G). For a random variable Z, the

conditional expectation of X given Z, E(X|Z), is defined as E(X|σ(Z)). More generally,

we define E(X|Z1, Z2, . . .) = E(X|σ(Z1, Z2, . . .)). Of course, we also adopt the natural

definition of the conditional probability of an event A given G, P (A|G) = E(1A |G)

(which is a random variable!).

The intuitive meaning of conditional expectations:

a) E(X|A), that is given an even A: an experiment has been performed and all we know

is whether ω ∈ A or not and we recalculate the expectation according to P (·|A)

b) E(X|Z), that is given a discrete random variable Z: an experiment has been per-

formed and all we know about ω is in which set {Z = zj} it is, so E(X|Z)(ω) is still

a random quantity, but constant on these sets

c) E(X|G), that is given a sub-σ-algebra G: an experiment has been performed and all

we know about ω is {Z(ω) : Z is G-measurable}, so E(X|G)(ω) is a random quantity

being the average of X given this information.

The richer G is, the more we “know” about X, so that E(X|G) more accurately

describes X. In the two extreme cases:

a) if G = {∅,Ω} (a trivial σ-algebra, so no knowledge), then E(X|G) = EX (constant)

b) if G = F (full knowledge), then E(X|G) = X.

These can be simply verified by checking that the claimed variables EX and X respec-

tively satisfy (1) and (2).

Proof of Theorem 12.1. We break the proof into several steps.

Step 1: uniqueness. Let Y , Ỹ be two integrable G-measurable versions of E(X|G), that

is satisfying (1) and (2). Since {Y − Ỹ > 1
n} ∈ G, we get from (2),

EY 1{Y−Ỹ > 1
n} = EX 1{Y−Ỹ > 1

n} = EỸ 1{Y−Ỹ > 1
n},

or,

0 = E(Y − Ỹ ) 1{Y−Ỹ > 1
n} ≥

1

n
P
(
Y − Ỹ >

1

n

)
,
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which shows that P
(
Y − Ỹ > 1

n

)
= 0 and consequently, taking the union of these

events over n, P
(
Y − Ỹ > 0

)
= 0. Swapping the roles of Y and Ỹ , we also get that

P
(
Ỹ − Y > 0

)
= 0, so P

(
Y 6= Ỹ

)
= 0.

Step 2: existence for X ∈ L2. Let X ∈ L2(Ω,F ,P) and consider the subspace

H = L2(Ω,G,P) ⊂ L2(Ω,F ,P)

which is complete (as being an L2 space – see Theorem 6.10), so by the existence of the

orthogonal projection, Theorem 6.11, there is a random variable Y ∈ H which is closest

to X, that is it satisfies

E(X − Y )2 = inf{E(X −W )2, W ∈ H},

or, equivalently,

X − Y ⊥ H, that is ∀W ∈ G E(X − Y )W = 0.

We claim that this Y satisfies (1) and (2). Since Y ∈ H, it is G measurable. For G ∈ G,

letting W = 1G ∈ H, we get E(X − Y )W = 0, that is (2).

Step 3: basic and key properties of E(X|G) for X ∈ L2.

(i) linearity: E(a1X1 + a2X2|G) = a1E(X1|G) + a2E(X2|G), a1, a2 ∈ R, X1, X2 ∈ L2

(ii) monotonicity: if X ∈ L2, X ≥ 0 a.s., then E(X|G) ≥ 0 a.s.

(iii) if X1, X2 ∈ L2, X1 ≥ X2 a.s., then E(X1|G) ≥ E(X2|G) a.s.

Property (i) is clear because the orthogonal projection is a linear map. Property (ii)

follows by an argument identical to the one from Step 1. Property (iii) follows from (i)

and (ii).

Step 3: existence of E(X|G) for X ∈ L1, X ≥ 0. Let Xn = min{X,n}. Then each Xn

is bounded, in particular Xn ∈ L2 and Xn ↗ X as n → ∞. Let Yn be a version of

E(Xn|G) (constructed in Step 2). By Property (iii), Yn is a monotone sequence. Let

Y = limYn. As a limit of G-measurable functions, Y is G-measurable. By Lebesgue’s

monotone convergence theorem, for G ∈ G,

EY 1G = E(limYn) 1G = limEYn 1G

but since Yn is a version of E(Xn|G), by (2), we have EYn 1G = EXn 1G. Thus,

limEYn 1G = limEXn 1G = E(limXn) 1G = EX 1G,

so EY 1G = EX 1G. In particular, EY = EX <∞. These show that Y has the desired

properties.

Step 4: existence of E(X|G) for arbitrary X ∈ L1. We decompose X = X+ −X− and

set E(X|G) = E(X+|G)− E(X−|G).
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12.2 Important properties

12.2 Theorem. All random variables are assumed to be integrable, G is sub-σ-algebra.

(a) If Y = E(X|G), then EY = EX.

(b) If X is G-measurable, then E(X|G) = X.

(c) Linearity: E(a1X1 +a2X2|G) = a1E(X1|G)+a2E(X2|G) a.s., a1, a2 ∈ R (understood

as: if Yi is a version of E(Xi|G), then a1Y1+a2Y2 is a version of E(a1X1+a2X2|G)).

(d) Positivity: if X ≥ 0 a.s., then E(X|G) ≥ 0 a.s. If X1 ≥ X2, then E(X1|G) ≥
E(X2|G) a.s.

(e) Lebesgue’s monotone convergence theorem: if 0 ≤ Xn ↗ X a.s., then

E(Xn|G)↗ E(X|G) a.s.

(f) Fatou’s lemma: if Xn ≥ 0, then

E(lim inf Xn|G) ≤ lim inf E(Xn|G) a.s.

(g) Lebesgue’s dominated convergence theorem: if ∀n |Xn| ≤ V for some V ∈ L1 and

Xn → X, then

E(Xn|G)→ E(X|G) a.s.

(h) Jensen’s inequality: if f : R→ R is convex and f(X) ∈ L1, then

E(f(X)|G) ≥ f(E(X|G)) a.s.

(i) Tower property: if H ⊂ G is a sub-σ-algebra, then

E
(
E(X|G)|H

)
= E(X|H) = E

(
E(X|H)|G

)
a.s.

(j) “Taking out what is known”: if Z is a G-measurable bounded random variable, then

E(ZX|G) = ZE(X|G) a.s.

(k) “Role of independence”: if H is a σ-algebra independent of σ(X,G), then

E(X|σ(G,H)) = E(X|G) a.s.

In particular, if X is independent of H, for G = {∅,Ω}, we get

E(X|H) = EX a.s.

Proof. (a) We use (2) with G = Ω to get EX = EX 1Ω = EY 1Ω = EY .
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(b) Obvious because Y = X clearly satisfies (1) and (2).

(c) It follows from the linearity of E(·) 1G for every fixed G ∈ G.

(d) It is done in a similar way as in Step 1 of the proof of Theorem 12.1.

(e) It is done is a similar way as in Step 3 of the proof of Theorem 12.1. We let

Yn = E(Yn|G), use monotonicity to put Y = limYn and argue through the usual

Lebesgue’s monotone convergence theorem.

(f) Use (e) to deduce it as in the unconditional case.

(g) Use (f) to deduce it as in the unconditional case (see Appendix E).

(h) It is done as in the unconditional case in the proof of Theorem 6.2. We write

f(x) = sup`∈L `(x) for a countable family of linear functions L. Fix ` ∈ L. Since

f(X) ≥ `(X), by monotonicity and linearity, E(f(X)|G) ≥ E(`(X)|G) = `(E(X|G))

a.s. Since L is countable, this also holds for all ` ∈ L a.s. Taking the supremum

over ` finishes the argument.

(i) Let Y = E(X|H). It is H-measurable, so also G-measurable and by (b),

E
(
E(X|H)|G

)
= E(Y |G) = Y.

To check that

E
(
E(X|G)|H

)
= Y,

it suffices to show that for every H ∈ H, EE(X|G) 1H = EY 1H . Since H ∈ G,

by the definition of E(X|G), the left hand side is EX 1H . Since H ∈ H, by the

definition of E(X|H), the right hand side is also EX 1H .

(j) Thanks to linearity, without loss of generality we can assume that X ≥ 0. Then the

standard argument of complicating Z works because we can use monotone conver-

gence (first we check the claim for Z = 1G, G ∈ G, then by linearity we have it for

simple Z and then for all G-measurable bounded Z).

(k) Thanks to linearity, without loss of generality we can assume that X ≥ 0. Let

Y = E(X|G). We want to show that for every A ∈ σ(G,H), EY 1A = EX 1A. By

Dynkin’s theorem, it suffices to this for all A in a π-system generating σ(G,H), so

for every A = G ∩H with G ∈ G and H ∈ H. Then, we have

EY 1G∩H = E(Y 1G) 1H = EY 1G E1H

because Y 1G is G-measurable, hence independent ofH. By the definition of E(X|G),

EY 1G = EX 1G. Since X 1G and 1H are independent, we conclude that

EY 1G∩H = EX 1G E1H = EX 1G∩H .
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12.3 Basic examples

12.3 Example. Let (X,Z) be a continuous random vector in R2 with density f . Then

fX(x) =

∫
R
f(x, z)dz is the density of X,

fZ(z) =

∫
R
f(x, z)dx is the density of Z.

Recall we define the conditional density fX|Z of X given Z as

fX|Z(x|z) =


f(x,z)
fZ(z) , if fZ(z) > 0,

0, otherwise.

Let h : R→ R be a Borel function such that E|h(X)| <∞. Let

g(z) =

∫
R
h(x)fX|Z(x|z)dx.

Claim. Y = g(Z) is a version of E(h(X)|Z).

Proof. Clearly Y is Z-measurable (i.e. σ(Z)-measurable), so it suffices to check that for

every A ∈ σ(Z), Eg(Z) 1A = Eh(X) 1A. We have A = {Z ∈ B} for some Borel set B.

Then, by the definition of g,

Eg(Z) 1A = Eg(Z) 1Z∈B =

∫
g(z) 1B(z)fZ(z)dz =

∫∫
h(x) 1B(z)f(x, z)dxdz

= Eh(X) 1Z∈B .

12.4 Example. Let X1, . . . , Xn be independent random variables. Let h : Rn → R be

a bounded Borel function. Then

E(h(X1, . . . , Xn)|X1) = g(X1),

where g(x) = Eh(x,X2, . . . , Xn), x ∈ R. Clearly g(X1) is X1-measurable. That condi-

tion (2) holds, follows from Fubini’s theorem.

12.5 Example. Let X1, . . . , Xn be i.i.d. integrable random variables and let Sn =

X1 + · · · + Xn. Let Gn = σ(Sn, Xn+1, Xn+2, . . .). By the “Role of independence”

property (point (k) of Theorem 12.2), we have

E(X1|Gn) = E(X1|Sn).

To find the latter, we use symmetry, which gives

Y = E(X1|Sn) = E(X2|Sn) = . . . = E(Xn|Sn).

By linearity, nY = E(Sn|Sn) = Sn, thus Y = Sn
n , that is

E(X1|Sn) =
Sn
n
.
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We finish by remarking that in all of these examples E(X|Z) is of the form g(Z) for

some Borel function g. This holds in general and immediately follows from the following

lemma.

12.6 Lemma. If Z is a random vector in Rn and X is a Z-measurable random variable,

then X = g(Z) for some Borel function g : Rn → R.

A proof by a standard complication of X is left as an exercise. Thus we immediately

get the following general observation about conditional expectations.

12.7 Theorem. Let Z be a random vector in Rn and let X be an integrable random

variable. Then there is a Borel function g : Rn → R such that g(Z) is a version of

E(X|Z).

This in particular gives a way around defining conditioning on events of probability

0. We set E(X|Z = z) = g(z), z ∈ Rn, where g is the function provided by Theorem

12.7.
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12.4 Exercises

1. We toss a fair coin 10 times. Let X be the number of heads altogether and Y in the

first 4 tosses. Find E(X|Y ) and E(Y |X).

2. Give an example of random variables X and Y which are not independent, but

E(X|Y ) = EX.

3. Let (X,Y ) be a centred Gaussian random vector in R2. Show that E(X|Y ) = EXY
EY 2 Y .

4. Let ρ ∈ (−1, 1) and let (U, V ) be a random vector in R2 with density

f(u, v) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(u2 − 2ρuv + v2)

}
, (u, v) ∈ R2.

Find E(U |V ).

5. Let X1, . . . , Xn be i.i.d. random variables uniform on [0, 1]. Find the conditional

expectation E(X1|max{X1, . . . , Xn}).

6. Let X be a nonnegative integrable random variable and let G be a sub-σ-algebra.

Show that

a) E(X|G) =
∫∞

0
P (X > t|G) dt,

b) P (X > t|G) ≤ t−pE(Xp|G), p, t > 0, provided that X ∈ Lp.

7. LetX and Y be independent random variables uniform on [−1, 1]. Find E(X|X2+Y 2)

and E(X2|X + Y ).

8. Suppose X,Y are integrable random variables such that E(X|Y ) = Y a.s. and

E(Y |X) = X a.s. Then X = Y a.s.

9. Prove Lemma 12.6
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13 Martingales I

13.1 Definitions and basic examples

By a process X = (Xn)n≥0 = (X0, X1, X2, . . .) we just mean a sequence of random

variables X0, X1, . . . (index n is thought of as time which is discrete here). A filtration

{Fn}n≥0 on a probability space (Ω,F ,P) is a nondecreasing sequence of sub-σ-algebras

of F ,

F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F .

We set

F∞ = σ

⋃
n≥0

Fn


which is also a sub-σ-algebra of F . Sometimes (Ω,F , {Fn}n≥0,P) is then referred to as

a filtered probability space.

Intuitively, Fn carries information available at time n.

Given a process X = (Xn)n≥0, its natural filtration is given by

Fn = σ(X0, X1, . . . , Xn), n ≥ 0.

The process X is called adapted (to {Fn}) if for every n ≥ 0, Xn is Fn-measurable.

It is called predictable or previsible if for every n ≥ 1, Xn is Fn−1-measurable and

X0 is constant. Intuitively, if X is adapted, then at time n we know Xn(ω) (and

X0(ω), . . . , Xn−1(ω)); if it is predictable, at time n we additionally know Xn+1(ω).

A process X = (Xn)n≥0 is a martingale (with respect to a filtration {F}n≥0) if

(i) X is adapted,

(ii) E|Xn| <∞, for every n ≥ 0,

(iii) E(Xn|Fn−1) = Xn−1 a.s., for every n ≥ 1.

It is called a supermartingale (respectively submartingale) if (iii) is replaced by:

E(Xn|Fn−1) ≤ Xn−1 (resp. ≥ Xn−1) a.s., for every n ≥ 1.

Submartingales correspond to subharmonic functions (f on Rn is subharmonic if and

only if f(B) is a local submartingale, where B is a standard Brownian motion on Rn).

13.1 Remark. If X is a supermartingale, then

EXn = E(E(Xn|Fn−1)) ≤ EXn−1,

so its averages do not increase over time. For martingales, the averages are of course

constant.
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The word ‘martingale’ origins from the Spanish word ‘almátaga’ = fastening. In ev-

eryday use, a martingale refers to a horse gear item which is a strap attached to the reins

of horse used to prevent the horse from raising its head too high (P. Halmos allegedly

sent J. Doob such a martingale as a “gift”; J. Hammersley, after his lecture in 1965

was made aware of this meaning of the word martingale, thought that the mathematical

term originated from its equestrian meaning and started calling his martingale process,

“harness process”). As a mathematical term, it was first used in French by J. Ville in

his thesis in 1939, where initially he writes “game system or martingale” and then just

continues with “martingale”. It was J. Doob, the godfather of martingale theory, who

after reviewing Ville’s thesis, coined and used the term ‘martingale’.

13.2 Example. Let X1, X2, . . . be independent integrable random variables with mean

0, EXk = 0 for every k ≥ 1. Let

S0 = 0,

Sn = X1 + · · ·+Xn, n ≥ 1

and

F0 = {∅,Ω},

Fn = σ(X1, . . . , Xn), n ≥ 1.

Then (Sn)n≥0 is a martingale with respect to the natural filtration {Fn}. Indeed,

because Sn = Sn−1 +Xn and Sn−1 is Fn−1 measurable, whereas Xn is independent of

Fn−1, we have

E(Sn|Fn−1) = E(Sn−1|Fn−1) + E(Xn|Fn−1) = Sn−1 + EXn = Sn−1.

13.3 Example. LetX1, X2, . . . be independent nonnegative integrable random variables

with EXk = 1 for every k ≥ 1. Let

M0 = 1,

Mn = X1 · . . . ·Xn, n ≥ 1

and

F0 = {∅,Ω},

Fn = σ(X1, . . . , Xn), n ≥ 1.

Then (Mn)n≥0 is a martingale with respect to the natural filtration {Fn}, thanks to the

“taking out what is known property”.

13.4 Example. Let X be an integrable random variable and let {Fn}n≥0 be a filtration.

Let

Xn = E(X|Fn), n ≥ 0.
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Then (Xn)n≥0 is a martingale (with respect to {Fn}), by the tower property.

Intuitively, martingales model fair gambling games. If Xn is your capital at time n,

then Xn − Xn−1 are your net winnings in game n. Note that (Xn) is a martingale if

and only if E(Xn −Xn−1|Fn−1) = 0, that is the game is fair (with all the knowledge at

time n− 1, the net winnings for game n are 0 on average).

13.2 Martingale transforms and stopping times

Let X = (Xn)n≥0 be an adapted process and let H = (Hn)n≥0 be a predictable process.

Define

Y0 = 0,

Yn =

n∑
k=1

Hk(Xk −Xk−1), n ≥ 1.

The process Y = (Yn)n≥0, denoted Y = H •X, is called the martingale transform of

X by H. (It is a discrete analogue of the stochastic integral
∫
HdX).

Intuitively, thinking of Hn as your stake on game n, your total winnings at time n

are Yn = (H •X)n.

The fundamental lemmasays that martingale transforms of martingales are of course

martingales.

13.5 Lemma. Let H = (Hn) be a bounded predictable process, that is for some constant

K, |Hn| ≤ K a.s. for every n. Let X = (Xn) be an adaptable process.

(i) If H is nonnegative, that is for every n, Hn ≥ 0 and X is a supermartingale, then

H •X is a supermartingale.

(ii) If X is a martingale, then H •X is a martingale.

Proof. (i): Let Y = H • X. Since H is bounded, Y is in L1. Moreover, Yn − Yn−1 =

Hn(Xn −Xn−1) and since Hn is Fn−1-measurable (as being predictable), we have

E(Yn − Yn−1|Fn−1) = E(Hn(Xn −Xn−1)|Fn−1) = HnE(Xn −Xn−1|Fn−1) ≤ 0

because Hn ≥ 0 and E(Xn −Xn−1|Fn−1) (X is a supermartingale). The proof of (ii) is

the same.

A function τ : Ω → {0, 1, 2, . . .} ∪ {+∞} is a stopping time if for every n ≥ 0,

{τ ≤ n} ∈ Fn (equivalently, {τ = n} ∈ Fn). Intuitively, τ tells you when to stop

playing.
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13.6 Example. Let X = (Xn) be an adapted process and let B ∈ B(R) be a Borel set.

The time of the first entry of X into B,

τ = inf{n ≥ 0, Xn ∈ B}

is a stopping time. Indeed,

{τ ≤ n} =
⋃
k≤n
{Xk ∈ B} ∈ σ

⋃
k≤n
Fk

 ⊂ Fn.
On the other hand, in general, η = sup{n ≤ 10, Xn ∈ B} is not a stopping time (why?).

We shall often use notation

a ∧ b = min{a, b}, a ∨ b = max{a, b}, a, b ∈ R.

13.7 Example. If σ, τ are stopping times, then σ ∧ τ , σ ∨ τ , σ + τ are also stopping

times.

For a process X = (Xn)n≥0, we set Xτ = (Xτ∧n)n≥0 which is called the stopped

process.

The following, often called the optional sampling (or stopping) lemma, says that the

stopped process of a supermartingale is a supermartingale (without any extra assump-

tions).

13.8 Lemma (Doob’s optional sampling lemma). If X is a supermartingale and τ is a

stopping time, then the stopped process Xτ is a supermartingale.

Proof. Let Hn = 1τ≥n (we bet 1 until we quit the game and then bet 0). This process

takes values in {0, 1}, so it is in particular nonnegative and bounded. To check that it

is predictable, it thus suffices to check that {Hn = 0} is in Fn−1 which is clear because

{Hn = 0} = {τ ≤ n− 1}. Finally,

(H •X)n =

n∑
k=1

Hk(Xk −Xk−1) =
∑

1≤k≤n
1k≤τ (Xk −Xk−1)

=
∑

1≤k≤τ∧n
(Xk −Xk−1)

= Xτ∧n −X0,

so H •X = Xτ −X0, the stopped process is a martingale transform. We are done by

Lemma 13.5.

13.9 Example. Let X = (Xn)n≥0 be a supermartingale and let τ be a stopping time.

Then, for every n ≥ 0,

EXτ∧n ≤ EX0

145



and

EXτ∧n ≥ EXn.

The first inequality follows because Xτ is a supermartingale, so in particular,

EXτ∧n = EXτ
n ≤ EXτ

0 = EXτ∧0 = EX0.

The second inequality follows because {τ = k} ∈ Fk, so for every k ≤ n, EXk 1{τ=k} ≥
EXn 1{τ=k} (since Xk ≥ E(Xn|Fk)), hence

EX{τ∧n} =

n∑
k=0

EXk 1{τ=k}+EXn 1{τ>n} ≥
n∑
k=0

EXn 1{τ=k}+EXn 1{τ>n} = EXn.

13.10 Lemma (Doob’s optional sampling lemma – continuation). Let X be a super-

martingale and let τ be a stopping time. Then

Xτ ∈ L1 and EXτ ≤ EX0,

if one of the following conditions holds

(i) τ is bounded,

(ii) X is bounded (say, |Xn| ≤ K for every n ≥ 0) and τ <∞ a.s.

(iii) Eτ <∞ and X has bounded increments: |Xn −Xn−1| ≤ K for every n ≥ 1,

(iv) X is nonnegative and τ <∞ a.s.

Moreover, if X is martingale and one of the conditions (i)-(iii) holds, then

Xτ ∈ L1 and EXτ = EX0.

Proof. Let X be a supermartingale. We have

|Xτ∧n −X0| ≤
∑

1≤k≤τ∧n
|Xk −Xk−1|.

If (i) holds, say τ ≤ T a.s. for some positive integer T , then applying the above inequality

to n = T gives |Xτ | ≤ |X0|+
∑
k≤T |Xk−Xk−1| showing that Xτ ∈ L1. If (ii) holds, we

trivially have |Xτ | ≤ K, so Xτ ∈ L1. If (iii) holds, we get |Xτ∧n| ≤ |X0|+
∑

1≤k≤τ |Xk−
Xk−1| ≤ |X0|+ τK which is in L1, so taking the expectation, letting n→∞ and using

Lebesgue’s dominated convergence theorem shows that E|Xτ | ≤ E|X0| + KEτ . If (iv)

holds, since X is assumed to be nonnegative, Xτ ∈ L1 follows from the inequality

EXτ ≤ EX0 argued below.

Now we show EXτ ≤ EX0. From Lemma 13.8 we know that Xτ∧n ∈ L1 and

EXτ∧n ≤ EX0. For (i), say τ ≤ N a.s., simply take n = N . For (ii), take n → ∞
and use Lebesgue’s dominated convergence theorem. For (iii), as noted earlier, Xτ∧n
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is dominated by |X0| + Kτ , so we can use Lebesgue’s dominated convergence theorem

again. For (iv), we use Fatou’s lemma,

EXτ = E lim inf Xτ∧n ≤ lim inf EXτ∧n ≤ EX0.

Finally, if X is a martingale, in each of the cases (i)-(iii), we use the previous part for

X and −X.

13.11 Example. Let X be a simple random walk on Z, that is X0 = 0, Xn = ε1 +

· · ·+ εn, where ε1, ε2, . . . are i.i.d. symmetric random signs, so X is a martingale (with

respect to the natural filtration). Let τ = inf{n ≥ 1, Xn = 1} be the first moment of

visiting 1. It is known that P (τ <∞) = 1. However, EXτ = E1 = 1 and EX0 = 0, so in

this case EXτ 6= EX0. Since X has bounded increments, in view of Lemma 13.10 (iii),

we have Eτ = +∞.

We shall now determine the distribution of τ using a martingale argument. Fix λ > 0

and let Mn = eλXn/(Eeλε1)n. By Example 13.3, M is a martingale. We have

Eeλε1 =
eλ + e−λ

2
= coshλ,

so

Mn = (coshλ)−neλXn .

By Doob’s optional sampling lemma,

E[(coshλ)−τ∧neλXτ∧n ] = EMτ∧n = 1.

Since λ > 0 and Xτ∧n ≤ 1, we have that eλXτ∧n is bounded by eλ. Clearly, we have

(coshλ)−τ∧n ≤ 1, so by Lebesgue’s dominated convergence theorem, letting n → ∞
yields

E(coshλ)−τeλ = 1

because

(coshλ)−τ∧neλXτ∧n →

(coshλ)−τeλ, on {τ <∞},

0, on {τ =∞}

(Xτ∧n stays bounded by 1 and if τ < ∞ clearly converges to Xτ ). Letting λ → 0+

in a decreasing way, we have (coshλ)−τ → 1{τ<∞}, thus P (τ <∞) = E1{τ<∞} = 1.

Finally, letting x = (coshλ)−1 and using e−λ = 1−
√

1−x2

x , we find the generating function

of τ ,

Exτ = e−λ =
1−
√

1− x2

x
=

∞∑
k=1

(−1)k+1

(
1/2

k

)
x2k−1,

hence the distribution of τ , P (τ = 2k − 1) = (−1)k+1
(

1/2
k

)
, k ≥ 1.
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13.3 Convergence theorem

The main martingale convergence theorem is due to Doob.

13.12 Theorem (Doob’s “forward” convergence theorem). Let X be a supermartingale

bounded in L1, that is for some constant K, E|Xn| ≤ K for all n. Then there is an

integrable random variable X∞ such that Xn
a.s.−−−−→
n→∞

X∞.

13.13 Corollary. If X is a nonnegative supermartingale, then there is an integrable

random variable X∞ such that Xn
a.s.−−−−→
n→∞

X∞.

Proof. We have E|Xn| = EXn ≤ EX0 (Remark 13.1), so X is bounded in L1.

13.14 Remark. Since each Xn is F∞ measurable, so is X∞. Suppose X is nonnegative.

Then, for a fixed index m, by Fatou’s lemma,

E(X∞|Fm) = E(lim inf Xn|Fm) ≤ lim inf E(Xn|Fm) ≤ EXm,

so the extended sequence (X0, X1, X2, . . . , X∞) satisfies the supermartingale property

(with respect to {F0,F1,F2, . . . ,F∞}). In particular,

EX∞ ≤ . . . ≤ EX1 ≤ EX0.

a

b

(xn)

Figure 1: The number of upcrossings is 3.

The proof (undoubtedly from the book) of Doob’s convergence theorem relies on the

so-called upcrossings. For a < b, a sequence (xn)n≥0 and an index N ≥ 0, we define the

number of upcrossings by time N as

UN (a, b) = largest k ≥ 1 such that there are indices

0 ≤ s1 < t1 < s2 < t2 < . . . < sk < tk ≤ N

with xsi < a and xti > b for each i = 1, . . . , k.
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See Figure 1.

13.15 Lemma (Doob’s upcrossing inequality). Let X be a supermartingale, let a < b,

N ≥ 0. Let UN (a, b) be the number of uprossings by time N of (Xn)n≥0. Then

(b− a)EUN (a, b) ≤ E(XN − a)−.

Proof. Define

H1 = 1{X0<a},

Hn+1 = 1{Hn=1} 1{Xn≤b}+ 1{Hn=0} 1{Xn<a}, n ≥ 1.

a

b

Hn = 0

Hn = 1

(XN − a)−

Figure 2: The process Y increases along upcrossings and (XN − a)− bounds the loss in

the last interval of play {n, Hn = 1}.

This is a predictable process taking values in {0, 1}. Informally, H = 1 on the ways

to upcross, or as a gambling strategy: “wait until X gets below a, play stake 1 until X

gets above b, repeat”.

Let Y = H •X be the martingale transform of X by H. The crucial observation is

that

YN ≥ (b− a)UN (a, b)− (XN − a)−.

Explanation: every upcrossing increases Y by at least (b− a) and the nonpositive term

−(XN −a)− offsets the potential loss incurred in the last interval of play (see Figure 2).

Taking the expectation and using that EYN ≤ EY0 = 0 (Y is a supermartingale, see

Lemma 13.5) finishes the proof.
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Proof of Theorem 13.12. Consider the event

E = {ω, Xn(ω) does not converge to a limit in [−∞,∞]}

= {lim inf Xn < lim supXn}

=
⋃
a<b
a,b∈Q

{lim inf Xn < a < b < lim supXn}.

Fix a < b. Note that by the definition of lim inf and lim sup,

{lim inf Xn < a < b < lim supXn} ⊂ {U∞(a, b) =∞},

where U∞(a, b) is defined (pointwise) as the limit limN→∞ UN (a, b) ∈ [0,+∞] (which

exists by the monotonicity of UN (a, b)). By Lemma 13.15,

(b− a)EUN (a, b) ≤ E(XN − a)− ≤ E|XN |+ |a| ≤ K + |a|,

so in particular, letting N →∞, we get (by Lebesgue’s monotone convergence theorem)

that EU∞(a, b) <∞ and thus P (U∞(a, b) =∞) = 0. As a result, P (E) = 0. On Ec, we

can define

X∞ = limXn ∈ [−∞,∞].

By Fatou’s lemma,

E|X∞| = E lim inf |Xn| ≤ lim inf E|Xn| ≤ K,

so X∞ is integrable (and thus X∞ ∈ (−∞,∞)).

150



13.4 Exercises

1. Verify the claim made in Example 13.3.

2. Verify the claim made in Example 13.4.

3. Let τ , σ be stopping times (relative to (Ω, {Fn},F ,P)). Prove that τ ∧ σ, τ ∨ σ and

τ + σ are also stopping times. Are τ + 1, τ − 1 stopping times as well?

Here and throughout: a ∧ b = min{a, b}, a ∨ b = max{a, b}, a, b ∈ R.

4. Let X = (Xn)n≥0 be an adaptable process (to a filtration {Fn}n≥0). Let B be a

Borel subset of R. Define

τ1 = inf{n : Xn ∈ B} the first visit in B,

τk = inf{n > τk−1 : Xn ∈ B} the kth visit in B, k ≥ 2.

We know that τ1 is a stopping time. Show that each τk is also a stopping time.

5. Let X = (Xn)n≥0 be a martingale and let f : R→ R be a convex function such that

E|f(Xn)| <∞ for every n ≥ 0. Show that (f(Xn))n≥0 is a submartingale.

6. Let X0, X1, . . . be i.i.d. square-integrable random variables with mean 0. Let Y0 = 0

and Yn = X0X1 +X1X2 + · · ·+Xn−1Xn, n ≥ 1. Show that (Zn)n≥0 is a martingale

relative to the natural filtration {Fn}n≥0 of (Xn)n≥0.

7. Let X = (Xn)n≥0 be an integrable adapted process (to a filtration {Fn}n≥0). Show

that X is a martingale if and only if for every bounded stopping time τ , we have

EXτ = EX0.

Hint: First show that EXn = EX0 for every n ≥ 0. Then, given n ≥ 0 and A ∈ Fn,

consider τ = n1A +(n+ 1) 1Ac .

8. Let X be a nonnegative supermartingale and let τ be a stopping time. Show that

EXτ 1τ<∞ ≤ EX0.

Deduce that P (supnXn ≥ t) ≤ EX0

t , for t > 0.

9. Pólya’s urn. At time 0, an urn contains 1 black ball and 1 white ball. At each time

n = 1, 2, 3, . . . a ball is chosen at random from the urn and is replaced together with

a new ball of the same colour. Just after time n, there are therefore n+ 2 balls in the

urn, of which Bn + 1 are black, where Bn denotes the number of black balls chosen

by time n, B0 = 0. Let Mn = Bn+1
n+2 , n ≥ 0. Prove that

(a) M is a martingale (relative to the natural filtration Fn = σ(B0, . . . , Bn)),

(b) P (Bn = k) = 1
n+1 , for 0 ≤ k ≤ n,
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(c) Mn converges a.s., say to M∞

(d) M∞ is uniform on [0, 1],

(e) Xn = (n+1)!
Bn!(n−Bn)!θ

Bn(1− θ)n−Bn is a martingale, where 0 < θ < 1 is fixed.

10. Bellman’s Optimality Principle. Let 1
2 < p < 1. Let X1, X2, . . . be i.i.d. random

variables with P (Xn = 1) = p = 1 − P (Xn = −1). Your winnings per unit stake on

game n are Xn. Your stake Hn on game n must satisfy Hn ∈ (0, Yn−1), where Yn

is your fortune at time n, Y0 is a positive constant and Yn = Yn−1 + HnXn. Show

that if H is a predictable process, then (log Yn−nα)n≥0 is a supermartingale, where

α = p log p + (1 − p) log(1 − p) + log 2. Deduce that E log(Yn/Y0) ≤ nα. Find the

best strategy H, that is the one that gives a martingale, hence equality.

11. Suppose that τ is a stopping time (relative to {Fn}n≥0) such that for some N ≥ 1

and ε > 0, we have for every n,

P (τ ≤ n+N |Fn) > ε a.s.

Show that for k = 1, 2, . . ., we have P (τ > kN) ≤ (1− ε)k and deduce that Eτ <∞.

12. ABRACADABRA. At each of times 1, 2, 3, . . ., a monkey types a capital letter at

random, the sequence of letters typed forming an i.i.d. sequence of random vari-

ables each chosen uniformly from the 26 capital letters. Let τ be the first time by

which the monkey has produced the consecutive sequence ‘ABRACADABRA’. Using

martingale theory, show that

Eτ = 2611 + 264 + 26.

13. Gambler’s ruin. Let 0 < p < 1, p 6= 1
2 . Let X1, X2, . . . be i.i.d. random variables with

P (Xn = 1) = p = 1−P (Xn = −1) for every n. Let a and b be integers with 0 < a < b.

Let S0 = a, Sn = a+X1 + . . .+Xn, n ≥ 1 and τ = inf{n ≥ 0 : Sn ∈ {0, b}}. Show

that Eτ < ∞. Let Xn = Sn − n(2p − 1) and Yn =
(

1−p
p

)Sn
, n ≥ 0. Show that X

and Y are martingales. Deduce the values of P (Sτ = 0) and ESτ . What about the

symmetric case p = 1
2?

14. Wald’s identity. Let {Fn}n≥0 be a filtration and let X be an integrable adaptable

process such that the Xk have the same distribution and Xk+1 is independent of Fk
for every k ≥ 0. Let Sn = X1 + . . . + Xn. Let τ be a stopping time with Eτ < ∞.

Show that

E(X1 + · · ·+Xτ ) = Eτ · EX1.

If additionally EX2
k <∞, then

E(Sτ − τEX1)2 = (Eτ) Var(X1).
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15. Baby version of Kakutani’s theorem. Let X1, X2, . . . be i.i.d. nonnegative random

variables with mean 1 such that P (Xi = 1) < 1. Let Mn = X1 · . . . ·Xn, n ≥ 1. Show

that Mn converges a.s. but not in L1.

Hint. Use Corollary 13.13 (M is a nonnegative martingale). To tackle convergence

in L1, first using a Cauchy condition in L1, show that Mn →M∞ in L1 implies that

limnMn = 1 a.s. Then consider a.s. convergence of M̃n =
√
X1·...·

√
Xn

(E
√
X1)n

using again a

martingale argument.
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14 Martingales II

14.1 L2 martingales

Whenever possible, one of the easiest ways to prove that a martingale is bounded in L1 is

to show that it is bounded in L2 and use E|X| ≤ (E|X|2)1/2. For martingales, verifying

L2-type conditions can be done very efficiently. Moreover, bounded L2 martingales

admit better convergence results and have nice applications to classical topics such as

series of independent random variables.

We begin with a basic condition saying that a martingale is bounded in L2 if and

only if the series of the squares of the L2-norms of its increments is convergent.

14.1 Theorem. Let M = (Mn)n≥0 be a square-integrable martingale, that is EM2
n <∞

for every n ≥ 0. Then

M is bounded in L2, that is ∃K > 0 ∀n ≥ 0 EM2
n ≤ K (14.1)

if and only if ∑
k≥1

E(Mk −Mk−1)2 <∞. (14.2)

Moreover, when this holds, there exists a random variable M∞ which is in L2 such that

Mn −−−−→
n→∞

M∞ a.s. and in L2.

Proof. For i < j, E(Mj |Fi) = Mi, that is E(Mj − Mi) 1A = 0 for every A ∈ Fi,
or, in other words, Mj − Mi is orthogonal to the subspace L2(Fi). In particular, if

k < l ≤ m < n, then

E(Ml −Mk)(Mn −Mm) = 0.

Consequently, writing M as the sum of its increments,

Mn = M0 +

n∑
k=1

(Mk −Mk−1),

we find that all the terms are orthogonal, so in particular,

EM2
n = EM2

0 +

n∑
k=1

E(Mk −Mk−1)2.

This identity explains the equivalence of (14.1) and (14.2).

Suppose these conditions hold. By Doob’s convergence theorem for martingales

bounded in L1 (Theorem 13.12), there is an integrable random variable M∞ such that

Mn →M∞ a.s. To see that M∞ is in fact square-integrable and the convergence is also

in L2, first note that, by orthogonality, for n, r ≥ 0, we have

E(Mn+r −Mn)2 =

n+r∑
k=n+1

E(Mk −Mk−1)2,
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so letting r →∞ and using Fatou’s lemma, we conclude

E(M∞ −Mn)2 ≤
∑

k≥n+1

E(Mk −Mk−1)2 <∞,

hence M∞ ∈ L2. Moreover, since tails of convergent series go to 0, this bound also

shows that

E(M∞ −Mn)2 −−−−→
n→∞

0,

that is Mn →M∞ in L2.

We introduce Doob’s decomposition, which will be particularly fruitful to study L2

martingales.

14.2 Theorem (Doob’s decomposition). Let X = (Xn)n≥0 be an adapted, integrable

process. It admits the decomposition

Xn = X0 +Mn +An, n ≥ 0,

where M = (Mn)n≥0 is a martingale with M0 = 0 and A = (An)n≥0 is a predictable

process with A0 = 0. Moreover, if X = X0 +M̃ + Ã is another such decomposition, then

P
(
∀n ≥ 0 Mn = M̃n, An = Ãn

)
= 1.

Moreover, X is a supermartingale if and only if the process A is nonincreasing, that is

An ≥ An+1 for all n ≥ 0 a.s.

Proof. Let

A0 = 0,

An =

n∑
k=1

E(Xk −Xk−1|Fk−1), n ≥ 1

Mn = Xn −X0 −An, n ≥ 0.

Plainly, A satisfies the desired properties. Moreover, M is integrable and adaptable and

it satisfies the martingale property because

Mn+1 −Mn = Xn+1 −Xn − (An+1 −An) = Xn+1 −Xn − E(Xn+1 −Xn|Fn)

= Xn+1 − E(Xn+1|Fn),

so

E(Mn+1 −Mn|Fn) = E(Xn+1|Fn)− E(Xn+1|Fn) = 0.

Moreover, if X = X0 + M̃ + Ã for a martigale M̃ and a predictable process Ã, then for

every n ≥ 1,

E(Xn −Xn−1|Fn−1) = E(M̃n − M̃n−1|Fn−1) + E(Ãn − Ãn−1|Fn−1)

= 0 + Ãn − Ãn−1 = Ãn − Ãn−1,
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which gives that Ã = A a.s. and consequently M̃ = M a.s. Finally, by the identity,

E(Xn −Xn−1|Fn−1) = An −An−1,

we have that E(Xn −Xn−1|Fn−1) ≤ 0 if and only if An ≤ An−1.

We note that Doob’s decomposition of the stopped process comes from stopping

Doob’s decomposition processes.

14.3 Lemma. Let X be an adapted, integrable process with Doob’s decomposition X =

X0 + M + A with M being a martingale and A being a predictable process. Let τ be a

stopping time. Then

Xτ = X0 +Mτ +Aτ

is Doob’s decomposition of the stopped process Xτ .

Proof. By Doob’s optional sampling lemma, we know that Mτ is a martingale, so it

suffices to show that Aτ is predictable. This can be seen from the identity

Aτn = Aτ∧n = An 1τ≥n +
∑
k<n

Ak 1τ=k

because {τ ≥ n} is in Fn−1.

Let M be a martingale in L2, that is EM2
n < ∞ for every n ≥ 0. We define its

quadratic variation process (the angle-brackets process), denoted 〈M〉= (〈M〉n)n≥0 as

〈M〉n =

n∑
k=1

E(M2
k −M2

k−1|Fk−1),

that is 〈M〉= A, where

M2 = M2
0 +N +A

is Doob’s decomposition of M2 into a martingale N and a predictable process A.

14.4 Remark. Since E(MkMk−1|Fk−1) = Mk−1E(Mk|Fk−1) = M2
k−1, we have

〈M〉n =

n∑
k=1

E((Mk −Mk−1)2|Fk−1).

In particular, 〈M〉 is a nonnegative process. Moreover,

〈M〉n −〈M〉n−1 = E(M2
n −M2

n−1|Fn−1) = E((Mn −Mn−1)2|Fn−1) ≥ 0,

hence 〈M〉 = A is nondecreasing (which also follows from the fact that M2 is a sub-

martingale – by Jensen’s inequality, see Exercise 13.5). Consequently, we can define

(point-wise)

〈M〉∞ = lim
n→∞

〈M〉n ∈ [0,+∞].
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14.5 Example. Let X1, X2, . . . be independent random variables which are in L2. Let

M0 = 0 and Mn = X1 + · · ·+Xn − (EX1 + · · ·+ EXn). We know this is a martingale

(Example 13.2). We have,

〈M〉n =

n∑
k=1

Var(Xk)

(exercise). Thus, M2
n −Var(Mn) is a martingale.

14.6 Remark. From Doob’s decomposition, EM2
n = EM2

0 + ENn + E〈M〉n = EM2
0 +

E〈M〉n, thus

M is bounded in L2 if and only if E〈M〉∞ <∞. (14.3)

In view of Theorem 14.1 and the above remark, if E〈M〉∞ <∞, then Mn converges

a.s. and in L2. The next theorem refines that and describes very precisely convergence

of L2 martingales in a general situation.

14.7 Theorem. Let M be a martingale with M0 = 0 which is in L2, that is EM2
n <∞

for every n.

(i) On the event {〈M〉∞ <∞}, we have “limnMn exists and is finite”.

(ii) If M has additionally bounded increments, that is there is a constant K > 0 such

that |Mn −Mn−1| ≤ K for all n ≥ 0 a.s., then the converse holds: on the even

{limnMn exists and is finite}, we have 〈M〉∞ <∞.

(iii) On the event {〈M〉∞ =∞}, we have Mn

〈M〉n −−−−→n→∞
0.

(All the inclusions hold modulo sets of measure 0).

14.8 Remark. Part (iii) can be thought of a strong law of large numbers for L2 mar-

tingales. To illustrate this point, let X1, X2, . . . be i.i.d. random variables which are

in L2. We consider the sum martingale Mn = X1 + · · · + Xn − nEX1, for which

〈M〉n = nVar(X1) (see Example 14.5). Thus, {〈M〉∞ =∞} = Ω, so, a.s.,

X1 + · · ·+Xn − nEX1

nVarX1
=

Mn

〈M〉n
→ 0,

equivalently,
X1 + · · ·+Xn

n
→ EX1 a.s.

Proof. (i): For l = 1, 2, . . ., we define

τl = inf{n ≥ 0 : 〈M〉n+1 > l}.

Since 〈M〉 is predictable, this is a stopping time. Moreover, by its definition,

〈M〉τl ≤ l.
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Thus, for the stopped process Mτl ,

〈Mτl〉∞ =〈M〉τl∞ =〈M〉τl ≤ l

(in the first equality we use Lemma 14.3). In view of (14.1), the stopped process Mτl

is a bounded in L2 martingale, so limnM
τl
n exists (a.s.) and is in L2. Therefore,

{〈M〉∞ <∞} =
⋃
l≥1

{τl =∞} ⊂ {lim
n
Mn exists and is finite}

because on {τl =∞}, we have Mτl
n = Mn. This shows (a).

(ii): For l = 1, 2, . . ., we define

σl = inf{n ≥ 0 : |Mn| > l}.

This is a stopping time. Since M has bounded increments, the stopped process is

bounded,

|Mσl
n | = |Mσl∧n| ≤ |M(σl∧n)−1|+K ≤ l +K.

Thus Mσl is bounded in L2. Therefore E〈Mσl〉∞ <∞ and

E〈M〉σl = E〈M〉σl∞ = E〈Mσl〉∞ <∞.

In particular, on {σl = ∞}, we have 〈M〉σl = 〈M〉∞ and thus 〈M〉∞ < ∞ a.s. on

{σl =∞}. Since convergent sequences are bounded, by the definition of σl, this finishes

the proof of (b),

{limMn exists and is finite} ⊂ {sup
n
|Mn| <∞} =

∑
l≥1

{σl =∞} ⊂ {〈M〉∞ <∞}.

(iii): We define the process Y with Y0 = 0 and

Yn =

n∑
k=1

1

1 +〈M〉k
(Mk −Mk−1), n ≥ 1,

which is the martingale transform of M by the predictable process 1
1+〈M〉 (which is

bounded because 〈M〉 is nonnegative). Thus Y is a martingale (in L2) and since 〈M〉 is
nondecreasing, we have,

E((Yn − Yn−1)2|Fn−1) =
〈M〉n −〈M〉n−1

(1 +〈M〉n)2

≤ 〈M〉n −〈M〉n−1

(1 +〈M〉n)(1 +〈M〉n−1)

=
1

1 +〈M〉n−1
− 1

1 +〈M〉n
.

Therefore,

EY 2
n =

n∑
k=1

E(Yk − Yk−1)2 = E
(

1− 1

1 +〈M〉n

)
≤ 1,
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so Y is bounded in L2 and, consequently, limYn exists and is finite a.s. On the event

{〈M〉n ↗∞} = {〈M〉∞ =∞}, we get Mn

〈M〉n → 0, by the following standard Cesáro-type

lemma.

14.9 Lemma (Kronecker). Let (bn) be a sequence of positive real numbers with bn ↗∞.

Let (xn) be a sequence of real numbers. Then,

if
∑ xn

bn
converges, then

x1 + · · ·+ xn
bn

→ 0.

Proof. Let sn =
∑n
k=1

xk
bk

. Then s1 = x1

b1
, sn − sn−1 = xn

bn
, n ≥ 2, so

x1 + . . .+ xn
bn

=
b1s1 + b2(s2 − s1) + b3(s3 − s2) + . . .+ bn(sn − sn−1)

bn

=
(b1 − b2)s1 + (b2 − b3)s2 + · · ·+ (bn−1 − bn)sn−1 + bnsn

bn

=
(b1 − b2)(s1 − sn) + (b2 − b3)(s2 − sn) + · · ·+ (bn−1 − bn)(sn−1 − sn)

bn

+
b1sn
bn

.

Fix ε > 0. Since (sn) is a convergent sequence, it is bounded, say |sn| ≤M for every n,

and by the Cauchy criterion, there is N such that for n,m > N , we have |sn − sm| < ε.

Consequently, for n > N ,∣∣∣∣x1 + . . .+ xn
bn

∣∣∣∣
≤ (b2 − b1)2M + · · ·+ (bN − bN−1)2M + (bN+1 − bN )ε+ · · ·+ (bn − bn−1)ε

bn
+
b1M

bn

= 2M
bN − b1
bn

+
bn − bN
bn

ε+
b1M

bn
≤ 2M

bN − b1
bn

+ ε+
b1M

bn

which is less than, say 2ε for n large enough.

14.2 Uniformly integrable martingales

We say that a family of random variables {Xt}t∈T is uniformly integrable if for every

ε > 0, there is K > 0 such that for all t ∈ T , we have E|Xt|1{|Xt|>K} ≤ ε. We refer to

Appendix I for basic results. We recall one: for p > 0, we have

Xn
Lp−−−−→

n→∞
X if and only if Xn

P−−−−→
n→∞

X and {|Xn|p} is uniformly integrable

(14.4)

(see Theorem I.6

In the context of martingales, the following construction of a uniformly integrable

family is rather important.

14.10 Lemma. If X is an integrable random variable and {Ft}t∈T is a family of sub-

σ-algebras, then the family {Xt = E(X|Ft)}t∈T is uniformly integrable.
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Proof. Fix ε > 0. We choose δ > 0 such that for every event A with P (A) < δ, we have

E|X|1A < ε (see Remark I.5). First note that, by Jensen’s inequality,

|Xt| = |E(X|Ft)| ≤ E(|X| |Ft)

and, consequently,

E|Xt| ≤ E|X|.

For the event A = {|Xt| > K}, if K is large enough, we have, by Markov’s inequality,

P (A) ≤ 1

K
E|Xt| ≤

1

K
E|X| < δ,

so, using that A ∈ Ft,

E|Xt|1{|Xt|>K} = E|Xt|1A ≤ E((E(|X| |Ft) 1A) = E(E(|X|1A |Ft) = E|X|1A < ε,

which is the definition of uniform integrability.

Uniformly integrable martingales are bounded in L1 (see (i) of Theorem I.4). Thus

such martingales converge a.s. Moreover, the following basic result gives L1 convergence

and says that such martingales are of the tower form (see Example 13.4).

14.11 Theorem. Let M be an uniformly integrable martingale. Then there is an inte-

grable random variable M∞ such that Mn →M∞ a.s. and in L1. Moreover,

Mn = E(M∞|Fn), n ≥ 0.

Proof. As we said, the existence of M∞ ∈ L1 such that Mn → M∞ a.s. follows from

Doob’s convergence theorem (Theorem 13.12). Since {Mn} is uniformly integrable and

converges in probability to M∞, by (14.4), Mn → M∞ also in L1. It remains to show

that Mn = E(M∞|Fn) for every n. To this end, we fix n ≥ 0, fix an event A ∈ Fn and

argue that EMn 1A = EM∞ 1A. By the martingale property, for every r ≥ n, we have

EMr 1A = EMn 1A. Moreover,

|EMr 1A−EM∞ 1A | ≤ E|Mr −M∞| −−−→
r→∞

0,

so EMn 1A = EMr 1A → EM∞ 1A as r → ∞ and thus, EMn 1A = EM∞ 1A, as

desired.

For tower-type martingales, we have two refinements.

14.12 Theorem (Lévy’s “upward” convergence theorem). Let X be an integrable ran-

dom variable and let {Fn}n≥0 be a filtration, F∞ = σ
(⋃

n≥0 Fn
)

. Let Xn = E(X|Fn),

n ≥ 0. We have,

Xn −−−−→
n→∞

E(X|F∞) a.s. and in L1.
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Proof. By Lemma 14.10, the martingale (Xn)n≥0 is uniformly integrable, so by Theorem

14.11, there is X∞ ∈ L1 such that Xn → X∞ a.s. and in L1. It remains to show that

X∞ = E(X|F∞). Since X∞ is F∞-measurable, it suffices to argue that for every event

A ∈ F∞, we have EX∞ 1A = EX 1A. All events satisfying this form a λ-system.

By Dynkin’s theorem, it thus suffices to show that it contains the π-system
⋃
n≥0 Fn.

Suppose A ∈ Fn for some n. Then,

EX 1A = EXn 1A = EX∞ 1A,

where the first equality holds because Xn = E(X|Fn) and the second one holds because

Xn = E(X∞|Fn), as provided by Theorem 14.11. This finishes the proof.

14.13 Theorem (Lévy’s “downward” convergence theorem). Let {G−n, n = 1, 2, . . .}
be sub-σ-algebras such that

G−1 ⊃ G−2 ⊃ · · · ⊃ G−∞

with G−∞ =
⋂
n≥1 G−n. Let X be an integrable random variable and X−n = E(X|G−n),

n ≥ 1. Then

X−n −−−−→
n→∞

E(X|G−∞) a.s. and in L1.

Proof. We consider the martingale (X−N , X−N+1, . . . , X−1). By Doob’s upcrossing in-

equality from Lemma 13.15,

(b− a)EUN (a, b) ≤ E(X−1 − a)− <∞,

so as in the proof of Doob’s convergence theorem, X−∞ = limnX−n exists and is finite

a.s. By the uniform integrability of {X−n}n≥1, we get that also Xn → X−∞ in L1. As

in the proof of Lévy’s upward convergence theorem, X−∞ = E(X|G−∞).

14.3 Maximal inequalities

Maximal inequalities concern tail and moment bounds for the maximum maxk≤nXk of

a process X.

14.14 Theorem (Doob’s maximal inequality). Let X = (Xn)n≥0 be a submartingale.

Then for every t > 0, we have

P
(

max
k≤n

Xk ≥ t
)
≤ 1

t
EXn 1{maxk≤nXk≥t} ≤

1

t
EX+

n , (14.5)

P
(

min
k≤n

Xk ≤ −t
)
≤ 1

t
(EXn 1{mink≤nXk≤−t}−EX0) ≤ 1

t
(EX+

n − EX0), (14.6)

P
(

max
k≤n
|Xk| ≥ t

)
≤ 1

t
(2EX+

n − EX0). (14.7)
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Proof. For the first inequality, consider the stopping time τ = inf{n ≥ 0 : Xn ≥ t}. By

Example 13.9,

EXn ≥ EXτ∧n

and

EXτ∧n = EXτ 1{τ≤n}+EXn 1{τ>n} ≥ tP (τ ≤ n) + EXn 1{τ>n},

hence

tP (τ ≤ n) ≤ EXn 1τ≤n,

so {τ ≤ n} = {maxk≤nXk ≥ t} finishes the argument.

For the second inequality, we consider the stopping time σ = inf{n ≥ 0 : Xn ≤ −t},
use EX0 ≤ EXτ∧n and proceed analogously (we leave the details as an exercise).

The third inequality follows from maxk |Xk| = max{maxkXk,maxk(−Xk)}, the

union bound and applying the previous two inequalities (we leave the details as an

exercise).

14.15 Corollary. Let f : R → R be convex and let X be a martingale such that

E|f(Xn)| <∞ for every n. Then for every t > 0, we have

P
(

max
k≤n

f(Xk) ≥ t
)
≤ 1

t
E|f(Xn)|.

Proof. It follows from (14.5) applied to the submartingale (f(Xn)) (see also Exercise

13.5).

14.16 Corollary (Kolmogorov’s maximal inequality). Let X1, . . . , Xn be independent

square-integrable random variables, each with mean 0 and let Sk = X1 + . . . + Xk,

1 ≤ k ≤ n. Then

P
(

max
k≤n
|Sk| ≥ t

)
≤ 1

t2
ES2

n, t > 0.

Proof. We have,

P
(

max
k≤n
|Sk| ≥ t

)
= P

(
max
k≤n
|Sk|2 ≥ t2

)
and the result follows from the previous corollary applied to the sum martingale (S0 =

0, S1, . . . , Sn) and convex function f(x) = x2.

14.17 Theorem. (Doob’s maximal inequality in Lp) Let p > 1 and let X = (Xn)n≥0

be a nonnegative submartingale. Then(
Emax
k≤n

Xp
k

)1/p

≤ p

p− 1
(EXp

n)1/p.

Proof. If the right hand side is +∞, there is nothing to prove. Suppose that it is finite.

Then, by a trivial bound,

Emax
k≤n

Xp
k ≤ E

∑
k≤n

Xp
k =

n∑
k=1

EXp
k ≤ nEXp

n,
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(we use EXp
k ≤ E(E(Xk+1|Fk))p ≤ E(E(Xp

k+1|Fk)) = EXp
k+1), we conclude that the left

hand side is also finite. By (14.5), we have

Emax
k≤n

Xp
k =

∫ ∞
0

ptp−1P
(

max
k≤n

Xk > t

)
dt ≤

∫ ∞
0

ptp−2EXn 1{maxk≤nXk≥t} dt.

By Fubini’s theorem (all the terms are nonnegative), we have∫ ∞
0

ptp−2EXn 1{maxk≤nXk≥t} dt = pEXn

∫ maxk≤nXk

0

tp−2dt

=
p

p− 1
EXn(max

k≤n
Xk)p−1

≤ p

p− 1
(EXp

n)1/p(Emax
k≤n

Xp
k)1−1/p,

where in the last estimate we use Hölder’s inequality. Thus

Emax
k≤n

Xp
k ≤

p

p− 1
(EXp

n)1/p(Emax
k≤n

Xp
k)1−1/p,

so dividing by (Emaxk≤nX
p
k)1−1/p finishes the proof (it is finite; if it is 0, the inequality

is trivial).

14.4 Martingales bounded in Lp, p > 1

14.18 Theorem. Let p > 1.

(i) If X = (Xn)n≥0 is a nonnegative submartingale bounded in Lp, then there is

a random variable X∞ ∈ Lp such that Xn → X∞ a.s. and in Lp. Moreover,

‖Xn‖p ↗ ‖X∞‖.

(ii) If M = (Mn)n≥0 is a martingale bounded in Lp, then there is a random variable

M∞ ∈ Lp such that Mn →M∞ a.s. and in Lp.

Proof. Let X∗ = supk≥0Xk. From Doob’s maximal inequality in Lp, Theorem 14.17,

and Lebesgue’s monotone convergence theorem, we obtain

‖X∗‖p ≤
p

p− 1
sup
k≥0
‖Xk‖p

and the right hand side is finite by the assumption. Since −X is a supermartingale,

which is bounded in L1, thanks to Doob’s convergence theorem, there exists a random

variable X∞ ∈ L1 such that Xn → X∞ a.s. By the triangle inequality,

|Xn −X∞|p ≤ (2X∗)
p.

Consequently, X∞ ∈ Lp and by Lebesgue’s dominated convergence theorem, from the

pointwise convergence we can conclude that Xn → X∞ in Lp. Finally, as we saw in

the proof of Doob’s maximal inequality in Lp, ‖Xn‖p is a nondecreasing sequence, so

‖Xn‖p ↗ ‖X∞‖p. This finishes the proof of (i).
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To prove (ii), we apply (i) to X = |M |. The existence of M∞ ∈ L1 such that

Mn →M∞ a.s. is guaranteed by Doob’s convergence theorem. Since

|Mn −M∞|p ≤ (|Mn|+ |M∞|)p ≤ (2X∗)
p,

we get the convergence of Mn to M∞ in Lp, as before, thanks to Lebesgue’s dominated

convergence theorem.
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14.5 Exercises

1. Find the quadratic variation process of the sum martingale (see Example 14.5).

2. Give an example of a family of random variables {Xn}n=1,2,... which is uniformly

integrable and E supn |Xn| =∞.

3. Prove inequality (14.6) and then deduce inequality (14.7).

4. Show that there is no positive finite constant C such that for every nonnegative

submartingle (Xn)n≥0, we have

Emax
k≤n

Xk ≤ CEXn.

5. Show that for every nonnegative submartingle (Xn)n≥0, we have

Emax
k≤n

Xk ≤
e

e− 1

(
1 + EXn log+Xn

)
,

where log+ x = max{log x, 0}, x ≥ 0.

Hint. For a ≥ 0, b > 0, we have a log b ≤ a log+ a+ b
e .

6. Prove that the constant p
p−1 in Doob’s maximal inequality from Theorem 14.17 is

optimal.

7. Azuma’s inequality. Let (Mn)n≥0 be a martingale with M0 = 0 and |Mk−Mk−1| ≤ ak
for every k ≥ 1 for some positive constants a1, a2, . . .. Then for every n ≥ 1 and t > 0,

P
(

max
k≤n

Mk

)
≤ exp

{
− t2

2
∑n
k=1 a

2
k

}
.

Hint. Follow the proof of Bernstein’s inequality (Exercise 6.19). Using convexity,

show that for a random variable X with |X| ≤ a for some a > 0 and EX = 0, we

have EetX ≤ cosh(ta), t ∈ R.
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15 Applications of martingale theory

15.1 Series of independent random variables

We begin with applications of the L2 theory to series of independent random variables.

The main classical result is Kolmogorov’s three-series test which gives necessary and

sufficient conditions for a series
∑
Xi of independent random variables to be convergent

a.s. Combined with Kronecker’s lemma, it leads to the strong law of numbers. An

advantage of this approach is that it gives a way of obtaining rates of convergence.

First, we need a lemma which is a direct consequence of the convergence result for

L2 bounded martingales. Historically, it was established by means of Kolmogorov’s

maximal inequality.

15.1 Lemma. Let X1, X2, . . . be independent random variables with EX2
k < ∞ and

EXk = 0 for every k. If
∑∞
n=1 Var(Xn) <∞, then

∑∞
n=1Xn converges a.s.

Proof. Of course, we consider the sum martingale S0 = 0 and Sn = X1 + · · · + Xn,

n ≥ 1. Since

sup
n

ES2
n =

∑
k≥1

Var(Xk) <∞,

the martingale (Sn) is bounded in L2, so Sn converges a.s. (and in L2), by Theorem

14.1.

15.2 Remark. Alternatively, we can say that since 〈S〉∞ =
∑∞
k=1 < ∞, we get the

assertion by (i) of Theorem 14.7.

15.3 Remark. If the variables Xn are all bounded, that is there is a constant K > 0

such that |Xn| ≤ K for every n, then (Sn) has bounded increments and the converse

holds: if
∑∞
n=1Xn converges, then

∑∞
n=1 Var(Xn) <∞. This follows immediately from

(ii) of Theorem 14.7. We shall strengthen it soon by removing the assumption of mean

0.

15.4 Theorem (Kolmogorov’s three-series test). Let X1, X2, . . . be independent random

variables. Then
∑
Xn converges a.s. if for some K > 0 (equivalently, every K > 0) the

following three conditions hold

(i)
∑

P (|Xn| > K) <∞,

(ii)
∑

EXn 1{|Xn|≤K} converges,

(iii)
∑

Var(Xn 1{|Xn|≤K}) <∞.

Conversely, if
∑
Xn converges a.s., then (i)-(iii) hold for every K > 0.
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Proof of sufficiency. Suppose that for some positive K conditions (i), (ii) and (iii) hold.

Let X̃n = Xn 1{|Xn|≤K}. First note that, thanks to (i),∑
P
(
Xn 6= X̃n

)
=
∑

P (|Xn| > K) <∞,

so by the first Borel-Cantelli lemma,

P
(
Xn = X̃n for all but finitely many n’s

)
= 1,

so it is enough to show that
∑
X̃n converges a.s. Thanks to (ii), it is enough to show

that
∑

(X̃n − EX̃n) converges a.s. which in view of Lemma 15.1 follows from (iii).

Proof of necessity. Fix K > 0 and suppose that
∑
Xn converges a.s. In particular,

Xn → 0 a.s., so P (|Xn| > K for infinitely many n’s) = 0, so by the second Borel-

Cantelli lemma,
∑

P (|Xn| > K) < ∞, that is (i) holds. As in the proof of sufficiency,

this in turn gives that Xn = X̃n eventually, a.s., so we also know that
∑
X̃n converges

a.s. The following lemma applied to the sequence (X̃n) finishes the proof.

15.5 Lemma. Let (Xn) be a sequence of independent random variables bounded by some

positive constant K, that is |Xn| ≤ K for every n. If
∑
Xn converges, then

∑
EXn and∑

Var(Xn) converge.

Proof. We shall use characteristic functions. Let Yn = Xn − EXn. First note that,

|Yn| ≤ 2K and, plainly, φYn(t) = e−itEXnφXn(t), so

|φYn(t)| = |φYn(t)|.

Denote σ2
n = Var(Xn) = EY 2

n . By Lemma 10.4,∣∣∣∣φYn(t)− (1− 1

2
σ2
nt

2)

∣∣∣∣ =

∣∣∣∣E [eitYn − (1 + itYn −
1

2
t2Y 2

n

]∣∣∣∣
≤ E
|t|3|Yn|3

6
≤ |t|

3(2K)EY 2
n

6
=
|t|K

3
σ2
nt

2.

Consequently, for all |t| < 3
4K , we have

|φYn(t)| ≤ 1− 1

2
σ2
nt

2 +
1

4
σ2
nt

2 = 1− 1

4
σ2
nt

2.

Since Sn = X1 + · · · + Xn converges a.s., say to S, we have φSn(t) → φS(t) for every

t. By continuity, |φS(t)| > 1
2 for all t sufficiently small. Fix one such positive t with

t < 3
4K . Then, for all n large enough,

1

4
< |φSn(t)| =

n∏
k=1

|φXk(t)| =
n∏
k=1

|φYk(t)| ≤ e− 1
4 t

2∑n
k=1 σ

2
k ,

which gives
∑∞
k=1 σ

2
n < ∞, as desired. Finally, by Lemma 15.1 applied to Yn, we get

that the series
∑
Yn =

∑
(Xn − EXn) converges a.s., which together with

∑
Xn being

convergent a.s., gives that
∑

EXn converges.
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We refer to the exercises for applications of the basic lemma 15.1 combined with

Kronecker’s Lemma 14.9 allowing to obtain strong laws of large numbers with rates of

convergence.

15.2 Kolmogorov’s 0− 1 law and strong law of large numbers

Here we present applications of Lévy’s convergence theorems.

Martingale proof of Theorem 3.17 (Kolmogorov’s 0− 1 law). Let Fn = σ(X1, . . . , Xn).

Let A ∈ T and X = 1A. Clearly X is independent of Fn for every n and X is

F∞ = σ(
⋃
n Fn)-measurable. Thus, E(X|Fn) = EX = P (A) and E(X|F∞) = X.

By Theorem 14.12,

E(X|Fn)
a.s.−−−−→
n→∞

E(X|F∞),

so P (A)→ X a.s. and because X ∈ {0, 1}, this gives P (A) ∈ {0, 1}.

Strong law of large numbers: martingale proof. Suppose X1, X2, . . . are i.i.d. random

variables with E|X1| <∞. Then

X1 + · · ·+Xn

n
−−−−→
n→∞

EX1 a.s. and in L1

(compare this to Etemadi’s strong law, Theorem 7.16, where we only assume pairwise

independence but only conclude a.s. convergence).

For the proof, let Sn = X1 + · · ·+Xn, G−n = σ(Sn, Sn+1, . . .), n ≥ 1 and as in Lévy’s

downward convergence theorem, G−∞ =
⋂
n G−n. By Example 12.5,

E(X1|G−n) =
Sn
n
.

Thus, by Lévy’s theorem (Theorem 14.13), there is an integrable random variable Y

such that
Sn
n
→ Y a.s. and in L1.

Observe that for every fixed m, Y = limn
Sn
n = limn

Xm+1+···+Xn
n . As a result, Y is

σ(Xm+1, Xm+2, . . .)-measurable, thus it is T -measurable, where T is the tail σ-algebra.

By Kolmogorov’s 0− 1 law, Y is therefore constant a.s., say Y = c a.s. for some c ∈ R.

By the L1 convergence, EX1 = limn ESn
n = EY = c.

15.3 Kakutani’s theorem

The next result is obtained as a basic application of Doob’s convergence theorem to

product martingales and Doob’s maximal inequality in L2.

15.6 Theorem (Kakutani’s theorem on product martingales). Let X1, X2, . . . be in-

dependent nonnegative random variables, each one with mean 1. Let M0 = 1 and
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Mn = X1·. . .·Xn. Then there is an integrable random variable M∞ such that Mn →M∞

a.s. and the following conditions are equivalent

(i) EM∞ = 1

(ii) Mn →M∞ in L1

(iii) M = (Mn)n≥0 is uniformly integrable

(iv)
∏∞
k=1 EX

1/2
k > 0

(v)
∑∞
k=1(1− EX1/2

k ) <∞.

If they fail to hold, then M∞ = 0 a.s.

Proof. Here is how we proceed: (ii) ⇔ (iii), (iv) ⇔ (v), (iv) ⇒ (i)-(iii), NOT(iv) ⇒
M∞ = 0 a.s. and as a result NOT(i),NOT(ii). These suffice.

Since M is a nonnegative martingale (see Example 13.3), the existence of M∞ ∈ L1

with Mn →M∞ a.s. immediately follows from Doob’s convergence theorem.

Note that (ii) and (iii) are equivalent because of the characterisation of Lp conver-

gence in terms of uniform integrability, Theorem I.6.

Let ak = EX1/2
k which is positive (because EXk = 1). By Jensen’s inequality,

EX1/2
k ≤ (EXk)1/2 = 1, so in fact ak ∈ (0, 1]. Then the equivalence of (iv) and (v),∏
ak > 0 ⇔ ∑

(1 − ak) < ∞, is a straightforward consequence of the inequalities

1− x ≤ e−x, x ∈ R and, say 1− x ≥ e−2x, x ∈ [0, 1
2 ].

Suppose (iv) holds. Consider

Y0 = 1,

Yn =
X

1/2
1

a1
· . . . · X

1/2
n

an
.

This is a nonnegative martingale, bounded in L2 because

EY 2
n =

1∏n
k=1 a

2
k

≤ 1∏∞
k=1 a

2
k

<∞.

Note that Mn = Y 2
n (a1 · . . . · an)2 ≤ Y 2

n . Therefore, by Doob’s maximal L2 inequality,

E sup
n≥1

Mn ≤ E sup
n≥1

Y 2
n ≤ 4 sup

n≥1
EY 2

n <∞.

Letting M∗ = supn≥1Mn, which is in L1 by the above, we have Mn ≤M∗ showing that

(Mn) is uniformly integrable (Lemma I.1). Thus (iii) holds, hence (ii), too. Of course,

(ii) and EMn = 1 implies (i).

Suppose (iv) does not hold, that is
∏n
k=1 ak → 0. Then, since Yn → Y∞ a.s. for

some integrable random variable Y∞ (Y is a nonnegative martingale!), we have

Mn = Y 2
n

(
n∏
k=1

ak

)2

a.s.−−−−→
n→∞

0

that is M∞ = 0 a.s. Consequently, neither (i) nor (ii) do hold.
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In particular, when the Xi are i.i.d., unless they are constant a.s., the product

X1 · . . . ·Xn converges a.s. but not in L1, to M∞ = 0 a.s. (see also Exercise 13.15).

15.4 The law of the iterated logarithm for Gaussians

15.7 Theorem. Let X1, X2, . . . be i.i.d. standard Gaussian random variables and set

Sn = X1 + · · ·+Xn, n ≥ 1. Then

lim sup
n→∞

Sn√
2n log log n

= 1 a.s.

and

lim inf
n→∞

Sn√
2n log log n

= −1 a.s.

Proof. Let

h(x) =
√

2x log log x, x > e.

The statement about lim inf follows from the one about lim sup by symmetry (−Sn has

the same distribution as Sn). To prove the latter, we split the argument into two parts.

Upper bound. First we exploit Doob’s maximal inequality, to get an exponential bound

on tail probabilities for the maximum. Fix λ > 0. We have,

EeλSn = e
1
2λ

2n

(because Sn ∼ N(0, n)). Moreover, (eλSn)n≥1 is a submartingale because x 7→ ex is

convex. By Doob’s maximal inequality 14.5, for every t, we have

P
(

max
k≤n

Sk ≥ t
)

= P
(

max
k≤n

eλSk ≥ eλt
)
≤ e−λtEeλSn = e−λt+

1
2λ

2n

and optimising over λ yields

P
(

max
k≤n

Sk ≥ t
)
≤ e− t2

2n .

Fix α > 1 and let an = αh(αn−1). Since

P
(

max
k≤αn

Sk ≥ an
)
≤ e−

a2n
2αn = exp

{
−α

2 · 2αn−1 log logαn−1

2αn

}
= exp

{
−α log logαn−1

}
= (n− 1)−αe−α log logα,

the series
∑

P (maxk≤αn Sk ≥ an) converges and by the first Borel-Cantelli lemma, a.s.,

maxk≤αn Sk ≥ an holds only for finitely many n’s. Consequently, the event

{max
k≤αn

Sk < an for all but finitely many n’s}
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has probability 1. This invent is contained in the event

Uα = {∃n0 ∀n ≥ n0 ∀αn−1 ≤ k ≤ αn Sk ≤ αh(k)}

because of the monotonicity of h(x), so Uα has probability 1. On the event Uα,

lim sup
n→∞

Sk
h(k)

≤ α,

thus on the event
⋂∞
l=2 U1+1/l, which also has probability 1,

lim sup
n→∞

Sk
h(k)

≤ 1,

hence

lim sup
n→∞

Sk
h(k)

≤ 1 a.s.

Lower bound. We shall need the following elementary estimate on Gaussian tails (cf.

Lemma 11.4).

Claim. If g is a standard Gaussian random variable, then for t > 0,

P (g > t) ≥ 1√
2π

t

1 + t2
e−t

2/2.

Indeed,

P (g > t) =

∫ ∞
t

e−x
2/2 dx√

2π
≥
∫ ∞
t

1 + x−2

1 + t−2
e−x

2/2 dx√
2π

=
1

1 + t−2

∫ ∞
t

(
− 1

x
e−x

2/2

)′
dx√
2π

=
1√
2π

t

1 + t2
e−t

2/2.

We fix ε ∈ (0, 1) and an integer N > 1. We consider the events

An = {SNn+1 − SNn > (1− ε)h(Nn+1 −Nn)}.

Since SNn+1 − SNn has the same distribution as
√
Nn+1 −Nng, where g is standard

Gaussian, by the claim, we get

P (An) = P
(
g > (1− ε)

√
2 log log(Nn+1 −Nn)

)
≥ 1√

2π

(1− ε)
√

2 log log(Nn+1 −Nn)

1 + 2(1− ε)2 log log(Nn+1 −Nn)
(logNn(N − 1))

−(1−ε)2

= Ω(n−1)

provided N is large enough. This gives
∑

P (An) = ∞ and of course, the events An

are independent, so by the second Borel-Cantelli lemma, infinitely many An occur with

probability 1. In other words,

P
(
SNn+1 > (1− ε)h(Nn+1 −Nn) + SNn , for infinitely many n’s

)
= 1.
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By the upper bound, a.s., SNn > −2h(Nn) eventually, so the events

VN,ε = {SNn+1 > (1− ε)h(Nn+1 −Nn)− 2h(Nn), for infinitely many n’s}

have probability 1. On VN,ε, we have

lim sup
Sn
h(n)

≥ lim sup
SNn+1

h(Nn+1)
≥ lim sup

(
(1− ε)h(Nn+1 −Nn)

h(Nn+1)
− 2

h(Nn)

h(Nn+1)

)

= lim sup

(
(1− ε)

√
2Nn(N − 1) log logNn(N − 1)

2Nn+1 log logNn+1

− 2

√
2Nn log logNn

2Nn+1 log logNn+1

)

= (1− ε)
√
N − 1

N
− 2√

N
.

Therefore, on
⋂∞
N=2

⋂∞
l=2 VN,1/l, we have

lim sup
Sn
h(n)

≥ 1.

15.8 Remark. We have,
Sn√

2n log log n

P−−−−→
n→∞

0.

This is very simple: since Sn has the same distribution as
√
ng, where g is standard

Gaussian, we have

P
(∣∣∣∣ Sn√

2n log log n

∣∣∣∣ > ε

)
= P

(
|g| > ε

√
log log n

)
→ 0.

15.9 Remark. Theorem 15.7 can be substantially generalised: it holds for an arbitrary

sequence of i.i.d. random variables with mean 0 and variance 1 (the Hartman-Wintner

law of the iterated logarithm). There are several proofs (see e.g. [1] for an elementary

proof, or [3] for a modern proof using Brownian motion and Donsker’s theorem).

15.5 The Radon-Nikodym theorem

Let µ and ν be finite measures on (Ω,F). We say that ν is absolutely continuous

with respect to µ if for every A ∈ F with µ(A) = 0, we also have ν(A) = 0. This is

sometimes denoted ν � µ. The Radon-Nikodym theorem implies that then ν has a

density with respect to µ, that is there is a measurable function g : Ω → [0,+∞) such

that for every measurable set A,

ν(A) =

∫
A

gdµ.

This function is sometimes called the Radon-Nikodym derivative, denoted dν
dµ . Clearly,

the converse holds as well. We shall present a martingale proof of the Radon-Nikodym

theorem.
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15.10 Theorem (Radon-Nikodym). Let µ and ν be finite measures on (Ω,F). There

is an F-measurable function g : Ω→ [0,+∞) and a set S ∈ F such that µ(S) = 0 and

ν(A) = ν(A ∩ S) +

∫
A

gdµ, A ∈ F .

Moreover, g is unique up to sets of µ-measure 0 and S is unique up to sets of (µ+ ν)-

measure 0.

15.11 Remark. In particular, if ν � µ, then ν(S) = 0, so

ν(A) = ν(A ∩ S) +

∫
A

gdµ, A ∈ F .

15.12 Remark. Considering µ and ν on pieces where they are finite, the theorem

extends to the case when µ and ν are σ-finite.

To “construct” g, we will work with sequences in L1(Ω,F , µ + ν) indexed by finite

sub-σ-algebras of F , so we need to extend a bit notions of convergence to such sequences.

The completeness of L1 will play a crucial role.

Let (E, d) be a metric space. Let T be a directed set, that is a partially ordered set

by a relation 4 (reflexive, antisymmetric and transitive) with the property that every

two elements of T have an upper bound, that is for every s, t ∈ T , there is u ∈ T with

s 4 u and t 4 u. We say that a sequence (at)t∈T in E indexed by T converges to a ∈ E
if

∀ε > 0 ∃t0 ∈ T ∀t ∈ T t < t0 ⇒ d(at, a) < ε. (15.1)

We say that the sequence (at)t∈T satisfies the Cauchy condition (or, simply, is Cauchy)

if

∀ε > 0 ∃t0 ∈ T ∀t ∈ T t < t0 ⇒ d(at, at0) < ε. (15.2)

15.13 Lemma. Let (E, d) be a complete metric space and let (T,4) be a directed set.

(i) If (at)t∈T is a sequence in E such that for every nondecreasing sequence of indices

t1 4 t2 4 . . ., the sequence (atn)n≥1 converges, then (at)t∈T is Cauchy.

(ii) If (at)t∈T is a Cauchy sequence in E, then it converges to some a ∈ E and there

exists a nondecreasing sequence of indices t1 4 t2 4 . . . such that atn → a in E.

Proof. (i): If (at) does not satisfy the Cauchy condition, then there is ε > 0 such that

for every t0 ∈ T , there is t ∈ T with t < t0 and d(at, at0) ≥ ε. Choose t1 ∈ T arbitrarily.

Given tn, define tn+1 as the index t given by the previous condition applied to t0 = tn.

We obtain the sequence t1 4 t2 4 . . . with d(atn , atn+1
) ≥ ε, so (atn)n does not converge

in E, a contradiction.

(ii): For n = 1, 2, . . ., we apply the Cauchy condition with ε = 1
n and set t′n to be the

index t0 provided in (15.2). Then we define the sequence tn recursively, t1 = t′1 and
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given tn, we choose tn+1 as any common upper bound of tn and t′n+1. This way we

obtain the sequence of indices t1 4 t2 4 . . . such that for every n ≥ and every t ∈ T
with t < tn, we have

d(atn , at) ≤ d(atn , at′n) + d(at′n , at) <
2

n
.

This shows that the sequence (atn)n is Cauchy. Since E is complete, it converges to, say

a ∈ E. It remains to show that the whole sequence (at)t∈T also converges to a in the

sense of (15.1). Fix ε > 0. Let n be such that ε > 1
n and d(atn , a) < ε. Choose t0 = tn.

Then for every t ∈ T with t < t0, we have

d(at, a) ≤ d(at, atn) + d(atn , a) <
2

n
+ ε < 3ε.

Thus (15.1) holds and the proof is finished.

Proof of Theorem 15.10. Let c = µ(Ω) + ν(Ω). If c = 0, there is nothing to prove, so

we assume c > 0. Let P = 1
c (µ + ν), so that (Ω,F ,P) is a probability space. We shall

denote the integral against P by E, that is

Ef =

∫
Ω

f
d(µ+ ν)

c
, f : Ω→ R, f is measurable.

Step I (martingale argument). We define

T = {G ⊂ F : G is a finite sub-σ-algebra, i.e.

G = σ(A1, . . . , An) for some A1, . . . , An ∈ F}

Equipped with the inclusion relation ⊂, this is a directed set (a common upper bound

for G1,G2 ∈ T is simply σ(G1,G2)). We set

E = L1(Ω,F ,P)

which is a complete metric space (see Theorem 6.10). For G ∈ T generated by atoms

A1, . . . , An (meaning that Ω = A1 ∪ · · · ∪An is a disjoint partition and every set in G is

of the form
⋃
i∈I Ai for a subset I of {1, . . . , n}), we define

XG(ω) =


ν(Aj)
P(Aj)

, for ω ∈ Aj , if P (Aj) > 0

0, for ω ∈ Aj , if P (Aj) = 0
.

Note that

(a) 0 ≤ XG ≤ c,

(b) XG is the density of ν with respect to P on G, that is

ν(A) = EXG 1A, for every A ∈ G,
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(c) For every sequence G1 ⊂ G2 ⊂ . . ., Gn ∈ T , n = 1, 2, . . ., letting Xn = XGn , we have

(Xn)n≥1 is a martingale on (Ω,F , {Gn}n≥1,P).

This is because for every n ≥ 1 and every A ∈ Gn, thanks to (a), we have

EXn+1 1A = ν(A) = EXn 1A,

or, equivalently, E(Xn+1|Gn) = Xn.

Moreover, since (Xn) is bounded (by virtue of (a)), (Xn) is a uniformly integrable

martingale (Lemma I.1), so it converges a.s. and in L1.

By (c) and Lemma 15.13, the sequence (XG)G∈T converges in L1 (in the sense of (15.1))

to a random variable X ∈ L1. Moreover, there is a sequence G1 ⊂ G2 ⊂ . . . in T such

that XGn → X in L1. As a uniformly integrable martingale, this sequence (XGn) also

converges a.s. and in L1 to some L1 random variable, say X∞. By the uniqueness of

limits in L1, X∞ = X and by the a.s. convergence, X ∈ [0, c] a.s.

Step II (limit argument). The idea is of course that because each XG is the density of ν

with respect to P on G, the random variable X constructed in the previous step as the

limit of XG , should be the density of ν with respect to P on the whole F .

Formally, fix ε > 0. Since XG → X (in the sense of (15.1)), there is K ∈ T such that

for every G ⊃ K, we have

E|XG −X| < ε.

Fix A ∈ F and let G = σ(K, A). Since G ⊃ K, we have

|EXG 1A−EX 1A | ≤ E|XG −X|1A < ε.

By (b), EXG 1A = ν(A), so we obtain

|ν(A)− EX 1A | < ε,

hence

ν(A) = EX 1A

(because ε is arbitrary). In view of EX 1A = 1
c

∫
A
Xdµ + 1

c

∫
A
Xdν, we equivalently

have ∫
A

(c−X)dν =

∫
A

Xdµ,

for every A ∈ F . By a standard argument of complicating measurable functions, we

also obtain from this that ∫
A

(c−X)fdν =

∫
A

Xfdµ, (15.3)

for every A ∈ F and every F-measurable function f : Ω→ R.
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Step III (derivation of density). It remains to define S and g. We set

S = {X = c}.

Choosing A = S, f = 1 in (15.3) yields

0 =

∫
S

(c−X)dν =

∫
S

Xdµ =

∫
S

cdµ = cµ(S),

hence µ(S) = 0. Recall that X ∈ [0, c] P-a.s., so in particular we have, µ({X > c}) =

ν({X > c}) = 0. Applying now (15.3) with

f(ω) =


1

c−X(ω) , ω ∈ Sc,

0, ω ∈ S,

we get

ν(A ∩ Sc) =

∫
A

(c−X)fdν =

∫
A

Xfdµ =

∫
A∩Sc

X

c−X dµ.

Therefore, we define

g =


X
c−X , on Sc,

0, on S,

and the previous identity becomes

ν(A ∩ Sc) =

∫
A

gdµ.

Finally,

ν(A) = ν(A ∩ S) + ν(A ∩ Sc) = ν(A ∩ S) +

∫
A

gdµ,

as desired.

Step IV (uniqueness). Suppose we have another set S̃ and function g̃ satisfying the

required properties. Then, for every A ∈ F ,

ν(A ∩ S) +

∫
A

gdµ = ν(A ∩ S̃) +

∫
A

g̃dµ.

Taking A = S gives ν(S) = ν(S ∩ S̃) (because
∫
S
gdµ = 0 =

∫
S
g̃dµ, as µ(S) = 0).

By symmetry, ν(S̃) = ν(S ∩ S̃), hence ν(S4S̃) = 0. Thus S is unique up to sets of

(µ+ ν)-measure 0. In particular, now we know that ν(A ∩ S) = ν(A ∩ S̃), so∫
A

gdµ =

∫
A

g̃dµ,

for every A ∈ F . As a result, g = g̃ µ-a.e.
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15.6 Exercises

1. Let ε1, ε2, . . . be i.i.d. symmetric random signs, that is P (εk = 1) = 1
2 = P (εk = −1)

for every k. Then
∑∞
n=1 anεn converges a.s. if and only if

∑∞
n=1 a

2
n <∞.

2. Let X1, X2, . . . be i.i.d. exponential random variables with parameter 1. Let (an)n≥1

be a sequence of nonnegative numbers. Show that
∑
anXn converges a.s. if and only

if
∑
an <∞.

3. If X1, X2, . . . are i.i.d. random variables with EX2
1 <∞ and EX1 = 0, then for every

ε > 0, we have
X1 + · · ·+Xn

n1/2 log1/2+ε n

a.s.−−−−→
n→∞

0.

In other words, X1+···+Xn
n = o( log1/2+ε n

n1/2 ) a.s., giving the rate of convergence in the

strong law large numbers under the assumption that EX2
1 <∞.

4. Prove Marcinkiewicz’s theorem: if p ∈ (0, 2) and X1, X2, . . . are i.i.d. with E|X1|p <
∞, then

X1 + · · ·+Xn − nµ
n1/p

a.s.−−−−→
n→∞

0,

where µ = 0 for p ∈ (0, 1) and µ = EX1 for p ∈ [1, 2).

In other words, for p ∈ (1, 2), X1+···+Xn
n − EX1 = o(n1/p−1) a.s. which is the strong

law of large numbers with the rate of convergence.

5. Let µ, ν be two finite measures on (Ω,F). Show that ν is absolutely continuous with

respect to µ if and only if for every ε > 0, there is δ > 0 such that for every A ∈ F
with µ(A) < δ, we have ν(A) < ε.
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16 Large deviations

The weak law of large numbers tells us that for every ε > 0,

P
(
Sn
n
− µ > ε

)
−−−−→
n→∞

0,

where Sn = X1+. . .+Xn, X1, X2, . . . are i.i.d. integrable random variables and µ = EX1.

How fast do these probabilities converge to 0?

Large deviations theory answers this question and establishes, under additional as-

sumptions, precise exponential rates of convergence. Cramér’s theorem provides a con-

vex function I : (µ,+∞)→ (0,+∞) (determined by the distribution of X1) such that

lim
n→∞

1

n
logP

(
Sn
n
> a

)
= −I(a), a > µ,

so that, roughly, P
(
Sn
n > a

)
≈ e−nI(a).

We stress out that as opposed to the c e n t r a l limit theorem, which identifies the

limiting behaviour of the probabilities for the bulk (centre), that is a narrow window of

width O( 1√
n

) around the mean,

lim
n→∞

P
(
Sn
n
− µ ∈

(
σa√
n
,
σb√
n

))
=

∫ b

a

e−x
2/2 dx√

2π
, a < b,

l a r g e deviations treat the limiting behaviour of the probabilities for the tail, a constant

away from the mean,

lim
n→∞

1

n
logP

(
Sn
n
− µ > ε

)
= −I(µ+ ε), ε > 0.

We end this introduction with a simple lemma showing that as a consequence of

independence, such limit always exists. The ultimate goal would be to determine its

value.

16.1 Lemma. Let X1, X2, . . . be i.i.d. integrable random variables. For every a ∈ R,

the limit

lim
n→∞

1

n
logP (Sn ≥ na) ∈ [−∞, 0]

exists. It equals −∞ if and only P (X1 ≥ a) = 0.

Proof. Fix a. Let bn = logP (Sn ≥ na) ∈ [−∞, 0], n ≥ 1. Note that for n ≥ m ≥ 1,

bn+m ≥ logP (Sn − Sm ≥ (n−m)a, Sm ≥ ma) ,

so, thanks to independence,

bn+m ≥ bn + bm,

that is the sequence (bn) is subadditive and hence limn→∞
bn
n exists and it is equal to

supm≥1
bm
m ∈ [−∞, 0], as explained in the next basic lemma. The last part is left as an

exercises.
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16.2 Lemma. Let (bn)n≥1 be a sequence of real numbers which is subadditive, that is

for every m,n ≥ 1,

bm+n ≥ bm + bn.

Then limn→∞
bn
n exits and equals supn≥1

bn
n ∈ (−∞,+∞].

Proof. Let a = supn≥1
bn
n . Plainly, lim sup bn

n ≤ a. To show that lim inf bnn ≥ a, it is

enough to prove that for every m, we have lim inf bnn ≥ bm
m . Fix m ≥ 1. For n, we

write n = km+ r with k ≥ 0 and r ∈ {0, 1, . . . ,m− 1}. Iterating the assumption yields

bn ≥ kbm + br (b0 = 0), thus, dividing by n = km+ r,

bn
n
≥ km

km+ r

bm
m

+
br

km+ r
.

As n → ∞, also k → ∞, so taking lim inf and using that |br| ≤ max1≤j<m |bj | is

bounded gives the desired claim.

16.1 Moment generating functions

For a random variable X, we define its moment generating function ψ : R→ (0,+∞)

as

ψ(λ) = EeλX .

Note that

ψ(0) = 1.

16.3 Lemma. Function logψ is convex (in other words, ψ is log-convex).

Proof. It is evident from the fact that sums of log-convex functions are log-convex (by

Hölder’s inequality) and λ 7→ eλX is log-affine. Alternatively, it can be seen by applying

Hölder’s inequality directly (with weights 1/p = t, 1/q = 1− t),

logψ(tλ1 + (1− t)λ2) = logEetλ1Xe(1−t)λ2X ≤ log(Eeλ1X)t(Eeλ2X)1−t

= t logψ(λ1) + (1− t) logψ(λ2),

for every λ1, λ2 ∈ R and t ∈ (0, 1).

16.4 Corollary. If for some λ1 < λ2, ψ(λ1), ψ(λ2) < ∞, then ψ(λ) < ∞ for all

λ ∈ [λ1, λ2].

In view of this corollary, it makes sense to define

λ− = inf{λ ∈ R : EeλX <∞}, λ+ = sup{λ ∈ R : EeλX <∞} (16.1)

and then (λ−, λ+) is the largest open interval where ψ <∞. Since ψ(0) = 1, of course

λ− ≤ 0 ≤ λ+.
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16.5 Lemma. Suppose ψ(λ) = EeλX is the moment generating function of a random

variable X.

(i) If ψ < ∞ on (−δ, δ) for some δ > 0, then E|X|k < ∞ and ψ(k)(0) = EXk, for

every integer k ≥ 0.

(ii) If ψ < ∞ on (λ0 − δ, λ0 + δ) for some λ0 ∈ R and δ > 0, then E|X|keλ0X < ∞
and ψ(k)(λ0) = EXkeλ0X , for every integer k ≥ 0.

Proof. (i): Note that e|x| ≤ ex + e−x, x ∈ R. In particular, for −δ < h < δ, k ≥ 0,

|h|k|X|k
k!

≤ e|hX| ≤ e−hX + ehX

and the right hand side is integrable because ψ(−h), ψ(h) < ∞. Thus E|X|k < ∞.

Moreover, ∣∣∣∣∣
∞∑
k=0

(hX)k

k!

∣∣∣∣∣ ≤
∞∑
k=0

|h|k|X|k
k!

= e|hX|,

so
∑∞
k=0

(hX)k

k! is integrable and by Fubini’s theorem,

ψ(h) = E
∞∑
k=0

(hX)k

k!
=

∞∑
k=0

hk
EXk

k!
.

Consequently, ψ is C∞ on (−δ, δ) (as a convergent power series) and ψ(k)(0) = EXk.

(ii): We shall deduce this part from (i) using the so-called “exponential tilting” of

measure, one of the key ideas of large deviations. Since ψ(λ0) <∞, we can define a new

random variable Y which is absolutely continuous with respect to X with density eλ0X

ψ(λ0)

on (Ω,F ,P), that is

P (Y ∈ A) = E
eλ0X

ψ(λ0)
1X∈A,

or, equivalently,

dµY (x) =
eλ0x

ψ(λ0)
dµX(x).

Then,

Ef(Y ) = Ef(X)
eλ0X

ψ(λ0)
,

for every Borel function f (for which the right hand side exists). In particular, for the

moment generating function ψY of Y , we get

ψY (λ) = EeλY = E
eλ0X

ψ(λ0)
eλX =

ψ(λ+ λ0)

ψ(λ0)

which is finite on (−δ, δ). Applying (i) to Y , we thus get

E|Y |k =
E|X|keλ0X

ψ(λ0)
<∞

and
ψ(k)(λ0)

ψ(λ0)
= ψ

(k)
Y (0) = EY k = EXk e

λ0X

ψ(λ0)
,

which gives ψ(k)(λ0) = EXkeλ0X , as desired.
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16.6 Corollary. Function ψ is C∞ on (λ−, λ+).

When λ− = λ+ = 0, we will not be able to establish exponential rates of convergence

to 0 for probabilities P
(
Sn
n > µ+ ε

)
(for a reason – the rates are slower – see exercises).

We shall thus make the minimal assumption that at least one of λ−, λ+ is nonzero.

Since we can always consider −X instead of X, we shall focus on the case when

λ+ = sup{λ ∈ R : EeλX <∞} > 0. (16.2)

As it will turn out, this assumption allows to control upper tails: P (Sn ≥ an) for a > µ.

In view of Corollary 16.6, the next two lemmas concerning continuity of ψ and its

derivatives at 0 are trivial when (λ−, λ+) contains 0, but since we want to work under

the minimal assumption (16.2), it requires some care and extra work when λ− = 0.

16.7 Remark. If (16.2) holds, then EXk
+ <∞, for every k ≥ 1. In particular,

EX ∈ [−∞,+∞).

Proof. Fix 0 < λ0 < λ+. Since (λ0X+)k

k! ≤ eλ0X+ , we have EXk
+ <∞.

16.8 Lemma. Suppose ψ is the moment generating function of a random variable X

and (16.2) holds. Then

(i) ψ is continuous at 0,

(ii) limλ→0+ ψ
(k)(λ) = EXk, for every k ≥ 1.

Proof. (i): We need to show that limλ→0+ ψ(λ) = ψ(0), that is limλ→0+ EeλX = 1,

which will of course follow if we can change the order of taking the limit and expectation.

Fix 0 < λ0 < λ+ and note that

eλX ≤ 1 + eλ0X , 0 < λ < λ0

(this holds because if X < 0, then eλX ≤ 1 and if X ≥ 0, then eλX ≤ eλ0X , by

monotonicity). Lebesgue’s dominated convergence theorem finishes the argument.

(ii): Following the same argument, we want to dominate XkeλX for all 0 < λ < λ0 by

an integrable random variable. We write Xk = Xk
+ −Xk

−. For small enough ε > 0,

εkXk
+

k!
≤ eεX+ ≤ 1 + eεX ,

so that Xk
+e

λX is dominated by (1 + eεX)(1 + eλ0X) which is integrable provided that

λ0 + ε < λ+. Hence,

lim
λ→0+

EXk
+e

λX = EXk
+.
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Now we analyse Xk
−e

λX . If EXk
− = +∞, Fatou’s lemma gives

lim inf
λ→0+

EXk
−e

λX ≥ E lim inf
λ→0+

Xk
−e

λX = EXk
− = +∞.

As a result, in this case,

lim
λ→0+

ψ(k)(λ) = lim
λ→0+

EXkeλX = −∞ = EXk.

If EXk
− <∞, then since

Xk
−e

λX ≤ Xk
−(1 + eλ0X) = Xk

− +Xk
−e

λ0X

as well as

Xk
−e

λ0X ≤ k!

εk
eεX−eλ0X =

k!

εk
eεX++(λ0−ε)X ≤ k!

εk
(1 + eεX)e(λ0−ε)X ,

we can conclude by Lebesgue’s dominated convergence theorem.

16.9 Remark. A similar argument shows that ψ(λ) → ψ(λ+) as λ → λ+−: we write

eλX = eλX 1{X≥0}+eλX 1{X<0} and use Lebesgue’s monotone convergence theorem for

the first term and Lebesgue’s dominated convergence theorem for the second one.

We close this section with a relationship between moment generating functions and

tilted measures.

16.10 Lemma. Let X be a random variable with moment generating function ψ and let

λ± be given by (16.1). For λ ∈ (λ−, λ+), let µλ be the probability measure on (R,B(R))

defined by

µλ(A) =

∫
A

eλx

ψ(λ)
dµX(x), A ∈ B(R),

where µX is the distribution of X. Let Yλ be a random variable with distribution µλ.

Then

(logψ)′(λ) = EYλ,

(logψ)′′(λ) = Var(Yλ).

Proof. By the definition of Yλ,

Ef(Yλ) = Ef(X)
eλX

ψ(λ)
,

for every measurable function f for which the right hand side exists. Thus, by Lemma

16.5,

(logψ)′(λ) =
ψ′(λ)

ψ(λ)
=

EXeλX

ψ(λ)
= EYλ

and

(logψ)′′(λ) =
ψ′′(λ)

ψ(λ)
−
(
ψ′(λ)

ψ(λ)

)2

=
EX2eλX

ψ(λ)
− (EYλ)2 = EY 2

λ − (EYλ)2 = Var(Yλ).
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16.2 Upper bounds: Chernoff’s inequality

16.11 Lemma (Chernoff’s bound). Let X be a random variable with moment generating

function ψ and let a ∈ R. Then

P (X ≥ a) ≤ e−(aλ−logψ(λ)), λ ≥ 0.

Proof. The assertion follows from exponential Chebyshev’s inequality, since for λ > 0,

P (X ≥ a) = P
(
eλX ≥ eλa

)
≤ e−λaEeλX = e−(λa−logψ(λ).

16.12 Corollary. Let X1, X2, . . . be i.i.d. random variables with moment generating

function ψ, Sn = X1 + . . .+Xn. For a ∈ R,

P (Sn ≥ an) ≤ exp

{
−n sup

λ>0
{λa− logψ(λ)}

}
.

If (16.2) holds, then for every a > µ = EX1 ∈ [−∞,+∞), we have

sup
λ>0
{λa− logψ(λ)} > 0,

that is the above upper bound is meaningful (and is exponentially small in n).

Proof. The upper bound on P (Sn ≥ an) follows from Chernoff’s bound applied to X =

Sn. Independence yields, ψSn(λ) = ψ(λ)n and the supremum appears because the bound

holds for all λ > 0.

If (16.2) holds, then by the intermediate value theorem applied to logψ on (0, λ), we

have

aλ− logψ(λ) = aλ− (logψ(λ)− logψ(0)) = λ · [a− (logψ)′(θ)],

for some θ ∈ (0, λ). Since (logψ)′(θ) = ψ′(θ)
ψ(θ) → EX = µ as λ → 0 (Lemma 16.8), for

small λ, the expression in the square bracket is close to a−µ > 0, which shows that the

supremum supλ>0{λa− logψ(λ)} is positive, as desired.

The above upper bound motivates the following definition: the rate function

I : R → [0,+∞] of a random variable X with moment generating function ψ is defined

as

I(a) = sup
λ∈R
{λa− logψ(λ)}, a ∈ R.

(It is the Legendre transform of the log-moment generating function logψ.) As a point-

wise supremum of linear functions, I is a convex function.

16.13 Example. For the common distributions, in some cases, the rate function can

be written down explicitly (see exercises).
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1) Standard Gaussian distribution, X ∼ N(0, 1). We have

ψ(λ) = EeλX = eλ
2/2

Then, given a ∈ R, λa− logψ(λ) is maximised over λ ∈ R when

a = (logψ)′(λ) = λ,

which gives

I(a) = a2 − logψ(a) =
a2

2
.

2) Standard exponential distribution, X ∼ Exp(1). We have

ψ(λ) =


1

1−λ , λ < 1,

+∞, λ ≥ 1

and

I(a) =

a− 1− log a, a > 0,

+∞, a ≤ 0.

3) Bernoulli distribution, X ∼ Ber(p). We have

ψ(λ) = 1− p+ peλ

and

I(a) =



a log a
p + (1− a) log 1−a

1−p , 0 < a < 1,

− log(1− p), a = 0,

− log p, a = 1,

+∞, a < 0 or a > 1.

4) Poisson distribution, X ∼ Poiss(µ). We have

ψ(λ) = exp{−µ+ µeλ}

and

I(a) =


+∞, a < 0,

µ, a = 0,

a log a
eµ + µ, a > 0.

16.14 Example. Let X be a random variable with density g(x) = Cx−3e−x 1[1,+∞)(x),

where C is a normalising constant. We have

ψ(λ) = C

∫ ∞
1

x−eλx−xdx <∞
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if and only if λ ≤ 1, so λ− = −∞, λ+ = 1. Note that as λ→ 1−,

ψ′(λ)

ψ(λ)
↗ ψ′(1)

ψ(1)
=

∫∞
1
x−2dx∫∞

1
x−3dx

= 2.

Thus, the supremum in the definition of I(a) is attained if and only if a ≤ 2, the case

when the equation a = ψ′(λ)
ψ(λ) has a solution.

16.3 Cramér’s theorem

16.15 Theorem. Let X1, X2, . . . be i.i.d. random variables with moment generating

function ψ satisfying (16.2) and rate function I. Let µ = EX1 and Sn = X1 + . . .+Xn,

n ≥ 1. For every a > µ, we have

lim
n→∞

1

n
logP (Sn ≥ na) = −I(a).

Proof. We begin with two remarks which will help us understand better the claimed

value of the limit −I(a). By its definition, the rate function I(a) is supλ∈R f(λ) with

f(λ) = λa− logψ(λ).

First, we remark that under our assumptions, in fact we have

I(a) = sup
0<λ<λ+

f(λ). (16.3)

Plainly λ > λ+ results in f(λ) = −∞, so those λ do not count in the supremum.

Moreover, note that by Jensen’s inequality,

f(λ) = λa− logEeλX1 ≤ λa− log eλEX1 = λ(a− µ).

For a > µ and λ ≤ 0, the above is thus nonpositive. If (16.2) holds, we know that the

supremum over λ > 0 is positive (Corollary 16.12). Thus λ ≤ 0 can also be neglected in

the supremum defining I(a).

Second, thanks to Lemma 16.10,

f ′′(λ) = −(logψ)′′(λ) = −Var(Yλ)

which is strictly negative (unless Yλ, equivalently X is a point mass, in which case there

is nothing to do). Thus, f ′ is strictly increasing and f is strictly concave on (0, λ+). In

particular, if f attains its supremum, it is unique, attained at λ = λa ∈ (0, λ+) which is

a unique solution of the equation

f ′(λ) = 0, that is a = (logψ)′(λ) =
ψ′(λ)

ψ(λ)
.

We now break the proof into two parts.
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Upper bound. By Chernoff’s bound,

lim sup
1

n
logP (Sn ≥ na) ≤ − sup

λ>0
{λa− logψ(λ)} = −I(a),

where the last equality is justified by (16.3).

Lower bound. Fix a > µ. It remains to show that

lim inf
n→∞

1

n
logP (Sn ≥ na) ≥ −I(a) (16.4)

with the right hand side given by (16.3).

Claim. If there is λa ∈ (0, λ+) such that a = ψ′(λa)
ψ(λa) , then lower bound (16.4) holds.

To prove the claim, fix λa < λ < λ+. Let Y1, . . . , Yn be i.i.d. copies of the tilted random

variable Yλ from Lemma 16.10. Note that then, thanks to independence, the vector

(Y1, . . . , Yn) has density eλ(X1+...+Xn)

ψ(λ)n with respect to (X1, . . . , Xn) and we have

Ef(Y1, . . . , Yn) = Ef(X1, . . . , Xn)
eλSn

ψ(λ)n
.

for every measurable function f : Rn → R for which the right hand side exists. For

a′ > a, we thus have

P (Sn ≥ na) ≥ P (Sn ∈ (na, na′)) ≥ EeλSne−λna
′
1{Sn∈(na,na′)}

= ψ(λ)ne−λna
′
E1{Y1+···+Yn∈(na,na′)}

= ψ(λ)ne−λna
′
P (Y1 + · · ·+ Yn ∈ (na, na′)) .

By the weak law of large numbers,

Y1 + · · ·+ Yn − nEY1

n

P−−−−→
n→∞

0,

so as long as a′ > EY1 > a, we get

P (Y1 + · · ·+ Yn ∈ (na, na′))

= P
(
Y1 + · · ·+ Yn − nEY1

n
∈ (a− EY1, a

′ − EY1)

)
−−−−→
n→∞

1

Since EY1 = ψ′(λ)
ψ(λ) > ψ′(λa)

ψ(λa) = a, given λ > λa, we thus fix a′ such that a′ > ψ′(λ)
ψ(λ) and

get

lim inf
n→∞

1

n
logP (Sn ≥ na) ≥ −(λa′ − logψ(λ)).

Letting λ↘ λa and then a′ ↘ a, we get

lim inf
n→∞

1

n
logP (Sn ≥ na) ≥ −(λaa− logψ(λa)) = −I(a),

as desired. This finishes the proof of the claim.
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Depending on the behaviour of ψ, the claim may or may not be applicable. To decide

when it is, we consider

A = esssup X ∈ (−∞,+∞].

Case 1: A < +∞. Then λ+ = +∞. First we claim that

ψ′(λ)

ψ(λ)
=

EXeλX

EeλX
−−−−→
λ→∞

A. (16.5)

Indeed, since X ≤ A, clearly EXeλX
EeλX ≤ A. On the other hand, for ε > 0, we have

EXeλX ≥ (A− ε)EeλX 1{X>A−ε}+EXeλX 1{X≤A−ε}

= (A− ε)EeλX + E(X − (A− ε))eλX 1{X≤A−ε}

= (A− ε)EeλX +
1

λ
eλ(A−ε)Eλ(X − (A− ε))eλ(X−(A−ε)) 1{X≤A−ε} .

Since |yey 1y≤0 | ≤ e−1 and

eλ(A−ε)

EeλX
≤ eλ(A−ε)

EeλX 1{X>A−ε/2}
≤ e−λε/2

P (X > A− ε/2)
,

we obtain
EXeλX

EeλX
≥ A− ε− 1

λ
e−λε/2

1

eP (X > A− ε/2)
,

thus

lim inf
λ→∞

EXeλX

EeλX
≥ A− ε.

Consequently, (16.5) holds.

In view of (16.5), if a < A, then there is λa with ψ′(λa)
ψ(λa) = a and the claim finishes

the proof in this case. If a > A, then trivially P (Sn ≥ an) = 0 for every n, so it

remains to argue that I(a) = +∞. This holds because f ′(λ) > a − A > 0 for every

λ > 0 (as f ′ is strictly decreasing), so f(λ) → ∞ as λ → ∞. Finally, if a = A, then

P (Sn ≥ an) = P (X1 = A)
n
, so it remains to argue that I(A) = − logP (X1 = A). On

one hand, for every λ > 0, ψ(λ) = EeλX1 ≥ eλAP (X1 = A), so

I(A) = sup
λ>0
{λA− logψ(λ)} ≤ − logP (X1 = A) .

On the other hand, this upper bound is attained in the limit as λ → ∞ because by

Lebesgue’s dominated convergence theorem,

λA− ψ(λ) = − logEeλ(X−A) −−−−→
λ→∞

− logP (X1 = A) ,

which finishes the whole argument in this case.

Case 2: A = +∞. If λ+ =∞, then the proof of the lower bound in (16.5) shows that

ψ′(λ)

ψ(λ)
→∞ as λ→∞,
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so regardless of the value of a, the claim is applicable. Suppose now that λ+ <∞. Let

α = lim
λ→λ+

ψ′(λ)

ψ(λ)
.

Note that then, thanks to the monotonicity of (logψ)′ = ψ′

ψ ,

logψ(λ+) =

∫ λ+

0

(logψ)′ ≤ λ+α <∞

Writing eλX = ελX 1{X>0}+eλX 1{X≤0}, by Lebesgue’s monotone and dominated con-

vergence theorems we see that in fact

ψ(λ) = EeλX1 → Eeλ+X1 = ψ(λ+)

and

ψ′(λ) = EXeλX1 → EXeλ+X1 = ψ′(λ+)

as λ → λ+. It remains to consider the case when α < ∞ and a ≥ α (otherwise, again,

the claim is applicable). We have,

I(a) = aλ+ − logψ(λ+), a ≥ α,

(I(a) is linear). Indeed, f ′(λ) = a − (logψ)′(λ) > a − α ≥ 0, for every λ < λ+, so f is

strictly increasing, hence I(a) = sup0<λ<λ+
f(λ) = f(λ+) = aλ+ − logψ(λ+). We fix

a ≥ α and our goal is to show that

lim inf
n→∞

1

n
logP (Sn ≥ an) ≥ −(aλ+ − logψ(λ+)).

Let Y1, . . . , Yn be i.i.d. random variables with the law given by the tilted measure µλ

from Corollary 16.6 with λ = λ+, so that EY1 = α. We proceed as in the proof of the

claim: for a′ > a, we have

P (Sn ≥ an) ≥ ψ(λ+)ne−nλ+a
′
P

(
n∑
k=1

Yk ∈ (an, a′n)

)
.

Using independence, for ε > 0,

P

(
n∑
k=1

Yk ∈ (an, a′n)

)

≥ P

(
n−1∑
k=1

Yk ∈ ((α− ε)n, (α+ ε)n)

)
P (Yn ∈ ((a− α+ ε)n, (a′ − α− ε)n)) .

By the weak law of large numbers, the first term is at least, say 1
2 for large n. Choosing

a′ = a+ 3ε and using that (a′ − α− ε)n = (a− α+ 2ε)n > (a− α+ ε)(n+ 1) for large

n, we thus get

1

n
logP (Sn ≥ an) ≥− ((a+ 3ε)λ+ − logψ(λ+))

+
1

n
log

1

2
+

1

n
logP (Y1 ∈ (a− α+ ε)n, (a− α+ ε)(n+ 1)) ,
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for large n. Finally, if we had

lim sup
1

n
logP (Y1 ∈ (a− α+ ε)n, (a− α+ ε)(n+ 1)) < 0,

then for some small enough δ > 0, the series

∞∑
n=1

eδ(a−α+ε)(n+1)P (Y1 ∈ (a− α+ ε)n, (a− α+ ε)(n+ 1))

would converge, so

EeδY1 <∞

and, equivalently, Ee(δ+λ+)X < ∞ contradicting the definition of λ+. Therefore the

lim sup above is zero and thus

lim sup
n→∞

1

n
logP (Sn ≥ an) ≥ −((a+ 3ε)λ+ − logψ(λ+))

for every ε > 0. By virtue of Lemma 16.1, this lim sup is the same as lim inf because

the limit in fact exists, so we get the desired lower bound after letting ε→ 0.

16.4 Quantitative bounds

We present a result asserting that for sums of i.i.d. random variables, with probabilities

exponentially close to 1 (in n), Sk
k is ε-close to its mean for all k ≥ n. It relies on

maximal inequalities combined with the basic idea used in Chernoff’s bounds. It can be

thought of as a quantitative version of the strong law of large numbers (cf. Exercises

15.3 and 15.4).

16.16 Theorem. Let X1, X2, . . . be i.i.d. random variables with moment generating

function ψ such that ψ < ∞ on (−δ, δ) for some δ > 0. Let I be the rate function of

X1. Let µ = EX1. Then for every ε > 0, we have

P
(

sup
k≥n

∣∣∣∣Skk − µ
∣∣∣∣ > ε

)
≤ 2e−nmin{I(µ−ε),I(µ+ε)}.

Proof. Fix λ > 0 and a such that λa− logψ(λ) ≥ 0. Observe that

P
(

sup
k≥n

Sk
k
> a

)
= P (∃k ≥ n : Sk > ak)

= P
(
∃k ≥ n : eλSk−k logψ(λ) > ek(λa−logψ(λ))

)
≤ P

(
∃k ≥ n : eλSk−k logψ(λ) > en(λa−logψ(λ))

)
= P

(
sup
k≥n

eλSk−k logψ(λ) > en(λa−logψ(λ))

)
.

Since (eλSk−k logψ(λ))k≥n is a martingale (as the product of independent random vari-

ables with mean 1), by Doob’s maximal inequality (14.5),

P
(

sup
k≥n

Sk
k
> a

)
≤ e−n(λa−logψ(λ)).
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Using this with a = µ + ε and optimising over λ > 0 with aλ − logψ(λ) > 0 (recall

(16.3)) gives

P
(

sup
k≥n

Sk
k
> µ+ ε

)
≤ e−nI(µ+ε).

To finish the proof, note that{
sup
k≥n

∣∣∣∣Skk − µ
∣∣∣∣ > ε

}
=

{
sup
k≥n

(
Sk
k
− µ

)
> ε

}
∪
{

sup
k≥n

(
µ− Sk

k

)
> ε

}
so it remains to apply the above inequality to −X1,−X2, . . ., to get

P
(

sup
k≥n

∣∣∣∣Skk − µ
∣∣∣∣ > ε

)
≤ e−nI(µ+ε) + e−nI(µ−ε) ≤ 2e−nmin{I(µ−ε),I(µ+ε)}.

The last two subsections are related to large deviations by methods, rather than

by the topic itself. We shall see how moment generating functions also play a key

role in establishing nonasymptotic bounds in estimating the expected value of maxima

of random variables as well as (large) deviation inequalities for sums of independent

random variables.

16.5 Bounds on the expected maximum of random variables

We begin with a technical lemma which summarises the properties of the Legendre

transform and discusses the inverse function.

16.17 Lemma. Let δ > 0 and let h : [0, δ)→ R be a C1 convex, nondecreasing function

with h(0) = h′(0) = 0. We define its Legendre transform,

h∗(a) = sup
λ∈(0,δ)

{λa− h(λ)}, a ≥ 0.

Then h∗ is a nonnegative convex nondecreasing function. Moreover, for every b ≥ 0, the

set {a ≥ 0 : h∗(a) > b} is nonempty and for the “generalised inverse” function of h∗,

(h∗)−1(b) = inf{a ≥ 0 : h∗(a) > b},

we have

(h∗)−1(b) = inf
λ∈(0,δ)

b+ h(λ)

λ
.

Proof. Note that h∗ is defined as a pointwise supremum of nondecreasing linear func-

tions, hence it is nondecreasing and convex. By the assumptions h(x) ≥ 0, x ∈ [0, δ), so

h∗(0) = supλ∈(0,δ)−h(λ) = 0. By monotonicity, h∗(a) ≥ h∗(0) = 0, for every a ≥ 0. If

we fix λ0 ∈ (0, δ), then h∗(a) ≥ λ0a − h(λ0) and the right hand side as a function of a
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is unbounded. This explains why the sets {a ≥ 0 : h∗(a) > b} are nonempty. Finally,

h∗(a) > b ⇔ ∃λ ∈ (0, δ) λa− h(λ) > b

⇔ ∃λ ∈ (0, δ) a >
b+ h(λ)

λ

⇔ a > inf
λ∈(0,δ)

b+ h(λ)

λ
.

This shows that the set {a ≥ 0 : h∗(a) > b} is the half-line (infλ∈(0,δ)
b+h(λ)
λ ,+∞) and

the claimed formula for (h∗)−1 follows.

16.18 Theorem. Let X1, . . . , Xn be random variables such that for some δ > 0 and a

C1 convex nondecreasing function h : [0, δ)→ R, we have

logEeλXi ≤ h(λ), λ ∈ [0, δ),

for every i ≤ n. Then

E
(

max
i≤n

Xi

)
≤ (h∗)−1(log n),

where (h∗)−1 is defined in Lemma 16.17.

Proof. Using a simple inequality max ai ≤
∑
ai valid for nonnegative numbers ai and

Jensen’s inequality, for every λ ∈ (0, δ), we have

E
(

max
i≤n

Xi

)
=

1

λ
E log max

i≤n
eλXi ≤ 1

λ
E log

(
n∑
i=1

eλXi

)
≤ 1

λ
log

(
E

n∑
i=1

eλXi

)
.

By the assumption,

E
n∑
i=1

eλXi ≤ neh(λ),

so

E
(

max
i≤n

Xi

)
≤ log n+ h(λ)

λ
.

Taking the infimum over λ ∈ (0, δ), in view of the formula for (h∗)−1 from Lemma 16.17,

we get

E
(

max
i≤n

Xi

)
≤ (h∗)−1(log n).

As an example, we apply this to Gaussian random variables. The above upper bound,

as crude as it seems, can be matched from below giving the correct behaviour for large

n in the independent case.

16.19 Theorem. There are positive universal constants c, C such that if X1, X2, . . . are

Gaussian random variables, each one with mean 0, we have

E
(

max
i≤n

Xi

)
≤ C ·

√
max
i≤n

Var(Xi) ·
√

log n (16.6)
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and if additionally the Xi are independent identically distributed,

E
(

max
i≤n

Xi

)
≥ c ·

√
Var(X1) ·

√
log n. (16.7)

Proof. For the upper bound, we let σ =
√

maxi≤n Var(Xi) and since

EeλXi = eVar(Xi)λ
2/2 ≤ eσ2λ2/2, λ ∈ R,

we simply use Theorem 16.18 with δ =∞ and h(λ) = σ2λ2

2 . We have

inf
λ>0

log n+ h(λ)

λ
= inf
λ>0

(
log n

λ
+
σ2

2
λ

)
= σ

√
2 log n,

which proves (16.6) with C =
√

2.

For the lower bound, first of all, by homogeneity, we can assume that the Xi are

standard Gaussian, that is with mean 0 and variance 1. When n = 1, the assertion is

trivial. When n = 2, we have

Emax{X1, X2} ≥ E1{X1,X2>1} = P (X1 > 1)
2
.

When dealing with n ≥ 2, because of this and Emaxi≤nXi ≥ Emaxi≤2Xi, in what

follows we can assume that n is large enough. Exploiting symmetry reduces our task to

estimating the maximum of absolute values. Indeed,

Emax
i≤n
|Xi| ≤ E|X1|+ Emax

i≤n
|Xi −X1| ≤ E|X1|+ E max

i,j≤n
|Xi −Xj |,

but maxi,j≤n |Xi −Xj | = maxi,j≤n(Xi −Xj) (pointwise), so

E max
i,j≤n

|Xi −Xj | = E max
i,j≤n

(Xi −Xj) ≤ Emax
i≤n

Xi + Emax
j≤n

(−Xj) = 2Emax
i≤n

Xi,

where the last equality holds because of the symmetry of the Xi. Altogether,

Emax
i≤n

Xi ≥
1

2

(√
2

π
+ Emax

i≤n
|Xi|

)
.

It suffices to show that

Emax
i≤n
|Xi| ≥ c

√
log n.

Using independence and monotonicity, we obtain for any a > 0,

Emax
i≤n
|Xi| =

∫ ∞
0

P
(

max
i≤n
|Xi| > t

)
dt =

∫ ∞
0

[
1− P (|X1| ≤ t)n

]
dt

≥
∫ a

0

[
1− P (|X1| ≤ t)n

]
dt

≥ a
[
1− P (|X1| ≤ a)

n ]
.

We choose a =
√

log n. To estimate the probability P (|X1| ≤ a), we can use the precise

Gaussian tail bound (the claim from the proof of Theorem 15.7), or just for simplicity,

crudely,

P (|X1| > a) =
1√
2π

∫ ∞
a

e−t
2/2dt >

1√
2π

∫ a
√

2

a

e−t
2/2dt >

√
2− 1√

2π
ae−a

2

> e−a
2

,
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for a, equivalently, n large enough, which gives

P (|X1| ≤ a)
n ≤

(
1− e−a2

)n
=

(
1− 1

n

)n
≤ e−1

and

Emax
i≤n
|Xi| ≥ (1− e−1)

√
log n,

for n large enough.

We finish with two remarks left as exercises.

16.20 Remark. The lower bound can be substantially improved to produce an asymp-

totically exact result

Emax
i≤n

Xi = (1 + o(1))
√

2 log n,

for i.i.d. standard Gaussians Xi.

16.21 Remark. If X1, . . . , Xn are independent Gaussians with mean 0 and variances

σ2
1 ≥ . . . σ2

n, then

c ·max
k≤n

σk
√

log(1 + k) ≤ Emax
i≤n

Xi ≤ C ·max
k≤n

σk
√

log(1 + k)

with some positive universal constants c and C.

16.6 A flavour of concentration inequalities

Concentration inequalities concern upper bounds on probabilities P (|X − a| > ε), where

a is usually the mean or a median of X (anti-concentration inequalities seek upper

bounds on supa P (|X − a| < ε)). We have seen a very simple example of a concentra-

tion inequality, namely Chebyshev’s inequality P (|X − EX| > ε) ≤ Var(X)
ε2 . Another

examples are in Exercises 6.19, 6.21, 14.7. To merely give a flavour of concentration

inequalities for sums of independent random variables, we shall discuss a basic result for

the so-called sub-exponential random variables. We begin with a motivating example.

16.22 Example. Let X1, . . . , Xn be i.i.d. exponential random variables with parameter

1. Let X = 1
n

∑n
i=1Xi which has mean 1. We would like to upper bound P (X − 1 > ε)

for ε > 0. Since
∑n
i=1Xi has the distribution Gamma with parameter n, we have an

exact expression

P (X − 1 > ε) = P

(
n∑
i=1

Xi > (1 + ε)n

)
=

∫ ∞
(1+ε)n

xn−1

n!
e−xdx.

However, there is no closed expression for this integral. Chernoff’s bound from Lemma

16.11 yields

P (X − 1 > ε) ≤ exp

{
−n sup

λ>0
(1 + ε)λ− logEeλX1

}
= exp {−n(ε− log(1 + ε)} .
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From large deviations theory (Cramér’s theorem), we know this bound is asymptotically

tight because 1
n logP (X − 1 > ε) → −I(1 + ε) with the rate function I(a) = a − 1 −

log(1 + a). We point out two features of this bound.

1) As ε → 0, ε − log(1 + ε) ≈ ε2

2 which means, roughly, that X has a Gaussian tail in

this regime (which is not surprising because of the central limit theorem).

2) As ε→∞, ε− log(1 + ε) ≈ ε which means, roughly, that X has an exponential tail

in this regime.

We shall present a result which will capture such behaviours in a much greater generality

than just for sums of i.i.d. exponentials.

For a random variable X, we define its ψ1-norm as

‖X‖ψ1
= inf

{
t > 0, Ee|X/t| ≤ 2

}
.

We say that X is sub-exponential if ‖X‖ψ1
< ∞. The following lemma helps decide

whether a particular distribution is sub-exponential (we defer its proof to exercises).

16.23 Lemma. For a random variable X, the following conditions are equivalent.

(i) X is sub-exponential.

(ii) There are constants c1, c2 > 0 such that P (|X| > t) ≤ c1e−c2t, for every t > 0.

(iii) There is a constant C > 0 such that ‖X‖p ≤ Cp, for every p ≥ 1.

(iv) There are constants δ, C > 0 such that Eeλ|X| ≤ ecλ, for every λ ∈ (0, δ).

We shall need yet another characterisation of sub-exponentiality saying that for

centred random variables, the moment generating function near the origin is bounded

by the Gaussian one.

16.24 Lemma. If X is a random variable with mean 0, then

EeλX ≤ eλ2‖X‖2ψ1 , |λ| < 1

‖X‖ψ1

.

Proof. If ‖X‖ψ1
= ∞, there is nothing to do. If ‖X‖ψ1

< ∞, by homogeneity, we can

assume that ‖X‖ψ1
= 1, say for simplicity Ee|X| = 2 (otherwise, by the definition of

infimum, for every ε > 0, we find t0 > 1 with Ee|X/t0| < 1 + ε). For |λ| ≤ 1, we have

EeλX = E
∞∑
k=0

λkXk

k!
= 1 + λEX + λ2

∞∑
k=2

λk−2EXk

k!

(the usage of Fubini’s theorem is justified because the integrand is majorised by e|X|).

Since EX = 0 and∣∣∣∣∣
∞∑
k=2

λk−2EXk

k!

∣∣∣∣∣ ≤
∞∑
k=2

E|X|k
k!

= e|X| − 1− E|X| = 1− E|X| ≤ 1,
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for |λ| ≤ 1, we get

EeλX ≤ 1 + λ2 ≤ eλ2

.

16.25 Theorem (Bernstein’s inequality). Let X1, . . . , Xn be independent random vari-

ables, each one with mean 0. Then for every t > 0, we have

P

(
n∑
i=1

Xi > t

)
≤ exp

(
−1

2
min

{
t2

2
∑n
i=1 ‖Xi‖2ψ1

,
t

maxi≤n ‖Xi‖ψ1

})
.

Proof. For λ > 0, by exponential Markov’s inequality, independence and Lemma 16.24,

we get

P

(
n∑
i=1

Xi > t

)
≤ e−λtEeλ

∑n
i=1Xi = e−λt

n∏
i=1

EeλXi ≤ e−λteλ2∑n
i=1 ‖Xi‖2ψ1 ,

provided that λ < 1
‖Xi‖ψ1

for every i ≤ n, that is λ < 1
m with m = maxi≤n ‖Xi‖ψ1 . It

remains to optimise over λ. We let S =
∑n
i=1 ‖Xi‖2ψ1

. The minimum of the function

−λt+ λ2S is attained at λ0 = t
2S .

Case 1. λ0 <
1
m , that is t < 2S

m . Then we set λ = λ0 and obtain

P

(
n∑
i=1

Xi > t

)
≤ e−t2/(4S).

Case 2. λ0 ≥ 1
m , that is t ≥ 2S

m . Then we let λ→ 1
m and obtain

P

(
n∑
i=1

Xi > t

)
≤ e−t/m+S/m2 ≤ e−t/(2m),

where we use that in this case S
m2 ≤ t

2m .

It remains to observe that these two bounds can be concisely written together as

P

(
n∑
i=1

Xi > t

)
≤ exp

(
−1

2
min

{
t2

2S
,
t

m

})
,

which is the assertion.

It is instructive to see what this gives us in the special case of weighted sums of i.i.d.

sub-exponential random variables.

16.26 Corollary. Let Y1, . . . , Yn be independent random variables, each with mean 0,

sub-exponential with ‖Yi‖ψ1 ≤ K for all i for some constant K > 0. Then for every

a1, . . . , an ∈ R and t > 0, we have

P

(
n∑
i=1

aiYi > t

)
≤ exp

(
−1

2
min

{
t2

2K2
∑n
i=1 a

2
i

,
t

K maxi≤n |ai|

})
.
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In particular,

P

(
1

n

n∑
i=1

Yi > t

)
≤ exp

(
−n

2
min

{
t2

2K2
,
t

K

})
.

The latter can be viewed as a quantitative version of the law of large numbers for

sub-exponential random variables. These bounds exhibit the mixture of two behaviours

of the Gaussian tail (for small t) and the exponential tail (for large t), as anticipated.
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16.7 Exercises

1. Under the hypothesis of Lemma 16.1, we have that lim 1
n logP (Sn ≥ an) = 0 if and

only if P (Sn ≥ an) = 0 for all n, if and only if P (X1 ≥ a) = 0.

2. Find the rate functions claimed in Example 16.13.

3. Let X1, X2, . . . be i.i.d. integrable random variables with EX1 = 0. Suppose that

EeλX1 = +∞ for all λ > 0. Then for every a > 0, we have

1

n
logP (X1 + . . .+Xn ≥ an) −−−−→

n→∞
0.

This shows that assumption (16.2) is necessary for the exponential convergence in

Cramér’s theorem.

4. Prove Remark 16.20.

5. Prove Remark 16.21.

6. Let ψ : [0,+∞) → [0,+∞) be a convex strictly increasing function with ψ(0) = 0.

For a random variable X, define

‖X‖ψ = inf{t > 0, Eψ(|X|) ≤ 1}.

Show that ‖λX‖ψ = |λ|‖X‖ψ, λ ∈ R and for every two random variables X,Y ,

‖X + Y ‖ψ ≤ ‖X‖ψ + ‖Y ‖ψ.

(This explains the name “ψ1-norm”, where ψ(x) = ψ1(x) = e|x| − 1. Note that the

choice ψ(x) = |x|p gives the familiar Lp norms.)
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A Appendix: Carathéodory’s theorem

Our goal here is to give a proof of Carathéodory’s theorem about extensions of measures.

A.1 Theorem (Carathéodory). Let Ω be a set and let A be an algebra on Ω. Suppose

a function P : A → [0,+∞) satisfies

(i) P (Ω) = 1,

(ii) P is finitely additive, that is for every A1, . . . , An ∈ A which are pairwise disjoint,

we have

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai) ,

(iii) for every A1, A2, . . . ∈ A with A1 ⊂ A2 ⊂ . . . such that A =
⋃∞
n=1An is in A, we

have

lim
n→∞

P (An) = P (A) .

Then P can be uniquely extended to a probability measure on the σ-algebra F = σ(A)

generated by A.

Proof. We break the proof into 3 steps.

I. We define a nonnegative function P∗ on all subsets of Ω satisfying: P∗(Ω) = 1, P∗ is

monotone and subadditive (the so-called exterior or outer measure).

II. We define a family of subsets M of Ω which is a σ-algebra and P∗ is countably-

additive on M.

III. We show that P∗ agrees with P on M and that M contains A.

We proceed with proving the steps I, II, III. Then we argue about the uniqueness.

I. For a subset A of Ω, we define

P∗(A) = inf
∑
n

P (An) ,

where the infimum is taken over all sets A1, A2, . . . ∈ A such that
⋃
nAn ⊃ A.

Clearly, P∗ is nonnegative. Since ∅ ∈ A, we have P∗(∅) = 0. It is also clear that

P∗ is monotone, that is if A ⊂ B, then P∗(A) ≤ P∗(B). Finally, we show that P∗ is

subadditive, that is for every sets A1, A2, . . ., we have

P∗
(⋃

n

An

)
≤
∑
n

P∗(An).

Indeed, by the definition of P∗, for ε > 0, there are sets Bn,k ∈ A such that An ⊂
⋃
k Bn,k

and
∑
k P (Bn,k) < P∗(An) + ε2−n. Then

⋃
nAn ⊂

⋃
n,k Bn,k and consequently,

P∗
(⋃

n

An

)
≤
∑
n,k

P (Bn,k) <
∑
n

P∗(An) + ε.
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Since ε > 0 is arbitrary, we get the desired inequality.

II. We define the following class of subsets of Ω,

M = {A ⊂ Ω, ∀E ⊂ Ω P∗(A ∩ E) + P∗(Ac ∩ E) = P∗(E)}.

Since P∗ is subadditive, A ∈M is equivalent to the so-called Carathéodory’s condition:

for all E ⊂ Ω,

P∗(A ∩ E) + P∗(Ac ∩ E) ≤ P∗(E). (A.1)

First we show thatM is an algebra and P∗ is finitely additive onM. Clearly, Ω ∈M
and if A ∈ M, then Ac ∈ M. Let A,B ∈ M. Then for an arbitrary subset E of Ω, we

have

P∗(E) = P∗(B ∩ E) + P∗(Bc ∩ E)

= P∗(A ∩B ∩ E) + P∗(Ac ∩B ∩ E) + P∗(A ∩Bc ∩ E) + P∗(Ac ∩Bc ∩ E)

≥ P∗(A ∩B ∩ E) + P∗
(

(Ac ∩B ∩ E) ∪ (A ∩Bc ∩ E) ∪ (Ac ∩Bc ∩ E)
)

= P∗
(

(A ∩B) ∩ E
)

+ P∗
(

(A ∩B)c ∩ E
)
.

Thus A ∩B ∈M and consequently, M is an algebra.

To prove the finite additivity of P∗ onM, take A,B ∈M with A∩B = ∅ and note

that since A ∈M, we have

P∗(A ∪B) = P∗
(
A ∩ (A ∪B)

)
+ P∗

(
Ac ∩ (A ∪B)

)
= P∗(A) + P∗(B).

By induction, we easily get the desired finite additivity.

Now we argue that P∗ is in fact countably additive on M. If A1, A2, . . . ∈ M are

pairwise disjoint and we let A =
⋃∞
k=1Ak, then

n∑
k=1

P∗(Ak) = P∗
(

n⋃
k=1

Ak

)

= P∗
(
A ∩

n⋃
k=1

Ak

)
≤ P∗(A)

because P∗ is monotone (see I.). Taking the limit n→∞, we get
∑∞
k=1 P∗(Ak) ≤ P∗(A).

By the subadditivity of P∗, we also have the reverse inequality, hence we have equality

and the countable additivity of P∗ follows.

It remains to show that M is a σ-algebra. It is enough to consider pairwise disjoint

sets A1, A2, . . . ∈ M and argue that A =
⋃∞
n=1An ∈ M (if they are not disjoint,

we consider Bn = An ∩ Acn−1 ∩ . . . ∩ Ac1 which are pairwise disjoint, which are in M
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and
⋃
nBn = A). To this end, we want to verify (A.1) for A. Fix E ⊂ Ω and let

Kn =
⋃n
k=1Ak. By induction, we show that

P∗(Kn ∩ E) =

n∑
k=1

P∗(Ak ∩ E).

The base case n = 1 is clear. Further,

P∗(Kn+1 ∩ E) = P∗(Kn ∩Kn+1 ∩ E) + P∗(Kc
n ∩Kn+1 ∩ E)

= P∗(Kn ∩ E) + P∗(An+1 ∩ E)

=

n∑
k=1

P∗(Ak ∩ E) + P∗(An+1 ∩ E),

where in the last equality we used the inductive hypothesis. This finishes the inductive

argument. Since Kn ∈M, we obtain

P∗(E) = P∗(E ∩Kn) + P∗(E ∩Kc
n) ≥

n∑
k=1

P∗(Ak ∩ E) + P∗(E ∩Kc
n)

≥
n∑
k=1

P∗(Ak ∩ E) + P∗(E ∩Ac),

where the last inequality holds because P∗ is monotone (see I.) and Kn ⊂ A. Letting

n→∞ and using subadditivity, we get

P∗(E) ≥
∞∑
k=1

P∗(Ak ∩ E) + P∗(E ∩Ac) ≥ P∗(E ∩A) + P∗(E ∩Ac),

so A satisfies (A.1).

III. We show 1) A ⊂ M which also gives σ(A) ⊂ M because M is a σ-algebra.

Moreover, we show 2) P∗ = P on A, so P∗ is the desired extension of P on σ(A). The

uniqueness follows immediately from Dynkin’s theorem on π-λ systems (see Appendix

B and Remark 2.11).

To prove 1), take A ∈ A and an arbitrary subset E of Ω. Fix ε > 0. By the definition

of P∗, there are sets B1, B2, . . . ∈ A such that E ⊂ ⋃nBn and
∑∞
n=1 P (Bn) ≤ P∗(E)+ε.

Since E ∩A ⊂ ⋃(Bn ∩A) and E ∩Ac ⊂ ⋃(Bn ∩Ac) and Bn ∩A,Bn ∩Ac ∈ A, by the

definition of P∗,

P∗(E ∩A) ≤
∑
n

P (Bn ∩A)

and similarly

P∗(E ∩Ac) ≤
∑
n

P (Bn ∩Ac) .

Adding these up and using the additivity of P on A, we get

P∗(E ∩A) + P∗(E ∩Ac) ≤
∑
n

(P (Bn ∩A) + P (Bn ∩Ac)) =
∑
n

P (Bn) ≤ P∗(E) + ε,
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so (A.1) holds, so A ∈M.

To prove 2), take A ∈ A. By the definition of P∗, clearly, P∗(A) ≤ P (A). To

argue for the opposite inequality, suppose A ⊂n An for some A1, A2, . . . ∈ A. Let

Cn =
⋃n
k=1(A ∩ Ak). We have that C1, C2, . . . are all in A, C1 ⊂ C2 ⊂ . . . and⋃

n Cn =
⋃∞
k=1(A ∩ Ak) = A ∩⋃∞k=1Ak = A is also in A. Using finite subadditivity of

P on A and its monotonicity, we have

P (Cn) ≤
n∑
k=1

P (A ∩Ak) ≤
n∑
k=1

P (Ak) .

Letting n→∞, by assumption (ii) (finally used for the first and last time!), we obtain

P (A) = lim
n→∞

P (Cn) ≤
∞∑
k=1

P (Ak) .

After taking the infimum over the Ak, this gives P (A) ≤ P (A∗), hence P (A) = P (A∗).

This finishes the whole proof.
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B Appendix: Dynkin’s theorem

Recall that a family A of subsets of a set Ω is a π-system if it is closed under finite

intersections, that is for every A,B ∈ A, we have A ∩ B ∈ A. A family L of subsets of

a set Ω is a λ-system if Ω ∈ L, for every A,B ∈ L with A ⊂ B, we have B \A ∈ L and

for every A1, A2, . . . ∈ L such that A1 ⊂ A2 ⊂ . . ., we have
⋃∞
n=1An ∈ L.

B.1 Remark. If a family is a π-system and a λ-system, then it is a σ-algebra.

B.2 Theorem (Dynkin). Let Ω be a set. If a λ-system L on Ω contains a π-system A
on Ω, then L contains σ(A).

Proof. Let L0 be the smallest λ-system containing A. By Remark B.1, it suffices to

show that L0 is a π-system. To this end, we first consider the family

C = {A ⊂ Ω, A ∩B ∈ L0 for every B ∈ A}.

Clearly, C contains A. Moreover, C is a λ-system. Indeed,

(i) Ω ∈ C because A ⊂ L0,

(ii) let U, V ∈ C with U ⊂ V , then for B ∈ A,

(V \ U) ∩B = (U ∩B) \ (V ∩B)

which is in L0 because U ∩B ⊂ V ∩B and L0 is a λ-system

(iii) let A1, A2, . . . ∈ C with A1 ⊂ A2 ⊂ . . ., then for B ∈ A, we have A1∩B ⊂ A2∩B ⊂
. . . and (

n⋃
i=1

Ai

)
∩B =

n⋃
i=1

(Ai ∩B)

which is in L0 because Ai ∩B are in L0 and it is a λ-system.

We thus get that C, as a λ-system containing A, contains the smallest λ-system

containing A, that is L0. This means that A ∩B ∈ L0 whenever A ∈ L0 and B ∈ A.

The rest of the proof is a repetition of the same argument. We consider the family

C̃ = {A ⊂ Ω, A ∩B ∈ L0 for every B ∈ L0}.

By the previous step, we know that C̃ ⊃ A. We show that C̃ is a λ-system, hence, as

above, it contains L0. Therefore, for every A,B ∈ L0, A ∩ B ∈ L0, that is L0 is a

π-system, as required.
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C Appendix: Fubini’s theorem

Let (Ωi,Fi,Pi), i = 1, 2 be two probability measures. Let

Ω = Ω1 × Ω2.

Define the product σ-algebra

F = σ(A1 ×A2, A1 ∈ F1, A2 ∈ F2),

denoted F1 ⊗F2.

For A ⊂ Ω, define the sections of A,

Aω1
= {ω2 ∈ Ω2, (ω1, ω2) ∈ A}, ω1 ∈ Ω1,

Aω2 = {ω1 ∈ Ω1, (ω1, ω2) ∈ A}, ω2 ∈ Ω2.

Similarly, for a function X : Ω→ R, define its section functions

Xω1 : Ω2 → R, Xω1(ω2) = X(ω1, ω2), ω1 ∈ Ω1,

Xω2 : Ω1 → R, Xω2(ω1) = X(ω1, ω2), ω2 ∈ Ω2.

We have the following lemma about F-measurability.

C.1 Lemma. For every A ∈ F , every ω1 ∈ Ω1 and ω2 ∈ Ω2, we have

Aω1 ∈ F2, Aω2 ∈ F1.

For every F-measurable function X : Ω→ R, every ω1 ∈ Ω1 and ω2 ∈ Ω2, we have

Xω1
is F2-measurable, Xω2 is F1-measurable.

If moreover X is nonnegative, we have that

ω1 7→
∫

Ω2

Xω1
(ω2)dP2(ω2) is F1-measurable

and

ω2 7→
∫

Ω1

Xω2(ω1)dP1(ω1) is F2-measurable

Proof. Let M be the class of all subsets A of Ω such that for every ω1, Aω1
is F2-

measurable. Clearly M contains product sets B1 × B2, Bi ∈ Fi, i = 1, 2 which form

a π-system generating F . Moreover, it is easy to check that M is a σ-algebra. Thus

M⊃ F . We argue similarly about Aω2 .

To prove the F2-measurablity of Xω1
, note that for B ∈ B(R),

X−1
ω1

(B) = {ω2 ∈ Ω2, X(ω1, ω2) ∈ B} = X−1(B)ω1
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which is in F2 by the previous part because X−1(B) ∈ F . The F1-measurability of

Xω2 , we proceed in the same way.

Finally, if X = 1B1×B2
for some Bi ∈ Fi, i = 1, 2, we have∫

Ω2

Xω1
(ω2)dP2(ω2) = 1B1

(ω1)

∫
Ω2

1B2
(ω2)dP2(ω2),

which is clearly F1-measurable. Thus, by the standard arguments (see the proof of

Theorem E.6), the same holds when X is a simple function and consequently, thanks to

Lebesgue’s monotone convergence theorem, when X is nonnegative.

We define P : F → [0, 1] as follows: for A ∈ F , let X = 1A and

P (A) =

∫
Ω1

(∫
Ω2

Xω1(ω2)dP2(ω2)

)
dP1(ω1).

We have the following important result saying that P is the so-called product measure

on Ω.

C.2 Theorem (The uniqueness of product measures). The set function P is a unique

probability measure on (Ω,F) such that for every A1 ∈ F1, A2 ∈ F2, we have

P (A1 ×A2) = P1(A1)P2(A2).

Moreover,

P (A) =

∫
Ω2

(∫
Ω1

Xω2(ω1)dP1(ω1)

)
dP2(ω2).

Proof. By Lemma C.1, the inner integral in the definition of P is an F2-measurable

function, thus P is well defined on F . Clearly, P (A1 ×A2) = P1(A1)P2(A2), so in

particular P (Ω) = 1. If B1, B2, . . . ∈ F are disjoint, then so are their sections, that

is we have 1⋃
n(Bn)ω1

=
∑
n 1(Bn)ω1

, consequently, by the linearity of integrals, we get

that P is countably-additive. The uniqueness follows from the fact that the product sets

A1 × A2, Ai ∈ Fi, form a π-system generating F , combined with Remark 2.11. The

formula with the integrals over Ω1 and Ω2 swapped follows by considering

P̃(A) =

∫
Ω2

(∫
Ω1

Xω2(ω1)dP1(ω1)

)
dP2(ω2),

checking that P̃ satisfies the same defining property, P̃(A1 × A2) = P1(A1)P2(A2) and

using the uniqueness.

We say that P is the product of P1 and P2, denoted

P = P1 ⊗ P2.

C.3 Theorem (Fubini). Let X : Ω→ R be F-measurable.
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(i) If X ≥ 0, then∫
Ω1×Ω2

XdP =

∫
Ω1

(∫
Ω2

Xω1
(ω2)dP2(ω2)

)
dP1(ω1)

=

∫
Ω2

(∫
Ω1

Xω2(ω1)dP1(ω1)

)
dP2(ω2).

(ii) If ∫
Ω1

(∫
Ω2

|Xω1
(ω2)|dP2(ω2)

)
dP1(ω1) <∞,

or ∫
Ω2

(∫
Ω1

|Xω2(ω1)|dP1(ω1)

)
dP2(ω2) <∞,

then ∫
Ω1×Ω2

|X|dP <∞,

that is X is (Ω,F ,P)-integrable.

(iii) If X is (Ω,F ,P)-integrable, then

P1

{
ω1 ∈ Ω1,

∫
Ω2

|Xω1
(ω2)|dP2(ω2) <∞

}
= 1,

P2

{
ω2 ∈ Ω2,

∫
Ω1

|Xω2(ω1)|dP1(ω1) <∞
}

= 1

and (i) holds.

Proof. (i) By Theorem C.2, the formula holds for X = 1A, A ∈ F . Thus it holds

for simple functions and by Lebesgue’s monotone convergence theorem, it holds for

nonnegative functions.

(ii) Follows from (i) applied to |X|.

(iii) By the construction of Lebesgue integrals, |X| being integrable gives∫
Ω

X+dP <∞ and

∫
Ω

X−dP <∞.

Thus from (a) applied to X+,∫
Ω

X+dP =

∫
Ω1

(∫
Ω2

X+
ω1

(ω2)dP2(ω2)

)
dP1(ω1),

which by basic properties of Lebesgue integrals means that∫
Ω2

X+
ω1

(ω2)dP2(ω2) <∞

for P1-a.e. ω1. Simarly for X−. Therefore,

P1

{
ω1 ∈ Ω1,

∫
Ω2

|Xω1(ω2)|dP2(ω2) <∞
}

= 1.
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In particular, for every ω1 in this event,∫
Ω2

Xω1
(ω2)dP2(ω2) =

∫
Ω2

X+
ω1

(ω2)dP2(ω2)−
∫

Ω2

X−ω1
(ω2)dP2(ω2).

For the remaining ω1, we can set all these integrals to be 0 and then we get∫
Ω1

(∫
Ω2

Xω1(ω2)dP2(ω2)

)
dP1(ω1) =

∫
Ω1

(∫
Ω2

X+
ω1

(ω2)dP2(ω2)

)
dP1(ω1)

−
∫

Ω1

(∫
Ω2

X−ω1
(ω2)dP2(ω2)

)
dP1(ω1)

=

∫
Ω1×Ω2

X+dP−
∫

Ω1×Ω2

X−dP

=

∫
Ω1×Ω2

XdP.

We proceed in the same way for the swapped order of taking the integrals over Ω1 and

Ω2.

Fubini’s theorem generalises to σ-finite measures as well as products of more than

two but finitely many measures. Extensions to products of infinitely many measures are

more delicate and are handled in the next appendix.
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D Appendix: Infninte products of measures

D.1 Theorem. Let µ1, µ2, . . . be probability measures on (R,B(R)). We set

Ω =

∞∏
i=1

R = R× R× . . . ,

Xn(ω1, ω2, . . .) = ωn, (ω1, ω2, . . .) ∈ Ω,

and

F = σ(X1, X2, . . . ).

There is a unique probability measure P on (Ω,F) such that for every k ≥ 1 and

A1, . . . , Ak ∈ B(R), w have

P (A1 × · · · ×Ak × R× . . .) = µ1(A1) · . . . · µk(Ak).

Moreover, X1, X2, . . . are independent random variables on (Ω,F ,P) with µXi = µi.

Proof. For n ≥ 1, we set

Fn = σ(X1, . . . , Xn).

It is a σ-algebra generated by the π-system of the product sets of the form

Fn = A1 × · · · ×An × R× R× . . . ,

where A1, . . . , An ∈ B(R). We consider the algebra

A =
⋃
n≥1

Fn

along with P : A → [0, 1], given by

P (Fn) = µ1(A1) · . . . · µ(An)

(the product measure). By the construction of the finite product measures (Fubini’s

theorem), P is finitely additive on (Ω,A). Moreover, for each n, (Ω,Fn,P) is a probability

space and X1, . . . , Xn are independent. It remains to argue that P can be extended to

a probability measure on σ(A) and such an extension will be the desired measure P.

Thanks to Carathéodory’s theorem, it suffices to verify the condition given in Remark

1.9:

for every sequence (Hr)r≥1 of sets in A with H1 ⊃ H2 ⊃ . . . such that

for some ε > 0, P (Hr) ≥ ε for every r ≥ 1, we have
⋂
Hr 6= ∅.

We break the argument into several steps.
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I. For every r, there is some nr such that Hr ∈ Fnr and then there is an Fnr -measurable

bounded function hr such that

1Hr (ω) = hr(ω1, . . . , ωnr )

and

Ehr(X1, . . . , Xnr ) = P (Hr) ≥ ε.

II. Define a function gr : R→ R,

gr(ω1) = Ehr(ω1, X2, . . . , Xnr )

(here E is understood on the probability space (Ω,Fnr ,P)). Since 0 ≤ gr ≤ 1, we have

ε ≤ Ehr =

∫
grdµ1 ≤ µ1{gr ≥ ε/2}+

ε

2
µ1{gr ≤ ε/2} ≤ µ1{gr ≥ ε/2}+

ε

2
,

so

µ1{gr ≥ ε/2} ≥
ε

2
.

III. Since Hr ⊃ Hr+1, we have hr ≥ hr+1, thus

gr(ω1) ≥ gr+1(ω1), for every ω1 ∈ R.

This gives that the events {gr ≥ ε/2} decrease, so by the continuity of probability

measures and Step II, we get

µ1{∀r gr ≥ ε/2} ≥
ε

2
> 0.

Hence, there exists ω∗1 ∈ R such that for every r ≥ 1,

gr(ω
∗
1) = Ehr(ω∗1 , X2, . . . , Xnr ) ≥

ε

2
.

IV. Repeating Steps II and III applied to the functions

g̃r(ω2) = Ehr(ω∗1 , ω2, X3, . . . , Xnr )

yields existence of ω∗2 ∈ R such that for every r ≥ 1,

Ehr(ω∗1 , ω∗2 , X3, . . . , Xnr ) ≥
ε

22
.

Continuing this procedure (inductively), we obtain an infinite sequence

ω∗ = (ω∗1 , ω
∗
2 , . . .) ∈ Ω

with the property that for every r,

Ehr(ω∗1 , ω∗2 , ω∗3 , . . . , ω∗nr ) = hr(ω
∗
1 , ω

∗
2 , ω

∗
3 , . . . , ω

∗
nr ) ≥

ε

2nr
.
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On the other hand,

hr(ω
∗
1 , ω

∗
2 , ω

∗
3 , . . . , ω

∗
nr ) = 1Hr (ω

∗)

is either 0 or 1, so it has to be 1, which gives that ω∗ ∈ Hr and this holds for every r.

Therefore,
⋂
Hr 6= ∅, which shows the desired property allowing to use Carathéodory’s

theorem and thus finishes the proof.
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E Appendix: Construction of expectation

The goal of this section is to define expectation of random variables and establish its

basic properties. We shall only consider real-valued random variables. Recall that a

function X : Ω → R on a probability space (Ω,F ,P) is called a random variable if for

every x ∈ R, the preimage {X ≤ x} = {ω ∈ Ω, X(ω) ≤ x} = X−1((−∞, x]) is an event

(belongs to the sigma-field F).

A random variable X is called simple if its image X(Ω) is a finite set, that is

X =

n∑
k=1

xk 1Ak ,

for some distinct x1, . . . , xn ∈ R (values) and events A1, . . . , An which form a partition

of Ω (we have, Ak = {X = xk}).
The expectation of the simple random variable X, denoted EX, is defined as

EX =
n∑
k=1

xkP (Ak) .

The expectation of a nonnegative random variable X is defined as

EX = sup{EZ, Z is simple and Z ≤ X}.

Note that EX ≥ 0 because we can always take Z = 0. We can have EX = +∞ (for

instance, for a discrete random variable X with P (X = k) = 1
k(k−1) , k = 2, 3, . . .). For

an arbitrary random variable X, we write

X = X+ −X−,

where

X+ = max{X, 0} = X 1{X≥0}

is the positive part of X and

X− = −min{X, 0} = −X 1{X≤0}

is the negative part of X. These are nonnegative random variables and the expectation

of X is defined as

EX = EX+ − EX−

provided that at least one of the quantities EX+, EX− is finite (to avoid ∞−∞). We

say that X is integrable if E|X| < ∞. Since |X| = X+ + X−, we have that X is

integrable if and only if EX+ <∞ and EX− <∞.

One of the desired properties of expectation is linearity. It of course holds for simple

random variables.
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E.1 Theorem. Let X and Y be simple random variables. Then E(X+Y ) = EX+EY .

Proof. Let X =
∑m
k=1 xk 1Ak and Y =

∑n
l=1 yl 1Bl for some reals xk, yl and events

Ak and Bl are such that the Ak partition Ω and the Bl partition Ω. Then the events

Ak ∩Bl, k ≤ m, l ≤ n partition Ω and

X + Y =
∑

k≤m,l≤n
(xk + yl) 1Ak∩Bl .

This is a simple random variable with

E(X + Y ) =
∑

k≤m,l≤n
(xk + yl)P (Ak ∩Bl)

=
∑

k≤m,l≤n
xkP (Ak ∩Bl) +

∑
k≤m,l≤n

ylP (Ak ∩Bl)

=
∑
k≤m

xk
∑
l≤n

P (Ak ∩Bl) +
∑
l≤n

yl
∑
k≤m

P (Ak ∩Bl)

=
∑
k≤m

xkP

Ak ∩ ⋃
l≤n

Bl

+
∑
l≤n

ylP

 ⋃
k≤m

Ak ∩Bl


=
∑
k≤m

xkP (Ak) +
∑
l≤n

ylP (Bl) ,

which is EX + EY and this finishes the proof.

E.1 Nonnegative random variables

Our main goal is to prove linearity of expectation. We first establish a few basic prop-

erties of expectation for nonnegative random variables.

E.2 Theorem. Let X and Y be nonnegative random variables. We have

(a) if X ≤ Y , then EX ≤ EY ,

(b) for a ≥ 0, E(a+X) = a+ EX and E(aX) = aEX,

(c) if EX = 0, then X = 0 a.s. (i.e. P (X = 0) = 1)

(d) if A and B are events such that A ⊂ B, then EX 1A ≤ EX 1B.

Proof. (a) Let ε > 0. By definition, there is a simple random variable Z such that

Z ≤ X and EZ > EX − ε. Then also Z ≤ Y , so by the definition of EY , we have

EZ ≤ EY . Thus EX − ε < EY . Sending ε to 0 finishes the argument.

(b) For a simple random variable Z, clearly E(a + Z) = a + EZ and E(aZ) = aEZ. It

remains to follow the proof of (a).

211



(c) For n ≥ 1, we have X ≥ X 1{X≥1/n} ≥ 1
n 1{X≥1/n}, so by (a) we get

0 = EX ≥ E
1

n
1{X≥1/n} =

1

n
P (X ≥ 1/n) ,

thus P (X ≥ 1/n) = 0, so

P (X > 0) = P

⋂
n≥1

{X ≥ 1/n}

 = lim
n→∞

P (X ≥ 1/n) = 0.

(d) follows immediately from (a).

The following lemma gives a way to approximate nonnegative random variables with

monotone sequences of simple ones.

E.3 Lemma. If X is a nonnegative random variable, then there is a sequence (Zn) of

nonnegative simple random variables such that for every ω ∈ Ω, Zn(ω) ≤ Zn+1(ω) and

Zn(ω) −−−−→
n→∞

X(ω).

Proof. Define

Zn =

n·2n∑
k=1

k − 1

2n
1{ k−1

2n ≤X< k
2n }

+n1{X≥n} .

Fix ω ∈ Ω. Then Zn(ω) is a nondecreasing sequence (check!). Since n > X(ω) for large

enough n, we have for such n that 0 ≤ X(ω)− Zn(ω) ≤ 2−n.

The following is a very important and useful tool allowing to exchange the order of

taking the limit and expectation for monotone sequences.

E.4 Theorem (Lebesgue’s monotone convergence theorem). If Xn is a sequence of

nonnegative random variables such that Xn ≤ Xn+1 and Xn −−−−→
n→∞

X, then

EXn −−−−→
n→∞

EX.

Proof. By E.2 (a), EXn ≤ EXn+1 and EXn ≤ EX, so limn EXn exists and is less than

or equal to EX. It remains to show that EX ≤ limn EXn. Take a simple random

variable Z such that 0 ≤ Z ≤ X, with the largest value say K. Observe that for every

n ≥ 1 and ε > 0,

Z ≤ (Xn + ε) 1{Z<Xn+ε}+K 1{Z≥Xn+ε} . (E.1)

Claim. For nonnegative random variables X, Y and an event A, we have

E(X 1A +Y 1Ac) ≤ EX 1A +EY 1Ac .

Proof of the claim. Fix ε > 0. Take a simple random variable Z such that Z ≤
X 1A +Y 1Ac and EZ > E(X 1A +Y 1Ac)− ε. Note that

Z 1A ≤ X 1A and Z 1Ac ≤ Y 1Ac .
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Thus by E.2 (a),

EZ 1A ≤ EX 1A and EZ 1Ac ≤ EY 1Ac .

Adding these two inequalities together and using that EZ 1A +EZ 1Ac = EZ, which

follows from linearity of expectation for simple random variables (Theorem E.1), we get

E(X 1A +Y 1Ac)− ε < EZ ≤ EX 1A +EY 1Ac .

Sending ε→ 0 finishes the argument.

Applying the claim to (E.1), we obtain

EZ ≤ EXn + ε+KP (Z ≥ Xn + ε) .

The events {Z ≥ Xn + ε} form a decreasing family (because Xn ≤ Xn+1 and their

intersection is {Z ≥ X + ε} = ∅ (because Xn → X and Z ≤ X). Therefore taking

n→∞ in the last inequality gives

EZ ≤ lim
n

EXn + ε.

Taking the supremum over simple random variables Z ≤ X gives

EX ≤ lim
n

EXn + ε.

Letting ε→ 0, we finish the proof.

As a corollary we obtain a result about the limit inferior of nonnegative random

variables and its expectation.

E.5 Theorem (Fatou’s lemma). If X1, X2, . . . are nonnegative random variables, then

E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn.

Proof. Let Yn = infk≥nXk. Then this is a nondecreasing sequence which converges to

lim infn→∞Xn and Yn ≤ Xn. Note that

lim inf
n→∞

EXn ≥ lim inf
n→∞

EYn = lim
n→∞

EYn,

where the last equality holds because the sequence EYn, as nondecreasing, is convergent.

By Lebesgue’s monotone converge theorem,

lim
n→∞

EYn = E
(

lim
n→∞

Yn

)
= E lim inf

n→∞
Xn,

which in view of the previous inequality finishes the proof.

We are ready to prove linearity of expectation for nonnegative random variables.
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E.6 Theorem. Let X and Y be nonnegative random variables. Then

E(X + Y ) = EX + EY.

Proof. By Lemma E.3, there are nondecreasing sequences (Xn) and (Yn) of nonnegative

simple random variables such that Xn → X and Yn → Y . Then the sequence (Xn+Yn)

is also monotone and Xn + Yn → X + Y . By Theorem E.1,

E(Xn + Yn) = EXn + EYn.

Letting n → ∞, by the virtue of Lebesgue’s monotone convergence theorem, we get in

the limit E(X + Y ) = EX + EY .

E.2 General random variables

Key properties of expectation for general random variables are contained in our next

theorem.

E.7 Theorem. If X and Y are integrable random variables, then

(a) X + Y is integrable and E(X + Y ) = EX + EY ,

(b) E(aX) = aEX for every a ∈ R,

(c) if X ≤ Y , then EX ≤ EY ,

(d) |EX| ≤ E|X|.

Proof. (a) By the triangle inequality Theorem E.2 (a) and Theorem E.6,

E|X + Y | ≤ E(|X|+ |Y |) = E|X|+ E|Y |

and the right hand side is finite by the assumption, thus X + Y is integrable.

To show the linearity, write X + Y in two different ways

(X + Y )+ − (X + Y )− = X + Y = X+ −X− + Y + − Y −,

rearrange

(X + Y )+ +X− + Y − = (X + Y )− +X+ + Y +,

to be able to use the linearity of expectation for nonnegative random variables (Theorem

E.6) and get

E(X + Y )+ + EX− + EY − = E(X + Y )− + EX+ + EY +,

which rearranged again gives E(X + Y ) = EX + EY .

(b) We leave this as an exercise.
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(c) Note that X ≤ Y is equivalent to saying that X+ ≤ Y + and X− ≥ Y − (if X = X+,

then X ≤ Y implies that Y = Y +, hence X+ ≤ Y +; similarly, if Y = −Y −, then X ≤ Y
implies that X = −X−, hence X− ≥ Y −). It remains to use Theorem E.2 (a).

(d) Since −|X| ≤ X ≤ |X|, by (c) we get −E|X| ≤ EX ≤ E|X|, that is |EX| ≤ E|X|.

E.3 Lebesgue’s dominated convergence theorem

We finish with one more limit theorem, quite useful in various applications; we also show

one of them.

E.8 Theorem (Lebesgue’s dominated convergence theorem). If (Xn) is a sequence

of random variables and X is a random variable such that for every ω ∈ Ω, we have

Xn(ω) −−−−→
n→∞

X(ω) and there is an integrable random variable Y such that |Xn| ≤ Y ,

then

E|Xn −X| −−−−→
n→∞

0.

In particular,

EXn −−−−→
n→∞

EX.

Proof. Since |Xn| ≤ Y , taking n→∞ yields |X| ≤ Y . In particular, X is integrable as

well. By the triangle inequality,

|Xn −X| ≤ 2Y

and Fatou’s lemma (Theorem E.5) gives

E(2Y ) = E lim inf(2Y − |Xn −X|) ≤ lim inf E(2Y − |Xn −X|)

= 2EY − lim supE|Xn −X|.

As a result, lim supE|Xn −X| ≤ 0, so

E|Xn −X| −−−−→
n→∞

0.

In particular, since by Theorem E.7 (d),

|E(Xn −X)| ≤ E|Xn −X|,

we get that the left hand side goes to 0, that is EXn → EX.
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F Appendix: Lindeberg’s swapping argument

We begin by a useful observation regarding the definition of weak convergence: for

random variables (and random vectors in Rn), the weak convergence is already captured

by all compactly supported smooth test functions (instead of all continuous bounded

test functions as per the definition).

F.1 Lemma. Let µ, µ1, µ2, . . . be Borel probability measures on R. The following are

equivalent

(i) for every continuous bounded function f : R→ R, we have∫
R
fdµn −−−−→

n→∞

∫
R
fdµ

(µn → µ weakly),

(ii) for every compactly supported smooth function f : R→ R, we have∫
R
fdµn −−−−→

n→∞

∫
R
fdµ.

Proof. Only (ii)⇒(i) requires explanation. Repeating the first part of the proof of The-

orem 8.5 with the function gt,ε replaced with its smooth approximation, we show that

(ii) implies (8.1) which we already know is equivalent to (i) (by Theorem 8.5).

F.2 Remark. Thanks to multidimensional cumulative distribution functions, this char-

acterisation of weak convergence can be extended to Borel probability measures on Rn.

The goal of this section is to present a classical argument of Lindeberg relying on

consecutive swapping summands with independent Gaussians, leading to a quantitative

version of the central limit theorem. The heart of the argument lies in the following

lemma.

F.3 Lemma. Let X1, . . . , Xn be independent random variables, each with mean 0 and

variance 1. Let Z be a standard Gaussian random variable. For every smooth function

f : R→ R with bounded derivatives up to order 3, we have∣∣∣∣Ef (X1 + · · ·+Xn√
n

)
− Ef(Z)

∣∣∣∣ ≤ C ‖f ′′′‖∞∑n
k=1 E|Xk|3

n3/2
,

where C is a universal positive constant. One can take C =
1+
√

8/π

6 .

Proof. Let Z1, . . . , Zn be i.i.d. copies of Z. Since Z has the same distribution as

Z1+...+Zn√
n

, we have

Ef
(
X1 + · · ·+Xn√

n

)
− Ef(Z) = Ef

(
X1 + · · ·+Xn√

n

)
− Ef

(
Z1 + · · ·+ Zn√

n

)
= −

n−1∑
k=0

[
Ef (Sk)− Ef (Sk+1)

]
,
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where the telescoping sum involves

Sk =
X1 + · · ·+Xk + Zk+1 + · · ·+ Zn√

n
, 0 ≤ k ≤ n,

with the convention S0 = Z1+···+Zn√
n

and Sn = X1+···+Xn√
n

. It thus suffices to show that

for every 0 ≤ k ≤ n− 1,

|Ef(Sk)− Ef(Sk+1)| ≤ CE|Xk|3‖f ′′′‖∞
n3/2

.

Letting V = X1+···+Xk+Zk+2+···+Zn√
n

, we have

Sk = V +
Zk+1√
n
, Sk+1 = V +

Xk+1√
n

and by Taylor expansion for f with Lagrange’s remainder,

f(Sk) = f(V ) + f ′(V )
Zk+1√
n

+
f ′′(V )

2

Z2
k+1

n
+
f ′′′(θ)

6

Z3
k+1

n3/2
,

f(Sk+1) = f(V ) + f ′(V )
Xk+1√
n

+
f ′′(V )

2

X2
k+1

n
+
f ′′′(θ′)

6

X3
k+1

n3/2
,

where θ and θ′ denote mean points. Crucially, V is independent of Zk+1 as well as of

Xk+1, so after taking the expectation and subtracting and using that Zk+1 and Xk+1

have matching moments up to order 2, we obtain

|Ef(Sk)− Ef(Sk+1)| ≤ ‖f
′′′‖∞

6n3/2
(E|Zk+1|3 + E|Xk+1|3).

By Hölder’s inequality, E|Xk+1|3 ≥ (E|Xk+1|2)3/2 = 1 =
√

π
8E|Zk+1|3, which concludes

the argument with C =
1+
√

8
π

6 < 0.44.

Alternative proof of the vanilla central limit theorem – Theorem 10.5.

Let X1, . . . , Xn be i.i.d. copies of a random variable with mean 0 and variance 1. Let

Z be a standard Gaussian random variable. If E|X1|3 <∞, by Lemma F.3,∣∣∣∣Ef (X1 + · · ·+Xn√
n

)
− Ef(Z)

∣∣∣∣ ≤ CE|X1|3‖f ′′′‖∞
n1/2

,

for every smooth compactly supported function f . Since the right hand side converges

to 0 as n goes to ∞, Lemma F.1 finishes the proof in the case of finite third moment.

If X1 does not have a finite third moment, we use a truncation argument. Fix ε > 0.

For each k, let

Yk = Xk 1{|Xk|≤ε
√
n}−µn,

Y ′k = Xk 1{|Xk|>ε
√
n}+µn,
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with

µn = EXk 1{|Xk|≤ε
√
n},

so that

Xk = Yk + Y ′k

and

EYk = EY ′k = 0.

Let

σn = Var(Yk) = EX2
k 1{|Xk|≤ε

√
n}−µ2

n.

By Lebesgue’s dominated convergence theorem,

µn −−−−→
n→∞

0,

σ2
n −−−−→

n→∞
1.

Let f : R → R be a smooth function with compact support. Fix δ > 0. From Lemma

F.3 applied to the Yk,

|Ef
(
Y1 + · · ·+ Yn√

n

)
− Ef(σnZ)| ≤ CE|Y1|3‖f ′′′‖∞

n1/2σ3
n

.

Using (a+ b)3 ≤ 4(a3 + b3), we obtain

E|Y1|3 ≤ 4(E|X1|3 + |µn|3) ≤ 4(ε
√
nE|X1|2 + |µn|3) = 4(ε

√
n+ |µn|3),

so that for n large enough,∣∣∣∣Ef (Y1 + · · ·+ Yn√
n

)
− Ef(σnZ)

∣∣∣∣ < δ.

Since f is continuous and bounded, Ef(σnZ)→ Ef(Z), so

|Ef(σnZ)− Ef(Z)| < δ,

also for all n large enough. It remains to deal with the Y ′k. They all have mean 0 and

E|Y ′k|2 = E|Y ′1 |2 = Var(Y ′1) = E|X1|2 1{|X1|>ε
√
n}−µ2

n,

with the right hand side converging to 0 as n→∞, by Lebesgue’s dominated convergence

theorem. Thus for n large enough,

E
∣∣∣∣Y ′1 + · · ·+ Y ′n√

n

∣∣∣∣ ≤
(
E
∣∣∣∣Y ′1 + · · ·+ Y ′n√

n

∣∣∣∣2
)1/2

= (E|Y ′1 |2)1/2 < δ.
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Since f is smooth and compactly supported, it is Lipschitz, say with constant L, and

because Xk − Yk = Y ′k, we finally get∣∣∣∣Ef (X1 + · · ·+Xn√
n

)
− Ef(Z)

∣∣∣∣ ≤ ∣∣∣∣Ef (X1 + · · ·+Xn√
n

)
− Ef

(
Y1 + · · ·+ Yn√

n

)∣∣∣∣
+

∣∣∣∣Ef (Y1 + · · ·+ Yn√
n

)
− Ef(σnZ)

∣∣∣∣
+ |Ef(σnZ)− Ef(Z)|

≤ LE
∣∣∣∣Y ′1 + · · ·+ Y ′n√

n

∣∣∣∣+ 2δ < (L+ 2)δ,

for all n large enough. This shows that

Ef
(
X1 + · · ·+Xn√

n

)
−−−−→
n→∞

Ef(Z),

Lemma F.1 thus gives
X1 + · · ·+Xn√

n

d−−−−→
n→∞

Z,

as desired. �

Lemma F.3 is powerful enough to also give quantitative bounds in the central limit

theorem (weaker than the optimal one provided by the Berry-Esseen theorem, but with a

much simpler proof). We need an elementary fact providing approximations of indicator

functions by smooth functions.

F.4 Lemma. For every real number t and positive ε, there is a smooth nonnegative

function f equal to 1 on (−∞, t], equal to 0 on [t+ ε,∞) with f ≤ 1 and |f ′′′| ≤ 200ε−3

everywhere.

Proof. Consider

h(x) =


1, x ∈ (−∞, 0],

exp
(
− 1

1−x2

)
, x ∈ (0, 1),

0, x ∈ [1,+∞).

This function has the desired properties when t = 0 and ε = 1. Moreover, it can be

checked that ‖h′′′‖∞ < 200. In general, we take the function f(x) = h(x+t
ε ).

F.5 Theorem. Let X1, . . . , Xn be i.i.d. random variables with mean 0, variance 1 and

finite third moment. Let Z be a standard Gaussian random variable. We have

sup
t∈R

∣∣∣∣P(X1 + · · ·+Xn√
n

≤ t
)
− P (Z ≤ t)

∣∣∣∣ ≤ 3
(E|X|3)1/4

n1/8
.

Proof. Denote Zn = X1+···+Xn√
n

. Fix t ∈ R and ε > 0. Let f be the function provided

by Lemma F.4. In particular, 1(−∞,t](x) ≤ f(x), for every x ∈ R, thus

P (Zn ≤ t) = E1(−∞,t](Zn) ≤ Ef(Zn) ≤ Ef(Z) +
200(1 +

√
8/π)

6

E|X1|3
ε3
√
n
,
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where the last inequality follows from Lemma F.3. Since f(x) ≤ 1(−∞,t+ε](x) and the

density of Z is bounded by 1√
2π

, we also have

Ef(Z) ≤ E1(−∞,t+ε](Z) ≤ P (Z ≤ t) +
ε√
2π
.

As a result,

P (Zn ≤ t)− P (Z ≤ t) ≤ 1√
2π
ε+

200(1 +
√

8/π)

6

E|X1|3√
n

ε−3

and optimising over ε yields

P (Zn ≤ t)− P (Z ≤ t) ≤ C(E|X1|3)1/4n−1/8

with C =
(

(3
√

2π)1/4√
2π

+ (3
√

2π)−3/4
)(

200(1+
√

8/π

6

)1/4

= 2.68... Similar arguments lead

to an identical lower bound (we approximate the indicator 1(−∞,t−ε] using Lemma F.4

with t− ε and ε). This finishes the proof.
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G Appendix: The moment method
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H Appendix: Feller’s converse to the central limit

theorem

H.1 Theorem. Let {Xn,}n≥1,1≤k≤n be a triangular array of random variables with

EX2
n,k < ∞ for each n and k, such that for every n ≥ 1, the variables Xn,1, . . . , Xn,n

are independent. Suppose that EXn,k = 0 for each n and k and for each n,

n∑
k=1

EX2
n,k = 1.

For ε > 0, set

Ln(ε) =

n∑
k=1

EX̄2
n,k 1{|Xn,k|>ε} .

Let Zn =
∑n
k=1Xn,k. Suppose that

max
1≤k≤n

EX2
n,k −−−−→

n→∞
0. (H.1)

If the sequence (Zn)n converges in distribution to a standard Gaussian random variable,

then

for every ε > 0, Ln(ε) −−−−→
n→∞

0. (H.2)

Proof. Let φn,k(t) = EeitXn,k be the characteristic function of Xn,k. By Lemma 10.4,

|1− φn,k(t)| = |E(1 + itXn,k − eitXn,k)| ≤ t2

2
EX2

n,k, (H.3)

which thanks to (H.1), for every fixed t, converges to 0 (uniformly in k) as n→∞. We

fix t and define Rn(t) by

Rn(t) =
t2

2
−

n∑
k=1

Re(1− φn,k(t)).

Claim. For every t, |Rn(t)| → 0 as n→∞.

Proof. Fix t. Using (H.3),

|1− φn,k(t)| ≤ t2

2
max
k≤n

EX2
n,k → 0

as n→∞, so, we have that for sufficiently large n and all k ≤ n, |1− φn,k(t)| < 1
2 and

|Arg(φn,k(t))| < π
4 , say. Using the principal value of the complex log function, we can

thus write
n∑
k=1

log φn,k(t) = log

n∏
k=1

φn,k(t)
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and by the assumption of the theorem, the right hand side converges to−t2/2. Therefore,

|Rn(t)| ≤
∣∣∣∣∣ t22 −

n∑
k=1

(1− φn,k(t))

∣∣∣∣∣
≤
∣∣∣∣∣ t22 + log

n∏
k=1

φn,k(t)

∣∣∣∣∣+

∣∣∣∣∣
n∑
k=1

[
− log φn,k(t)− (1− φn,k(t))

]∣∣∣∣∣ .
The first term goes to 0. Setting z = 1− φn,k(t), we have |z| ≤ 1

2 and using the Taylor

series − log(1− z) =
∑∞
k=1

zk

k for the principal value of log, we obtain

|− log φn,k(t)− (1− φn,k(t))| = | − log(1− z)− z| ≤
∞∑
k=2

|z|k
k
≤ |z|2

∞∑
k=2

(1/2)k−2

2
= |z|2.

Thus for the second term we get∣∣∣∣∣
n∑
k=1

[
− log φn,k(t)− (1− φn,k(t))

]∣∣∣∣∣ ≤
n∑
k=1

|1− φn,k(t)|2

≤ max
k≤n
|1− φn,k(t)|

n∑
k=1

|1− φn,k(t)|

which, by virtue of (H.3), is upper bounded by

max
k≤n
|1− φn,k(t)| t

2

2

n∑
k=1

EX2
n,k =

t2

2
max
k≤n
|1− φn,k(t)| ≤ t4

4
max
k≤n

EX2
n,k.

The right hand side goes to 0 which finishes the proof of the claim.

Having the claim, we finish the proof as follows. We fix ε > 0 and write

Rn(t) =
t2

2
−

n∑
k=1

E[1− cos(tXn,k)]

=
t2

2
−

n∑
k=1

E[1− cos(tXn,k)] 1{|Xn,k|≤ε}−
n∑
k=1

E[1− cos(tXn,k)] 1{|Xn,k|>ε} .

If |x| > ε, we have 1− cos(tx) ≤ 2 ≤ 2x
2

ε2 . This is how we bound the second sum. The

first sum will be bounded using 1− cos(tx) ≤ t2x2

2 . These yield

Rn(t) ≥ t2

2
− t2

2

n∑
k=1

EX2
n,k 1{|Xn,k|≤ε}−

2

ε2

n∑
k=1

EX2
n,k =

t2

2
Ln(ε)− 2

ε2
,

equivalently,

Ln(ε) ≤ 4

t2ε2
+

2Rn(t)

t2
.

This shows that Ln(ε) → 0 as n → ∞ (given δ > 0, we fix t such that 4
t2ε2 < δ/2 and

for this t, for all n large enough, we have 2Rn(t)
t2 < δ/2, by the claim).

223



I Appendix: Uniform integrability

We recall the definition: a family of random variables {Xt}t∈T is uniformly integrable

if for every ε > 0, there is K > 0 such that for all t ∈ T , we have E|Xt|1{|Xt|>K} ≤ ε.
We start with two easy criteria guaranteeing uniform integrability.

I.1 Lemma. Let {Xt}t∈T be a family of random variables such that there is a nonneg-

ative random variable Y with EY < ∞ and |Xt| ≤ Y for every t ∈ T . Then the family

{Xt}t∈T is uniformly integrable.

I.2 Remark. In particular, if {Xt}t∈T is a finite family of integrable random variables,

then it is uniformly integrable (we simply take Y =
∑
t∈T |Xt|).

Proof of Lemma I.1. We have, E|Xt|1{|Xt|>K} ≤ EY 1{Y >K} and the right hand side

goes to 0 as K →∞ (by Lebesgue’s dominated convergence theorem).

I.3 Lemma. Let {Xt}t∈T be a family of random variables bounded in Lp for some p > 1

(that is, M = supt∈T E|Xt|p <∞). Then the family {Xt}t∈T is uniformly integrable.

Proof. Write p = 1 + δ with δ > 0. We have,

E|Xt|1{|Xt|>K} = E|Xt|1+δ|Xt|−δ 1{|Xt|>K} ≤ K−δE|Xt|1+δ ≤ K−δM,

where M = supt∈T E|Xt|p, so that the right hand side goes to 0 as K →∞.

There is an equivalent definition of uniform integrability which perhaps explains the

name better and is often useful.

I.4 Theorem. Let {Xt}t∈T be a family of random variables. It is uniformly integrable

if and only if the following two conidtions hold

(i) it is bounded in L1, that is supt∈T E|Xt| <∞,

(ii) for every ε > 0, there is δ > 0 such that for every event A with P (A) < δ and

every t ∈ T , we have E|Xt|1A < ε.

Proof. “⇒”: Fix ε > 0 and choose K > 0 such that E|Xt|1{|Xt|>K} ≤ ε for every t ∈ T .

For an event A, we have

E|Xt|1A = E|Xt|1A 1{|Xt|≤K}+E|Xt|1A 1{|Xt|>K} ≤ KP (A) + ε < 2ε

if P (A) < δ = ε
K . This shows (ii). Taking A = Ω, the first inequality shows (i).

“⇐”: Fix ε > 0 and take δ provided by (ii). We would like to choose K such that

E|Xt|1{|Xt|>K} < ε for every t ∈ T . Let A = {|Xt| > K}. Let M = supt∈T E|Xt| which

is finite by (i). By Chebyshev’s inequality,

P (A) ≤ 1

K
E|Xt| ≤

M

K
< δ
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provided that K > M
δ . Thus, for this choice of K, what we want follows from (ii) with

A = {|Xt| > K}.

I.5 Remark. Let X be an integrable random variable. Combining Remark I.2 (applied

to the one-element family {X}) with (ii) of Theorem I.4, we get a “uniform continuity”

property of expectation:

∀ε > 0 ∃δ > 0 ∀A : P (A) <∞ E|X|1A < ε. (I.1)

The usefulness of uniform integrability lies in the fact that it captures Lp convergence.

I.6 Theorem. Let p > 0. For random variables X,X1, X2, . . . in Lp, we have that

Xn → X in Lp if and only if the following two conditions hold

(i) Xn → X in probability,

(ii) {|Xn|p}n≥1 is a uniformly integrable family.

Proof. “⇒”: Clearly (i) holds (see Theorem 6.14). To see (ii), we shall use Theorem

I.4. Fix ε > 0. Let A be an event. First we use |a + b|p ≤ C(|a|p + |b|p), a, b ∈ R

(C = max{2p−1, 1} is good), to bound

E|Xn|p 1A ≤ C(E|X|p 1A +E|Xn −X|p 1A).

For large n, say n > N , we have E|Xn −X|p 1A ≤ E|Xn −X|p < ε. For n ≤ N , we can

choose δ from (ii) of Theorem I.4 applied to the finite family {|X|, |Xn −X|, n ≤ N} to

bound each term by ε. This finishes the argument.

“⇐”: Fix ε > 0. Let δ be chosen from (ii) of Theorem I.4 for the uniformly integrable

family {|Xn−X|p}n≥1 (it is uniformly integrable because |Xn−X|p ≤ C(|Xn|p+|X|p)).
We have,

E|Xn −X|p = E|Xn −X|p 1{|Xn−X|≤ε}+E|Xn −X|p 1{|Xn−X|>ε}

≤ εp + E|Xn −X|p 1{|Xn−X|>ε} .

Let A = {|Xn −X| > ε}. For n large enough, by (i), P (A) < δ, thus the second term

for all such n is bounded by ε. This shows that Xn → X in Lp.

I.7 Example. Consider the probability space ([0, 1],B([0, 1]),Leb) and the random

variables Xn = n1[0,1/n], n ≥ 1. Then, E|Xn| = 1, so (|Xn|) is bounded in L1, but

the family is not uniformly integrable: for every K > 0, we have E|Xn|1{|Xn|>K} =

E|Xn| = 1 for all n ≥ K. In this example, Xn → 0 a.s. and in probability, but not in

L1 (see Example 6.15).
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