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1 Probability space

1.1 Definitions

Let © be a set. A collection F of its subsets is called a o-algebra (sometimes also

o-field) if
(i) Qe F,
(ii) for every A € F, we have A¢ € F, that is F is closed under taking complements,

(iii) for every sets Ay, As,... in F, we have |J,2 | A, € F, that is F is closed under

taking coutable unions.

Note that these imply that @ € F and that F is also closed under taking set difference,
countable intersections, etc. For instance, F = {@,Q} is the trivial o-algebra and
F = 2% (all the subsets of ) is the largest possible o-algebra.

Suppose F is a o-algebra on the set 2. A function

i F = [0, 4+00]
is called a measure if
(i) w@) =0,
(ii) p is countably-additive, that is for every pairwise disjoint sets Ay, As,... in F, we
have

I (U An) = Z/J(An)‘

The measure p is finite if () < oo, o-finite if Q is a countable union of sets in F of
finite measure. The measure u is a probability measure if () = 1.

A probability space is a triple (Q, F, P), where ) is a set, F is a o-algebra on {2 and
P is a probability measure on F. The sets in F are called events. The empty set is called
an impossible event because P (&) = 0. Set operations have natural interpretations, for
instance for “AN B”, we say “A and B occur”, for “AU B”, we say “A or B occurs”,
for “A®”, we say “A does not occur”, for “N >~ Ure,, Ax”, we say “infinitely many of
the events Ay occur”, etc.

This definition is a starting point of modern probability theory. It was laid as
foundations by Kolmogorov who presented his axiom system for probability theory in

1933.

We record some basic and useful properties of probability measures.
1.1 Theorem. Let (2, F,P) be a probability space. Let A, B, Ay, A, ... be events. Then

(1) P(A%) =1-P(4),



(ii) if AC B, then P(B\ A) =P (B) — P(A) and P(A) <P (B),
(iii)) P(AUB) =P (A) +P(B) —P (AN B),

(iv) P(Ui=y Ai) =20, P(A) = 30, P(AiNAy) + 37, P(Ai N Ay N Ay)
— -~-—|—(—1)”_1]P’(A1ﬁ-~-ﬁAn),

(v) P(UiZ) Ai) < 352, P(A),
(vi) if A1,..., Ay are pairwise disjoint, then P (J!_, A;) = > i P (4).

We omit proofs (which are rather standard). Part (iv) is the so-called inclusion-
exclusion formula. Part (v) is the so-called union bound.

We also have the following continuity of measure-type results for monotone events.
1.2 Theorem. Let (Q, F,P) be a probability space. Let Ay, As, ... be events.

(i) if the events A, are increasing, that is Ay C Az C ..., then
P (U Ak> = lim P(A,),
k=1

(ii) if the events A,, are decreasing, that is Ay D Aa D ..., then
oo
P (m Ak> = nh_{r;OIP’(An),
k=1
Proof. (i) It helps consider the events

By = Ay, By =Ay\ Ay, B3 = A3\ Ay, ...

which are disjoint. We skip the details. Part (ii) can be obtained from (i) by using the

complements. O

1.3 Remark. Theorem 1.1 and Theorem 1.2 (i) hold for arbitrary measures (the proofs
do not need the assumption P (2) = 1 of the measure P being probabilistic). Theorem

1.2 (ii) holds for arbitrary measures P as long as P (Ay) < oo for some k.

1.2 Basic examples

1.4 Example. Let Q = {w;,ws,...} be a countable set and F = 2% (all subsets).
Defining a probability measure on (2, F) really amounts to specifying a nonnegative
sequence pi,pz,... such that ) . p; = 1 and defining P ({w;}) = p;. Then for every
subset A of €,

P(A)= > pi

w; EA



Conversely, since
1=P(Q) = P{w}),
i
every probability measure is of this form.

1.5 Example. Let Q be a finite nonempty set and F = 2. The uniform probability
measure on (2, F) (sometimes referred to as classical) is defined as

_ Al

for every subset A of Q, where here | - | denotes cardinality.

Our next two examples will require nontrivial constructions. We wish to define two
probability spaces which will be reasonable models of

1) selecting a point uniformly at random on the interval [0, 1]

2) tossing a fair coin infinitely many times.

As much as choosing the ground set  is fairly natural, say Q = [0, 1] for 1), defining
an appropriate o-algebra and a probability measure on it poses certain challenges. Let
us first try to illustrate possible subtleties.

Let Q =[0,1]. If (Q, F,P) is meant to be a probability space modelling selecting a
point uniformly at random on [0, 1], for 0 < a < b < 1, we should have P ((a,b)) =b—a
(the probability that a point is in the interval (a,b) equal its length), and more generally,
P should be translation-invariant. Thus F should at the very least contain all intervals.
Thus let F be such a o-algebra, that is the smallest o-algebra containing all the intervals
in [0, 1]; we write

F=o(1),
where Z is the family of all the intervals in [0, 1] and in general

F=0(A)

denotes the o-algebra generated by a family A of subsets of 2 (the smallest o-algebra

containing A, which makes sense because intersections o-algebras are still o-algebras).

1.6 Example. As a result, for every z € [0, 1], we have

P{z}) =P ﬂ(m—l/n,x—i—l/n) :nli)rr;o]}”((a:—l/n,x—kl/n)): lim 2 =0

n—oo n,
n>1

(recall Theorem 1.2 (ii)), that is, of course, probability of selecting a fixed point is
zero. This however indicates why probability measures are defined to be only countably

additive as opposed to fully additive, because if the latter was the case, we would have

1=P(o.1)=F | U {o}] =YX P =0,

z€[0,1]

a contradiction. [



Moreover, we cannot just crudely take F = 2% because of the following construction

of the Vitali set.

1.7 Example. For z,y € [0, 1], let z ~ y if and only if z —y € Q. This is an equivalence
relation and let V' be the set of representatives of its abstract classes. Without loss of
generality assume that 0 ¢ V. Let ®y denote the addition modulo 1, that is 2@y = z+y
ifr+y<landaz@®y=z+y—1if v +y > 1. Consider the translations of V,

Ver={ver veVl}, rel0,1]NQ.

Note that these sets are pairwise disjoint (because if v1 Dr1 = vo 1y for some vy,v2 € V

and 71,79 € [0,1] NQ, then v; — ve € Q, hence v; = vy, thus r; = r3). Moreover,
U ver=1
r€[0,1]NQ

(because every point in [0,1] is in a certain abstract class, hence differs from its repre-

sentative by a rational). Thus, by countable-additivity

1=P U Ver| = Z P(Ver).

ref0,1]NQ ref0,1]NQ
If P is translation-invariant, we have P(V @ r) = P (V) and then the right hand side is

either 0 or +o00, a contradiction. [

Summarising, to model a uniform random point on [0, 1], we take Q = [0,1] and
F to be the o-algebra generated by all the intervals. We know how to define P on
the generators. Carathéodory’s theorem is an important abstract tool which allows
to extend this definition from the generators to the whole o-algebra F, provided that
certain conditions are met.

A family A of subsets of a set  is called an algebra if
(i) Qe A,
(ii) if A € A, then A° € A,
(iii) if A, B € A, then AUB € A.

1.8 Theorem (Carathéodory). Let §2 be a set and let A be an algebra on §). Suppose
a function P: A — [0,400) satisfies

(i) P(Q) =1,

(i) P is finitely additive, that is for every Ay, ..., A, € A which are pairwise disjoint,

we have

P (UA> ~S R4,
=1 =1



(iii) for every Ay, As,... € A with Ay C Ay C ... such that A =J,_, A, is in A, we
have
lim P(A,)=P(A).

n— oo

Then P can be uniquely extended to a probability measure on the o-algebra F = o(A)

generated by A.

1.9 Remark. By considering B,, = A\ A,,, condition (iii) is equivalent to the following:
if By, Bs, ... € Fgsuch that By D By D ... with (B, = &, then P(B,) — 0 as n — oo.

We defer the proof of Carathéodory’s theorem to Appendix A.

1.10 Example. We are ready to construct a probability space modelling a random

point uniform on [0, 1]. Let Q = [0,1]. Let
]:O:{(alabl]u"'u(an7bn]7 n21,0§a1 Sbl Sgangbngl}

It is easy to check that Fy is an algebra on Qy = (0,1]. For a set F in Fy, say
F =(a1,01]U--- U (an, b,], we define

P(F) = Z(b,; —a;).

Clearly P satisfies conditions (i) and (ii) of Theorem 1.8. We now verify (iii) by means
of Remark 1.9. Suppose By D By D ... are in Fy with (B, = @. If it is not the
case that P (B,,) — 0, there is £ > 0 such that P (Bj) > ¢ for infinitely many k, say for
simplicity for all k¥ > 1. We show that () B,, # &. For every k, there is a set Cj in Fy
whose closure is a subset of B, N (0,1) and P (By, \ Cx) < e27%~1. Then for every n, we

have

P|B.\[Cr| =P JBu\Cx | <P|JBr\Cr| <D P(Br\Ci)

k<n k<n k<n k<n

< 262%*1 <eg/2.

k<n

This and P (B,,) > ¢ together give that P (ﬂkgn C’k) > ¢/2. In particular, for every n,
(k<n Ck is nonempty and consequently K, = [, .,, cl(C) is nonempty. Thus {K,};2;
is a decreasing family (K7 D K3 D ...) of nonempty compact sets. By Cantor’s intersec-
tion theorem, (), K, = (.~ cl(Cy) is nonempty (recall a simple argument: otherwise
U, (cl(Cp))¢ covers [0,1] without any finite subcover). Since () B,, contains (), cl(Cy),
the argument is finished.

Theorem 1.8 provides a unique extension of P onto the o-algebra generated by Fy.
This extension is nothing but Lebesgue measure on (0, 1], denoted Leb. We can trivially

extend it onto [0, 1] by assigning P ({0}) = 0. O

10



Given a metric space (E, p), the o-algebra of subsets of E generated by all open sets
in E is called the Borel o-algebra on FE, denoted B(E). For example, the o-algebra

constructed in the previous example is exactly B(]0, 1]).

1.11 Example. We construct a probability space modelling an infinite sequence of
tosses of a fair coin. Let Q = {(w1,wa,...), wi,wa,... € {0,1}} be the set of all infinite
binary sequences. We can proceed as for the random point on [0, 1]: we define an algebra
of subsets of {2 on which defining a finitely additive measure will be intuitive and easy.
Q, wj =¢;,5 =1,...,n}. We define the algebra of cylinders, that is the family of all

finite unions of cylinders,
Fo = {Al U---UA, E>1,A,..., A € Cyl}.

For A., . ., € Cyl, we set

1
P(Ash...,sn) = 27

It remains to apply Theorem 1.8. Checking (iii) proceeds similarly and eventually boils
down to a topological argument (by Tikhonov’s theorem Q = {0,1} x {0,1} x ... is
compact with the standard product topology).

Alternatively, a binary expansion of a random point x € (0, 1] gives a random se-
quence which intuitively does the job, too. Formally, let f : Q@ — [0,1], f(w) = > ;21 4.
We define

F={/\(B), BeB([1)),

which is a o-algebra,

P(A) = Leb(f(4)), AeF,

which is a probability measure (f is surjective, hence f(f~'(B)) = B for every B).
Note that for cylinders we have that f(A., . .,) is an interval of length 2% Thus
P(Ae, . ) = 2L and this construction also fulfils our intuitive basic requirement. We
need get back to this example when we discuss independence. []

1.3 Conditioning

Given a probability space (2, F,P) and an event B of positive probability, P (B) > 0,

we can define
P(ANB)
P(B)

It is natural to introduce a o-algebra of events Fp seen by B, that is

P (A|B) = ,  AeF

Fs={ANB, Ac F}.

1.12 Theorem. P (:|B)) is a probability measure on F, thus also on Fp.

11



The new probability measure P (:| B) is referred to as the conditional probability
given B. Introducing it often times makes computations more intuitive. We have several

useful facts.

1.13 Theorem (Chain rule). Suppose that Ai,..., A, are events which satisfy the
condition P(A1N---NA,—1)>0. Then

P(A N NAy) =P (A) P (Ao|A) ... P(Ap|Ai NN Apy).

1.14 Theorem (Law of total probability). Suppose {B,,n = 1,2,...} is a finite or
countable family of events which partition Q and P (B,) > 0 for each n. Then for every

event A, we have

P(A) = P(A|B,)P(B,).

1.15 Theorem (Bayes’ formula). Suppose {B,,n = 1,2,...} is a finite or countable
family of events which partition Q and P (By,) > 0 for each n. Then for every event A

of positive probability and every k, we have

 B(AIBYP(By)
P(BIA) = S~ B (ATB,) P (B

We leave all the proofs as exercise to the dedicated reader.

12



1.4 Exercises

1. If A and B are events, then P(AN B) > P(A) — P (B°).

2. If Ay,..., A, are events, then we have
a) P(U?:l Ai) < 221:1(_1)]%1 El§i1<---<ik§np (Ai, N---N Ay,) for m odd,
b) ]P)(U?:l Ai) > ZZI:1(_1)I€71 Zl§1'1<w<ik§n P (A, N---N A, ) for m even.

These are called Bonferroni inequalities.

3. There are n invitation cards with the names of n different people and n envelopes with
their names. We put the cards at random into the envelopes, one card per envelope.
What is the chance that not a single invitation landed in the correct envelope? What
is the limit of this probability as n goes to infinity?

4. Describe all o-algebras on a countable set.

5. Is there an infinite o-algebra which is countable?

o

6. Show that the number of o-algebras on the n-element set equals % oo o

7. Prove Theorems 1.12 — 1.15.

13



2 Random variables

2.1 Definitions and basic properties

Central objects of study in probability theory are random variables. They are simply
measurable functions. To put it formally, let (€2, F,P) be a probability space. A function
X: Q — Ris called a random variable if for every Borel set B in R, B € B(R), we have
X~1(B) € F. In other words, X is a measurable function on (2, F,P). An R"-valued

random variable, that is a measurable function X :  — R"™ is called a random vector.

2.1 Example. Let A be an event. We define

1, fweA,

La(w) =
0, ifwé¢A
This is a random variable called the indicator random variable of the event A.
2.2 Example. Let Q@ = [0,1], F = B([0,1]) and P = Leb. Define X: Q — [0,1] as
X(w) = w. This is a random variable which intuitively is uniform on [0,1]. We will
make this precise soon. On the other hand, if V' is the Vitali set from Example 1.7, then
X = 1y is not a random variable because X 1({1}) =V ¢ F.

We record several very basic facts. One piece of notation: we often write {X < t},
or {X € B}, etc. meaning {w € Q, X(w) <t} = X }((—00,t]), or {w € Q, X(w) €
B} = X7!(B) ,etc. Moreover, {X € A, X € B} means {X € A} N{X € B}.

2.3 Theorem. If X: Q) — R satisfies: for everyt € R,
{X <t} eF,
then X is a random variable.

Proof. Consider the family {A C R, X 1(A) € F}. It is not difficult to check that
this is a o-algebra. By the assumption, it contains the intervals (—oo,t], t € R, which

generate B(R). O

2.4 Theorem. If X,Y are random variables (defined on the same probability space),
then X +Y and XY are random variables.

Proof. We use Theorem 2.3. Note that

(X+Y>tt=|J{X>qY >t—q}
q€Q

and the right hand side is in F as a countable union of events. Thus X 4+ Y is a random

variable. Moreover, for ¢ > 0,

{(X? <t ={-Vi< X<V} ={X<VI}\{X <V} eF

14



so X2 and Y? are also random variables. Thus

1
XY = 5((X+Y)2 e —Y2)
is a random variable. O

2.5 Theorem. If X1, Xo,... are random variables (defined on the same probability
space), then inf, X,,, liminf, X,,, lim,, X,, (if exists, understood pointwise) are random

variables.

Proof. For instance {inf, X, > t} = (,{X, > t} justifies that inf,, X,, is a random

variable. We leave the rest as an exercise. O

2.6 Theorem. Let X be a random variable. If f: R — R is a (Borel) measurable
function, that is f~*(B) € B(R) for every B € B(R), then f(X) is a random variable.

Proof. We have (f(X))"Y(B) = X"1(f~4(B)). O
2.7 Example. If X is a random variable, then |X [P, X, etc. are random variables.

Given a random variable X, we define the o-algebra generated by X, denoted

o(X) as the smallest o-algebra with respect to which X is measurable, that is
o(X) =0 (X"Y(B), BeB(R)) ={X (B), BeB(R)}

(the family on the right is a o-algebra). Similarly, given a collection of random variables
{X;}ier we define its o-algebra as the smallest o-algebra with respect to which every

X; is measurable, that is
U(Xi77; € I) =0 (Xi_l(B), B € B(R),Z S I) .

Let X be a random variable. The law of X, denoted px is the following probability

measure on (R, B(R)),
ux(B)=P(X € B), BebB(R).

2.8 Example. Let X be a constant random variable a.s., that is P(X =a) = 1 for

some a € R. Its law px is a very simple measure on R,

1, ifa€A,

px(A) =
0, ifa¢ A

This measure on R is called the Dirac delta at a, denoted J,.

The cumulative distribution function of X (distribution function or CDF in

short) is the following function Fx: R — [0, 1],

Fx(t)=P(X <t), teR

15



It is rather clear that for some two random variable X and Y, ux = py does not
imply that X =Y (the random variables may even be defined on different probability
spaces). We say that X and Y have the same distribution (law) if ux = py. Is it clear
that F'x = Fy implies that X and Y have the same distribution? In other words, do
CDF's determine distribution? To answer this and many other similar questions, it is
convenient to use an abstract tool from measure theory — Dynkin’s theorem on 7 — A

systems.

2.2 1w — )\ systems

A family A of subsets of a set €2 is a m-system if it is closed under finite intersections,
that is for every A, B € A, we have AN B € A.
A family £ of subsets of a set 2 is a A-system if

(i) QeL,
(ii) if A,Be€ L and A C B, then B\ A € L,
(iii) for every Ay, As,... € L such that A; C Ay C ..., we have ;- A, € L.

For example, the family of intervals {(—oo,t],t € R} is a m-system. The importance
of this example is that this family generates B(R).

Note that if a family is a 7-system and a A-system, then it is a o-algebra.

A fundamental and useful result is the following theorem (see Appendix B for the

proof).

2.9 Theorem (Dynkin). If a A\-system L contains a w-system A, then L contains o(A).

2.3 Properties of distribution functions

Equipped with Dynkin’s theorem, we are able to show that distribution functions indeed
determine the distribution, which reverses the trivial implication that if px = py, then

Fx = Fy.

2.10 Theorem. Let X and Y be random variables (possibly defined on different prob-
ability spaces). If Fx = Fy, then ux = py -

Proof. Let A= {(—o00,t], t € R}. This is a 7-system and o(A) = B(R). Consider
L={A€BR), ux(A)=py(A)}.

This is a A-system (which easily follows from properties of probability measures). The
assumption Fx = Fy gives £ D A. Thus, by Theorem 2.9, we get £ D o(A) = B(R).
By the definition of £, this gives ux = py. O

16



2.11 Remark. The same proof gives the following: if for some two probability measures
u, v defined on the same space, we have u = v on a mw-system generating a o-algebra F,

then w=v on F.
We list 3 basic properties of distribution functions.
2.12 Theorem. Let X be a random variable. Then its distribution function Fx satisfies
(i) Fx is nondecreasing, that is for every s <t, Fx(s) < Fx(t),
(i1) limsy oo Fx(t) =0 and lim;, 1 o Fx(t) =1,
(i1i) Fx is right-continuous, that is for every t € R, limg_,+4 Fx(s) = Fx (t).
Proof. Part (i) follows from the inclusion {X < s} C {X <t} if s <¢. Alternatively,
0<P(X e(st])) =P(X <t)—P(X <s)=Fx(t) — Fx(s).
Part (ii), (iii) follow from the continuity of probability measures (Theorem 1.2). O
These properties in fact characterise distribution functions.

2.13 Theorem. If a function F: R — [0,1] satisfies (i)-(iii) from Theorem 2.12, then

F = Fx for some random variable X .

Proof. Let @ = [0,1], F = B([0,1]) and P = Leb. The idea is to define X as the inverse

of F'. Formally, we set
X(w) = inf{y, F(y) >w},  we0,1].

By the definition of infimum and (i)-(iii), X(w) < ¢ if and only if w < F(t) (check!).
Thus
Fx(t)=P(X <t)=Leb{w € [0,1], w < F(t)} = F(t).

O

2.14 Remark. There is another construction, sometimes called canonical, based on
Carathéodory’s theorem. We set Q = R, F = B(R), define P ((—o0, t]) = F(t) and then
extend P. With such P, the desired random variable is the canonical one, X (z) = =z,

r € R.

For a random vector X = (Xy,...,X,) in R", the cumulative distribution function

of X is the function Fx: R™ — [0, 1],
Fx(t1,... tn) =P(X1 <t1,...,Xp <tn).

As before, for random vectors X, Y in R", F'x = Fy implies that ux = py. The char-

acterising properties are almost the same — the monotonicity statement is strengthened.
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2.15 Theorem. Let X be a random vector in R™. Then its distribution function Fx

satisfies

(i) Fx is nondecreasing, that is for every s,t € R™ with s; < t;, i < n, we have

Fx(s) < Fx(t). Moreover,

Z (_1)22:1 EkFX(€1$1 + (1 - gl)tlv <5 EnSp + (1 - En)tn) > 0;

cc{0,1}n
(i) FX(tgm), e ,tSZ”)) —— 0 provided that infy<, tfcm) — —00,
m— o0 - m—r0oQ
(i) FX(tgm), e ,tglm)) —— 1 provided that inf<, t,(cm) — 400,
m—0o0 - m—r0oQ

(iv) Fx is right-continuous.

Proof. We only show (i) as the rest is proved in much the same way as in one dimension.
The inequality is nothing but the statement that the probability of X being in the
box [[p_;(sk,tk] is nonnegative (cf. the proof of Theorem 2.13 (i)). To see this, let
A= {Xr <tx} and B =J, {Xk < si}. Then

OSIP’(XE ﬁ(sk,tk]> =P(ANB°) =P(A)—P(ANB).
k=1

Note that P (A) = Fx(t) and P (AN B) = J,({Xr < sk} N B). Applying the inclusion-

exclusion formula finishes the proof. O

Again, these properties characterise distribution functions of random vectors. The
proof follows a canonical construction sketched in Remark 2.14. We leave the details as

an exercise.

2.16 Theorem. If a function F: R™ — [0, 1] satisfies (i)-(iv) from Theorem 2.15, then

F = Fx for some random vector X in R™.
We end with a simple remark which follows from the right-continuity.

2.17 Remark. For a random variable X and a € R, we have
PX=a)=P{X <a}\{X <a})=P(X <a)-P(X <a)=Fx(a)— Fx(a—).

Now, P(X = a) > 0 if and only if Fx is discontinuous at a (has a jump) and the value

of the jump is precisely P (X = a). In this case, we say that X has an atom at a.

2.4 Examples: discrete and continuous random variables

2.18 Example. We say that a random variable X is discrete if there is a countable sub-

set A of R such that P (X € A) = 1. Say A = {aq,az,...} and denote p, =P (X = ay).

18



We can assume that the py are all positive (otherwise, we just do not list a in A). We
have ), pr = 1. The a;, are then the atoms of X. The law of X is a mixture of Dirac

deltas at the atoms,

Hx = Zpk§ak~

The CDF of X is a piecewise constant function with jumps at the atoms with the values

being the py.

2.19 Example. We say that a random variable X is continuous if there is an integrable

function f: R — R such that

nx(4)= [ 1. acsm.

Then f is called the density of X (note it is not unique — we can modify f on a set of

Lebesgue measure zero without changing the above). In particular,

Fx(t) = px ((—oo, 1)) = / f(x)de

and necessarily Fly is continuous. We collect basic characterising properties of density

functions.

2.20 Theorem. Let X be a continuous random variable and let f be its density function.

Then
(i) f>0 ae.

(iii) f is determined by X uniquely up to sets of measure 0.

Proof. Plainly, [, f = px(R) =1, so we have (i). To see (ii), let A, = {f < —1/n} and
A={f<0}=JA,. We have

1
0<pux(An) = / [ < ——Leb(A,),
An n
so Leb(A4,) = 0 and thus Leb(A) = 0. The proof of (iii) is similar. O

2.21 Theorem. Suppose a function f: R — R satisfies properties (i)-(ii) of Theorem

2.20. Then there is a continuous random variable X with density f.
Proof. We set F(z) = [*_ f, # € R and use Theorem 2.13. O

Of course, it is easy to give examples of random variables which are neither discrete

nor continuous, say F(x) = § 1jg,1)(2) + 11 400) () is a distribution function of such a
random variable (it is not continuous because F is not continuous and it is not discrete
because F is not piecewise constant). We finish off this chapter with an interesting

strong example of this sort.
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2.22 Example. Let F': [0,1] — [0,1] be the Cantor’s devil’s staircase function (a
continuous nondecreasing function which is piecewise constant outside the Cantor set
C C [0,1]). Extend F on R by simply putting 0 on (—o0,0] and 1 on [1,400). Then
F is a distribution function of some random variable. It is not discrete because F' is

continuous and if it was continuous, we would have

F(fﬂ)=/;f

for some integrable function f, but since f(x) = F'(z) = 0 for = ¢ C (F is constant on

1=/Rf=/cf+/6=0

(the first integral vanishes because C is of measure 0 and the second integral vanishes

C¢), we would also have

because as we just saw f vanishes on C¢), a contradiction. What is this random variable?
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2.5 Exercises

1.

Give an example of two different random variables X and Y with px = py.
Fill out the details in the proof of Theorem 2.13.

Prove Theorem 2.16.

Show that every random variable has at most countably many atoms.

Suppose that a random vector (X,Y’) is such that both X and Y are continuous

random variables. Does the random vector (X,Y’) have to be continuous?

Is there a random vector (X, Y, Z) in R? such that aX +bY +cZ is a uniform random

variable on [—1,1] for every reals a,b, c with a? + 0% + ¢? = 1?

Hint: Archimedes’ Hat-Box Theorem.

Let X be a random variable uniform on [0,2]. Find the distribution function of

random variables Y = max{1, X}, Z = min{X, X?}.

Give an example of an uncountable family of random variables {X;};c; such that

sup;c; X; is not a random variable.

Is there a random variable such that the set of the discontinuity points of its distri-

bution function is dense in R?
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3 Independence

Recall that two events A, B are independent if P (AN B) = P (A) P (B), which is equiv-
alent to P(A°N B) =P (A°)P(B). A good way to generalise this is via o-algebras.

3.1 Definitions
For an event A € F, we define the o-algebra generated by it as
o(A)={2,9Q,A, A},

that is o(A) is 0(14), the o-algebra generated by the indicator random variable 14.
The crucial general definition of independence is as follows.

A family {F;}ier of collections of subsets of Q (typically o-algebras , m-systems, etc.)

with each F; being a subset of F is called independent if for every n, iy,...,1, € I
and every Ay € F;,,..., A, € Fi,, we have
P(Ain---NA,)=P(A;)...-...P(4,).

A family of events {A;};cs is independent (or simply the events A;, i € I, are indepen-
dent) if the family of the o-algebras generated by them, {o(A;)};er is independent. A
family of random variables {X;};cs is independent (or simply the random variables X,
i € I, are independent) if the family of the o-algebras generated by them, {o(X;)}icr is
independent. Note that since 0(A) = o(14), the events A; are independent if and only
if the random variables 14, are independent.

As is stated now, to check the independence of say 3 events {A;, Ay, A3}, we have
to verify 43 identities of the form P (B; N By N Bs) = P(B;) P (Bs) P (Bs), where each
B, is one of the sets @, Q, A;, A¢. Of course, many of these identities are either trivial of
follow from the other. It turns out that m-systems can help and we have the following

useful general lemma.

3.1 Lemma. Let {A;}icr be a family of w-systems. Then the family {o(A;)}ier s
independent if and only if the family {A;}icr is independent.

Proof. Since the definition of independence involves only finite sub-families, we can
assume that [ = {1,...,n}. One implication is clear, so we assume that the m-systems
are independent and want to deduce the independence of the o-algebras generated by

them. To this end, we shall use Dynkin’s theorem. We define the class

£1={Blef: VA, €A27...,An€./4n
P(ByNAyN-- NA) =P (B)P(A) ... P(A,)}
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By the assumption £; contains A;. By properties of probability measures, £; is a
A-system. Hence, by Dynkin’s theorem (Theorem 2.9), £1 contains o(A;). It remains

to inductively repeat the same argument: suppose we know for some k& < n that
P(Bin---NBxNAg1N---NA,) =P(By)--P(Bg) P(Ag41) --P(4,)  (3.1)

for every B; € 0(A;), i < kand A; € A;, j > k. Fix some B; € 0(A;), i < k. As above,
considering
Liy1 ={Bg+1 € F: VAgyo € Agyo,..., Ay € A,
P(BiN---NBrNBpy1 NAgiaN---NA,)
=P (B1)---P(Bi) P(Bit1) - P(Aky2) - P (An)}
shows that (3.1) holds for k¥ + 1. Thus this holds for k£ = n. O

We note two useful results about packaging independence.

3.2 Theorem. Let {F;}icr be a family of independent o-algebras. Suppose the index
set I is partitioned into nonempty sets {I;,j € J}. Then the o-algebras

gi=o({Ficl}), jeJ
are independent.

Proof. For each j € J, define A; to be the m-system of all finite intersections of the form
B;,N---NB,, , whereiy,... i, € [ and B;, € F;,, k=1,...,m. We have o(A;) = G;.
By the assumption, it follows that the families A;, j € J are independent (check!), so

Tm>?

by Lemma 3.1, the G; are independent. O

3.3 Theorem. Suppose

X1, Xins
X2,1a X2,n27
Xk',la Xky"k

are independent random variables and

fll R™ —)R,

fro: R™ 5 R

are measurable functions. Then the random variables

Yl = fl(Xl,la cee 7X1,n1)7

Yk = fk:(Xk,I; ce ,kak)

are independent.
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Proof. By Theorem 3.2, the o-algebras G; = 0(0(X;1),...,0(X;n,)), i <k, are inde-
pendent. The result follows because {Y; < t} € G;, so o(Y;) C G;. O

3.2 Product measures and independent random variables

Given two probability measures u, v on (R, B(R)), recall that their product, denoted
p ® v is the unique measure on (R?, B(R?)) such that

(L®v)(Ax B)=pu(A)v(B) for all A, B € B(R)

(see Appendix C for the details). Exploiting Lemma 3.1, we derive convenient and
important equivalent conditions for independence of random variables. For simplicity
we state it just for two random variables, but of course it can be easily generalised to

arbitrary many of them.
3.4 Theorem. The following are equivalent
(i) random variables X,Y are independent,
(ii) Fixy)(s,t) = Fx(s)Fy(t), for all s,t € R,
(1) p(x,yy = px @ py -
Proof. (i)=(ii) follows from the definition since {X < s} € o(X) and {Y <y} € o(Y).

(ii)=(i) follows from Lemma 3.1 ({X < s},er is a m-system generating o(X)).

(i)=(iii) from the definition, y(x,yy = @ v on the 7-system of the product sets A x B,
A, B € B(R) which generate B(R?), thus, by Remark 2.11, p(x y) = p ® v on B(R?).

(iii)=-(ii) follows by applying (iii) to A = {X < s}, B={Y <t}. O

For continuous random variables, we have another convenient criterion in terms of

densities.

3.5 Theorem. If X1,..., X, are continuous random variables with densities f1,..., fn
respectively, then they are independent if and only if the random vector (X1, ..., X,) is

continuous with density

f(xlv"'axn) = fl(xl)fn(xn)
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Proof. Suppose we have independence. Then, by Theorem 3.4 (ii) and Fubini’s theorem,

for every Borel sets A; in R, we have

P((X1,..., Xn) € Ay x -+ x Ay) = [[P (X € 4))
i=1

-11 /. R
:/ Fi@1) e fo(xn)das ... da.
A1 X--XAp

This means that fi(x1)... fn(x,) is the density of (Xi,...,X,). To see the opposite

implication, simply backtrack the above equalities. O
We leave it as an exercise to prove a discrete analogue.

3.6 Theorem. If X;,..., X, are discrete random variables with the atoms in some
sets A1, ..., A, respectively, then they are independent if and only if for every sequence

ai,...,a, with a; € A; for each i, we have

PXi=a,...,.Xn=0a,) =P(X1=a1) - P(Xy = an).

3.3 Examples

3.7 Example. Let Q = {0,1}", F = 29 P is uniform, that is P ({w}) = 27" for every
w € Q (the probability space of n tosses of a fair coin). For k = 1,...,n consider the

events

A ={w € Quw, =0} (kth toss is 0).

We claim that the events Aq,..., A, are independent. For 1 < iy < ... < i < n, we
have
2n—k k
P(AllﬁﬂAlk):IF’({wEQw“:zwzkzo}): on :2_k:HP(AZJ)
j=1

Lemma 3.1 finishes the argument.

3.8 Example. Let Q = {1,2,3,4}, F = 29, P is uniform, that is P ({w}) = 1/4 for
every w € Q (4 sided fair die). Let A; = {1,741}, i =1,2,3. Then

]P’(Ai)f%, i=1,2,3,
P (40 A7) =P({1}) = | = F(A) B (4)), i#9
P(A NAsNAz)=P({1}) = i #P(A1)P(A2)P(A43),

so the events Ay, Ao, A3 are pairwise independent but not independent.
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3.9 Example. Let Q = [0,1]%, F = B([0,1]?), P = Leb (a random point uniformly
selected from the unit square [0,1]?). Let A = B = {(x,y) € [0,1]?, z > y} and
C ={(z,y) €0,1)% 2 < 1}. Then

P(ANBNC)=P(A)P(B)P(C),
but
P(ANB)#P(A)P(B), PANC)#PA)PC), P(BNC)£LP(B)P(C).
3.10 Example. If for events Ay, ..., A, and every €1,...,&, € {0,1}, we have
PAT*N---NA) =P(ATY) -...-P(45),

where A° = A if e = 0 and A® = A° if ¢ = 1, then the family {A,;};<,, is independent.

A simple explanation relies on algebraic manipulations like this one
P(Asn---NA,)=P(A1NAN---NA)+PATNAN---NA,).
We skip the details.

3.11 Example. Let Q = (0,1], F = B((0,1]), P = Leb (a random point uniformly
selected from the unit interval (0, 1]). For every point « € (0,1], we write its binary

expansion,

= (o)
T = Z on
n=1
where d,,(z) € {0,1} is the nth digit of . For uniqueness, say we always write the

expansion that has infinitely many 1’s, e.g. % = 0.0111.... Consider the events
A ={z €10,1], dp(x) =0}, k=1,2,....

Claim. P (A;) = % and {A}>1 are independent.

In other words, the probability space (€2, F,P) is also a good model for infinitely many
tosses of a fair coin with the events Ay being “kth toss is heads”. To prove that
P (Ax) = %, just note that Ay, is the union of 2* intervals (Zle 27", E?Zl g2 27k
€1,...,6x € {0,1}, each of length 27%. To prove the independence, note that for fixed
€1,...,6n € {0,1},

P(AT*N...NAS") =Leb{z € (0,1], di(z) =¢€1,...,dp(x) =€p}
" or 2 i 1
’ ((?—;2“1‘—1 2Z+2n1>

and use Example 3.10.
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To put this important example a bit differently, we have constructed the sequence
dy,ds,... of independent, identically distributed random variables (i.i.d. for
short), each one having equal probability of taking the value 0 and 1 (dj tells us the

outcome of the kth toss).

3.12 Example. We construct a sequence X7, X, ... of i.i.d. random variables uniform
on [0,1]. Let as before Q = (0, 1], F = B((0,1]), P = Leb. For every w € ) we write as

before its (unique) binary expansion

oo
Ww; 0
OJ—E 5— Wiwe ...,
i=1

where wy,ws, ... € {0,1} are the consecutive digits of w. We define new functions

b

1Ww) = 0.0.)1(4)30.)6&)1(] N

b

w

(w)

2(w) = O.wowswy . ..

X3(w) = O.wgws . ..
(w)

w :0.0J7...

(we put the consecutive indices on the diagonals: 1, then 2,3, then 4, 5,6 then 7,8,9, 10
and so on). Intuitively

1) X1, Xo,... are independent random variables

2) each X; is uniform on [0, 1].

The intuition for 1) is that the rows are built on disjoint sequences of the w;. The
formal proof follows instantly from Theorem 3.2 about packaging independence.

The intuition for 2) is that each w; is just a random digit. The formal proof fol-
lows from the observation that for every k& > 1 and j = 0,1,...,2F — 1, we have
IP’(QJTc < X; < 32%1) = %, so by the continuity of P, we have P(a < X; <b) = b—a
for every interval (a,b] C (0, 1].

3.13 Example. Given probability distribution functions Fy, Fs,..., we construct a
sequence of independent random variables Y7, Ys, ... such that Fy, = F; for each i. We
take the sequence X1, Xo,... of i.i.d. uniform random variables uniform on [0, 1] from

Example 3.12. We set

where G; : [0,1] — R is the inverse function of F; defined in the proof of Theorem 2.13,
that is
Gi(z) = inf{y € R, F;(y) > z}.

Then (see the proof of Theorem 2.13), we have

Fy,(t) = P(Y; < 1) = P(Gi(X,) < 1) = P(X, < Fi(1)) = Fi(1)
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and the Y; are independent because the X; are independent.

3.4 Borel-Cantelli lemmas

Recall that for an infinite sequence of events Aq, Ao, ..., we define
o0 oo
limsup 4, = m U Ay
n=1k=n

(infinitely many Ay occur) and
liminf A,, = U ﬂ Ay
n=1k=n

(eventually all the Ay occur, that is only finitely many Ay do not occur). Plainly,
(limsup 4,,)¢ = liminf A{.

The notation is explained by the following identities involving the indicator functions

14

n?

limsup A, = {w € Q, limsuply, (w) =1}

n—roo

and

liminf 4,, = {w € Q, lirginf 1,4, (w) =1}

3.14 Lemma (The first Borel-Cantelli lemma). If Ay, As, ... are events such that
> P(A,) < o,

then
P (limsup A4,) = 0.

Proof. By the monotonicity of the events By = (J,,~,, A» and the union bound, we get

P (limsup A,,) = P (ﬂ Bk> = lim P(By) < lim > P (4,) =0.
k n>k

O

3.15 Lemma (The second Borel-Cantelli lemma). If Ay, As, ... are independent events

such that

ZP(AH) = 00,

then
P (limsup 4,) = 1.

28



Proof. By the monotonicity of the events By, =(),,~, AS, we get

P ((limsup A,)¢) = P (U Bk> = lim P (By).

k

so it is enough to show that PP (By) = 0. By independence, for | > k,
PB) <P| () 4. | = ] PA)= ] 0 -P(4n).
I>n>k k<n<l k<n<l

Thus, by the inequality 1 —x < e™7,
P (By,) < e~ kst PAn)

Letting | — oo and using that 3 -, P (A,) = oo finishes the proof. O

3.16 Example. Let X7, X5, ... be i.i.d. random variable with the distribution function
specified by the condition P (X >t) = e, ¢t > 0 for each k. Fix a > 0 and consider
the events A,, = {X,, > alogn}. Since P(A,) = e~*1°8" = n= by the Borel-Cantelli

lemmas, we get

0, ifa>1,
P (X, > alogn for infinitely many n) =
1, ifa<l.
Let
= lim sup
nooo logn’
Thus,
X
P(L>1)="P ( for infinitely many n) =1
logn
and

P(L>1)= {L>1+ }

( >1 + — for infinitely many n)
logn

IVM

Therefore, L =1 a.s.

3.5 Tail events and Kolmogorov’s 0 — 1 law

For a sequence of random variables X7, X5, ..., we define its tail c-algebra by

T =) 0(Xns1, Xnsa,...).

n>1
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For example, very natural events such as
{lim X, exists}, {Z X, converges}, {limsupX, > 1}
n n
belong to 7. If we have independence, the tail o-algebra carries only trivial events.

3.17 Theorem (Kolmogorov’s 0-1 law). If X1, Xo,... is a sequence of independent
random variables and T is its tail o-algebra, then for every A € T, we have that either

P(A)=0o0orP(A) =1.
Proof. Define the o-algebras
Xp=0(X1,...,Xpn)

and

T = 0(Xnt1, Xngar ).
We prove the theorem by establishing the following 4 simple claims.
Claim 1. For every n, X, and 7, are independent.
Indeed, consider the family A4 of the events of the form {Vi < n, X; < s;}, s; € R and
the family B of the events of the form {Vn <i<n+m,X; <t;}, m >1,t; € R. These

are m-systems which generate X, and 7, respectively. Clearly A and B are independent,

hence &,, and 7, are independent (Lemma 3.1).

Claim 2. For every n, X, and T are independent.

This follows instantly because 7 C 7T,,.

Claim 3. Let X = o(X1, Xa,...). Then X and 7, are independent.
Let A = (U,2, X,. This is a 7-system generating X. By Claim 2, A and T are
independent, so X and 7T are independent (Lemma 3.1).

Claim 4. For every A € T, P(A) € {0,1}.
Since T C X, by Claim 3, 7 is independent o T, thus

P(A)=P(ANA) =P(A)P(A),

hence the result. O
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3.6 Exercises

1.

10.

Define the Rademacher functions r1,75,...: [0,1] — {-1,0,1} by
ro(z) = sgn(cos(Z"my)), z €10,1],

where sgn is the usual signum function. Consider these functions as random variables
on the probability space ([0, 1], B([0,1]), Leb). What is the distribution of r,,? Show
that the family {r,},>1 is independent.

Define the Walsh functions w4: {—1,1}" — {—1,1} indexed by all subsets A of
{1,...,n},

wA(xl,...,:vn):Hxi, x=(x1,...,2,) € {-1,1}"
i€EA

and wy = 1 (a constant function). Consider these functions as random variables on

{=1,1}" equipped with the uniform probability measure. What is the distribution

of wa? Show that the w, are pairwise independent. Are they independent?

For independent events Ay, ..., A,,
(1 — e~ ') min {LZIF’(Ai)} <P (U AZ-> < min {1,21@(140} .
i=1 i=1 j

Prove the so-called infinite monkey theorem: when we toss a fair coin infinitely many
times then the event that “every given finite sequence of heads/tails occurs infinitely

many times” is certain.

Suppose events A1, Ao, ... are independent and all have equal probabilities. What is
the probability that infinitely many A;’s occur?

Suppose events Aj, As, ... are independent and P (A,) € (0,1) for every n. Then
infinitely many A,, occur with probability 1 if and only if at least one A,, occurs with

probability 1.

Let ©Q be the set of positive integers and let Ay be the set of positive integers divisible
by k, k > 1. Is there a probability measure P defined on all the subsets of 2 such
that P (Ag) = % for every k =1,2,...7

Prove Theorem 3.6.
Fill out the details in Example 3.10.

Let X1, Xo,... be a sequence of independent random variables and let T be its tail

o-algebra. If a random variable Y is 7-measurable, then Y is a.s. constant.
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11.

12.

Let X1, X5, ... be a sequence of independent random variables. Show that the radius

of convergence of the power series y - | X,,2" is a.s. constant.

Are there two nonconstant continuous functions f, g: [0, 1] — R which, when viewed

as random variables on the probability space ([0, 1], B(]0, 1]), Leb), are independent?
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4 Expectation

4.1 Definitions and basic properties

Let X be a random variable on a probability space (2, F,P). We say that X is inte-
grable, if
/ X (w)|dP () < 00
Q
and then define its expectation (also called its mean) as

EX:/QX(w)dIP’(w).

Both integrals are Lebesgue integrals (see Appendix E for a construction and basic

properties). For a random vector X in R"™, its expectation is defined as the following

EX,
EX = [ : ]
EX,

We list the most important basic properties

vector in R"™,

(i) monotonicity: if X is a nonnegative random variable, then EX > 0,
(ii) the triangle inequality: |[EX| < E|X],

(iii) linearity: if X, Y are integrable, then for every a,b € R, aX 4+ bY is integrable and
E(az +bY) = aEX 4 DEY.

We also list the most important limit theorems.

4.1 Theorem (Lebesgue’s monotone convergence theorem). If X1, Xo,... are nonneg-
ative random variables such that for every n, X,+1 > X,,, then

E ( lim Xn) — lim EX,

n—oo n—oo

(with the provision that the left hand side is +o00 if and only if the right hand side is
+00)

4.2 Theorem (Fatou’s lemma). If X7, Xo,... are nonnegative random variables, then

E (hm inf Xn) < liminf EX,,.

n—oo n—oo

4.3 Theorem (Lebesgue’s dominated convergence theorem). If X, X, Xs, ... are ran-
dom variables such that X, T) X a.s. and for everyn, | X,| <Y for some integrable
random variable Y, then o

E|X, — X| — 0.
In particular,

EX = E ( lim Xn) — lim EX,.

n—0o0 n—oo
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The proofs are in Appendix E.
We turn to the relation between the expectation of a random variable and the integral

against its law.

4.4 Theorem. Let h: R — R be a Borel measurable function. Let X be a random
variable. Then

BH(X) = [ ha)dux (o).
(The identity should be understood as follo]i)s: if the integral on one side exists, then the

other one does and they are equal.)

Proof. We leverage the linearity of both sides in h and use a standard method from

measure theory of complicating h.
I. If h = 14, for some A € B(R), then

Eh(X) = / 14(w)dP () = P (A) = jux(4) = / 14(2)dux () = / h(z)dpx (2).

I1. If h is a simple function, that is h = Zi\il x;14, for some zq,...,2ny € R and

A1,..., Ay € B(R), then the identity follows from the previous step by linearity.

III. If A is a nonnegative function, then there is a sequence of nonnegative simple
functions hq, ha, ... such that for every n, hp41 > h,, and h, — h (pointwise). Thus, the
identity follows in this case from the previous step by Lebesgue’s monotone convergence

theorem.

IV. If his arbitrary, we decompose it into its positive and negative part, h™ = max{0, h},
h™ = max{0, —h},

h=h"—h"
and the identity follows from the previous step by linearity and the definition of Lebesgue

integral. O

4.5 Remark. Note that the identity we proved is linear in h. The above argument of

gradually complicating h is standard is such situations.
4.6 Corollary. If X is a discrete random variable with p; =P (X =x;) >0, ) . p; =1,
then since px =Y pids,, we get
Eh(X) = Zpih(xi)-
If X is a continuous random variable with density f, then since

[ m@ans (@) = [ )z

R
(which can be justified exactly as in the proof of Theorem 4.4), we get

Eh(X):/Rh(m)f(x)dx.
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4.2 Variance and covariance

For a random variable X with EX? < oo (as we say, square-integrable), we define its
variance as

Var(X) = E(X — EX)2.
Since (X —EX)? = X2 — 2(EX)X + (EX)?2, we have the convenient formula,
Var(X) = EX? — (EX)%
Note that by its definition, the variance is shift invariant,
Var(X + ¢) = Var(X),
for every constant ¢ € R, and scales quadratically,
Var(AX) = \? Var(X),

for every constant A € R. Moreover, if X and Y are random variables with EX?,EY? <
00, then because (X + Y)? < 2X2 + 2Y2, we have E(X + Y)? < co and denoting
X=X-EX,Y =Y —EY, we obtain

Var(X +Y) =E(X +Y)? = EX? + EY? + 2EXY = Var(X) + Var(Y) + 2EXY.

This motives the following definition of the covariance between such two random vari-
ables,

Cov(X,Y) = E((X “EX)(Y — EY)) —EXY — (EX)(EY).

By the above identity we also obtain the following formula for the variance of the sum.

4.7 Theorem. Let X1,...,X, be square-integrable random variables. Then
Var <Z X1-> = Var(X;) +2)_ Cov(X;, X;).
i=1 i=1 1<

In particular, if the X; are uncorrelated, that is Cov(X;, X;) = 0 for all ¢ # j, we

have
n n
Var (Z XZ-) = ZVar(Xi).
i=1 i=1
For a random vector X in R™ with square-integrable components, we define its

covariance matrix as

COV(X) = [COV(XZ‘, Xj)}i,jgrr

It is convenient to write

Cov(X)=EXX',

with X = X —EX (here the expectation of the n x n matrix X X T is understood entry-
wise). From this and the linearity of expectation, we quickly obtain the following basic

properties of covariance matrices.
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4.8 Theorem. Let X be a random wvector in R™ with square-integrable components.

Then

(i) Cov(X) is a symmetric positive semi-definite matrix

(i) Cov(X +b) = Cov(X), for every (deterministic) vector b € R™,
(iii) Cov(AX) = ACov(X)AT, for every n x n matriz A,

(iv) if r = rank(Cov (X)), then P(X € H) = 1 for some r-dimensional affine subspace
of R™.

Proof. We show (iv) and leave the rest as an exercise. Let M = Cov(X). If M has rank
r, then there are n — r linearly independent vectors in its kernel, say vy, ..., v,_,. Since
Mwv; = 0, we have

0= viTMvi = E(U;XXTUO = E(XTW)Q,
so the nonnegative random variable (X Tv;)2 whose expecation is 0 therefore has to
be 0 a.s. This holds for every 4, thus P (Vi <n—r XTy = O) = 1 and we can take
H={zecR" Vi<n—r (z—EX) v; =0}.
O

4.3 Independence again, via product measures

Given two probability spaces (;, F;, [P;), i = 1,2, we define their product by taking, of
course,

9291XQQ

and

fZU(Al XAQ, Ay E}—l,AQ G.FQ)

which is called the product o-algebra, denoted
F=FQ®Fs.
Then the product measure P, denoted
P =P ®Py,
is the unique probability measure on F such that for all A; € Fi, Ay € Fo,
P(A; x Ag) =P1(A41)Py(As).

Its existence is related to Fubini’s theorem (see Appendix C). It plainly generalises to

finite products.
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4.9 Example. Thanks to separability, we have
BR") =BR)®--- @ B(R)

(with the right hand side usually denoted B(R)®™). One inclusion relies only on the
definition of the product topology, that is

B(R)®" C B(R")

holds because if Aq,..., A, are open, then A; x --- X A,, is open, so the generators of

the left hand side belong to B(R™). The opposite inclusion,
BR™) c B(R)®"

holds because an open set in R” is a countable union of the sets of the form [T, (a;,b;),

by separability, thus the generators of the left hand side belong to B(R)®™.

For infinite products, we have the following result, which also gives a canonical
construction of an infinite sequence of i.i.d. random variables with specified arbitrary

laws.

4.10 Theorem. Let piq, ji2,... be probability measures on (R, B(R)). We set

Q=J[R=RxRx...,
i=1
X (w1, wa,...) = wy, (wi,ws,...) €Q,
and
.F:U(Xl,XQ,...).
There is a unique probability measure P on (2, F) such that for every k > 1 and
Ay, ..., A € B(R), w have
]P(Al ><---XAkXRX...):,ul(Al)-...',uk(Ak).

Moreover, X1, X, ... are independent random variables on (Q, F,P) with px, = p;.

We defer its proof to Appendix D. It is based on Carathéodory’s theorem.

Recall that random variables X7, ..., X, are independent if and only if its joint law
H(X1,...,X,) is the product measure pux, ®-- @ ux, (Theorem 3.4). Using this, we prove
one of the most significant consequences of independence: the expectation of the product

is the product of the expectations.

4.11 Theorem. Let X1,..., X, be integrable random variables. If they are independent,
then X1 - ... - X, s integrable and

E(X1-...-Xn) =EX;-...-EX,.
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Proof. We have,

E|X1 .. Xn| :/ |£L’1 . ‘(En‘d/l,(xh___7xn)(l'1,...,xn)

n

:/ |z1 @ |dpx, (1) .. dux, (z5)

“1I / sl (),
=1

where in the second equality we use independence and in the last one — Fubini’s theorem.
This shows that X; -...- X, is integrable. The proof of the identity then follows exactly

the same lines. O

Of course, the converse statement is not true. Take for instance a uniform random
variable X on {—1,0,1} and Y = | X|. Then E(XY)=0=EX -EY, but X and Y are
not independent.

As a useful corollary, independent random variables are uncorrelated, so we also
have that the variance of the sum of independent random variables is the sum of their

variances (recall Theorem 4.7).

4.12 Corollary. If X1, Xs are independent, then Cov(X1,X2) = 0. In particular, if

X1,..., X, are independent square-integrable, then

Var (i Xi> = iVar(Xi).

Since Fx determines the law of X, it should be possible to express EX using it.
We finish this chapter with such a formula which is obtained from a simple trick that

T = fow dt, x > 0, combined with Fubini’s theorem.

4.13 Theorem. If X is a nonnegative random variable, then
EX:/ P(X > t)dt.
0

Proof. We have,

X [e%) o [e%)
EX:EQ dt):E/ vt [TEvc= [TRE g
0 0 0 0

where the usage of Fubini’s theorem is justified because 1x~; is a nonnegative function.

O
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4.4 Exercises

1.

10.

11.

12.

13.

An urn contains N balls among which exactly b are yellow. We pick uniformly at
random n (n < N) balls without replacement. Let X be the number of yellow balls

picked. Find the expectation and variance of X.

Show that a nonnegative random variable X is integrable if and only if

Z]P’(X >n) < o0.
n=1

. Let p > 0. If X is a nonnegative random variable, then

EX? = p/ tPTIP (X > t)dt.
0

Give an analogous formula for Ef(X) for an arbitrary increasing and differentiable

function f: [0,00) — [0,00) with f(0) = 0.
Let p > 0 and X be a random variable with E|X|? < co. Then

lim P (|X| > t) = 0.
t—o0

Let X be a random variable satisfying lim;_, . tPP (| X| > t) = 0. Show that for every
0 < § < 1, we have E|X|!7% < oo. Give an example of such a random variable for

which E|X| = 4oc.

Suppose X and Y are independent random variables and the distribution function of

X is continuous. Then P(X =Y) =0.

Let X and Y be independent random variables taking values in S = {z € C, |z| = 1}.

If X is uniform, then XY is also uniform.

Suppose X and Y are positive random variables with the same distribution. Does it

Let X and Y be bounded random variables. Show that X and Y are independent if
and only if for every positive integers m, n, we have E(X™Y™) = EX"™EY™.

Let X be a square-integrable random variable. Find mingeg E(X — x)2.

Let X be an integrable random variable. Show that min,cg E|X — x| is attained at
2 = Med(X), the median of X, that is any number m for which P (X >m) > 1 and
P(X <m)>1.

Let X be a square-integrable random variable. We have, |[EX —Med(X)| < 4/Var(X).

Prove properties (i)-(iii) of covariance matrices from Theorem 4.8.
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14. Suppose there is a countable family of disjoint open disks with radii r1,79,..., all
contained in the unit square [0, 1]? on the plane. If the family covers [0,1] up to a

set of (Lebesgue) measure 0, then ). r; = oo.
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5

More on random variables

5.1 Important distributions

We list several discrete and continuous laws of random variables that appear very often

in probability theory.

)

The Dirac delta distribution. For a € R, let X be an a.s. constant random variable,

Then
Hx = da

is the Dirac delta distribution at a. We have,

EX =a, Var(X) = 0.

The Bernoulli distribution. For p € [0,1], let X be a random variable taking two

values 0 and 1 with probabilities
P(X=1)=p, P(X=0)=1-p.

Then
px = (1 —p)do + pdy

is the Bernoulli distribution with parameter p. We have,
EX =p, Var(X) =p(1 —p).
Notation: X ~ Ber(p).

The binomial distribution. For an integer n > 1 and p € [0,1], let X be a random
variable taking values {0,1,...,n} with probabilities

P(X =k)= (Z)pk‘u —p)" 7k, 0<k<n

Then

n

_ n k n—k
px =Y (k>p (1—=p)" "6
k=0
is the Binomial distribution with parameters n and p. It can be directly checked that

X has the same law as X7 + -+ + X,

where X1, ..., X,, arei.i.d. Bernoulli random variables with parameter p, which gives

a very convenient probabilistic representation of X. In other words,

X is the number of successes in n independent Bernoulli trials.
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We have,
EX = E(X) +... 4+ X,) =nEX; = np
and
Var(X) = nVar(X;) = np(1 — p).

Notation: X ~ Bin(n,p).

The Poisson distribution. For A > 0, let X be a random variable taking values
{0,1,2,...} with probabilities
)\k
P(X =k) :e—AF, k> 0.
Then
Hx = Ze ﬁ(sk
k=0

is the Poisson distribution with parameter A. We will see later that this distribution
arises as an appropriate limit of the Binomial distribution with parameters n and
A/n as n — oo. In other words, X is “the number of successes in n independent
Bernoulli trials each with probability of success %” as n — oo, so that the rate of
success is A. This distribution models well the number of events occuring in a fixed
interval of time if these events occur with a constant mean rate A, independently of

the time since the last event, say the number of calls in a busy call centre.
We have,

EX =), Var(X) = A.
Notation: X ~ Poiss(\).

The geometric distribution. For p € [0,1], let X be a random variable taking values

{1,2,...} with probabilities
P(X=k)=(1-p)"p, k>1

Then

o0

px = (1—p)*"ps
k=1
is the Geometric distribution with parameter p. It can be directly checked that

X has the same law as inf{n > 1, X,, =1},

where X7, X5, ... are i.i.d. Bernoulli random variables with parameter p. In other

words,

X is the number of trials in independent Bernoulli trials until first success.

We have,
1 1-
EX ==,  Var(X)=—".
p p

Notation: X ~ Geom(p).
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6)

The uniform distribution. For a Borel set K in R™ of positive finite Lebesgue measure

(volume) |K|, let X be a random variable with density function

f(ﬂc)—|?1‘1K(gc)7 x e R".
Then 4 |
NK .
px(4) = [ jone = SRS aeBE),

We say that px is the uniform measure on K. We have,
1
EX = — / zdx (the barycentre of K).
K| Jk

Notation: X ~ Unif(K).

In particular, if K =[0,1] in R, X is uniform on the unit interval [0, 1] and we have

1 1
]EX—i, Var(X)—E
The exponential distribution. For A > 0, let X be a random variable with density

function

flx) = Ae M l(o,w)(x), r € R.

We say that px (or X) has the exponential distribution with parameter A. This is a
continuous analogue of the geometric distribution. It has the so-called memory-less

property: for every s,t > 0,
P(X>s+tX >s)=P(X >1)

which characterises it uniquely among continuous distributions (see exercises). We
have,
1 1

R Var(X) = —.

EX = 2

Notation: X ~ Exp(}).

The gamma distribution. For S, A\ > 0, let X be a random variable with density
function

B
f(z) = Q(ﬂ)xﬁ Lo (@), zER,

where
o]
(B = / B tetdt,
0

is the Gamma function. We say that pux (or X) has the Gamma distribution with
parameters S and \. When § = n is a positive integer, we have a nice probabilistic
representation,

X has the same law as X7 + -+ + X,
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10)

11)

where Xi,...,X, are i.i.d. exponential random variables with parameter A\. We

have,

_B _B
EX =17,  Va(X)= 5.

Notation: X ~ Gamma(3, A).

The beta distribution. For a;, 5 > 0, let X be a random variable with density function

f(z) = Bla B)xa_l(l—x)ﬁ_l 10,1y (), x € R,
e (a)L(B)
0 8) — Yacty paeig, D@L
Bla.g) = [ et — = L,

is the Beta function. We say that px (or X) has the Beta distribution with pa-
rameters «, 5. This distribution appears naturally as a marginal of a random vector

uniform on the centred unit Euclidean ball. We have,

o af

EX=0rp V)= i rer s

Notation: X ~ Beta(q, ).

The Cauchy distribution. Let X be a random variable with density function

1

= eR.
) L

/()

We say that pux (or X) has the standard Cauchy distribution. It has the following
stability property: for every ai,...,a, € R,

a1 X1 + -+ a, X,, has the same law as (Z la;|) X,

where X1, ..., X, areii.d. copies of X. Cauchy random variables are not integrable.
Notation: X ~ Cauchy(1).

The Gaussian distribution. Let X be a random variable with density function

1
f(z) = \/Te_IZ/Q, x €R.
s

We say that pux (or X) has the standard Gaussian (or normal) distribution. We

have,
EX =0, Var(X) = 1.
Notation: X ~ N(0,1).

For ;1 € R and o > 0 consider
Y=pu+oX.

This a Gaussian random variable with parameters p and o. It has density

1 (z—p)?
g(z) = e T, r €R.

V2o
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We have,
EY =pu,  Var(Y) =0

Notation: Y ~ N(u,o?).

The key property of the Gaussian distribution is that sums of independent Gaussians
are Gaussian. Formally, let Y7 ~ N(p1,0%),Ys ~ N(u2,0%) be two independent

Gaussian random variables. Then,
Yy + Yo ~ N(py + pi2, 03 + 03). (5.1)

We prove this later. Because of the central limit theorem, Gaussian random variables

are ubiquitous.

5.2 Gaussian vectors

Let X1,...,X, beii.d. standard Gaussian random variables. The vector
X = (X1, X)

is called a standard Gaussian random vector in R™. It has density
flz) = ﬁ ie*“ﬁ/2 = (27r)7"/2e*|””‘2/2 rxeR"
o V2 ’

(here |z| = /> a7 is the Euclidean norm of z). Note that X enjoys at the same
time two important features: 1) X has independent components (its law is a product
measure), 2) because the density of X is rotationally invariant, so is X, that is for every

orthonormal matrix U € O(n),
UX has the same law as X.

We have,
EX =0 (¢ R"), Cov(X) = Idpxn.

Notation: X ~ N(0, L,xn).

We say that a random vector Y in R™ is Gaussian, if
Y has the same law as AX + b,

for some m x n matrix A and vector b € R™, where X ~ N(0,1,x,). In other words,

Gaussian vectors are defined as affine images of standard Gaussian vectors. We have,
EY = b, Q= Cov(Y) = AAT.

Notation: Y ~ N (b, Q).
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In particular, if m = n and A is nonsingular, then Y has density

L 4@ 'enen) L cpn

g(x) = NoriNArTo]

where N
i=1

is the standard scalar product on R™.
All of the claims made here are standard but very important computations and we

leave the details as exercise.

5.3 Sums of independent random variables

Recall that the convolution of two integrable functions f,g: R — R is defined as a

function
v (f % 9)(@) = /R f(z — y)g(y)dy

which by Fubini’s theorem is well-defined because w(z,y) = f(x)g(y) is integrable on
R2, so w(z — y,y) is also integrable on R2.

Convolutions appear naturally when we take sums of independent random variables.

5.1 Theorem. Let X and Y be independent random variables. Then the law of X +Y

is given by
pxar (@) = [ (A= odus@) = [ ixA-ndi),  AeBR),
In particular, if X has density f, then X +Y has density
) = [ 5= )y ).
If both X,Y have densities, say f,qg respectively, then
X 4+Y has density f xg.

Proof. By independence, pi(xy) = pix @ jty, thus

pxty (A) = pxy) {(z,y) €R?, z+y e A} = / dpx (z)dpy ()
(z,y)ER?, z+ycA

= /IER UyeAm duy(y)] dpx (),

where the last equality follows by Fubini’s theorem. Since fyeA—x dpy (y) = py (A —x),
the first identity follows. Note that swapping the roles of X and Y above gives also the
identity

e (4) = [ (A= )duty).
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If X has density f, we have px( = A y z)dz, so by a change of variables

x = z —y and Fubini’s theorem, we get

ey (A) = / [ @i )

- /}R /A £z — y)daduy (y)
-/ [ / f(z—y)duy(y)} dz,

so h(z) = [, f(z—y)dpy (y) = ]Ef(z —Y) is the density of X +Y. Finally, if Y has also
densruy, say g, then this becomes h(z fR (y)dy, that is h = f x g. O

Sometimes we use the notation px * py to denote pxyy. To illustrate this theorem,

we consider the example of sums of independent Gaussians.

5.2 Example. Let X ~ N(0,1), Y ~ N(0,0?) be independent. The densities of X
and Y are respectively f(z) = \/%e_ﬁﬂ and g(y) = ﬁe‘fﬂ, Thus the density of
X +Y is given by

1
::j/jTZAfznﬂx)dx::AAA, o~ 32 —gkpa’ g,
R

2no Jr
1 _lﬁ( )2 )2
=5-]¢’ 7 V) (iR g
o JRr
1 _1_1 2 1,2 o2
=_——¢ 21477 e 2 du-/+—
2no R 140
1 11 .2

=~ e 211e27

V211 + o2
that is
X+Y ~N(0,1+0?).

Using this, linearity and the fact that for Y ~ N(u,0?) we can write Y = y+ o X for a

standard Gaussian X, we can easily deduce (5.1).

5.4 Density

Recall that a random variable X has density f if for every ¢ € R,

t) = /_too f(z)dz

How to find out whether X has density and if that is the case, determine it using its

distribution function Fx?

5.3 Lemma. Let F: R — R be a nondecreasing, right-continuous function such that F’

exists a.e. Then for every a < b, we have
b
/ F' < F(b) — F(a).
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Proof. By Fatou’s lemma,

b b _
/F’(t)dt:/ 11minf%dt<hmmf/ Ft—HS ()

6—0+
1 b+6 a+o
= liminf — / F(t)dt — / F(t)dt
5—0+ 6 b a

and the right hand side equals F(b) — F(a) by the right-continuity of F. O

5.4 Corollary. Under the assumptions of Lemma 5.3, if additionally limy_, _, F(t) =0

and limy_, o F(t) = 1, then for every x € R, we have

/f F' < F(x) and /:OF’§1—F(x).

— 00

5.5 Theorem. If X is a random variable such that F' exists a.e. and ffooo Fi =1,

then X is continuous with density

f(z) = Fi(z), if Fy(x) ewists,

0, otherwise.

Proof. By Corollary 5.4, it remains to show that for every x € R, we have foi Fi > F(x).

/ F;(+/ Fj(:/ Flo=1

and [ Fi <1- Fx(x). O

This follows from
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5.5 Exercises

1.

10.

11.

There are n different coupons and each time you obtain a coupon it is equally likely
to be any of the n types. Let Y; be the additional number of coupons collected,
after obtaining ¢ distinct types, before a new type is collected (including the new
one). Show that Y; has the geometric distribution with parameter % and find the

expected number of coupons collected before you have a complete set.

The double exponential distribution with parameter A > 0 has density f(z) =
%e_km. Find its distribution function, sketch its plot, find the mean and variance.
Let X and Y be i.i.d. exponential random variables with parameter 1. Find the

distribution of X — Y.

Let X and Y be independent Poisson random variables with parameters p and A.

Show that X + Y is a Poisson random variable with parameter p + A.

. Let X be a uniform random variable on (0,1). Find the distribution function and

density of Y = —In X. What is the distribution of Y called?

Let X be a Poisson random variable with parameter A\. Show that P(X > k) =
P(Y <), for k=1,2,..., where Y is a random variable with the Gamma distribu-

tion with parameter k.

Let X and Y be independent exponential random variables with parameters A and

w. Show that min{X, Y} has the exponential distribution with parameter A + p.

Let X1, Xo, ... be independent exponential random variables with parameter 1. Show
that for every n, the distribution of X + ...+ X,, is Gamma(n). Generalise this to
sums of independent random variables with Gamma distributions: if Xi,...,X,, are

independent with X; ~ I'(3;), then > | X; ~T(3"1, ;).

Let (X,Y) be a random vector in R? with density f(x,y) = cxylocz<y<i. Find ¢
and P(X +Y < 1). Are X and Y independent? Find the density of (X/Y,Y). Are
X/Y and Y independent?

Let X and Y be independent standard Gaussian random variables. Show that X /Y
has the Cauchy distribution.

Let X = (X1,...,X,) be arandom vector in R™ uniformly distributed on the simplex
{zx eR", z1+...+x, <1,21,...,2, > 0}. Find EX;, EX?, EX; X5, the covariance

matrix of X and its determinant.

Let Uy,...,U, be a sequence of i.i.d. random variables, each uniform on [0,1]. Let
Uy,..., U} be its nondecreasing rearrangement, that is Uy < ... < U}. In par-
ticular, Uy = min{Uy,...,U,} and U} = max{Ui,...,U,}. Show that the vector
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

(Uf,...,U}) is uniform on the simplex {x € R", 0 <x; < ... <z, <1}. Find EU}

for 1 <k <n.

Show the lack of memory property characterises the exponential distribution. Specif-
ically, let X be a random variable such that for every positive s and ¢, P (X > s) > 0
and P (X > s+tX > s) =P (X > t). Show that X has the exponential distribution.

Let X be a random variable such that there is a function g: R — R such that
Fx(t) = ffoo g(x)dz for every t € R. Then X is continuous and g is the density of
X.

Let Uy, Us, Us be independent uniform random variables on [—1,1]. Find the density
of Uy + Uy and Uy + Us + Us.

Let X and Y be independent random variables with densities f and g respectively.

Show that Z = X/Y has density h(z) = [*_|y|f(y2)g(y)dy, z € R.

Let X be a standard Gaussian random variable and Y be an exponential random
variable with parameter 1, independent of X. Show that +/2Y X has the symmetric

(two-sided) exponential distribution with parameter 1.

Let X1, X5, X3 be i.i.d. standard Gaussian random variables. Find the mean and

variance of Y = 3X; — X 4+ 2X3. Find its density.

Show that a continuous Gaussian random vector in R™ has independent components

if and only if they are uncorrelated.

Give an example of a random vector (X,Y) such that X and Y are uncorrelated

Gaussian random variables but X and Y are not independent.

Let (X,Y) be a standard Gaussian random vector in R?. Let p € (—1,1) and define

U VIFPHVIZE x4 VTS VT=hy
[v]= IEHVISSy y VTEP_VIZ5 i

Find the density of (U, V). Is this a Gaussian random vector? What is its covariance
matrix? What is the distribution of U and V7 Determine the values of p for which

U and V are independent.

Let p € (—1,1) and let (U, V) be a random vector in R? with density

1
Com/1— p2

Is it a Gaussian random vector? Find the covariance matrix of (U,V). Find the

flu,v) exp {—2(11_}@)(112 — 2puv + 112)} , (u,v) € R%

distributions of the marginals U and V. Determine the values of p for which U and

V' are independent.

50



22.

23.

24.

25.

Suppose (X,Y) is a centred (i.e., EX = EY = 0) Gaussian random vector in R? with
Cov([¥]) = [31]. Find, a) the density of (X,Y), b) the density of X + 3Y, ¢) all
a € R for which X +Y and X + oY are independent.

Let G be a standard Gaussian vector in R™ and let U be an n x n orthogonal matrix.

Find the density of UG. Are the components of this vector independent?

Let g be a standard Gaussian random variable. Show that Eg?™ = 1-3-...-(2m—1),

m=1,2,....

Using Fubini’s theorem and the fact that the standard Gaussian density integrates
to 1, find the volume of a FEuclidean ball in R™ of radius 1. What is the radius of a

Euclidean ball of volume 1?7 What is its asymptotics for large n?
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6 Important inequalities and notions of convergence

6.1 Basic probabilistic inequalities

One of the simplest and very useful probabilistic inequalities is a tail bound by expec-

tation: the so-called Chebyshev’s inequality.

6.1 Theorem (Chebyshev’s inequality). If X is a nonnegative random variable, then
for every t > 0,
1
P(X >t) < ;EX .

Proof. Since X > X 1{x>} > t1{x>y), taking the expectation yields
EX > Etl{XZt} =tP(X >1).
O

There are several variants, easily deduced from Chebyshev’s inequality by mono-
tonicity of certain functions. For a nonnegative random variable X and ¢t > 0, using the
power function zP, p > 0, we get

1
P(X>t)=P(X?>t') < t—pEXp. (6.1)

For a real-valued random variable X, every t € R and A > 0, using the exponential

Az

function e**, we have

P(X>t)=PO\X > M) < %Ee”. (6.2)

For a real-valued random variable X, every ¢ € R, using the square function z? and

variance, we have
1 5 1
PX -EX|>t) < t—QIE|X —EX|* = t—QVar(X). (6.3)

Another general and helpful inequality is about convex functions. Recall that a
function f: R — R is convex if f(Azx + (1 — ANy) < Af(x) + (1 — \)f(y) for every
A €10,1] and z,y € R. By induction, this can be extended to

f (Z )\il’z) <Y Nif ()
i=1 i=1
for every Aq,..., A, > such that Z,?:l A; =1 and every z1,...,x, € R. The weights \;
can of course be interpreted in probabilistic terms: if X is a random variable taking the
value z; with probability A;, then Y A\;z; = EX, whereas > \;f(z;) = Ef(X), so we
have

fEX) <Ef(X).

This generalises to arbitrary random variables and is called Jensen’s inequality.
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6.2 Theorem (Jensen’s inequality). If f: R — R is a convez function and X is a
random variable such that both EX and Ef(X) exist, then

FEX) <Ef(X).
We shall present two proofs.

Proof 1. Suppose f is differentiable. Then by convexity, a tangent line at x( is below
the graph, so
f(x) > f(xo) + f'(20)(z — x0)

(which holds for every z and z). We set © = X, x9 = EX and take the expectation of
both sides to get

Ef(X) = E[f(EX) + f(EX)(X — EX)] = f(EX) + f(EX)E(X - EX) = f(EX).

If f is not differentiable, this argument can be rescued by using the fact that convex func-
tions have left and right derivatives defined everywhere (because the divided differences

of convex functions are monotone). O

Proof 2. Recall that a function is convex if and only if its epigraph is a convex set. By a
separation type argument, this gives that the convex function is a pointwise supremum
over a countable collection of linear functions. Specifically, let f: R — R be a convex
function and consider the family of linear functions with rational coefficients which are
below f,

A={l: R—>R, l(x)=ax+Db, a,beQ, £< f}.

Then

f(z) = sup {(x), z eR.
LeA

Jensen’s inequality follows: for every ¢ € A, by linearity, E¢(X) = ¢(EX), thus
Ef(X)=Esupfl(X) > supEl(X) =supl(EX) = f(EX).
le A e A e A

O

The so-called Hélder’s inequality is a very effective tool used to factor out the ex-

pectation of a product.

6.3 Theorem (Holder’s inequality). Let p,q > 1 be such that % + % = 1. For random

varitables X and Y, we have
E|XY]| < (E|[X ") (E[Y|7)/7.
In particular, when p = q = 2, this gives the Cauchy-Schwarz inequality
EIXY| < VEIXPVEY].
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Proof 1. We can assume without loss of generality that E|X|? and E|Y|? are finite
(otherwise the right hand side is 400 and there is nothing to prove). The key ingredient

is an elementary inequality for numbers.

Claim. For p,q > 1 such that % + % =1and z,y > 0, we have

Proof. By the concavity of the log function, we have

P q 1 1
log (x T y) > —logz” + ~logy? = log zy.
p p

q q
O
Setting z = X1 =_YF taking the expectation and simplifying yields the
Ex 7 Y T @y e P PHVIE ¥
desired inequality. O

Proof 2. By homogeneity we can assume that E|X|? = 1 and E|Y|? = 1. We can

1
n

also assume that |Y| > 0 a.e. (otherwise we consider max{|Y|,=} and pass to the

limit by Lebesgue’s monotone convergence theorem). Define a new probability measure
P(A) =E|Y|?14, A € F. In other words, EZ = EZ|Y| for every (P-integrable) random

variable Z. Then, by the convexity of = +— P and Jensen’s inequality,

(EX]Y])" = (EIX|[Y]'"9)" < E[X[PY|"-07 = E[XP|y|(-0PH = BX|P = 1.

6.2 L,-spaces
Given a probability space (2, F,P) and p € (0,00), we define
L,=L,(Q,F,P)={X: Q—R, X is a random variable with E|X|? < oo}

which is called the L, space (on ). Technically, L, is defined as the set of the abstract
classes of random variables which are equal a.e., but we tacitly assume that and skip
such details. We set

IXI, = BX]P)Y, X eL,

We also extend this to p = oo by setting

Lo ={X: Q= R, X is a random variable with |X| < M a.s., for some M > 0}

and

IX|loo = esssupX = inf{M >0, |X| < M as.}
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(the essential supremum of X') with the usual convention that inf @ = +oco. Equivalently,
[ X]|oo = inf{t € R, Fx(t) =1}

(exercise). We also have

X1y ——=> 1 X loc

(another exercise). The quantity || X |, is called the p-th moment of X. It is monotone

in p, which is an easy consequence of Jensen’s inequality.

6.4 Example. Let 0 <p < g¢. Take r = 1 and f(z) = |z|" which is convex. Thus for a

random variable X which is in Ly, using Jensen’s inequality, we have
E|X|" =Ef(|X[P) > f(E|X[") = (E|X|")%/,

equivalently,

1 XTlg = 11X 1lp-

In other words, the function p — || X||, of moments of the random variable X is nonde-

creasing.

6.5 Example. Holder’s inequality can be restated as: for random variables X and Y

and p, g € [1,00] with % + % =1, we have
EIXY| < [ XY [lg- (6.4)
The case p =1, ¢ = oo follows by taking the limit in Holder’s inequality.
Holder’s inequality gives the following helpful variational formula for pthm moments,
p € [1,00].
6.6 Theorem. Let p € [1,00]. For X € L, we have
IX|l, = sup{EXY, Y is a random variable with E|Y|? < 1}, (6.5)
where ]% + % =1.

Proof. To see that the supremum does not exceed the pth moment, simply apply The-
orem 6.3. To see the opposite inequality, consider Y = sgn(X)|X[P~1(|X|,*/?. Then
EXY = || X]||p, so in fact we can write “max ”instead of “sup ”in (6.5). Using this
linearisation, we can effortlessly establish the triangle inequality for the pth moment,

the so-called Minkowski’s inequality. O

6.7 Theorem (Minkowski’s inequality). Let p € [1,00]. Let X and Y be random
variables. Then

X+ Yl < 1 X1 + 1Y ]]p-
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Proof. Invoking (6.5),
IX + Y|, = sup{E(X +Y)Z, B|Z)" < 1}.

By linearity, E(X +Y)Z = EXZ 4+ EY Z. Using that sup{f + ¢} < sup f + supg and
applying again (6.5) finishes the proof. O

6.8 Remark. For every 0 < p < 1 Minkowski’s inequality fails (for instance, take X
and Y to be i.i.d. Ber(«)). Let us derive its analogue. Observe that for 0 < p < 1 and

every real numbers z, y, we have
[z +y” < |z’ + [yl (6.6)

If x +y = 0, the inequality is trivial. Otherwise, note that |¢|” > |¢| for |¢t| < 1, so using
this and the triangle inequality yields

P p
( || ) N ( vl ) O U /B o e o N e | Y
|z + y |z + y lz+yl  |r+yl  |r+yl T |z+y

Given two random variables, applying (6.6) for z = X(w), y = Y (w) and taking the

expectation gives

E/X +Y[P <EX]P +E[Y], pe(01]. (6.7)

In other words,

X+ Y5 < IXIE+ 1Y, pe(0,1]. (6.8)

The next two theorems justify that L, are in fact Banach spaces (normed spaces

which are complete, that is every Cauchy sequence converges).

6.9 Theorem. For every p € [1,00], (Lp, || - ||p) is a normed space.
Proof. To check that X — || X||, is a norm on L,, it is to be verified that
1) || X|lp, > 0 with equality if and only if X = 0 a.s.

2) IAX|lp = [ X||p, for every A € R

3) X+ Y, <X + 1Y

1) and 2) follow easily form the properties of integral and essential supremum. 3) follows

from Minkowski’s inequality. O

6.10 Theorem. Let p € [1,00]. If (Xpn)n>1 s a Cauchy sequence in L,, that is for
every € > 0, there is a positive integer N such that for every n,m > N, we have
1 X7 — Xinllp < e, then there is a random variable X in L, such that | X,, — X|, — 0.

In other words, (Ly,| - |lp) is complete, hence it is Banach space.
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Proof. Assume first that 1 < p < co. By the Cauchy condition, there is a subsequence
ny, such that

Xy = Xnullp <27, k=12

Nk+1 g Ly oo

Let
k

Y, = Z X 00 — Xon, |-

Jj=1
The sequence (Y%) is nondecreasing, hence it pointwise converges, say to Y, limy_ o, Y3 =

Y. Since ||Yx||, < 1, by Fatou’s lemma,
EY? = Elim inf Ykp < liminf IEYkp <1,
that is Y € L,. In particular, ¥ < co a.s. Consequently, the sequence

Xy = Xy + Y (Xnyyy — Xn))
i<k

converges a.s., say to X. It remains to show that | X, — X||, — 0. For a fixed m, by

Fatou’s lemma, we get
E| X, — X|P = Elimkinf | X — X, [P < limkianE|Xm — X, 17,
thus by the Cauchy condition, for every € > 0, there is N such that for every m > N,
E| X, — X|P <e.

This finishes the argument.

For p = oo, we consider the sets

Ap = {1 Xk] > [[ Xl }

Their union E is of measure zero, whereas on E€, the variables X,, converge uniformly

to a bounded random variable X (because R is complete). O

The case p = 2 is the most important because Lo is Hilbert space. The scalar product

(-,-): Ly x Ly — R is defined by
(X,Y)=EXY, XY € L.

Then
[ X][2 = VX, X).

Crucially, we have the parallelogram identity: for X, Y € Lo, we have
X + Y3+ 1X = Y3 = 2(1X[13 + [Y]3)- (6.9)

A consequence of this is that balls in Ly are round and orthogonal projection is well

defined.
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6.11 Theorem. Let H be a complete linear subspace of Lo. Then for every random
variable X in Lo, there is a unique random variable Y € H such that the following two

conditions hold

(i) Y is closest to X in H, that is

|IX = Y| =inf{||X — Z|2,Z € H},

(i) for every Z € H, (X —Y,Z)=0, that is X —Y is orthogonal to H.

The uniqueness is understood as follows: if Y € H satisfies either (i) or (ii), then
|[Y =Y|2=0, that is Y =Y a.s.

Proof. Let d denote the infimum in (i). Then, there are Y;, € H such that ||Y,,—X||2 — d.
2
2)

Since the left hand side converges to 2d as m,n — oo, we conclude that (Y;,) is a Cauchy

By the parallelogram law,

Yot Yn

Y, 2 Y = Y
X = Yall3 + X — Vi3 =2 (HX Bt

2

2

Z 2d+ ||Yn - Ym||2-

sequence in H. Since H is assumed to be complete, ||Y;, — Y]||2 — 0 for some Y € H.
Thus, || X — Y|z = d, which establishes (i).
To get (ii), fix Z € H and note that for every t € R, by (i), we have

[X =¥ +tZ)]2 2 | X =Y,
which after squaring and rearranging gives
2|3 —2t(X - Y, Z)> 0.

Since this holds for all small ¢ (both positive and negative), necessarily the linear term
has to vanish, that is (X — Y, Z)= 0.
For the uniqueness, suppose Y satisfies (i). Then, by the parallelogram law,

2 2

Y -V
2

Y+Y
2

2d=|X —Y|3+|IX -Y|3=2 HX -

2 2

s0 [|[Y = Y]||3 <0, hence ||Y — Y|y = 0 and consequently, Y =Y a.s. If Y satisfies (ii),
then since Y —Y € H, we get<X717,}77Y>: 0. Since also<XfY,}7fY>: 0, we
get<}7fY,}77Y>:0,sol7:Ya.s. O
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6.3 Notions of convergence

A sequence of random variables (X,,) converges to a random variable X

a) almost surely if P ({w € Q, lim, o X,(w) = X(w)}) =1, denoted X,, = X

n— oo

b) in probability if for every ¢ > 0, P (| X,, — X| > ¢) — 0, denoted X,, —— 0

n— oo

¢) in Ly, p > 0, if E|X, — X|P —— 0, denoted X, —2— X.
n—oo

n—00
For instance, let © = {1,2} and P (1) = P(2) = 3, X,(1) = —1/n, X,(2) = 1/n.
We have

a) X, —> 0 because X,,(w) — 0 for every w € Q,
n—oo

b) X, —% 4 0 because P(| X, >e)=P(L>¢) =0,
n—oo

c) X, —%_, 0 because E|X,|P =211 —0.
n—oo

We have two results, saying that the convergence in probability is the weakest among

the three.

6.12 Theorem. If a sequence of random variables (X,) converges to X a.s. then it

also converges in probability, but in general not conversely.

Proof. By the definition of the limit of a sequence,

{lieran:X}:ﬂ U N {|Xn—X|<}}.

I>1 N>1n>N

For any events A;, P (ﬂlzl Al) = 1if and only if P(4;) = 1 for all [ > 1. Therefore,

X,, =% 0 is equivalent to: for every [ > 1,
n—oo

Pl ﬂ{|XnX|<1} =1

N>1n>N

By monotonicity with respect to IV,

T\ ﬂ{an—X|<;} = Jim P ﬂ{Xn—X<}}

N>1n>N n>N

Finally, observe that by the inclusion (1,5 5 {IXn = X| <1} c {|IXNn—X| < 1}, we

have

1 1
= 1 —_— - < 1 - -
L= lim P N {|Xn X| < z} _ngréo]P’<{|XN X| < l})
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so passing to the complements, for every [ > 1,

0< lim IP’({|XN—X|21}) <0,
N—o0 l

Therefore, for every € > 0, limy_oo P ({| Xy — X| > €}) = 0, that is X, % 0. The

following example of a sequence convergent in probability but not a.s. finishes the proof.

6.13 Example. Let = [0,1] and P(-) be the uniform probability measure. Let
X1 =1, Xo = 1p9,1/2;, X3 = 1p172.1), Xa = Ljo,17a), X5 = Ljnja12) X6 = 1p1/2,3/4)
X7 = 13/4,1), etc., Xon, Xony1,..., Xont1_; are indicators of a wandering interval of

length 27" shifting to right by 27" every increment of the index. We have

a) X, —— 0 because for every ¢ > 0, P(|X,| > &) < 2% when 2F < n < 281, which

n—roo
goes to 0 as n goes to co.
b) X,, %8 0 because for every w € (0,1), the sequence (X,,(w)) contains infinitely many

. . . a.s .
0 and 1, so it is not convergent; moreover, if X,, ——— X for some random variable
n— o0

X other than 0, then by Theorem 6.12, X, — P + X and from the uniqueness of
n—oo

limits in probability (homework!), X = 0 a.s., contradiction.

L
¢) X,, —— 0 because E|X,,|P = 27*P when 2¥ < n < 28! which goes to 0 as n goes
n—oo

to oo.
O

6.14 Theorem. If a sequence of random variables (X,,) converges to X in L, for some

p > 0, then it also converges in probability, but in general not conversely.
Proof. By Chebyshev’s inequality (6.1),

1
P(|X, — X|>¢) < —E|X, — X|P —— 0,
b n— 00

so X, P . X. The following example of a sequence convergent in probability but not
n—oo

in L, finishes the proof. O

6.15 Example. Let = [0,1] and P(-) be the uniform probability measure. Let
X, =nt/p 1(0,1/n)- We have

% which goes to 0 as n goes to

a) X, — 4 0 because for every & > 0, P(|X,| >¢) <

n—00
o0

L . L
b) X, - 0 because E|X,|P = n% = 1; moreover, if X,, —— X for some random
n— oo

variable X other than 0, then by Theorem 6.14, X, P X and from the uniqueness
n—oo

of limits in probability (homework!), X = 0 a.s., contradiction.
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¢) X,, —=2 0 because for every w > 0, the sequence X, (w) becomes eventually con-
n— oo

stant 0.

Theorems (6.12), (6.14) and Examples 6.13, 6.15 can be summarised in the following

diagram.

a.s. i in L,

in P

We record a few basic algebraic properties of the three notions of convergence.

1) If X,, converges to X a.s./in probability/in L, and Y,, converges to ¥ a.s./in proba-
bility /in L,, then X,, + Y, converges to X + Y a.s./in probability/in L,.

2) If X,, converges to X a.s./in probability and Y;, converges to Y a.s./in probability,
then X, - Y, converges to X - Y a.s./in probability.

3) If 0 < p < q and X,, converges to X in L,, then X,, converges to X in L,,.

Immediately, 1) and 2) for the almost sure convergence follow from those statements
for sequences of numbers since the intersection of two events of probability 1 is of
probability 1.

Property 1) for L, convergence follows from Minkowski’s inequality (Theorem 6.7)
and Property 3) follows from the monotonicity of moments (Example 6.4).

Establishing 1) and 2) directly from definition is cumbersome. Instead, we first prove
a convenient equivalent condition for convergence in probability in terms of almost sure

convergence.

6.16 Theorem (Riesz). If a sequence (X,,) of random variables converges to a random
variable X in probability, then there is a subsequence (Xp,,)r which converges to X

almost surely.

Proof. Since for every e, P(|X,, — X| >¢) — 0, then we can find an index n; such
that P (|Xn1 -X|> 2_1) < 271 By the same logic, we can find an index ny > ny
such that P (|X,, — X|>27%) < 272, etc. We get a subsequence (X, ), such that
P (| Xn, —X|>27%) < 27" for every k. Since the series Y ;- P (|X,, — X|>27F)
converges, by the first Borel-Cantelli lemma (Lemma 3.14), with probability 1 only
finitely many events A, = {|X,,, — X| > 27%} occur. When this happens, X,,, — X, so

X, — X. 0
k—o0
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6.17 Theorem. A sequence (X,) of random variables converges to a random variable
X in probability if and only if every subsequence (X, )k contains a further subsequence

(X, )1 which converges to X almost surely.

Proof. (=) It follows directly from Theorem 6.16.

(«) If (X,,) does not converge to X in probability, then there is € > 0 such that
P(]X, — X| > ¢) - 0. Consequently, there is ¢’ > 0 and a subsequence (X, ) for which
P(|Xn, — X]| >¢) > €. By the assumption, there is a subsequence (X, )i convergent
to X almost surely, in particular, in probability, so P <|Xnkl - X| > s) — 0. This

contradiction finishes the proof. O

Going back to the algebraic properties 1) and 2) for convergence in probability, we
can easily justify them using that they hold for convergence almost surely. For 1), say
Sn = X, +Y,, does not converge in probability to S = X + Y. Then as in the proof of
Theorem 6.17, P (|S,, — S| > ¢) > & for some ¢,¢’ > 0 and a subsequence (ny). Using
Theorem 6.17, there is a further subsequence (ng,) such that (Xnkl)l converges to X
a.s. and a further subsequence (for simplicity, denote it the same) such that (Y"lkl)l

converges to Y a.s.. Then Sy, 224 S, which contradicts P (|S,, — S| > ¢) > €.
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6.4 Exercises

1.

10.

11.

Show that the probability that in n throws of a fair die the number of sixes lies

between gn —/n and gn + /n is at least 5%.

. Let X be a random variable with density %e*m on R. Show that for every p > 1,

c1p < | X ||, < eop for some absolute constants c1,c2 > 0.

Let g be a standard Gaussian random variable. Show that for every p > 1, we have

c1y/P < ||gllp < c2/p for some universal constants ¢y, cz > 0.
Show that for every random variable X, we have || X || = inf{t € R, Fx(t) = 1}.
Show that for every random variable X, we have | X||, —— || X||co-

p—00

If E|X [P0 < oo for some py > 0, then Elog, |X| < oo and

(E|X|P)Y/P s oltlog | X]
p—0+

(log, * = max{logz,0}, log_ x = max{—logx,0}, we set Elog|X| = Elog, [X| —
Elog_ |X| € [—00,00) and use the convention that e~> = 0). Thus it makes sense

to define the Oth moment as || X||o = e®l°8 X!,

Let X be a random variable with values in an interval [0,a]. Show that for every ¢

in this interval, we have
EX —t

a—t

P(X>t)>
Prove the Payley-Zygmund inequality: for a nonnegative random variable X and
every 6 € [0, 1], we have

(Ex)?

> (1 —6)2 =2,
P(X > 0EX) > (1-6)* 2o

Prove that for nonnegative random variables X and Y, we have

2
eX 5 EVXF
Y - EY

Let p € (0,1) and ¢ < 0 be such that % + % = 1. Then for every random variables X
and Y, we have
EIXY| > (E|X[?)"/?(E[Y]9)".

Let X1, Xo,... be ii.d. positive random variables with EX3 < co. Let

X+ X0\
%:E(1+‘F>,
n

Prove that a% < Gp_1Qp41, N > 2.
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12.

13.

14.

15.

16.

17.

18.

19.

Let X, X1, Xo, ... be identically distributed random variables such that P (X > ¢) > 0

P(X>nt) _
P(X>"t) = 0. For

n > 1, let a, be the smallest number a such that nP (X > a) < 1. Show that for

for every ¢t > 0. Suppose that for every n > 1, we have lim;_,
every € > 0, we have max;<, X; < (1 + €)a,, with high probability as n — oo, i.e.
P (max;<, X; < (14+¢)a,) —— 1.

- n—oo

Let X be a random variable such that Ee® Xl < oo for some § > 0. Show that
E|X|P < oo for every p > 0.

Let X be a random variable such that Ee!X < oo for every t € R. Show that the

function t — log Ee’X is convex on R.

Let X be a random variable such that E|X|? < oo for every p > 0. Show that the

function p +— log || X|;/, is convex on (0, c0).

Let €1,...,&, be independent random signs, that is P(g; = —1) = £ = P(g; = 1),
i < n. Prove that there is a positive constant ¢ such that for every n > 1 and real
numbers aq, ..., a,, we have
n
P Z a;E;| > >c
i=1
Let e1,¢€9,... be i.i.d. symmetric random signs. Show that there is a constant ¢ > 0
such that for every n > 1 and reals aq,...,a,, we have
n
P Zaif‘:i < >c
i=1
Let €1,€9,... be i.i.d. symmetric random signs. Show that there is a constant ¢ > 0
such that for every n > 1 and reals a,...,a,, we have
n
P Z a;gq| > >c
i=1
The goal is to prove Bernstein’s inequality: for every n, every real numbers ay, ..., a,
and t > 0, we have
n t2
P a;gq| >t SQexp{—nQ},
< ; 2> i 4
where €1,...,¢e, are i.i.d. symmetric random signs.

a) Show that cosh(t) < et’/2, t € R.
b) Find Ee®c:.

c) Let S =Y a;e;. Show that for every ¢, A > 0, we have P (S > t) < e MEe.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

d) Optimising over A conclude that P (S > t) < et /(2 a}),

e) Using symmetry, conclude that P (|S| > t) < 2¢~t*/(2Xad),

Hoeffding’s lemma: for a random variable X such that a < X < b a.s. for some

a < b, we have Ee*(X—EX) < exp {M}, u € R.

Hoeffding’s inequality: for independent random variables X1, ..., X,, such that a; <

X; < b; a.s. for some a; < b;, i < n, we have

2t2
j— i=1\"1 ?

n n
>xoEY X
i=1 i=1
Khinchin’s inequality: for every p > 0, there are positive constants A,, B, which

depend only on p such that for every n and every real numbers a4, ..., a,, we have

n 1/2 p\ 1/p n 1/2
Lt i i=1

n
g ;&4
=1
where €1,...,¢, are i.i.d. symmetric random signs.

Let €1,€9,... be i.i.d. symmetric random signs. Show that

. e1+...4+¢en
Pl - <1) =1
(171£>solip V2nlogn )

Let X be an integrable random variable and define

-n, X<-n
n, X >n.
Does the sequence X,, converge a.s., in L1, in probability?
Show that if X, P 5 X and Xn . Y, then P(X =Y) =1 (in other words,
n—roo n—r oo
the limit in probability is unique).

1
n

Let X1,Xy,... be iid. integrable random variables. Prove that - maxg<, |Xk|

converges to 0 in probability.
Show that if X,, —— X and Y,, —— Y, then X,,Y,, —— XY.
n—00 n—00 n—00

Prove that a sequence of random variables X,, converges a.s. if and only if for every

e>0,limy_ oo P (ﬂn’mZN | X — Xom| < 5) =1 (the Cauchy condition).

Prove that a sequence of random variables X,, converges in probability if and only if

for every € > 0, lim,, ;n—00 P (| X;, — X;n| > €) = 1 (the Cauchy condition).

Does a sequence of independent random signs €1, €2, ... converge a.s.?
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31.

32.

33.

34.

35.

36.

37.

38.

Let X1, Xa,... be independent random variables, X,, ~ Poiss(1/n). Does the se-

quence X,, converge a.s., in Ly, in Lo, in probability?
Show that if for every 6 > 0 we have >°° P (|X,, — X| > §) < oo, then X,, —> X.
n—roo

Show that if there is a sequence of positive numbers §,, convergent to 0 such that

S P(1X, — X| > 6,) < oo, then X, — X.
n—oo

Let X1, Xo,... be i.i.d. random variables such that P (|X;| < 1) = 1. Show that

X1Xs ... X, converges to 0 a.s. and in L.

Let V be the linear space of all random variables on a probability space (2, F,P) (two
random variables are considered equal if they are equal a.s.). Define p: V x V — R,

(X Y]

PY) =By

Show that this a metric on V, (V| p) is complete and X, P X if and only if
n—oo
p(Xn, X) — 0.

Let (2, F,P) be a discrete probability space. Show that for every sequence of random

variables (X,,) on this space, X, —" 5 X ifand only if X, %5 X.
n—oo

n— oo

Show that in general almost sure convergence is not metrisable.

Weierstrass theorem. Let f:[0,1] — R be a continuous function. For z € [0, 1] and
an integer n > 1, let \S,, , be a binomial random variable with parameters n and z.

Let g
Qo) =5f (%22).

(a) Show that @ is a polynomial of degree n (in ) (Bernstein’s polynomial of f).

(b) Using that f is bounded and uniformly continuous, combined with Chebyshev’s

inequality, show that for every € > 0, there is ng such that for all n > ngy and

E ‘f (%) - s

(c) Conclude that for every e > 0, there is a polynomial ) such that sup,¢jo 17 [f () —
Qz)| < e.

x € [0,1], we have

<e.
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7 Laws of large numbers

Suppose we roll a die n times and the outcomes are X1, Xo, ..., X,,. We expect that the

24X ghould be approximately 3.5 (the expectation of X7) as n becomes

average
large. Laws of large numbers establish that rigorously, in a fairly general situation.

Formally, we say that a sequence of random variables X1, X, ... satisfies the weak
_ EX] +..+X
n

law of large numbers if X1+'7'L‘+X" = converges to 0 in probability and
the sequence satisfies the strong law of large numbers if the convergence is almost
sure. In particular, for a sequence of identically distributed random variables, we ask
whether % m EX;. Consider two examples when no reasonable law of large
numbers holds and the opposite.

7.1 Example. Let X7, X5, ... beii.d. standard Cauchy random variables. Then it can
be checked that S, = % has the same distribution as X1, so S, is a “well spread
out” random variable which in no reasonable sense should be close to its expectation

(which in fact does not exists!), or any other constant.

7.2 Example. Let €1,¢9,... be i.i.d. symmetric random signs, that is P (g; = £1) = %

Let S, = SF=*2a By Bernstein’s inequality (Exercise 6.19), P (|S,| > t) < 2e~ /2

so the series Y07 | P (]S, > t) converges, so S, ——— 0 = Ee; (check!). In other words,
n—oo

the sequence (g,,) satisfies the strong law of large numbers.

7.1 Weak law of large numbers

Using the second moment, we can easily get a very simple version of the weak law of

large numbers for uncorrelated random variables with uniformly bounded variance.

7.3 Theorem (The Lo law of large numbers). Let X1, Xs, ... be random variables such

that E| X;|? < oo for every i. If

1
—2Var(X1—|—...—|—Xn) — 0,
n

n—oo

then denoting S, = X1+ ...+ X,

Sn Sh,
on gt L2,
n n mn—oo

In particular, this holds when the X; are uncorrelated with bounded variance, that s

Var(X;) < M for every i for some M.

Proof. We have

2
Sn _gSn
n n

1 1
= —E|S, —ES,|* = = Var(X; + ...+ X,;) —— 0.
n n

n— oo

E

Since

Var(Xy 4.4+ X,) =Y Var(X;)+2 Y Cov(X;, X;),
=1

1<i<j<n

67



when the X; are uncorrelated with bounded variance, we have

Mn M
<

1
ﬁVar(Xl +.. 4+ X))

n? n

which goes to 0 as n — oc. O

Since convergence in Ly implies convergence in probability, the above is in fact

stronger then a weak law of large numbers.

7.4 Example. Let X be a random vector in R™ uniformly distributed on the cube
[-1,1]", that is X = (Xq,...,X,) with the X; being i.i.d. uniform on [-1,1]. The
assumptions of the above Ly law of large numbers are satisfied for X2, X2,..., so in

particular
X24+.. . +X2
1 n EX% P 0

n n—00

Note that EX? = % By definition, this convergence in probability means that for every

X24+...+4X2 1
p(’m_‘>5) — 0,

n 3 n—00

e>0,

or equivalently,

p(m<,/xg+...+xg<\/m)ml.

In words, a random point in a high dimensional cube is typically near the boundary of

the Euclidean ball centered at 0 of radius \/n/3.

7.5 Example. Let X;, X5, ... be i.i.d. random variables uniform on {1,...,n}. For
k>1, let
T =1inf{m > 1, {X1,..., X} =k}

This random variable can be though of as the first index (time) when we have collected
k coupons if the X; are though of as coupons given to us one by one and selected
uniformly at random (with replacement) among n different coupons. We are interested
in the behaviour of 7,, as n — oo (the time needed to collect the entire set of n coupons).

For convenience we set 79 = 0 and of course 7y = 1. Let
Ty =Tk — Th—1, k>1,

which is time we wait to get a coupon of a next type after we have collected k£ — 1

different coupons. We have,

that is
k—1
Ty ~ Geom (1 - )

n
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and Ti,...,T, are independent. Plainly,
Tn:T1—|——|—Tn

Thus

n n k—]. —1 n 1 n 1
ETH—ZM—ZQ_ ) N DL o
k=1 k=1 n k:ln_k+1 klk

so for large n, we have E7,, ~ nlogn. Moreover, thanks to independence,

n n kE—1 -2 n 1
Var(r,) = ZVar(Tk) < Z (1 - ) =n? Z = < 2n?.
k=1 k k=1

=1

If we let
Tn
tn = P
nlogn
we obtain
2 _ 1 2 2 2 2
E(t, —1)" = ————E(1, —nlogn)” < ———— (E(Tn —E7,)* + (E7,, — nlogn) )
n2log”n n2log”n
4 2

~log®n  login’
This gives that t,, — 1 in Lo and in probability.

Our goal is to prove the weak law of large numbers for i.i.d. sequences under optimal

assumptions on integrability.

7.6 Theorem (The weak law of large numbers). If X1, Xo,... are i.i.d. random vari-

ables such that

tP (| X4] > t) = 0, (7.1)
then
Xi+...+X,
1+...+ . P 0, (7.2)
n n—o0

where pn, = EX7 111x,|<n}-

7.7 Remark. The assumption is optimal in the following sense: condition (7.1) is

necessary for existence of a sequence a,, such that

X140+ X P
—a

n
n n— 00

(see exercises).
To prove the theorem, we first establish a fairly general lemma.

7.8 Lemma. Let {X,, k}n>11<k<n be a triangular array of random variables such that
for everyn, Xp1,...,Xnn are independent (i.e. they are independent within each row).

Let (by,) be a sequence of positive numbers such that b, — oo. Let
Xk = Xk 1{1 X 4]0}
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and
n
S
k=1
If the following two conditions are satisfied

(7') ZZ:I P (|Xn,k| > bn) T 0)

oo

(i) by? > h_ EX2, ——0,
’ n—00

then ~
S,—ES, »p 0,
by, n—00
where Sp, =Y 11 Xk
Proof. Fix € > 0. First note that
n - E ~n n - ]E ~n o
pl|2n=B ) ) _p (|2 B g 28,
bn bn
n E ~n T
(R B
- S, —ES,
< —_— .
_P(Sn#5n>+}?< , >€>

We show that each of the two terms on the right hand side goes to 0 as n goes to co.
For the first term, since .S,, # S,, implies that for some F, Xok # ka which in turn
implies that | X, x| > by, by the union bound, we have,

P (S #5,) < ip (Kuk # Ko) < iP(|Xn,k| > by) ——0,
k=1 k=1

— 00

by (i). It remains to handle the second term. By Chebyshev’s inequality, the indepen-
dence of the )~(n7k and a simple bound Var(Y) < EY?2, we get

- - N -2
S, —ES, 1 1S, —ES, ~
P(bn >5>§€2E 5 :gbVarS 726%;\@1" nk)
1 2
_52b2 ZEX”k
™ k=1

The right hand side goes to 0 as n goes to co thanks to (ii). This finishes the proof. O
Proof of Theorem 7.6. We use Lemma 7.8 with X, , = X} and b, = n. Then
Xn,k: = Xk: 1\Xk\§n

which has the same law as X3 1|x,|<,. It suffices to check (i) and (ii) of Lemma 7.8

because its assertion is exactly (7.2), due to the fact that

ESn = EXi1jx,|<n = nfin-
k=1
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For (i), we simply have

> P (I Xnkl >bn) =D P(IXx| >n) =nP(|X1| >n) ——0,
k=1 k=1

n—oo

by (7.1). For (ii), we have

n n
_ . 1 1
b2y EX7, = = > EXPLix, < = ﬁﬂzxf 1ix,)<n -
k=1

We compute

n

EX% 1|X1|§n = ]E/ 2t 1{t§|X1\, |X1|<n} dt < / 2ﬂP(|X1‘ > t) dt
0 0

Let f(t) = tP(]X1| > t). It thus remains to show that

1 n
ﬁ/o f(t)dt —— 0.

n— oo

This is a consequence of two properties of f: f(t) < tand f(t) - 0 (by (7.1)). These
in turn imply that M = sup f < co. Thus the following standard Cesaro-type lemma
finishes the proof. O

7.9 Lemma. Let f: [0,400) — [0,4+00) be a bounded function with f(t) == 0. Then

f(t)dt —— 0.

n— oo

Proof. Let M = sup f. We fix e > 0 and choose L such that f(t) < ¢ for all ¢ > L.

Then,
" LM
%/o f(t)dt (/ f+/ ):LLM+(n_L)€)<n+E<2€’

provided that n > £ This finishes the proof. O

7.10 Remark. The same argument gives a similar result for sequences: if for a sequence
(an) of real numbers we have a,, — a, then

a1+...+an
n

— a.

7.11 Remark. Our weak law of large numbers — Theorem 7.6 — in particular gives the

following: if Xy, X, ... are i.i.d. random variables with E|X;| < oo, then

Sn EX, ——0
n n— 00

(which will be strengthen to a.s. convergence in the next section, which is the content

of the strong law of large numbers). Indeed,

P(IX1| > 1) = E(t11x,5¢) < E(1X1] 11x,5¢) —— 0
t—)oo
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by Lebesgue’s dominated convergence theorem: pointwise | X1|1|x, > == 0 and | X |
— 00

is an integrable majorant (see also Exercise 4.4). Moreover, similarly,
Hn = EX, 1|X1\§n _— EXl,
n—oo

which combined with the conclusion of Theorem 7.6,

S,
ono_ Ln L} 0)
n n—oo
gives
Sn

2 _mx, —2 0.
n n—oo

7.12 Remark. Recall Exercise 4.5: if lim;_, o t?P (| X1| > t) = 0, then for every 0 < § <
1, we have E|X;|'~° < co. This shows that assumption (7.1) of Theorem 7.6 “almost”
implies that X7 is integrable. An example of a random variable with P (| X1| > t) = ﬁ,
t > e, shows that the weak law still holds ((7.1) is fulfilled), even though the expectation
does not exist. Note that if X; is a standard Cauchy random variable, then for ¢ > 1,

we have

< dx > dx 1
P(X >t =2t [ —F s &2
(1X]>#) /t m(l+x22) — /t 2rx?  ow

so (7.1) does not hold. As discussed in Example 7.1, in this case no reasonable law-of-

large-numbers-type convergence should hold.

7.13 Example. We shall describe the so-called St. Petersburg paradox. Let X7, Xo, ...

be i.i.d. random variables with the following discrete distribution
P (X; =2F) =27k, k=1,2,...

Such distribution models this simple casino game: you sit down and they toss a coin
until the first head shows up, which finishes the game and your pay is 2¢ dollars, where

k is the number of tosses. The expected value of your payout is thus

]EX1:%~2+2—12~22+~~:+00.
How much should the casino charge for this game? Is there any fair charge? (Obviously,
they cannot charge “400”.) Suppose you want to play n games, n is large. Your payout
after n games is

Sp= X1+ + X

A fair charge per game should be a “typical value” of S, /n. we cannot apply Theorem
7.6. Instead, we can estimate it using Lemma 7.8 which gives us extra flexibility in the
choice of the normalising constant b,,. We want to choose b,, as small as possible with
conditions (i) and (ii) of the lemma being satisfied. Since

P(Xy>2m) =) 277 =27+,

j=m
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the quantity in (i) for b, = 2™ equals
nP (X, >b,) =n-2""n T

If we thus choose m,, = logyn + w, with 0 < w, — oo slowly and such that m,, is
an integer, we get that nP(X; > b,) — 0. Moreover, for the quantity in (ii), since

b, = n2“", we have

2n_ 2

n n m
b—ZIEXf 1y,<p, = b—z]EXf 1y, <omn = Z 2% . 277 < 2 D gma+1 - =5 0
n n J<mn "
Thus, by Lemma 7.8, R
Sn, — ES,
“ 0.
by, n—00

It remains to find ES,,. We have,

Egn =nEX; 1x,<p, =1 Z 27 .97 = nm,,.

J<mn
Consequently, choosing w,, to be asymptotically log, log, n, that is such that log;f#zn —
1, we get ~
Sp,—ES, S, —nllogan] S, [logy ]
b,  m-2%n Cn2wn P
thus,
Sh P

1.

—
nlogsn n—oo
As a result, S, /n is typically like log, n, so a fair charge for playing n games should be

log, n per game.

7.2 Strong law of large numbers

Strong laws of large numbers concern a.s. convergence. The following simple lemma

turns out to be quite useful in such situations (see Exercises 6.31 and 6.32).

7.14 Lemma. Let X1, Xo,... be a sequence of random variables such that for every €,
we have
oo

Z (| Xn| > ¢) : (7.3)

Then,
X, 25 0.
n—oo

This also holds if for some sequence €1,¢9,... of positive numbers convergent to 0, we
have

o]

D P(IXn| > en) < o (7.4)

n=1
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Proof. From (7.3), by the first Borel-Cantelli lemma, we get
Ve >0 P(|X,| > ¢ for infinitely many n) = 0,
or, equivalently,
Ve >0 P(|X,| <e eventually) = 1.

Since the intersection of countably many certain events is a certain event, we get
1
P(VE=1,2,... |X,| < Z eventually | = 1.

By the definition of a limit, this implies that P (X,, — 0) = 1. Similarly, by (7.4), we
get
P (| X,| < e, eventually) = 1.

Since e,, — 0, by the sandwich theorem, X, — 0 with probability 1. O

As a warm-up we show the strong law of large numbers under the generous assump-
tion of a finite 4th moment. Even though we shall not need this result to prove it under
optimal assumptions, the technique employed here of analysing high enough moments

is quite useful and important.

7.15 Theorem. Let X1, Xs,... be independent random wvariables such that for all 1,
E|X;|* < C and EX; = u for some constants C > 0 and u € R. Then

X1++Xn a.s.

n n—00

Proof. Without loss of generality, we can assume that g = 0 (otherwise, we consider
X; — p; for the assumption, we can use the triangle inequality, || X; — plla < [| X4 + p)-
We have, .
E(Xi++X,)' = > EXX;X; X,
i,k 1=1
There are 5 types of terms: EX}, EX?XJZ, EX; X; X2, IEXZ-X?, EX; X; X, X, with 7, j,k,1
distinct here. By independence and p = 0, the last 3 types vanish, thus
E(X;4---+X,)* = zn:]Exf +3) EXJEX; < nC + 3n°C < 4Cn?,
i=1 i#j
where we use in the estimate that EX? = | X;[|3 < || X;]|3 < C'/2 (by the monotonicity

of moments — Example 6.4). Consequently, for € > 0, by Chebyshev’s inequality,

.o .. ... 4
P(‘Xﬁ- + X, >E>S14E(X1+ +X,) . l4c

n =

n4 et n2’

Lemma 7.14 finishes the proof. O

Our major goal here is to show Etemadi’s strong law of large numbers which assumes

only pairwise independence.
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7.16 Theorem (Etemadi). Let X1, Xs,... be pairwise independent identically dis-
tributed random variables such that E|X1| < oo. Let p =EX;. Then,

X1++Xn a.s.

n n— 00

Proof. Since X,, = X,;7 — X~ and both the positive part X;" and the negative part X,
of X, satisfy the same assumptions as X,, we can assume that X,, > 0 for every n.

As we have seen in Theorem 7.15, it is useful to be able to control higher moments
to prove a.s. convergence. Since here we only assume existence of the first moment, we
employ the technique of truncating (as in the weak law — Theorem 7.6). We divide the

whole proof into several steps.
Step I (truncation). Let
Xi = Xi 1ix, <k k>1

and

Sp=X1+---+ X, gn=X1+'~-—|—Xn.

We claim that for 2= —2°3 /it suffices to show that
n 1,
n— o0

Sn as.
Sn _as (7.5)
n n—oo

We have,

SP (X2 %) =S PN 20 =S P(x 2R < [Pz 0
k=1

k=1 k=1
Thus, by the first Borel-Cantelli lemma,
P (Xn =X, eventually) =1.
Since on the event “X,, = X’n eventually”, we have
X1 +---+ X, B X1+...+)~(n < E
n n n
for some (random) R, our claim about (7.5) follows.
Step II (variance bounds). Here we show that
o 1 ~
> 2z Var(X) < oc. (7.6)
k=1
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First note that

Var(X};) < EX? = / 2tP (|Xk\ > t) dt
0

—/Oth]P’ (\Xk| zt) dt+/k 2t]P’(\Xk| zt) dt

Thus,

1 k
1?/ 2P (|X1| > £) dt

<1
0

1
o (Z k2> 2P (| X | > t)dt

k>t

\

It is an elementary exercise to show that Ebt L < % Then the right hand side get

upper-bounded by 4 [P (| X1| > t) dt = 4E|X1|, so (7.6) follows.

Step III (convergence on a subsequence). Fix a > 1. Let k, = |a™]. Our goal in this
step is to show that

kn a.s.

ky, n—oo

that is (7.5) holds on the subsequence k,. In the next step, thanks to the monotonicity
of S, (recall we assume that the X, are nonnegative), we will extend this from the
subsequence k,, to the convergence on all the terms.

Fix € > 0. We have,

Sk, — Sy,

n

) —22““5’6 :—22 va

where in the last equality we use pairwise independence. Changing the order of sum-

mation gives,

') k 0o
_ 1 & - - 1
€ 2Z:k—2z:\/ar(X]-):6 22Var(Xj) =
n=1 T j=1 j=1 nk,>j5 "
By a simple estimate o™ > k,, > %,
E: Al,< 4:£,< 4 1
k2 — a2 T 21— am?
n:kn>j n:an>j
and, as a result,
> Skn‘*IESkn 4 > 1 ~
Z}P’ ( o > 21— - 7 Var(X;) < oo,
n=1 j=1




by (7.6). Therefore, by virtue of Lemma 7.14,
Skn - E‘gkn a.s.

kn n—00

0.

Moreover,

ESk, EXi+ - +EXy, EXi+ - +EXy, EXilxosi+- +EXy, 1x >k,
kn kn N kny, ky
_ EX11x,51+ - +EXy1x 5,
=p— 1

kn, n— oo

because EX; 1x,~, — 0 as n — 0 (recall the Cesaro-type lemma — Remark 7.10).

Step IV (convergence on all terms). For every positive integer m, there is n such that

kn, <m < ky41 and then

Sk" < Sﬂ < Sk”“
kn-‘rl om kn

(because X ;>0 for every j). Thus, for every a > 1, with probability 1,

S S S. S
,ua_l — lim inf —&» < liminf = < limsup — < limsup Zhntr o

n—oo n41 m—oo M m—oo M n—oo n

Taking, say o =1 + % and letting | — oo, we get that with probability 1,

w< liminfs—m < limsups—m < u.

m—oo M m—oo MM

This shows (7.5) and finishes the proof. O

7.17 Remark. The assumption of integrability in the strong law of large numbers,
Theorem 7.16, is necessary: if Xy, Xs,... are i.i.d. random variables such that there
is a constant ¢ € R for which IP’(limnﬁoo % = c) > 0, then E|X;| < co and

c=EX;. We leave the proof as an exercise.

7.18 Remark. If we know that the expectation is infinite, the strong law in some

sense still holds, but the limit is also infinite: if X1, X5, ... are i.i.d. random variables

such that one of the expectations EX,;",EX| is +oo and the other one is finite, then

|X1+"'+Xn | —
n

limsup,, o +00 a.s. We leave the proof as an exercise.

7.19 Remark. Let (Qg, Fo,Pp) be the infinite product of a probability space (2, F,P).
Fix an event A € F. By the strong law of large numbers, for Pg-a.e. point w =
(w1, wa,...) € Qp, we have

La(wi) +---+Ta(wn)

n n—00

E1,=P(4).

In other words, the probability of A is the limit of its frequency as the number of trials

goes to oo. This justifies the so-called frequential definition of probability.

We refer to the exercises for additional extensions and applications of the strong law

of large numbers.
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7.3 Exercises

1.

Let X be a random variable and let X’ be its independent copy. Show that for every
t>0,
P(X —X'| >2t) <2P(|X| >1).

Moreover, if a > 0 is chosen such that P (X < a) > w and P (X > —a) > u for some
u € [0, 1], then
P(X -X'|>t) >uP(|X|>t+a).

In particular, if m is a median of X, then

P(X —m|>t).

| —

P(X —X'| >t)>

Let X1, ..., X, be independent symmetric random variables, that is X; has the same

distribution as —X;. Then for every ¢t > 0,
1
sn
In particular, if the X; are identically distributed, then

P(IX14...4Xn| > 1) > %[1—exp{—nE”(|X1| > 01].

Using the symmetrisation from Exercise 7.1 and inequalities from Exercise 7.2, justify

Remark 7.7.

Let X1, X5, ... be independent random variables with
1
( n+l) ( (n+1)) 2(n+1)log(n+1)
1
P(X,=0=1- n > 1.

(n+1)log(n+1)’ -

Show that (X,,)22 ; satisfies the weak law of large numbers, that is M con-

verges in probability. Show that >~ > | P (|X,,| > n) = oo and conclude that (X,,)5°

n=1

does not satisfy the strong law of large numbers.

Let X3, X5,... be i.i.d. integrable random variables with distribution function F.

Define the sequence of empirical distribution functions by
1 n
F.(z) = n z; l{XiSfE}
1=

(which are random). Show that for every « € R, we have P (F,,(z) — F(z)) = 1.

Let X1, Xo,... be i.i.d. random variables such that P (|X;| < 1) = 1. Show that

X1Xs ... X, converges to 0 a.s. and in L;.

Let X3, X5, ... be ii.d. exponential random variables with parameter A\. Show that
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10.

11.

12.

13.

14.

15.

3.) _ Xit+ X,
n T XTroX2

_ Xi Xo+ Xo Xg++ X Xt
b) Z, = 4

converge a.s. and find their limits.

Let X7, X5, ... beii.d. random variables with density g which is positive. Show that

f(Xi)
=1 g(Xi) 500

for every continuous function f such that [ [f| < oo, we have 1 37

fR f. (This provides a method of numerical integration.)

Let f be a continuous function on [0, 1] taking values in [0, 1]. Let X;,Y7, Xo, Y5, ... be
independent random variables uniformly distributed on [0, 1]. Let Z; = 1;5(x,)>v;}-

Show that 1 "% | Z; converges almost surely to fol f

Let X7, Xo,... beii.d. random variables such that P(X; =1)=p=1-P(X; = —-1)
with % <p<1. LetS,=X;+...+ X, (arandom walk with a drift to the right).
Show that S, :—S> 0.

n—o00 0o T1 —|— —i—xn

(or show the limit does not exist).

1! 1
lim—/.../ a2+ .o+ 22dey ... day,
n—oo \/n Jo 0 !

(or show the limit does not exist).

Find
Find

Suppose that f is a continuous function on [0,1]. Find

lim/ /f (V1. .. xp)dey ... dey,
n—oo

(or show the limit does not exist).

Let X1, X3, ... be i.i.d. random variables uniform on [—1, 1]. Does the sequence

X1+ X3+ + X
n

, n=12,...,
converge a.s.?

We say that a number = € [0,1] is simply normal in an integer base b > 2, if its
sequence of digits is uniform in the sense that each of the digits {0,1,...,b — 1}
occurs with the same density 1/b, that is, formally, for every d € {0,1,...,b— 1}, we
have

lim () <, dy(e) =d}] = 5,

n—o0o N

where z = Y72 | bi with dy (), d2(x),... € {0,1,...,b—1}. Show Borel’s theorem:

almost every number x € [0,1] is simply normal in every base. On the other hand,
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16.

17.

18.

19.

20.

21.

it is not known whether e — 2, 7 — 3, or v/2 — 1 are simply normal in any given base
(although, it is of course widely believed so). It is not even known whether v/2 has

infinitely many 5’s in its decimal expansion!

We say that a random variable X is singular if its cumulative distribution function is
continuous and there is a subset A of R of Lebesgue measure 0 with P(X € A) = 1.
Fix p € (0,1), p # % Let X;, Xs,... be i.i.d. random variables with P (X; = 1) = p,
P(X;=0)=1-—p,i=1,2,.... Show that Y = >>7, % is singular. What is the
distribution of Y when p = %?

Let b be an integer, b > 3. Let X1, X5, ... beii.d. random variables with P (X; = 1) =
P(X;=0)=3,i=1,2,.... Show that Y =Y, )bi? is singular (in particular, for
b =3 we get the distribution from 2.22).

Justify Remark 7.17.

Justify Remark 7.18

Give an example of a sequence of i.i.d. random variables Xi, Xo,... for which
% converges in probability but not a.s.
Let f: [0,+00) — R be a continuous bounded function. Define its Laplace transform

L(t):/ooo e (@)de, >0,

Show that L is C> and L("™(t) = [[°(—z)"e~** f(x)dz. Let S, be the sum of n i.i.d.

exponential random variables with parameter ¢t. Show that

-1 t’nL(nfl) (t)

B/ (S:) = (1) = )

and deduce the following inversion formula for the Laplace transform

n ny(n—1) n
f(y) — nlgrolo(_l)nfl( /y)(i/_ 1)'( /y)

, y > 0.
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8 Weak convergence

8.1 Definition and equivalences

We start with a general definition. We say that a sequence (u,) of probability measures
on a metric space (F,d) converges weakly to a Borel probability measure p on (F,d)

if for every bounded continuous function f: E' — R, we have

‘/;fdﬂn';:;j./;fdﬂ~

The following equivalences explain weak convergence on the level of sets. It is some-

times referred to as the Portmanteau theorem.

8.1 Theorem. Let p, ji1, fto, - .. be Borel probability measures on a metric space (E,d).

The following are equivalent
(i) tin = 1 weakly,
(i) limsup p, (F) < pu(F) for all closed sets F in E,
(#4i) Uminf p, (G) > pu(G) for all open sets G in E,
(iv) pn(A) = p(A) for all Borel sets A in E with u(0A) = 0.

Proof. (i) = (ii): Fix € > 0 and let

g:(z) = <1 - id(a:,F)) . z€E,

+

where as usual d(z, F) = inf{d(z,y), y € F} is the distance from x to the set F. We

also define

F. = {xE E, d(x7F) < 5}7
the e-enlargement of F'. Note that for every x € F,
1p(z) < ge(2) < 1k, (2).

Moreover, the function g. is bounded and continuous (it is 1/e-Lipschitz). Thus,

lim sup p,, (F) = lim sup/ 1p duy,
E

< lim sup / gedpin
E

= / gedp
E

S/ 1p dp
E
= u(

Fe),
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where in the second equality we used (i) and the inequalities follow from the pointwise
bounds 1r < g. < 1p.. Letting ¢ — 0 in a decreasing way, we get u(F.) — u(F), by

continuity of probability measures. This shows (ii).
(ii) < (iii): We use complements.

(ii) & (iii) = (iv): Let A C E be a Borel set such that p(0A) = 0. Since cl(A) = AUJA
and int(A) = A\ 0A, we get

lim sup 1, (A) < limsup p,(cl(A)) = p(cl(4)) = p(A),
liminf p,, (A) > liminf p, (int(A)) = p(int(A)) = p(A).

These show that lim p, (A) = p(A).

(iv) = (ii): Let F C E be a closed set and for e > 0. We set as before F. = {x €
E, d(z,F) <e}. Let Sc = {z € E, d(x,F) = ¢}. Note that 0F, C S.. Since the sets S
are disjoint for different ¢, for only countably many & we can have p(S:) > 0. Thus we
can find a decreasing sequence € — 0 such that u(Se, ) = 0 for every k. Consequently,

w(0F;,) = 0 for every k. We get by (iv) that
lim sup p,, (F) < limsup p, (F:,) = p(F:,)

and u(F., ) — p(F) by continuity. These show (ii).

(iii) = (i): Let f: E — R be a bounded continuous function. Suppose f > 0 (otherwise,
we consider f —inf f). Using Fatou’s lemma and (iii) (sets {z € E, f(z) > t} are open),

we get
liminf/Efdun = liminf/0 un({z € E, f(z) > t})dt
> / liminf p,({z € E, f(z) > t})dt
0
> [ nlla €, fa) > et

—Jo
:/Efdu.

Since this inequality holds for an arbitrary function, applying it to —f and combining

the two gives [, fdu, — [, fdp, as required. O

The following equivalences show that even the smaller set of all Lipschitz functions

captures the same.

8.2 Theorem. Let p, ji1, fio, ... be Borel probability measures on a metric space (E,d).

The following are equivalent
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(i) pn — p weakly,

(ii) for every bounded uniformly continuous function f: E — R, we have

/Efdun_)/Efdﬂv

(iii) for every bounded Lipschitz function f: E — R, we have

/Efdun%/Efdu.

Proof. The implications (i) = (ii) = (iii) are clear. To show (iii) = (i), we use condition
(ii) of Theorem 8.1: let F' be a closed set and for € > 0, let
1
ge(x) = (1— =d(z,F) ) , r ek,
< +
which is a bounded Lipschitz function. Therefore using (iii), we can repeat verbatim

the argument “(i) = (ii)” of the proof of Theorem 8.1 to show that limsup p, (F) <

w(F). O
We immediately get the following corollaries.

8.3 Corollary. Let p and v be Borel probability measures on a metric space (E,d). If

/Efdu:/Efdv

for every function f: E — R which is bounded and Lipschitz, then p=v.

Proof. Letting py = ps = ... = u, we get by the assumption and Theorem 8.2 (iii) that
tn, — v weakly. Therefore, for every closed set F', we have p(F) = limsup p, (F) < v(F).
By symmetry, we get the reverse inequality as well, thus p(F) = v(F). Since the
closed sets generate the Borel o-algebra, by Dynkin’s theorem on 7-)\ systems, we get

w=rv. O

8.4 Corollary. Weak limits are uniquely determined, that is if pu, — p and p, — v
weakly, then = v.

Proof. Tt follows from Theorem 8.2 (iii) and the previous corollary. O

Convergence in distribution of random variables

We say that a sequence of random variables (X,,) converges to a random variable X in
distribution (or in law), denoted X, —4 X, if wx, — px weakly, that is for every
n— o0

continuous bounded function f: R — R, we have

Ef(Xn) = Ef(X).
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Of course, this definition easily extends to random variables taking values in a metric
space. Note that this notion of convergence only depends on the law of random variables
involved and not on their particular realisations as functions on a probability space (in
fact, they can be defined on different probability spaces). Particularly, if X, ﬁ X
and say X' is another random variable with the same distribution as X (i.e. px = pux),
then we can also write X, 4 x,

n—oo

In the case of real-valued random variables, there is an intuitive equivalent formula-

tion in terms of distribution functions.

8.5 Theorem. A sequence (X,) of random wvariables converges in distribution to a

random variable X if and only if

Fx, (t) —— Fx(t) for every point of continuity of Fx. (8.1)

n—oo

Proof. (=): For parameters ¢t € R and € > 0 define the continuous bounded functions

1, z <t
gre(x) =<1 —2=t t<p<t+e,

€

0, T>t+e.
The idea is that these functions are continuous approximations of indicator functions.
We have, 11,<43 < gr.c(7) < 1{z<s1}. Consequently,
limsupP (X,, <t) =limsupE1;x, <4 <limsupEg; . (X,)
=Eg-(X) <El{x<iey =P (X <t+e).
Letting ¢ — 0 gives
limsup F, (t) < Fx(t).
On the other hand, since
liminfP (X, <t) =liminfE1;x <4 > liminf Eg; . .(X,)
=Eg ce(X)>2Elix<iey =P(X <t —¢)
after taking ¢ — 0, we get
lim inf FX,,, (t) Z FX (t,).

If t is a point of continuity of Fx, Fx(t—) = Fx(t) and we obtain lim Fx  (t) = Fx(t),
. d
which means X,, — X.

(«): We first show a lemma which allows us to relate condition (8.1) to a.s. convergence.

8.6 Lemma. If random variables X, X1, Xs,... satisfy (8.1), then there are random
variables Y,Y1,Ys, ... such that Y, has the same distribution as X,, Y has the same

distribution as X and Y, — Y a.s.
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Proof. Let F,, = Fx, be the distribution function of X,, and let F' = Fx be the dis-
tribution function of X. Let Q = (0,1), F be the Borel subsets of (0,1) and P (-) be

uniform. For every = € (0,1) define the “inverse” distribution functions
Yi(z) =sup{y € R, Fi(y) <}

and similarly

Y(z) =sup{y € R, F(y) < z}.

By the construction, Fy, = F,, and Fy = F. Note that Y,, and Y are nondecreasing
right-continuous functions whose only discontinuities are jumps which happen at at most
countably many points. If we let {2y to be the set of points where Y is continuous, then
P(£0) = 1. Fix € Qp. We claim that Y,,(z) — Y (x), which then gives ¥;, — Y a.s.
We have

1. iminf Y, (z) > Y (z), for suppose y < Y(z) is a continuity point of F'; then
F(y) < z (since x € Qp), so for large n, F,,(y) < x and by the definition of the
supremum, y < Y, (x). Taking liminf, we get liminf Y,,(z) > y for every y < Y (x),
so liminf Y, (z) > Y (x).

2. Y(x) > limsupY,(z), for suppose y > Y (z) is a continuity point of F’; then
F(y) > z, so for large n, F},(y) > = which gives y > Y,,(z). Taking lim sup finishes

the argument.

O

Let Y, and Y be as in Lemma 86, ¥, =% Y. Let f: R — R be a bounded
continuous function. Since we also have f(Y;,) <25 f(Y), so by Lebesgue’s dominated

convergence theorem (f is bounded),

Eg(X,) = Eg(Yn) — Eg(Y) = Eg(X).

O
8.7 Example. Let € be a symmetric random sign. Consider the sequence (X,,)3%; =
(e,—e,e,—¢,...). Since —e has the same distribution as ¢, we have Fx, = F. for

every n, so X, 4. . On the other hand, the sequence (X,) does not converge in
probability, for suppose X, P X for some random variable X. Then for n, m large
enough P (|X,, — X,,,| > 1) <P (| X, — X|>1/2) +P(|X — X,,,| > 1/2) < 1/4. Taking
n and m of different parity, we get P (| X,, — X;n,| > 1) = P(|2¢] > 1) = 1, a contradiction.

8.8 Example. Let X be a random variable and consider the sequence X, = X + %
For any reasonable definition of “convergence in distribution” we should have X,, — X.

Note that for a fixed t € R, we have

1
lim Fy, (t) = imP (X, < t) = limP (X <t-— ) = F(t—),
n
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which is F(t) if and only if ¢ is a continuity point of F. This explains why in the

definition we make this exclusion.

Convergence in distribution is metrisable. For two distribution functions F,G: R —

[0, 1], we let
p(F,G)=inf{e >0, Ve e RG(x —¢) —e < F(z) < G(x +¢) + ¢},

which is called the Lévy metric. We naturally extend this definition for random
variables, setting p(X,Y) = p(Fx, Fy) for random variables X, Y defined on the same
probability space.

8.9 Theorem. Let Lg be the set of all random variables on a given probability space.
Then p is a metric on Ly and (Lo, p) is separable and complete. Moreover, X,, — X in

distribution if and only if p(X,,X) — 0.

We leave the proofs as exercises.

8.2 Relations to other notions of convergence and basic alge-
braic properties
Lemma 8.6 explains the relation between convergence in distribution and a.s. conver-

gence. If the random variables are defined on the same probability space, then conver-

gence in distribution is the weakest of all types of convergences we have seen.

8.10 Theorem. Let X, X1, Xo,... be random variables such that X, X, Then,
n—oo

d
we also have X,, —— X.

n—oo

Proof. Suppose the assertion does not hold. Then, there is a bounded continuous func-
tion f: R — R and ¢ > 0 such that |Ef(X,,) —Ef(X)| > ¢ for infinitely many n, say for
n1; < ng < .... By Theorem 6.16, there is a subsequence ny, such that Xnkl converges to
X a.s., but then, by Lebesgue’s dominated convergence theorem, we get a contradiction

with [Ef(X,,,) — Ef(X)] > . O

We record basic algebraic properties and defer their proofs to exercises.

8.11 Theorem. Let (X,,), (Yy,) be sequences of random variables such that X, 4, x
n—oo

and Y, LN for some random variable X and a constant c € R. Then
n— oo

X, 4+Y, -5 X+e¢
n—oo

and

X, Y, —1 X,

n—oo
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8.12 Remark. There are examples showing that if the sequence (Y;,) converges to a

(non-constant) random variable Y, then it is not true that X,, + Y, LN ‘e +Y,
n— oo

XY, -4 xv.

n—oo

We finish with a simple fact concerning images of convergent sequences under “es-

2

sentially” continuous maps.

8.13 Theorem. Let h: E — E' be a Borel function between two metric spaces and let
Dy, be the set of its discontinuity points. If X, X1, Xo, ... are E-valued random variables
such that X, —2— X and P (X € Dy) =0, then h(X,) —— h(X).

n—oo n—oo

Proof. We shall use condition (ii) of Theorem 8.1. Let F be a closed set in E’. We have,

limsupP (h(X,) € F) =limsupP (X,, € h'(F)) < limsupP (X,, € cl(h™'(F)))
<P (X €c(h™(F))),

where the last inequality follows because X, —%— X. Since c(h=1(F)) c h"Y(F)U

n—oo
Dy, and P (X € Dy) = 0, the right hand side equals P (X € h='(F)) = P (h(X) € F),
showing that h(X,) 4, h(X). O
n—oo

8.3 Compactness

Being able to extract convergent subsequences often helps. For real-valued random vari-
ables, we can work with their distribution functions to establish weak convergence. Since
distribution functions are bounded and monotone, extracting convergent subsequences

is always possible, as stated in the next theorem.

8.14 Theorem (Helly’s selection theorem). If (F,,), is a sequence of distribution func-
tions, then there is a subsequence (Fy, ), and a right-continuous nondecreasing function

F:R — [0,1] such that F,, (t) — F(t) for every point t of continuity of F.
—00

8.15 Remark. In general, F' may not be a distribution function — it may happen that

F() <1or F(—o0) > 0.

Proof. To construct the desired subsequence we use a standard diagonal argument. Let
g1, g2, . .. be a sequence of all rationals. Since the sequence F),(q1) is bounded, it has a
convergent subsequence, say an) (g1) converges to G(q1). Then we look at the sequence
an) (g2) which is bounded, so it has a convergent subsequence, say an) (g2) converges

to G(gz2), etc. We obtain subsequences (n,(cl)) such that (n,(jﬂ)) is a subsequence of

(n,(cl)) and F o (q) converges to G(q). Choose the diagonal subsequence nj = n](fk).
k
Then F (v (q) converges to G(q;) for every [. The function G : Q — [0, 1] obtained as
k

the limit is nondecreasing. We extend it to the nondecreasing function F' : R — [0, 1] by
F(z) =inf{G(q), ¢ € Q,q > z}, z ¢ Q.
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The function F', as monotone, satisfies F(z—) < F(z) < F(a+) for every x. At the
points x, where F' is not right-continuous, we modify it and set F(z) = F(x+) (there
are at most countably many such points).

It remains to check that F),, converges to F' at its points of continuity. Let = be

such a point and let g, r be rationals such that ¢ < z < r. Then
F(q)=G(q) = limkinf F,.(q) < limkinf F,, (x)
<limsup Fy,, (z) < limsup F,, (r) = G(r) = F(r).
k k

Letting ¢,r — x, we get F(q), F(r) — F(x), so liminfy F,,, () = limsup, Fy,, (z) =
F(x). O

To capture when the limiting function is a distribution function of a random variable,
we need the notion of tightness. A sequence (X,,) of random variables is tight if for

every € > 0, there is M > 0 such that P (|X,,| < M) > 1 — ¢ for every n.

8.16 Remark. If there is § > 0 such that C' = sup,, E|X,,|° < oo, then the sequence
(X,,) is tight. Indeed, by Chebyshev’s inequality,

C

-6 )
P(|X,| > M) < M °E|X,|° < W

which is less than € for M large enough.

The main result of this section is the following compactness type result. It gives a
necessary and sufficient condition for existence of convergent subsequences in distribu-

tion in terms of tightness.

8.17 Theorem. A sequence of random variables (X,,) is tight if and only every subse-
quence (Xp, )k has a subsequent (Xnkl )i which converges in distribution to some random

variable.

Proof. Let F,, be the distribution function of X,.

(=) By Helly’s theorem applied to (£}, )k, there is a subsequence (F, ); which
converges to a right-continuous nondecreasing function F' : R — [0, 1] pointwise at the
points of continuity of F. It remains to check that F' is a distribution function, that
is F(—o0) = 0 and F(400) = 1. By tightness, there is M > 0 such that F, (M) —
F,(=M) > 1 — ¢, for every n and we can further arrange that —M and M are points
of continuity of F. Taking n = ny, and letting I — oo, we get F(M) — F(—-M) >1—¢.
Since ¢ is arbitrary and F' is monotone, this yields F'(—oo) = 0 and F'(+o00) = 1.

(<) If (X,,) is not tight, there is ¢ > 0 and an increasing sequence of indices ny
such that P (| X, | < k) < 1—¢ for every k. By the assumption, X, —% 5 X. Let

l—o0

x < 0 < y be points of continuity of Fix. Then

FX(y) - FX('/B) = h}n(Fnkl (y) - Fnkl (l‘)) S limlsup(Fnkl (kl) - Fnkl (_kl)) S 1—e.
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Taking x — —o0 and y — oo gives 1 < 1 — ¢, a contradiction. O

8.18 Remark. Theorem 8.17 can be greatly generalised to the setting of arbitrary sep-
arable complete metric spaces (the so-called Polish spaces), which is called Prokhorov’s
theorem. As we have seen, in the real-valued case, we take huge advantage of CDFs.
In general, the proof is much more complicated. It can be also quite easily deduced
from the Banach-Alaoglu’s concerning compactness of weak- convergence (which can

be identified with the notion of weak convergence).
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8.4 Exercises

1.

10.

Give an example of Borel probability measures p, i1, ti2,... on R and a Borel set B

in R such that p,, — p weakly and u, (B) 4 u(B).

. Let X1, X5,... be random variables such that ]P’(Xn = %) = %, k=1,...,n,n =

1,2,.... Does the sequence (X,) converge in distribution? If yes, find the limiting

distribution.

Let Uy,Us, ... be ii.d. random variables uniformly distributed on [0,1]. Let X,, =
min{Uy,...,U,}. Show that nX,, converges in distribution to an exponential random

variable with parameter one.

Suppose that X, X1, Xs,... are nonnegative integer-valued random variables. Show

that X, LN X, ifandonly if P (X, = k) —— P(X = k), forevery k =0,1,2,....
n—oo n—roo

For p € [0,1], let X, be a Geometric random variable with parameter p. Show that
the sequence (%Xl /n) converges in distribution to an exponential random variable

with parameter 1.

Suppose that a sequence of random variables converges in distribution to a constant.

Then it also converges in probability.
Prove Theorem 8.11 and Remark 8.12.

Prove Scheffé’s lemma: If X, Xs,... is a sequence of continuous random variables
with densities f1, fo,... and lim, . fn(z) = f(x) for every x € R for some proba-
bility density f, then fR |f— ful — 0. Conclude that then X, 4, X for a random
variable X with density f (in other words, pointwise convergence of densities implies
convergence in distribution). Considering f,(z) = (1 + cos(2mnx)) 1,1j(x), show

that the converse statement does not hold.

Let X, X5, ... be i.i.d. random variables uniform on {1,2,...,n}. Let
N, = min{l > 2, X = X; for some k < [}.

Show that P (N, > k) = H;:ll (1 — L), for every integer k > 1 (the birthday prob-
lem). For every ¢t > 0 show that lim, ., P (N—\/% > t) — ¢~ **/2 and show that the
sequence (%) converges in distribution to a random variable with density function

xe*$2/2 1{,@20}.

Let X1, Xs,... be i.i.d. exponential random variables with parameter 1. Let M, =
max{Xy,...,X,}. Show that M, — logn converges in distribution to a random

variable with the distribution function e=¢ ", z € R.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Let Uy,...,Uspy1 be iid. random variables uniform on [0,1]. Order them in a
nondecreasing way and call the n + 1 term (the middle one) M,,. Show that M,
has density (2n + 1)(277)x"(1 — )" 1j0,1)(z). Find EM,, and Var(M,). Show that

V8n (Mn — %) converges in distribution to a standard Gaussian random variable.

Show that for positive ¢, ftoo e~ 24y < %e*ﬁ/z and ftoo e 2dx > tzile’ﬁ/z.

Conclude that for a standard Gaussian random variable Z and positive £,

1 t 1

NoTo 16—152/2 <P(Z>t)< E%e—ﬁ/z
and
tlggo % =1
V2
Let X1, X5,... be i.i.d. standard Gaussian random variables. For n = 2,3,... let
b, be such that P(X; >b,) = . Show that lim, ﬂb?gn = 1. Let M, =

max{Xi,...,X,}. Show that b, (M, — b,) converges in distribution to a random
variable with the distribution function e~ ¢ ~, z € R.

IP’(X1>t+%)

Hint: Using FExercise 8.12, first show that for every a € R, limy_, el e .

Assume that X7, X, ... are i.i.d. standard Gaussian random variables. Define M,, =
P

max{Xy,..., X, }. Show that \/% = 1.

Let (X,,) and (Y3) be two sequences of random variables such that X, —2 ,0and
n—oo
XY, % 7 for some random variable Z. Prove that for a function f differentiable

n—oo

at 0, we have (f(X,) — f(0))Y, LN 1(0)Z.
n—oo
Prove that if X, —~— X, then E|X| < lim inf E|X,,|.
n—oo

Prove that if X,, —%— X and sup,, E| X, |PT¢ < oo for some p, e > 0, then E| X|P < co
— 00

n

and E| X, [P — E|X|P and EX? — EXP.

Suppose that X7, Xa,... are nonnegative random variables such that for some 0 <

a < 3, we have EX® — 1 and EX? — 1 as n — oo. Then X,, — 1 in probability.
Prove Theorem 8.9.

Let X = (X3,...,X,) be a random vector in R™ uniformly distributed on the sphere
{x € R",2? + ...+ 22 = n}. Show that X; converges in distribution to a standard

Gaussian random variable.
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9 Characteristic functions

9.1 Definition and basic properties

The characteristic function of a random variable X is the function ¢x : R — C
defined as
ox(t) =Ee'™™  teR.

(For complex valued random variables, say Z = X + iY, we of course define EZ =

EX + {EY provided that E|Z| < cc.) Since ¢® = cosz + isinz, € R is a complex

X is a bounded random variable hence its expectation exists,

number of modulus 1, e
so ¢x is well-defined on R. We also use the notation ¢,(t) to denote the characteristic

function of a Borel probability measure p on R (i.e., of a random variable with law ),

() = /R et du(z),  tER.

9.1 Example. For a symmetric random sign e,

it —it
P(t) = Ee'™ = cere +26 = cost.

9.2 Example. For an exponential random variable X with parameter A,

0 0 Az itz |~ by
itx de = / A (it—)\)zd _ )\6 e _
¢ Ix(@)de ‘ AT NPT

¢x(t) = B = /

-0 0
(when taking the limit 2 — oo, we use that e*® is bounded).
We gather several basic properties in the following theorem.
9.3 Theorem. Let X be a random variable with characteristic function ¢x. Then
(i) lox ()| <1, t R,
(ii) ¢x(0) =1,
(i) Pax+(t) = e"Pox (at),
(iv) éx is uniformly continuous,

(v) if E|X|™ < 0o for some positive integer n, then the nth derivative gbg?) exists, equals

¢g?) (t) = i"EX"e™X and is uniformly continuous.

Proof. (i), (ii), (iii): These are easy to directly verify, |px (t)| = [Ee?X| < E|e®X| =1
and ¢x (0) = Ee"*X =1 and ¢,x 5(t) = Ee?t(@X+0) — ¢itbg (at).

(iv): For every t,h € R,

(6x(t+h) — ox(8)] = [Be™ (X — 1)] < BJeX — 1] — 0
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where the limit is justified by Lebesgue’s dominated convergence theorem (|e?*X —1| — 0
pointwise and the sequence is bounded by 2). This implies the continuity of ¢x at t.

The continuity is uniform because the bound does not depend on t.
(v): Fix n such that E|X|™ < co. First, we inductively show that for 0 < k <n,
E) (1) = B(iX)keX.

This is clear for £ = 0 and for k < n, inductively, we have

(k) (k) ihX

Bt1) o Ox (E+h) =o' () . ok ix €00 =1
ox(8) = lim ) = B GX)e —
ihX

_ Nk itX 1o € -1

= [0 <

The last equality is justified by Lebesgue’s dominated convergence theorem because

vk itXeihX_l k k+1
(iX)Re ™ 2] < XX = |X]

and by the assumption E|X |1 < oo; we also used that for ¢ € R, |e? — 1| < [t| which

t
< / e |de =t
0

can be justified as follows

) 1 [t .
|€zt_1|:‘./ Bmdl‘
t Jo

when ¢t > 0 and similarly for ¢ < 0. Finally, limy_,q eihZ’l = ¢X which finishes the
inductive argument. Having the formula, uniform continuity follows as in (ii). O

9.4 Example. Let X be a standard Gaussian random variable. We have,
i dx 2 1\2 dx 2
1) = eztxe—w2/2 — et /2/6—($—lt) /2 — et /27
ox (1) /R V2T R V2T

where the last step would need proper justification (e.g., integrating along an appropriate
—z?/2_dz_

contour and using [, e =

). Instead, we use Theorem 9.3 (iv),
P (t) = iIEXe"™ = —“EX sin(tX) + iEX cos(tX).
Since X is symmetric and cos is even, EX cos(tX) = 0 and integrating by parts,

otz 4T sin(tz) (e_”2/2)’—dx

Var Var

2 d:L‘
= —t [ cos(tz)e " /2 —=—
/ (tz) V2T

which is —tE cos(tX) = —tEe™X = —t¢x (t) (by the symmetry of X, again, Esin(tX) =
0), so ¢'x(t) = —tox(t). That is, ¢'x(t) = —tex(t), equivalently, (e’ 2¢x (1)) = 0
which finally gives ¢! /2¢x (£) = ¢x (0) = 1.

If Y ~ N(u,0?), then Y = 1+ 0 X and we thus get

O (t) = —EX sin(tX) = —/xsin(tw)e

¢Y(t) _ Eeit(quo’X) _ eitﬂ]Eei(ta)X _ eitu702t2/2' (91)
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Note a simple but very powerful observation involving independence.

9.5 Theorem. If X and Y are independent random variables, then

dx1y = Ox - dy.

Proof. Clearly, Ee®t'(X+Y) = EeitX ity — ReitXFeitY O

9.2 Inversion formulae

One of the crucial properties of characteristic functions is that they determine the dis-
tribution uniquely. En route to proving that, we establish an inversion formula, quite

standard in Fourier analysis. We first need a lemma.

9.6 Lemma. For two independent random variables X andY and everyt € R, we have
Ee~ ™ ¢x (V) = Epy (X —t).
Proof. Changing the order of taking expectation, we have
Eye Y ¢y (V) = Eye Y Exe¥ X = EX7YeiY(X7t) — ExEye” X8 — Exdy (X — ).
O

9.7 Theorem (Inversion formula). For a random variable X, at every point x of con-
tinuity of its distribution function Fx, we have

x 1 oo . 52
Fx(z) = lim ( / e_ZSt¢X(s)e_2¢L2ds) dt.

a—=oo J_ o\ 27 J_

Proof. Let G be a standard Gaussian random variable, independent of X. For a > 0,
consider X, = X +a~'G. Since X, converges pointwise to X as a — oo, by Lebesgue’s
dominated convergence theorem Eg(X,) — Eg(X) for every bounded continuous func-
tion g, thus X, 4 0asa— oo (Theorem 8.5). Consequently, for every continuity point
z of Fx, we have

Fx(z) = lim Fx, (x).

a—r o0

Let us find the distribution function of X,. We have,

Fx,(z) =P (X +a'G<2) =Excl{xta-1c6<s} = ExEc l{xta-1G<a}
—ExP(X +a G <1).

For any y € R, the density of y + a~'G at t is \/‘;76_“2(’5_9)2/2, thus

Fx,(x) =Ex/ \/%e*GQ(t*X)Q/th:/ Ex \/%efaQ(th)z/Zdt.
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Note that e=2""/2 is the characteristic function of aG at s (Example 9.4), so by Lemma

9.6,
a

Ver

Writing this explicity using the density of aG yields

. |
Ex e 0 - LB 0u6(X — 1) = B O (aG),

_*
V2T

) o0 ) 2
]EefztangX(aG) a 1 / eiztsng(S)e_ﬁdS

:\/271' 2ma J_oo

1 oo

a
V2
) 52
e “tox(s)e 2% ds.

:% .

Plugging this back,

x 1 o0 i 2
Fx, (z) =/ (%/ e_“t(éx(s)ezeﬂds) dt,

which combined with F'x(x) = lim,— o Flx, (z) remarked earlier finishes the proof. [
Now we can prove that characteristic functions determine distribution.

9.8 Theorem. Random variables X and Y have the same distribution (that is, Fx =

Fy ) if and only if they have the same characteristic functions ¢x = ¢y .

Proof. By Theorem 9.7, Fx(z) = Fy (z) for every x € R\ B, where B is the union of the
discontinuity points of F'x and the discontinuity points of Fy. For x € B, take x, > =
such that z,, € R\ B and z,, — z (it is possible since B is at most countable). Then
Fx(z,) = Fy (x,) and by right-continuity, Fx (z) = Fy (z). O

The inversion formula from Theorem 9.7 gives us several other interesting corollar-
ies. Since the characteristic function determines distribution, it should be possible to

reconstruct densities from characteristic functions.

9.9 Theorem. If X is a random variable such that fR |ox| < 0o, then X has density
f given by
f(z) = /_Oo ﬂe_“ngx(s)ds

which is bounded and uniformly continuous.

9.10 Remark. If X is a continuous random variable with density f, then clearly

ox(t) = /_OO eitsf(s)ds

The two formulae have the same form!

Proof. For two continuity points « < y of Fx, we have from Theorem 9.7,

. Y1 82
Fx(y) — Fx(z) = lim (/ e " Px(s)e 2aZ ds) dt.

a—oo J 2T oo
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Since |e ¢ x(s)e 247 | < |px(s)|, that is the integrand is dominated by |¢x| which is
integrable on [z,y] X R, by Lebesgue’s dominated convergence theorem,
Y 1 > —ist
Fx(y) — Fx(z) = o e "ox(s)ds | dt
which gives that X has density given by the promised formula. The rest follows as for

characteristic functions (recall the proof of Theorem 9.3 (iii)). O

9.11 Corollary. If X is a continuous random variable with density fx and character-

istic function ¢x which is nonnegative, then fR ox < oo if and only if f is bounded.

Proof. 1f fR ¢x < oo, then by Theorem 9.9, f is bounded. Conversely, let as in the
proof of Theorem 9.9, G be a standard Gaussian random variable independent of X.

Then the density of X +a~'G at z equals
[ #xe =t clidn

On the other hand, it equals %F 'x, () and from the last identity in the proof of Theorem
9.9, this becomes
1 [ 52
— e "Tox(s)e 2a2ds.
2m

— 00

For x = 0 we thus get
1 [ 2
o [ exte s = [ fe(-nfiawi.
T J_ o R
If fx is bounded by, say M, we obtain that the right hand side is bounded by M, so
1 e 52
o /_oo dx(s)e” 2a2ds < M.

As a — oo, by Lebesgue’s monotone convergence theorem, the left hand side converges

to 5 [°°_ éx, which proves that [, ¢x < 2mM. O

9.12 Example. Let X1, Xs,..., X, beiid. random variables uniform on [—1, 1]. Then
X1 +...4+ X, for n > 2 has density

fla) = % /jo cos(tz) (Sitnt)ndt.

o0

Indeed, note that ¢x, (£) = 2L, so ¢x, 1. 4x, (t) = (Si%t)n which is integrable for n > 2

and the formula follows from Theorem 9.9.
We finish with two Fourier analytic identities.

9.13 Theorem (Parseval’s identities). If X and Y are continuous random wvariables

with densities fx and fy, then
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(i) Jolox|? < oo if and only if [ f% < co and then

[ 55 = 52 [ loxk

(i) if [ [% < oo and [ f3 < oo, then

/RfoYZ%/R¢X</TY-

Proof. (i) Let X’ be an independent copy of X. Consider X = X — X’. We have,

95 (t) = dx()o—x: () = ox ()o—x (t) = dx (t)dx (t) = |ox (1)[*.

On the other hand, X is continuous with density given by convolution,

Fel) = (Fx % fox)() = / Fx(@)fox (y — a)da.

It can be seen from here that if [ f% < oo, then by the Cauchy-Schwarz inequality, f¢
is bounded. Then by Corollary 9.11, ¢ = |px|? is integrable. Conversely, if |¢px|? is
integrable, then from Theorem 9.9 applied to X, we get

1 1
£ = 5o [ ox = 5= [ lox

Since
F5(0) = (Fx % f-x)(0) = / Fx(@)f-x (0 - 2)dz = / fx (@) fx (@)da = / 13

we get that [ f% = 5= [|¢x|?. In particular, f% is integrable.
.o . L +
(#i) Apply (¢) to the density % O

9.3 Relations to convergence in distribution

The second crucial property of characteristic functions is that their pointwise conver-
gence captures convergence in distribution. To establish that, we will need to use

compactness-type arguments. We start with a lemma that will help us get tightness.

9.14 Lemma. For a random variable X and § > 0,

P <|X| > ?) < (15/_2[1 — o (D)]dt.

Proof. Note that

5 b 4 s ei0X _ o—idX
/ [1—ox(t)ldt = / [1—Ee"¥]dt = 20 — ]E/ et =20 —-E——F——
s s _s 1 X
B sin(0X)
=20 —2E e
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(this incidentally shows that the a priori complex number ff s[L—¢x(t)]dt is real). Thus

(15/2[1 — ¢x(t)]dt = 2E {1 - Smg(X)] .

Using |sinz| < ||, we have 1 — S2Z > 0, so
1 /° sin(0X)
5 [5[1 — ox(t)]dt = 2E Kl - % ) 1{5x|>2}}

sin(3| X|)
=2E Kl X lisxi>2y |

where is the last equality we used that S22 is even. Crudely, —sin(J|X|) > —1, hence

x

1[0 1 1
5 [5[1 — ¢x(t)]dt > 2E [(1 - 6|X|> 1{|ax>2}] > 2E {2 1{|6X>2}]
_ P (6X] > 2).

O

The main result about convergence in distribution is the following so-called (Lévy’s)

continuity theorem.

9.15 Theorem (Lévy’s continuity theorem). Let (X,,) be a sequence of random variables

such that for every t € R, ¢x, (t) — @(t) for some function ¢ : R — C which is

continuous at t = 0. Then there is a random variable X such that ¢ = ¢x and X, 4 x.

9.16 Remark. The converse to Lévy’s Theorem also holds: if X, 4 X, then ¢x, (t) —
¢x(t) for every t € R. Indeed, since sin is continuous and bounded, Esin(tX,) —
Esin(tX) and the same for the cos function, so ¢x, (t) = Ecos(tX,,) + iEsin(tX,) —

ox (t).

Proof of Theorem 9.15. Since |¢x, (t)] < 1 for every t, by taking the limit, we have
|o(t)| <1 for every t.

Step 1 (tightness). Since ¢ is continuous at 0 and ¢(0) = lim, ¢x, (0) = 1, for every
g > 0, there is § > 0 such that |1 — ¢(¢)| < € for || < 4§, so

5
%/6 11— 6(t)|dt < 2.

By Lebesgue’s dominated convergence theorem,

1 /0 1 /0
5/75|17¢Xn(t)|dtm 5/76|17¢(t)|dt,

so for large n,

1 )
*/ |1 — ¢x, (t)|dt < 3e.
0./ s
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By Lemma 9.14, we obtain

2
P (|Xn > 5) < €.

This shows that the sequence (X,,) is tight. By Theorem 8.17, there is a subsequence
(X, ) which converges in distribution to a random variable, say X . This is our candidate

for the limit of (X,,).

Step 2 (¢ = ¢x ). Since X, 4, X, we get ¢x, — ¢x at every point (Remark 9.16,
but also ¢Xnk — ¢ at every point, so ¢ = ¢x, which proves that ¢ is a characteristic

function.

Step 3 (X, 4, X ). If this is not the case, then, by the definition, there is a bounded
continuous function g such that Eg(X,) - Eg(X). Therefore, there is € > 0 and a
sequence my, such that |Eg(X,,,) — Eg(X)| > e. Since (X,) is tight, using Theorem

8.17 again, there is a convergent subsequence X,,, to some random variable, say X'.

kg

As in Step 2, ¢x/ = ¢ = ¢dx, so X’ has the same distribution as X (Theorem 9.8) and
[Eg(Ximy,) — Eg(X")| = [Eg(Xm,,) — Eg(X)| > € contradicts that Xy, 4 X, O

9.17 Example. In Levy’s theorem the continuity assumption is necessary. Let G be

a standard Gaussian random variable and consider the sequence X,, = nG. We have

dx, (t) = dnc(t) = pa(nt) = e /2 s0

0, t#0,
ox,(t) =
1, t=0.
The limiting function is discontinuous at 0. The sequence X, does not converge in
distribution because Fx, (f) = P(G <t/n) — P(G <0) = 1/2, but the limit is not a
distribution function (an alternative argument: by Remark 9.16, if X, 4 x , then ¢x

would converge to a characteristic function which is continuous).
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9.4 Exercises

1. In the proof of Theorem 9.5 we implicitly used: if X,Y are complex-valued integrable

random variables which are independent, then EXY = EXEY. Fill out this gap.

Table 1: Characteristic functions of common discrete distributions (see Section 5.1).

Distribution p Characteristic function ¢, (t)
Dirac delta 6, egite

Ber(p) 1—p+ pet

Bin(n, p) (1 —p+pet)
Poiss(\) exp{ (e’ — 1)}
Geom(p) %Z;)en

Table 2: Characteristic functions of common continuous distributions (see Section 5.1).

Distribution p Density function f,,(z) Characteristic function ¢, (t)
. giat _
Unlf([oa CL]) % 1[O,a] (33) iat L
Exp()) e A 1(0700)(50) ﬁ
1 _—|x 1
Sym-Exp gelvl e
Cauchy m el
B 1 Xz it\— B
Gamma(5, A) %wﬁ Le=A 1(0,200)(3”) (1-1%4)
N(a,0?) Vo o giat=ot*/2
. . 1 1
Hyperbolic cosine — T oS (/3]

2. Justify Table 1.

3. Justify Table 2.

4. Decide whether the following functions are the characteristic functions of some dis-

tributions. If yes, describe the corresponding distribution.
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5.

10.

11.

12.

13.

14.

Suppose ¢1, ..., ¢, are characteristic functions of some distributions. Let nonnega-
tive numbers pi,...,p, be such that Z?:1 p; = 1. Show that Z?Zl p;¢; is also a

characteristic function.

Let X1, Xo,... be ii.d. with characteristic function ¢. Let N be a Poisson random
variable with parameter A > 0, independent of the X;. Find the characteristic
function of Y = Zjvzl X; (we adopt the convention that 2221 X;=0).

Suppose ¢ is the characteristic function of some random variable X. Decide whether

the following functions are always characteristic functions

a

) 67,
b) Reo,
)

)

o

|6/,
d) [¢].
Show that if ¢/ (0) exists, then EX? < oc.

Let X be a random variable with density f(z) z € R. Show that

¢’y (0) exits, but E|X| = +o0.

— (&
= (142?)log(e+a?)’

Let X be a random variable such that ¢x(t) = 1 — ct? + o(t?) as t — 0 for some
constant ¢ € R. Then EX = 0, EX? = 2¢. In particular, if ¢px(t) = 1 + o(¢?), then

X =0 a.s. As a corollary, ¢(t) = e~ 1!I” is not a characteristic function for any a > 2.

For a sequence (X,,) of random variables, X, 4 0 if and only if there is § > 0 such

that ¢x, (t) — 1 for every t € (=46, 0).

For an integer-valued random variable X and an integer k, we have

P(X =k) ! /W e gy (t)dt.

:g .

(This is Lemma 11.8.)
If X is a continuous random variable, then ¢x (t) — 0 as t — oo.

These help show that certain important functions are characteristic functions:

a) Show that ¢(t) = 22=%%L is the characteristic function of the triangular distri-
bution with density (1 — [z[) 1;_11(2) (the distribution of the sum of two i.i.d.

Unif[—1, 1] random variables).

b) Using the inverse formula (Theorem 9.9), show that (1 — %) 1{_4,q)(t) is a char-

acteristic function.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

c¢) Show that if a function ¢: R — R satisfies: ¢(0) = 1, ¢ is even, ¢ is piece-wise
linear and ¢ is nonincreasing and convex on [0,4o00, then ¢ is a characteristic

function.

Using Exercises 9.5 and 9.14, show the so-called Pdlya’s criterion: every function ¢
with ¢(0) = 1 which is even, nonincreasing and convex on [0, +00) is a characteristic

function. In particular, e~*I" is a characteristic function for a € (0, 1].

Let 0 < a <2 and 9(t) = 1 — (1 — cost)®/2. Using the binomial series argue that
P(t) = an(cos )"
n=1
for nonnegative pq, po,... with Zf;l pn = 1. Show that

n—oo

e 11" = lim [w(ﬁtnfl/a)r

—t*

and conclude that e is a characteristic function.

Let X,, be a Poisson random variable with parameter A, > 0. If A\, — A for some

A >0, then X, 9. X for a Poisson random variable X with parameter \.

Suppose a sequence of random variables (X,,) converges in law to a random variable
X. Suppose sequences of reals (a,) and (b,) converge to a and b, respectively. Show

that a,X,, + b, 40X +b.
Let (X,,) be a sequence of random variables with P (Xn = %) = #, k=1,...,n%

Does it converge in distribution?
Prove that ¢(t) = —2- is not a characteristic function.

lJret2

Let X;,...,X,, be iid. Cauchy random variables, that is with density m,

z € R. Show that for every reals ay,...,a,, the weighted sum 2?21 a;X; has the

same distribution as (37, |a;]) X;.

For a random variable X and a € R, we have

On the other hand,

(of course the set {z, P(X = x) > 0} is at most countable).
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24.

25.

26.

27.

28.

29.

30.

31.

32.

Show that a random variable X has no atoms if and only if

N )
lim — |px (t)]“dt = 0.
-7

In particular, if ¢x () — 0 as t — oo, then X has no atoms. The converse is not true

(devil’s staircase).

Let €1,€3,... be i.i.d. symmetric random signs. For every a = (a1, a2,...) € {2, i.e.
Y- a2 < oo, the series Y7 | a,&, converges in probability, hence in distribution (hint:
Cauchy’s condition from Exercise 5.28). Show that the distribution of Y 7  £,27"

is uniform on [—1,1].
Show that for a random variable X the following are equivalent

a) X is symmetric, that is X and —X have the same distribution

(a)
(b) X and eX have the same distribution, where ¢ is an independent random sign
(¢) X and £]|X| have the same distribution, where ¢ is an independent random sign
(d) the characteristic function of X is real valued.

For an integrable random variable X,

2 [ 1 Repx(t
mng/ ——%ﬁga
0

Prove Shepp’s inequality: if X, Y are ii.d. integrable random variables, then

E|X - Y| <E[X +Y].

Find an example of two different distributions whose characteristic functions agree
on [—1,1].
Hint: Consider ¢(t) = (1 — |t])4 and 9 (t) defined to be equal to ¢(t) on [—1,1] and
2-periodic.

Find an example of 3 random variables X, Y, Z which are independent such that ¥

and Z do not have the same distribution, but X +Y and X + Z do.

Show that if random variables X, Y are independent and X + Y has the same
distribution as X, then Y =0 a.s.

Cramér’s decomposition theorem. If £ is a Gaussian random variable and £ = X +Y
for some independent random variables X and Y, then X and Y are also Gaussian

(point masses are assumed to be Gaussian).

Here is a possible, very analytic approach. A function f: C — C is entire if it

is holomorphic on C. The order of the entire function f is the infimum of p > 0
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such that |f(z)] = O(exp(]z|?)) as z — oo. It is a consequence of Hadamard’s
factorisation theorem that an entire function f of order p without any zeros is of
the form f(z) = e9*), where g is a polynomial of degree at most p. For instance,

flz)= e*’ is entire of order 2.

(a) Using Hadamard’s factorisation theorem show: if for some random variable X
there is @ > 0 such that Ee®X” < 00, then ¢ x extends to C, is entire of order at most

2 and if additionally ¢x(z) # 0 for all z € C, then X is Gaussian.

(b) Show that if X +Y is Gaussian for some independent random variables X, Y,

then EeSX+Y)* < oo for some 6 > 0.

(¢) Deduce from independence that Ee5(X+9)° < oo for some ¢ € R and from (a) that

X is Gaussian.
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10 Central limit theorem

Let X1, Xo,... be i.i.d. random variables with E|X|? < oo. By the strong law of large

numbers,
X Xy
Y, = At F A EX,
n
converges to 0 a.s. By our assumption, we can compute
_ Var(X; +...+X,) nVar(X;) Var(X;)

2 n? n

Var(Y,,)

’
n

so Y, concentrates around its expectation, which is 0 and in a sense it is not surprising
that Y,, goes to 0. What happens if we zoom in, that is rescale appropriately so that
the variance of Y,, is fixed, that is when fluctuations of Y,, have a fixed size, as opposed

to decaying like 1/n as earlier? Consider

Zn =

1 <X1+...+X

Y
V/Var(Y;,) \/Var(X7)

which has variance 1 for all n. What “limit distribution” does Z, have as n — oo

= — EX1>
n

(if any)? This is addressed by the central limit theorem which says that the weak
limit exists and is Gaussian! (If it exists and is universal, that is the same for all i.i.d.
sequences, then it has to be Gaussian because when the X; are standard Gaussian, 7,
is also standard Gaussian.) To establish weak convergence, we shall use characteristic

functions.

10.1 Auxiliary elementary lemmas

To handle the convergence of characteristic functions, we shall need several elementary

estimates for complex numbers.

10.1 Lemma. If z1,...,2, and wy,...,w, are complex numbers all with modulus at

most 0, then
n n n
n—1 §
HZj—ij §9 |zj—wj\.
j=1 j=1 Jj=1

Proof. We proceed by induction on n. For n = 1, we have equality. For n > 1, we have

n n
15 [T| = |2 IT5 - T
j j j=2 j=2

IN

n n n n
][z =2 [T ws| + o [T ws —wn [ ws
Jj=2 Jj=2 Jj=2 Jj=2

Jj=2

n n n
2 | TT2 = TTwi| + (1] wi|lz1 — wil
=2 =2
n

<46 Hz’j— ij +9"_1|21 — wy |

Jj=2 Jj=2
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and the inductive assumption allows to finish the proof. O

10.2 Lemma. For a complex number z with |z| <1, we have
le* — (1+2)| < |2
Proof. Using the power series expansion of e*, we get

2 2 2 E < [52
+§+ 7‘Z| +§+ 7|Z| +3'+

= |z)%(e — 2).

" —(1+2)| =

O

10.3 Lemma. If (z,) is a sequence of complex numbers such that z, — z for some

z € C, then
(1 + Zl) — e°.
n

Proof. Fix ¢ > |z|. Then eventually, |z,| < c and consequently, |1+ 22| < 1+ £ < e¢/m

and \ezn/”| = eRe(zn)/n < e¢/m o applying Lemma 10.1 with § = ec/”, for large n,

z - z - n-1 z
1 n n| _ “n\ /n| < ( c/n) ’ “on o zp/n )
(02 e [0 2) - Bl (o2
Jj=1 Jj=1

Clearly eventually, |z,/n| <1, so by Lemma 10.2,

n n—1
‘(1 + Zj) —en| < (ec/”> n

n

It remains to use continuity, that is that e*» — e?. O

Zn

2 2
e
n n

<e

10.4 Lemma. For every real number t and n =0,1,2,..., we have

it N~ (it)"
¢ _Z(k?

k=0

o+
~ (n+ 1)

Proof. We proceed by induction on n. For n = 0, we have

¢
le —1] = ‘/ e*ds
0

Suppose the assertion holds for n > 0. Then, we have

RN (D S L U s
/O (e 2 )ds S/O ST o)

k=0

< |t].
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10.2 Vanilla Central Limit Theorem

10.5 Theorem. Let X1, Xo,... be i.i.d. random variables with E|X;|*> < co. Then the
sequence (Z,) of normalised sums
X1++Xn—nJEX1

Zn =
n Var(X1)

converges in distribution to a standard Gaussian random variable.

& _ X;—EX; o .2
Proof. Let X; = V(X Then EX; =0, E|X;|* =1,

Xi+...+X,—nEX;  Xi+...+X,

Zn = =
n Var(X7) N

and by independence

s () o0 () ()]

We investigate pointwise convergence of ¢z,. By Theorem 9.3 (v), ¢ %, is twice con-
tinuously differentiable and we can compute that ¢; (0) = iEX; = 0 and ¢, (0) =
i?’EX? = —1. Thus by Taylor’s formula with Lagrange’s remainder
t2
Ox, (1) = 0x,(0) + 19, (0) + 5%, (&)
t2
= 1+1t¢’ (0) + 5@25’)’—(1 (0) + £ R(t)
2
=1- —+t°R(1),
2
for some & between 0 and ¢ and R(t) = %(gﬂ)’)’—(l (&) — ¢, (0)). By the continuity of ¢¢
(at 0), R(1) -~ 0. Note that R(t) may be complex. By Lemma 10.3, for every ¢t € R,
—
t\1" 2 12 " 2
H=los [ = 1= + 2Rt —t7/2,
o) = |ox, (J=)| = [1- 52+ 0| o

By Theorem 9.15, Z,, converges in distribution to a random variable whose characteristic

function is et/ 2, that is a standard Gaussian random variable. O

We have two remarks. The first one shows that other notions of convergence are too
strong to capture the limit behaviour of sequences of sums of i.i.d. random variables,
normalised to have a fixed variance. The second one shows that the finite variance is
really a necessary assumption to make for the weak limit to exist. We defer their proofs

to exercises.

10.6 Remark. Suppose X1, Xo,... are i.i.d. random variables with mean 0 and finite

variance. Then by the vanilla central limit theorem and Kolmogorov’s 0 — 1 law,

X+ X,
limsup————— =+ a.s.
n—00 \/ﬁ
M he s X4+ Xy f its subs s does :
oreover, the sequence ( Tn ), or any of its subsequences, does not converge in

probability.
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10.7 Remark. Suppose X1, Xo,... are i.i.d. random variables such that the sequence

( %) converges in distribution. Then EX? < oo.

In Appendices F and G, we present two other completely different proofs of the

vanilla central limit theorem.

10.3 Lindeberg’s Central Limit Theorem

The assumption of identical distribution of the summands in the vanilla central limit
theorem can be weakened. The so-called Lindeberg condition is an almost optimal

condition under which the central limit theorem holds.

10.8 Theorem. Let {X,, }n>1,1<k<n be a triangular array of random variables with
IEX?L,,C < oo such that for every n > 1, the variables X, 1,..., X, are independent.

Let
Xn,k - ]EXn,k

ZZ:1 Var (X, k)

Xn,k =

and for e > 0, set

Lo(e) = Y EX2, 1(ix, |>¢} -
k=1

If the following Lindeberg condition holds:

for every e >0, Lyp(e) —— 0, (10.1)

n— oo

then .
Z Xn,k L) Z7

n— o0
k=1

where Z is a standard Gaussian random variable.

10.9 Remark. Condition (10.1) implies that

1I§n]§1§n\/ar(Xn,k) —0 (10.2)

(individual contributions of the summans in Z,, are small). Indeed, for every ¢ > 0, we

have

Var()_(mk) < EX’rQL,k < EXZ)]C 1{\Xn,,k\>6} +e < Ln(E) +e.

Proof of Theorem 10.8. Denote Z, = Y ;_; Xnk and 0, = \/Var(X, ;). By the

definition of ka, for every n > 1, we have
n
Y o, =1 (10.3)
k=1

To show Z, —2— Z , in view of Lévy’s continuity theorem (Theorem 9.15), it is enough
n—oQ

to show that for every t € R, we have

bz (t) — e71/2,

n—00
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By independence, (10.3) and Lemma 10.1,

n n
H ¢Xn,k,(t) - H e~ Tnt’/2
k=1

ot -] -

n
<3 |6k, (1) — e et
k=1

k=1
Denoting
n o n o B 1 B
= Z EeitXnk _ 1 + U kt2 Z E |:eltXn,k —1— itXn’k‘ + 2t2Xr2z,k:|
k=1 k=1
and .
1
ra(t) = Z 1- 50,%7”7?2 — e onal/2 ,

k=1

by the triangle inequality we thus have
[62.(6) = e7/2] < sult) + ra(t)

Fix e > 0. Splitting the expectation in s, (¢) into two: on {| X, x| < e} and {| X, x| > €},

we get

with

s ()

. _ 1.
E |:eZtX"’k —1—-itX, ,+ 2t2Xr2L,k:| l{an,klﬁe} )

ol
3 HM:
—-

(2)

. o 1.
|: @Xnk 1 — ltXn,k + 2t2X27k:| 1{|Xn,k|>5} :

k=1
Thanks to Lemma 10.4 (the case n = 3),

n

[t]%| X i |t\3 |t]*e
(1) ZE 6 LR, pl<ey < ZE|X7L k|2 6
k=1

Thanks to Lemma 10.4 (the case n = 2) and the triangle inequality,

n t2X2 k tQX'Q i
n, n, 2
) < ZE < 2 1{|Xn,k|>€} =t"Ly(e).

To bound r,(t), note that thanks to (10.2), for large enough n and every k < n, we have
Ji7kt2 < 1. Thus, thanks to Lemma 10.2,

Putting the bounds on s, (t) and r,(t) together yields
)QS (t) ’t/2’<|t| + 2L, (e) + imabxa2
Zn 4 k<n n,k
which by (10.1) and (10.2) gives ¢z, (t) — e=t*/2 as desired. O
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10.10 Remark. Of course Lindeberg’s central limit theorem implies the vanilla one.
Indeed, if X7, X5, ... are i.i.d. square integrable random variables, say with mean 0 and
variance 1, then setting X,, , = Xx/+/n, we check that the Lindeberg condition (10.1)

holds,
2

X
Ly(e) = nEﬁ Lix, sevmy = BXT 1 x, scvm)

which goes to 0 as n goes to oo by Lebesgue’s dominated convergence theorem.

10.11 Remark. The Lindeberg condition (10.1) roughly says that the contribution of
each X;, 1, K =1,...,n to the sum should be “equal and small”. This is not a necessary
condition for the central limit theorem to hold as the following simple example shows.
Let X1 ~ N(0, %) and X, ~ N(O,Ui)k), k = 2,...,n with arbitrary o,, ; satisfying
doha O = %. Then, trivially, Z, ~ N(0,1), but (10.1) does not hold (because even
its consequence (10.2) fails). Excluding such situations where one of the summands
dominates, it turns out that the Lindeberg condition is necessary for the central limit

theorem to hold, as shown by Feller (we defer its proof to Appendix H).

10.12 Theorem. Let {X, }n>1,1<k<n be a triangular array of random variables with
IEX,%JC < 00 such that for every n > 1, the variables Xy, 1, ..., Xy » are independent. Let
Xk be the normalised sequence and Z, = Sorey Xk, as in Theorem (10.8). Assume
(10.2). If the sequence (Zy)y converges in distribution to a standard Gaussian random

variable, then (10.1) holds.

10.4 Multidimensional case

Let X = (X1,..., X4) be arandom vector in R?. We define its characteristic function
(bxt Rd —C by
ox(t) = EeXtX)  t e Re

10.13 Example. Let X = (X,..., X4) be a standard Gaussian random vector in R<.
Then by the independence of its components,
d d 2
1 l
¢X(t) — HQSXj(tj)eiiZj:lt]f tERd,
j=1

Let Y = AX + b be an arbitrary Gaussian random vector in R™, where A is an m x n
matrix and b is a vector in R™. Then

by (t) = EekAX+b,t) _ ei<b,t>Eei<X,ATt> — b, —AX /2 _ ei(b,t>ef<AATt,t>/27

thus, in general, we have

Py (t) = IRy N (b, Q). (10.4)
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Working with the multidimensional CDFs in R?, we can prove a tightness result
analogous to Theorem 8.17: a sequence (i), of Borel probability measures on R? is
tight if and only if it its every subsequence has a weakly convergent subsequence. We

also have the inversion formula analogous to the one from Theorem 9.7,

Ty Tn 1 . 5|2
FX(£17’~’7xn) :alir&/;w‘/_w <27T /Rd €Z<S)t>¢X(S)62“|2dS) dt.

These allow to establish Lévy’s continuity theorem in R¢ in a similar fashion and, con-

sequently, the central limit theorem in R?.

10.14 Theorem. Let (X,,) be a sequence of random vectors in R? such that for every

t e R, ¢x, (t) —— @(t) for some function ¢ : R — C which is continuous at t = 0.
n—oo

Then there is a random vector X in R? such that ¢ = ¢x and X, LNS'S

Proof. Let eq,...,eq be the standard basis vectors in RY. Fix j < d and s € R. By
the assumption, ¢x, ,)(s) = ¢x,(e;s) = dx(e;s) = @rx,¢,;)(s). Consequently, by the
1-dimensional version of Lévy’s theorem (Theorem 9.15), we get the tightness of the
sequence ((X,,e;))n of each component of X,,, thus of the sequence (X,,). Having the

tightness of (X,,),, we proceed exactly as in the proof of the 1-dimensional case. O

10.15 Theorem (Vanilla version of CLT in RY). Let X1, Xo, ... be i.i.d. random vectors
in RY with EX? < oo for each i, so that the covariance matriz Q = Cov(X) is well-

defined. Then
Xi1+...+ X, —nEX;

\/ﬁ n— 00

where Zg is a Gaussian random vector in R? with mean 0 and covariance matriz Q.

Lp =

2q,

Proof. By Lévy’s continuity theorem, it is enough to show that for every t € R?, we
have

bz (t) s ¢ —(QE)/2

n—oo
(recall (10.4)). Since E(t, X1 —EX1)? =(Qt,t)and ¢z, (t) = ¢z, (1), this follows from
the 1-dimensional vanilla CLT (Theorem 10.5) applied to the sequence ({(t, Z,,))5° O

n=1-

10.5 Poisson limit theorem

The following result, sometimes called the law of rare events, explains how the Poisson
distribution arises as a limit of the binomial distribution when the expected number of

successes converges to a constant as the number of Bernoulli trials goes to infinity.

10.16 Theorem (Vanilla Poisson limit theorem). Let a sequence of numbers py, € [0, 1]

be such that np, —— X for some A > 0. Let S, be a binomial random variable with

n—roo

parameters p, and n. Then S, LN X, where X is a Poisson random variable with

parameter \.
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Proof. For nonnegative integer-valued random variables convergence in distribution is

equivalent to the pointwise convergence of the probability mass functions (Exercise 8.4).

Thus, S, 4 X if and only if P(S,, = k) —— P (X = k), for every integer k > 0. Fix
n—oo

then such k£ and note that as n — oo, we have

P(S, = k) = (Z)pﬁ(l *pn)nfk _ nn—1). k'(n —k+ Dpﬁ(l *pn)nfk

_140(n1)
o k!

(npn)k(l - pn)nik-

By the assumption, np,, — A. In particular, p,, — 0. Consequently, (1 —p,)~* — 1 and

(1= pa)" = e, 50

P(S, =k) — U =P(X=k).

n—oo k!

O

There is a generalisation to triangular arrays of Bernoulli random variables satisfying
two assumptions: (i) the means stabilise in the limit and (ii) each random variable has

a small contribution.

10.17 Theorem (Poisson limit theorem). Let {X,, }n>11<k<n be a triangular array of
Bernoulli random variables such that for every n > 1, the variables Xy, 1,..., X, are

independent. If they satisfy the following two conditions
(i) E>p_y Xnk — A for some X € (0, 00),
(ZZ) maxi<ig<n ]EXn,k —_— 0,
- = n—oo

then

Xn,1+"'+Xn,n d >Za

n— oo

where Z 1s a Poisson random variable with parameter .

For now we show a Fourier-analytic proof. In the next chapter, we include another
proof, based on the total variation distance, which gives some quantitative bounds on

the rate of convergence and moreover is quite simple.

1st proof of Theorem 10.17. Let S, = Xp1+ -+ + Xy and let p, , = EX,, ;. be the

parameter of the Bernoulli distribution of X, ;. We have

¢s,(t) = [T éx,. () = [T (1 +pan(e” —1))
k=1

k=1

and
¢Z (t) _ e)\(enfl) )
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Fix ¢t € R. Assumption (i) is that Y ;_; pn.k = A, thus

n

H eProk (e =1) = (TR prk) (€ —1) y M) = (1)

n—o00
k=1

and it suffices to show that

n

Up = H(]. -l-pn’k‘(e” - H ePr, p(et—1) .0

n—o00
k=1 k=1

For 0 < p <1, we have

|ep(eit_1)| — epRe(e“_l) — ep(cost—l) < 1

and

1+ p(e —1)[ =1 —p+pe| <1—p+ple'| =1,

so by Lemma 10.1 with 8 = 1, we get

el = | TT 0+t 1)) = [[ermetn
k=1 k=1

Thanks to assumption (ii), for large enough n, we can use Lemma 10.2 applied to

z = pn k(e — 1) and thus get

n n n
|U7L| < ;piﬂelt - 1|2 < 4];p317k < 4 (121]?‘){ Pn k) I;pn,k: m 0.

113



10.6 Exercises

1. Let S be the number of ones when throwing a fair die 18000 times. Using the central

limit theorem, find a Gaussian approximation to P (2950 < S < 3050).

2. Let G be a standard Gaussian random vector in R™. Let ||G|| = /G2 + ...+ G2 be
its magnitude. Let a, =P (v/n—1 < ||G|| < v/n+1). Find a = lim,_,  ap.

3. For A > 0, let X be a Poisson random variable with parameter A. Let (),) be a

sequence of positive numbers with A, — oo as n — oco. Find the weak limit of the

sequence ( X%)‘" ).

4. Show that e™" > }'_, ’}T’: —— 1

n— oo

Hint: Poiss(n) random variable is a sum of n i.i.d. Poiss(1) random variables.

5. Let X, be a Poisson random variable with parameter n. Let Z be a standard Gaussian

random variable. Show that

—n —mnnt1/2
() B (Xazn) —enntif
Xn—n d
(11) ( Vvn )_ n— 00 Z-,

(iv) conclude Stirling’s formula, ——"%—r —— /2.
e n n—o00
Here, as usual, X_ = max{—X,0} denotes the negative part of X.

6. Suppose that a random variable X with variance one has the following property:

X\%(l has the same distribution as X, where X’ is an independent copy of X. Show

that X ~ N(0,1).

7. Suppose that a random vector X = (X1, X3) in R? is such that EX? EX3 < oo, X is
rotationally invariant (U X has the same distribution as X for every 2 x 2 orthogonal
matrix U) and X has independent components, that is X; and X, are independent.

Show that

(a) X7 has the same distribution as X and is symmetric (that is has the same
distribution as —X7)
(b) X has the same distribution as %

(c) Using Exercise 10.6, deduce that X ~ N(0,0%I5x2).
Generalise this characterisation of multiples of standard Gaussian vectors to R™.

8. A roulette wheel has slots numbered 1-36 (18 red and 18 black) and two slots num-
bered 0 and 00 that are painted green. You can bet $1 that the ball will land in a
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10.

11.

12.

13.

14.

red (or black) slot and win $1 if it does. What is the expected value of your winnings
after 361 spins of the wheel and what is approximately the probability that it will be

positive?

A biased coin showing heads with probability p is thrown 2500 times. Using the
Poisson or central limit theorem, find approximately the probability of getting no

heads when a) p = ﬁ, b)p= %? How about the probability of getting 500 heads?

Prove Remark 10.6.
Prove Remark 10.7. Here is a suggestion how to proceed.

(a) Considering X; — X/ instead of X;, where X/ is an independent copy of X;
(independent of all the other random variables), show that we can assume the

X; are symmetric (Exercise 7.1 may be of use).

(b) Show that for independent symmetric random variables Xi,..., X, and every

t, A > 0, we have

1
PXi+--+X,>t) > B
To this end, consider S = X1 1jx,j<a+ +Xn1x, <4, T = X1 L x, 54+ -+
Xn1jx,>4 and use that (5,7 has the same distribution as (£S5, +7'), by sym-

P (X1 1x,jca+ o+ Xnljx, <4 2 1) -

metry.

(¢) Apply (b) with ¢ = uy/n and treat the right hand side with the central limit
theorem to show that if EX? = +oo (EX?1|X;| <A /EX? as A — c0), then
P (X1 +---+ X, > uy/n) > £ for large enough n. Choose first u, then A, then

n to reach a contradiction.

Let X1, X5, ... be ii.d. random variables with mean 0 and variance 1. Show that
Vn(Xi+-+ X)) P
and
Xit+Xa 4,
1/X12++X721 n—o00 ’
where Z is a standard Gaussian random variable.
Let X1, X5, ... be i.i.d. nonnegative random variables with mean 1 and variance o2.

Show that
2(VX1 + -+ X, — V) — 2,
n—oo
2

where Z is a Gaussian random variable with mean 0 and variance o=.
Let @ > 0. Let Xi,Xs,... be i.i.d. random variables such that P (X =a) =

P(Xp=1/a) = L.
X))V > 1

Investigate the weak convergence of the sequence Z, = (X -
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15.

16.

17.

18.

19.

20.

21.

22.

Let X1, X5, ... beii.d. random variables with mean 0 and variance 2. Let f: R = R

be a function differentiable at 0. Show that

vir(p (Bt ) ) Loz

n n—00

where Z is a Gaussian random variable with mean 0 and variance o f/(0)2.

Show that the Lindeberg condition (10.1) implies that for every e > 0, we have

max P (| X, >¢e) —— 0.
1<k<n n—o00

Under the notation and assumptions of Theorem 10.8, consider the so-called Lya-

punov condition: there is § > 0 such that E|Xn,k|2+5 < oo for all n, k and

n
> B[ Xk —— 0.
] n— oo

Show that this implies Lindeberg’s condition (10.1).

Let X7, X5, ... be independent random variables such that for some constant C' > 0

and all n, | X,,| < C. If Y7, Var(X},) = oo, then Xl*'”\jggfméf(;jx") converges
k=1 V@ d

to a standard Gaussian.

Let X, Xo,... beii.d. random variables with mean 0 and variance 1. Given positive

>t).

Let X1, Xo,... be independent random variables with P (X = k) = P(X, = —k) =

parameters « and ¢, find

lim P

n—00

X+ + X,
na

%, k > 1. Investigate the convergence in distribution of the sequence

X1+ + X,
, n > 1.
VVar(X; + -+ X,,)
Let Uy, Us,. .. be independent random variables with Uy being uniform on [—ay, ag].

Let 0, = \/ Var(X; +--- 4+ X,,). Investigate the convergence in distribution of the
sequence
U+---+U,

)

n>1

3
On

in the following two cases

a) The sequence (ay,) is bounded and o,, — 0o as n — oco.
b) Y a2 < cc.

Show that the components X; of a random vector X = (Xi,...,X,) in R? are

independent if and only if ¢x (t) = [[_; ¢x, (tx) for every t € R%.
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23.

24.

Show that a random vector X in R? is Gaussian with mean b € R? and covariance
matrix @ if and only if for every ¢t € R, (t, X) is a Gaussian random variable with

mean (¢, b) and variance (Qt, t).

Let T}, and Z,, be the number of inversions and cycles, respectively, in a permutation
chosen uniformly at random from the set of all permutations on an n-element set.

Show that

S, — n2/4 d
6 n3/2 n—o0 z
and
Zn —logn 4 Z,

(log n)1/2 n— o0

where Z is a standard Gaussian random variable.
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11 Quantitative versions of the limit theorem*

11.1 Berry-Esseen theorem via Stein’s mehtod

Xit+..+ X, —nEXy

\/n Var(Xy)

and let Z be a standard Gaussian random variable. The central limit theorem asserts

Let X1, X5, ... bei.i.d. random variables with finite variance. Let Z,, =

that for every t € R,

1 t
P(Zy<t) ——P(Z<t)= f/ 124y,

n— oo 2

For practical purposes, we would like to know what is the error we make when we
use P(Z < t) as an approximation to P (Z,, <t) for large n. This is possible under an
additional assumption (finite third moment) and is settled in the following theorem,

discovered independently by Berry and Esseen.

11.1 Theorem (Berry-Esseen theorem). Let Xy, Xo, ... be i.i.d. random variables with
E|X;|]? < co. Let

Z o X1—|——|—Xn—n]EX1
" n Var(Xy) ’

3

x—Exy

B et Stet 3
P Var (X

and let Z be a standard Gaussian random variable. There is a universal constant C

such that for every n > 1 and every t € R, we have

Pz, <t -P(Z<|<L,

B

11.2 Remark. We present a proof which will give C' = 15.2, but this value is far
from optimal. Currently, the best value is C' = 0.4774 (estblished via Fourier analytic

; . 104v3 _
methods in [8]). Esseen proved a lower bound: C > o = 04097,

11.3 Remark. The rate 1/y/n of the error is optimal. Consider i.i.d. symmetric random

signs €1, €9,... and let Z, = % For even n, by symmetry, we have
1+PEe1+...4e,=0) 1 1/ n\1

P(Z, <0)= — 4z —

(2 <0) 2 2" 2\ny2) 2

thus, thanks to Stirling’s formula,

P(Z,<0)—-P(Z<0)|= ‘]P’(Zn <0) — 5| =
so in this case the error is of the order 1/4/n.

For the proof the Berry-Esseen theorem, we shall need the following elementary tail

bound for the standard Gaussian distribution.
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11.4 Lemma. For x > 0, we have
(i) [ e Pdu< e,
(ii) [ e v’ 2du < %e_”Z/Q.

Proof. (i) let f(x) = \/ge_mz/2 — [Z e " 2du. Since f'(z) = (1 — z\/%) e~ /2 is first
positive, then negative, f first increases, then decreases. Combined with f(0) = 0 and
f(z) P 0, this proves that f(z) > 0.

(ii) We have [ ze=%/2du < L ue="/2du = e=*/2, O

Proof of Theorem 11.1. For t,z € R and A > 0 define functions
hi(z) = 1(—o0,0(2),
and their continuous linear approximations
1, z<t,
hia(e) = 91— 2t t<a<t+ A
0, x>t+ A
We will frequently use the following integral representation
1
htA(.I‘) = / X 1(t,t+k)(8)d3'
Given v > 1, define the class of random variables

%, ={X, X is random variable such that EX =0, EX? =1, E|X|* =~}

and for n = 1,2, ... define two quantities
Bo(v,n) = sup sup [Ehi(Zn) — Eh(Z)],
X1, Xpiid, X;€2, teR
B(\,y,n) = sup sup |Ehy z(Z) — Ehe 2 (2)].

X1,y Xpiid., X, €2, t€R
Plainly, P(X <t) =E1lx<; = Eh(X), so to prove the theorem, we would like to show
that

@Bo(%n) <C, n>1vy>1
v

This is clear for n = 1 with C' = 1 because |[Ehi(Z,) — Eh(Z)| < 1, so from now on we

assume n > 2 and divide the rest of the proof into several steps.

Step 1: regularisation (upper bound for By in terms of B). Since hy_x < hy < hy x, we
get
Ehy(Z,) — Eh(Z) < Ehy 1\ (Z,) — Eh(Z)
=Ehi 2 (Zy) — Ehg 2 (Z) + Ehy A (2) — Ehy(Z)
< Ehy A (Zn) — Ehua(Z) + Ehiya(Z2) — Ehi(2).
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Observe that the first difference is upper bounded by B()\,v,n) by its definition. The

second difference is

A, de A e A
]P’t<Z§t+)\:/ et < = A
( ) t V2 t V2T V2T
Altogether,
A
Eh(Z,) —Eh(Z) < B(A,v,n) + —.
t(Zn) +(2) (A, 7,n) N
Similarly,
A
Ehy(Z,) —Ehi(Z) > —B(\,v,n) — ——.
Thus
A
By(v,n) < B(A,vy,n) + —.

Step 2: Stein’s method (“encoding” Eh(Z) into a function). Fix t € R, A > 0 and set
h = hy . Our goal is to upper bound B, so to upper bound Eh(Z,,) —Eh(Z). The heart

of Stein’s method is to rewrite this in terms of Z,, only. Let
x
fz) = ex2/2/ [h(u) — Eh(Z)]e_“2/2du.
—o0

Then
f(z) =2 f(x) = h(z) — ER(Z),

SO

Eh(Zy) — Bh(Z) = E[f (Z0) — Znf(Zn))]. (11.1)

Step 3: Estimates for f and f'. For every x € R, we have

|f<x><£, @ <1 P <2 (11.2)

and for every z,y € R, we have

1
ot - r@<lol (42045 [ talerma).

Indeed, since h takes values in [0, 1], we have |h(u) — h(v)| < 1 for any u and v, so for

z <0,

|f(x)] < ew2/2/ |h(u)7Eh(Z)|e*“2/2du < 6$2/2/ e 2dy = e$2/2/ efug/zdu,

— 00 —0o0 —T

x €T

which by Lemma 11.4 (i) is upper bounded by /5. For & > 0, notice that [°_[h(u) —
Eh(Z)]e‘“z/Q% =0, so

F) = —e=/? / " h(u) — BA(Z)]e= 2du
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and as above we get the bound | f(z)| < /F. To bound z f(x) we proceed the same way
but use Lemma 11.4 (ii). Finally, since f'(z) = zf(z) + h(xz) — Eh(Z) (Step 2), we get
|f'(@)| < |zf(x)] + [h(z) —EA(Z)| < 1+1=2.

This establishes (11.2). To prove (11.3), we use the formula for f’ from Step 2 and write

[f'(@+y) = f@)=+y)fle+y) +hz+y) - 2f(z) - h(2)
=lyflz+y) +a(f(z+y) - f(2)) + bz +y) — h(z)]

<|y|f+2|w|y+|hx+y> b)),

where in the last inequality we used the mean value theorem writing f(x +y) — f(z) =
f'(&)y and then estimating |f’(£)| < 2. Finally, by the integral representation for h,

Tty

1 1
|h(z+y) — h(z)| = ’)\/ 140 (w)du| = ‘g)/\/ 140 (2 +vy)dv
x 0

which after plugging back in the previous inequality finishes the proof of (11.3).

Step 4: Estimates for B(X\,v,n) via (11.1). To estimate B(\,~,n), we need to upper
bound Eh(Z,) — Eh(Z) = E[f'(Z,) — Znf(Z,)] (recall (11.1) from Step 2). Here we
exploit that Z,, = X1+7\/E+X" is a sum of i.i.d. random variables. Since the X, have the
same distribution, by linearity,

ZX
\[

% and thus

Note also that Z,, = "T_lZn,l +

E[f’(Zn)\/ﬁXn/Ol(iAf <\/”72n 1+uf§ﬁ> du
—VnX,f <\/nnil n—l) }

By independence and EX,, = 0 the last term vanishes and after computing the derivative

r(z)-x: | f’( iy 1+uf‘}>du]

f’(Zn)—f’< ";1Zn1>

o 2 ! / n—1 u&
(e

we get

=E

+E
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where in the last equality we used independence and EX2 = 1. We bound the two terms

separately.

Step 4.1: First term. Using Z, = 1/”T’1Zn_1 + X—\/% and (11.3),

f/(ZN) - f/ ( . lzn_1>‘| |
n
X T n—1 1t n—1 Xn
<E \/ﬁ‘<”2+2”n \Zn—1|+x/0 1(t,t+)\)< - Dn— 1+u\/»>du>

Since E|X,,| < \/E|X,|? = 1 and similarly E|Z,_1| < 1, as well as trivially /21 <1,

we get

120~ f ( L 1Zn1>] ’

1
n—1 X,
= \/7\/7 \/7 )\f Xn |X’I’L|/O EZHA 1(t,t+)\) ( TZ’Hfl + uﬁ) du‘|7

where in the last term we used the independence of X,, and Z,,_;. Note that

n—1 X
Bz, Lt 42) ( TZn_1 + u\/%>

X n X, n n
—P f—un) S ez < (t—un A ,
Z(( “ﬁ) n—1° 1<< “ﬁ)\/n—1+ \/n—1>

Denoting a = <t — uX—\/%) \/ 725 and estimating "5 < 2, we get that this probability is

E

E

upper bounded by
IP’(a< Zn_1 < a+/\f2)

which we rewrite in order to upper bound it in terms of By,

P(a<Zn_1<a+/\\f2) :P(Zn_1<a+A\f2)—1P(Z<a+A\/§)
+P(Z<a)~P(Zu1<a)+P(a<Z<a+AV2)
M2

< 2By(y,n —1) + X2,

where the last term was crudely bounded using the maximum of standard Gaussian

density. Plugging this back yields

E f’(Zn)—f’< ”;12711)]‘

<[5 rrg X|(2Bo<w,n_1>+})1
<= (f5+o B0 )
sf(\/ﬂruwo(%A 1)+¢1%>.
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Step 4.2: Second term. Using again (11.3) and independence,

1t \/ﬁ Xn
el 1 — 7 — | dv |d
Jr)\/o (t,t+,\)< n 3 1+UU\/E> U) U
X2 !
SE\/n% u<\/§+2]EZn1|Zn—1|
0
1 ! n—1 X
) 1 -z ~ | dv |d
+ )\/0 Zn—1 (t,t+)\)< " \/ﬁ> v) u
[ X f? /1 T ! A
<K —+24+ — (2B -1 d
B 5 T2+ 1 (2Bo(r,n )+ﬁ u

2By(y,m — 1) 1
2f<\/7+2+>\+\/7?>'

Putting Steps 4.1 and 4.2 together yields

B2 - 2ot < 2 f5 2 2200 ),

By Step 2, this gives

B, v,n )—2f<\/>+2+230(7;"1)+\/1%>'

Step 5: Optimisation of parameters and end of proof. The previous inequality and Step 1

Bo(v, )_QI([+2+QBO(%A”_1>+\}E>+\/%
_ 3 13vBy(y,n—1) A
2f(\[+2+\/%>+x Oﬁ + =

Set A = O‘fv « > 0 and multiply both sides by L to get

vn 3 T 1 3 vn e
Bo(%”)T <3 (\/;4- 2+ ﬁ) + aBo(%n - 1)7 + irs

B= sup By(y,n)
vy>1,n>2

yield

Let

=5

For n > 2, we have

B(%n—l)\f By(vy,n—1) n-l n1<max{\/§7B\/§}

v v n-—
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(recall that trivially Bo(~, 1)% <1).IB> %, we thus obtain

3 s 1 3 3 o
B< (/= 4+2+— —By/ =+ —.
_2( 2+ +\/77>+a \/g V2

For a > 3\/§ this gives

o 3 us 1 a? 1
et (e )
The choice of o which equates the two terms on the right hand side gives
B < 15.4.
Optimising over « (which requires more computations) gives a slightly better estimate
B < 15.2.

O

11.5 Remark. The proof presented here is from [2]. The heart of the argument is based
on Stein’s method (Step 2), introduced by Charles Stein, who developed this influential

technique for teaching purposes of the central limit theorem for his course in statistics.

11.6 Example. Let us apply the Berry-Esseen theorem to i.i.d. Bernoulli random
variables X7, ..., X,, with parameter 0 < p < 1. We have EX; = p, Var(X;) = p(1 — p)

and we obtain for every real t and every integer n > 1

1%
< -
_C\/ﬁ,

P<X1+...+Xn—np

§t> —P(Z<t)
np(1 - p)

where
Xi—p 3:p(1—p)3+(1—p)p3:1—2p(1—p)'
Vp(1—p) Ved—p) V(1 —p)

In particular, when np is of the constant order for large n, the Berry-Esseen theorem is

not useful at all because the bound of the error, C' ﬁ is of the order \/ﬁ which is

p=E

constant. This might suggest that the Gaussian approximation is not valid in this case,

which is in fact true in view of the Poisson limit theorem (Theorem 10.16).

11.2 Local central limit theorem

In applications we often need to address the following: suppose X7, Xs,... are i.i.d.
discrete, say integer-valued random variables and we would like to know for large n

what is the approximate value of P (X; + ... + X,, = x,,) for some z,, € Z. f EX? < o0,
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u=EX;, 02 = Var(X;) and % ~ y is of constant order for large n, by the central

limit theorem,

P(X1+4+...+ X, =x,)

1
Y 1 Xi4+...+ X, —np x, nu+ 1
N NG 2/n NG NG 2\/n
1 y+2\1/77 +2
R / e 22dt
210 Jy— 2
2vn
1 1 _ w2
e 202

= % 2o ’
obtaining the approximation for P(X; + ...+ X,, = x,,) by the Gaussian density. To
control the error in this approximation, we cannot simply use the Berry-Esseen theorem
here because its error bound O(ﬁ) is of the same order as the value of our approxima-

tion ﬁ \/21—71_0673/2/ 2. The local central limit theorem addresses this deficiency. We only

discuss the discrete case. There are also versions which give approximations to densities
of sums of i.i.d. continuous random variables.

We shall use the common notation a + bZ for the set {a + bz, x € Z}.

11.7 Theorem (Local central limit theorem). Let X1, Xs,... be i.i.d. integer-valued
random variables such that EX? < oco. Suppose X; is not supported on any proper
subprogression of Z, that is there are nor > 1, a € R such that P(X; € a+rZ) = 1.
Denote p = EX;, 0 = y/Var(X;) and

(z) =P X1—|—...+Xn—n,u_x er—nu
Pn = N = ) Jn .
Then
Viipa(#) ~ o3| ——0
su npn(T) — e 207| —— 0.
zezjf)”i" P V2mo n—00

11.8 Lemma. For an integer-valued random variable X and an integer k, we have

P(X =k) 1 /Tr e "R gy (t)dt.

:% »

Proof. Note that for two integers k and [, we have

1 T
Loy = ﬂ/, =R g,

Thus

I 1 [ ,
P(X=k)=E1 _ =E— 1t(X—k)dt — 7/ —1tk’E Ztht
( ) {X=k} By . e o - e e
1 g ;
=_— | e Rpx(t)dt.
2

—T

125



Proof of Theorem 11.7. Applying Lemma 11.8 to X; 4+ ...+ X,, and changing the vari-
ables yields

pn(as):IP’(XlJr...Jan:x\/ﬁJrnu)
1 s

=5n | IOk, ()t

1 1 mn itz —i—tp t "
= %g f@ e v ¢X1 \/ﬁ dt.

Using that the characteristic function of a centred Gaussian random variable with vari-

2
_ =z
ance 1/0? is e~ 202, we have

_ =2 g . 42 2
e 257 — / eitr =t o /th7
V2T J_so

which gives (by symmetry, we can write e ~“* instead of e*®)

1 .2 1 [
e 202 =

V2mo o oo

it 422
e itw—to /Zdt

Therefore,

1 2
\/ﬁpn(x) - e 207

dt
V2o

1 / t\" _$252/9
Si ¢X1—L(> 76150'/

27 Jitj<nym "\vn

1

— et 2qy.

27 Stz nv/m
Since the right hand side does not depend on z, we need to show that it converges to 0
as n — oo. The second integral clearly does. To deal with the first integral, we change

the variables

/ ¢ ( t )TL 6_t20_2/2 dt 1 / ¢ ( t )TL e_t2/2 dt
Xo—pu | —F—= ) — = - Xiow | Y= | — )
RN EANVD 0 Jij<noym| 7 \Vn
let X; = % (which has mean 0 and variance 1) and break it into two pieces
/ ¢x, <t>n —ear +/ ¢x, (t)n e dn (114)
tl<evm vn evm<|ti<novn vn

Recall from the proof of the central limit theorem that

ox, (5=) e

2
¢X1 (t) =1- 5 +t2R(t)7
for some (complex-valued) function R such that R(¢) — 0 as t — 0. Choose € < 1 such

that [R(t)| < 1 for all |t| < e. Then for |t| < ey/n,

t t2
"% (ﬁ)\ . \“zn

and by Taylor’s formula,




SO

2 2
< e/ g )2

t\" 2
o ()~

By Lebesgue’s dominated convergence theorem, the first piece in (11.4) converges to 0
as n — oo. Finally, to handle the second piece, we claim that: |¢¢ (t)| < c. for all

e < |t| < wo for some constant ¢, < 1. This suffices because then

t " 2 2
bz () et /2 dt < / (cn +€7t /2)dt
RANVD evR<lti<movm

and the right hand side clearly goes to 0 as n — co. Now we use that X is integer-valued,

/e\/ﬁ<|t|<7w\/ﬁ

not concentrated on any proper subprogreesion to show the claim. Since X; is integer-
valued, ¢, is 2m-periodic and in particular ¢x, (27) = 1. Moreover, |¢x, (t)| < 1 for all
0 < t < 2m. Otherwise, if |¢x, (to)| = 1 for some 0 < tg < 27, then 0¥ is constant,
say equal to e’®. Consequently, X; € % + Zt—gZ, which contradicts the assumption. By
periodicity and continuity, there is ¢. < 1 such that |¢x, ()] < c. for all € < |t| < 7.

Since ¢x. (t) = e 7 ¢x, (L), the claim follows. O
X1 1\g /)

Of course, in the proof it was not important that the X; are integer-valued because by
rescaling we could assume that they take values in a+rZ for some a,r € R. Such random
variables are said to have a lattice distribution. We finish this section by summarising
periodicity properties of their characteristic functions, which played a crucial role in the

proof of the local central limit theorem.

11.9 Lemma. For a random variable X with characteristic function ¢x the following

are equivalent
(i) ¢x(s) =1 for some s #0,
(ii) P(X € Z7) =1,

(i1i) ¢x is |s| periodic.

Proof. (1) = (ii): Since 1 = ¢x(s) = Ecos(sX)+iEsin(sX), we have 0 = E(1—cos(sX)).
Since 1 — cos(sX) is a nonnegative random variable whose expectation is 0, we have

P(cos(sX) =1) =1 (see Theorem E.2 (c)), equivalently P (sX € 27Z) = 1.

(if) = (iil): We have

ot + 2a]s]) = BeieHDX = 37 et lsD Fkp (X _ 2%) _ 3 p (X _ 2%)
s

k€EZ kEZ |S|

= ¢x(1).
(iii) = (i): Plainly, ¢x(s) = ¢x(0) = 1. O
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11.10 Lemma. Let X be a random variable with characteristic function ¢x. There are

only 3 possibilities
(i) |opx ()| <1 for everyt # 0,

(i1) |¢x(s)| = 1 for some s > 0 and |¢x(t)| < 1 for all 0 < t < s and then ¢x is

s-periodic and X € a + 2{2 a.s. for some a € R,

(iii) |px (t)] = 1 for every t € R and then we have that ¢x(t) = e'® for some a € R,
that is X = a a.s.

If (ii) holds, X has a lattice distribution and since |¢x (t)| < 1 for all 0 < ¢t < s, by
Lemma 11.9, s is the largest r > 0 such that P (X € a +rZ) = 1. We sometimes call s
the span of the distribution of X.

Proof. Let us first explain the implication in (ii). Suppose |¢x(s)| = 1 for some s > 0.
Then ¢x(s) = e for some a € R. Since 1 = e"“¢px(s) = ¢x_q(s), by Lemma 11.9
applied to X —a, we get that X —a € 2{2 a.s. and ¢px_g is s-periodic, so ¢px = € ®Px_q
is s-periodic.

To prove the trichotomy, suppose (i) and (ii) do not hold. Then there is a positive
sequence t,, — 0 such that |¢px (t,,)| = 1. Consequently, by what we just proved, there are
a, € R such that X € a,, + %:Z a.s. and ¢x is t,-periodic. Without loss of generality,
we can pick a, € (=, {]. Since t, — 0, we have P (X € (—%,%)) — 1, which
combined with X € a,, + %—:Z and a, € (-7, 7] gives P (X = a,) — 1. Consequently,
there is ng such that for all n > ng, P(X = a,) > 3/4, but then all a,,, n > ng have to be
equal, say a, = a and P(X = a,) — 1 finally gives P(X = a) = 1. Then ¢x(t) = e,
consequently (iii) holds. O

11.3 Poisson limit theorem

For probability measures p and v supported on Z, the total variation distance be-

tween p and v is
[ = vllrv = sup |u(A) — v(A)],
ACZ
where the supremum is over all subsets A of Z.

Our goal is to prove the following quantitative version of Theorem 10.17.

11.11 Theorem. Let {X, }n>11<k<n be a triangular array of Bernoulli random vari-
ables, Xy ~ Ber(pn), such that for every n > 1, the variables Xy 1,...,Xnn are
independent. Let S, = Xp 14+ Xpn and let Z,, be a Poisson random variable with
parameter ES,, = >} pnk. Then

n
[t = vnllTy < Zpi,ka
k=1
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where W, is the law of Sy, and v, is the law of Z,.

11.12 Remark. This theorem quantitatively shows when and how close the sum of
Bernoullis S,, is to a Poisson random variable with parameter A\,, = ES,,. For instance,
in the case of Theorem 10.16, when p,, 1, = py, we see that the distribution of .S, is close
to Poiss(\,), as long as >, p2 = npj, = %i — 0; in particular, if A, — oo with

An = o(y/n).

En route to proving Theorem 11.11, we need to develop a few facts related to the
total variation distance.
There is a convenient explicit expression for this distance in terms of the ¢; norm of

the sequence of differences of atoms.

11.13 Theorem. For two probability measures p, v on Z, we have

= vllrv = % > ln{a}) = v({a})l.

TEZ

Proof. For a subset A of Z, by the triangle inequality, we have

2|p(A) = v(A)] = |p(A) — v(A)| + [u(A°) — v(A9)]

=3 (nf=)) = v({=h) |+ | 3 (uad) - u({x}))‘
TEA TEA®
<3 Inl{a}) - v({a})]
TEZ
with equality for A = {z € Z, p({z}) > v({z})}. O

As a corollary, we easily see that the total variation distance is a metric. Convergence
in the total variation distance is equivalent to pointwise convergence on atoms (this can
be seen as an analogy in this discrete setup to Scheffé’s lemma from Exercise 8.8; the

proofs are of course identical).

11.14 Theorem. Let (i,)n be a sequence of probability measures on Z. For a probability

measure p on Z, we have

i = pllrv ——= 0 if and only if V& € Z pn({z}) —— p({z}).

Proof. To ease the notation, let p,, » = p,({z}) and p, = p({z}). In view of Theorem
11.13, we want to show that

S Ipne —pel ——0  ifandonlyif Ve €Z pu. —— pi.
weZ n—00 n—00

Implication “=" is clear. For the other one, note that
‘px *pn,r| == (pz 7pn,z)+ + (pr 7pn,r)—~
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Since

0=1-1= Z(px _pn,w) = Z(pw _pn,m)+ - Z(pw _pn,x)—v

T€EZ TE€EZ €L
we get
Z |p£ 7pn,z| =2 Z(pz 7pn,.r)+-
rEZL TEZL

Moreover, (py — Pn,z)+ < Pz, 0 Lebesgue’s dominated convergence theorem finishes the

argument. O

This in turn easily leads to the conclusion that the weak convergence is equivalent

to convergence in total variation distance.
11.15 Corollary. Let (un)n be a sequence of probability measures on Z. For a proba-
bility measure p on Z, we have
. ) d
ln —pillry —— 0 ifand only if i —s i
n—oo n— oo

Proof. “=": Fix a continuous bounded function f: R — R with M = sup |f|. Then,

o

> f@)(u({a}) —v({z})

TEZ

<MY |p({a}) - v({z})

TEZL

=2M||pn — pll7v.

“<”: Fix x € Z. Let f: R — R be continuous bounded such that f(¢) = 0 for all
t € Z\ {z} and f(x) =1. Then

[ s~ [ fdu] = lun({2}) — u({z})|

and we conclude by Theorem 11.14. O

Of course, the definition of || - |7y and the above results extend verbatim from Z to
any countable set.

To prove a quantitative version of the Poisson limit theorem, we need three lemmas.
11.16 Lemma. Let uq, po,v1, 2 be probability measures on Z. Then
[t @ po — 11 @ va|lrv < |l —villrv + (|2 — v2ll7v.

Proof. By Theorem 11.13 and the triangle inequality, we have

2 @ po =11 @ wollrv = D [m{eua({y}) — i ({z})va({y})]

< Y Im{aPee(y)) —meHum{y)l + Y ey} —n{ara({y})
=> ()Y lma}) =D+ -z} Y- lre({y}) — va({y})]

=2||p1 — villrv + 2[|p2 — vellTv.
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Recall that the convolution of two measures p and v on Z is defined as a measure

(nxv)(A) =Y p{A-yhv({y}), ACLZ

YEL

It is the distribution of the sum X 4+ Y of two independent Z-valued random variables

X, Y with law pu, v respectively.
11.17 Lemma. Let pi1, o, v1, 2 be probability measures on Z. Then
1 * po =1 xvallry < [lpa —nilley + llpe — v2llzv,

Proof. By Theorem 11.13 and the triangle inequality, we have

2l pz — v xvellrv =) | * p2)({2}) = (v % v2) ({a})]

=3 > mlz - yhue(y)) > vl — yhre{y))

€l |YyeZ YyEL

<> ¥ Im{z —yhue({y}) — e — yHra({y})]
TEL YEL

=Y > Im{ahu{y}) —vi{=h)r({y})|
TEL YEL

=2[|u1 — villrv + [|pe — v2|lTv.
O

11.18 Lemma. Letp € [0,1]. Let p be the Bernoulli distribution with parameter p and

let v be the Poisson distribution with parameter p. Then

I — vy < p*.

Proof. By Theorem 11.13, we have

2lln — vllry = |1({0}) = v({O})] + ln({1}) —v({1)] + D v({k})

k>2

=[l—p—ePl+lp—pe?|+1-eP(1+p)

=e P —1+p+tp—pe P+ 1l—eP(l+p) =2p(l—e?)<2p’
(we use e > 1—p). O

Proof of Theorem 11.11. Let p, be the distribution of S,, = X;,1 +--- + X,, , and let

n,i be the distribution of X,  which is Bernoulli with parameter p,, ;. Then

Hn = HUp1 %% Up pn.
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Let v, be the Poisson distribution with parameter )\, = ES,, = ZZ:1 Dn,k and let v, p
be the Poisson distribution with parameter p, ;. Since sums of independent Poisson

random variables are Poisson, we have
Vp = Up,1 % % Upn.

Thus, by Lemmas 11.17, 11.16 and 11.18,

i = vnllov <o (11.5)
k=1

O

11.19 Remark. We can quickly deduce Theorem 10.17 from (11.5). Let v be the
Poisson distribution with parameter A. As we saw in the proof of Theorem 10.17,
the right hand side of (11.5) goes to 0 as n — oo. Moreover, by Theorem 11.14,

lvn — v||l7v — 0 because Ay, — A. Thus, ||uy, — v|lrv — 0, as desired.

11.20 Remark. When p,, ; = %, we have \,, = A = 1 and from the second proof,

1

i — vy < —.
n

On the other hand, since 1 —z > ¢ 72" and 1 — e~ % > L for x € [0, 3], we have for

n > 2,

1
2en’

lun({0}) —v({O})| =" — (1 — i)" >e e tol/n =t (1 — 6*1/"> >

which shows that the rate % is optimal here.
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11.4 Exercises

1. Using the Berry-Esseen theorem, how can you bound the error you make in your

approximation in Exercise 10.17

2. In Exercise 10.2, using the Berry-Esseen theorem, show additionally that |a, — a| <

15
= for all n > 1.

3. For two probability measures on Z, || — v||7v < 0 if and only if there are random

variables X, Y with distributions u, v, respectively such that P (X #Y) < g.
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12 Conditional expectation

We begin with a motivating example. Let (2, F,P) be a probability space and suppose

we have two discrete random variables

X:Q—>{x1,...,xm},
Z:Q—={z1,. .., Zn}

taking finitely many values. Recall the conditional probabilities

P(X=$i, Z:Zj)

P(X:xi|Z:zj): IP(Z:ZJ)

and conditional expectations
Y =E(X|Z=2)=)Y aP(X =u,]Z =z).

In this simple situation, the conditional expectation of X given Z is a random variable

Y = E(X|Z) defined as
Y(w)=y; =E(X|Z=z2) on{Z=z}

In other words, “knowing” the value of Z amounts to the partitioning Q = (J{Z = z;}
and Y is set to be constant y; on the atoms {Z = z;} of this partitioning. We point out
two features of Y which will be central in the general definition. Let G = o(Z) be the
o-algebra generated by Z. Here G is generated by the partitioning {Z = z;};. Since ¥

is constant on the atoms of G,
(1) Y is G-measurable.

Note also that
EY 17—y = yP(Z=2) =Y x:P(X =2:|Z = ) P(Z = z)
=> oP(X =u;, Z=2)=EX1z_..

Since every element in G is a union of the atoms {Z = z;}, by linearity, we thus have

(2) VG e G EY1lg=EX1g.

12.1 Construction

The following theorem due to Kolmogorov (1933) gives a way to define conditional

expectations.

12.1 Theorem. Let X be a random variable on a probability space (Q, F,P) with E| X | <
oo. Let G be a sub-c-algebra of F. There is a random variable Y with E|Y| < oo such
that

134



(1) Y is G-measurable,
(2) YG € G EY 16 = EX 1.

Moreover, if Y is another random variable with E|Y| < oo satisfying (1) and (2), then
Y =Y as.

This random variable Y is called (a version) of the conditional expectation of X
given G, denoted E(X|G). We then write Y = E(X|G). For a random variable Z, the
conditional expectation of X given Z, E(X|Z), is defined as E(X|o(Z)). More generally,
we define E(X|Z1, Zs,...) = E(X|0(Z1, Za,...)). Of course, we also adopt the natural
definition of the conditional probability of an event A given G, P(A|G) = E(14|G)
(which is a random variable!).

The intuitive meaning of conditional expectations:

a) E(X|A), that is given an even A: an experiment has been performed and all we know

is whether w € A or not and we recalculate the expectation according to P (:|A4)

b) E(X|Z), that is given a discrete random variable Z: an experiment has been per-
formed and all we know about w is in which set {Z = z;} it is, so E(X|Z)(w) is still

a random quantity, but constant on these sets

c) E(X|G), that is given a sub-c-algebra G: an experiment has been performed and all
we know about w is {Z(w) : Z is G-measurable}, so E(X|G)(w) is a random quantity

being the average of X given this information.

The richer G is, the more we “know” about X, so that E(X|G) more accurately

describes X. In the two extreme cases:
a) if G = {@,Q} (a trivial o-algebra, so no knowledge), then E(X|G) = EX (constant)
b) if G = F (full knowledge), then E(X|G) = X.

These can be simply verified by checking that the claimed variables EX and X respec-
tively satisfy (1) and (2).

Proof of Theorem 12.1. We break the proof into several steps.

Step 1: uniqueness. Let Y, Y be two integrable G-measurable versions of E(X|G), that
is satisfying (1) and (2). Since {Y —Y > 1} e g, we get from (2),

EY 1y yo1y =EX 1y yoay =EV 1y goay,

or,

1 o1
O—E(YY)I{Y_3~,>3L}2HIP<YY> )

n
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which shows that P (Y -Y > %) = 0 and consequently, taking the union of these

events over n, P (Y -Y > 0) = 0. Swapping the roles of Y and }7, we also get that

P(Y—Y>o) -0, soIP(Y;AY/) —0.

Step 2: existence for X € Ly. Let X € Ly(Q), F,P) and consider the subspace
H=Ly(02,G,P) C Ly(Q, F,P)

which is complete (as being an Lo space — see Theorem 6.10), so by the existence of the
orthogonal projection, Theorem 6.11, there is a random variable Y € H which is closest

to X, that is it satisfies
E(X —Y)? = inf{E(X — W)?, W € H},
or, equivalently,
X-Y LH, thatisYW e GE(X —-Y)W =0.

We claim that this Y satisfies (1) and (2). Since Y € H, it is G measurable. For G € G,
letting W = 1¢ € H, we get E(X — Y)W = 0, that is (2).
Step 3: basic and key properties of E(X|G) for X € Lo.

(i) linearity: E(a1 X1 + a2X3|G) = a1 E(X1|G) + axE(X2|G), a1,a2 € R, X1, X5 € Loy

(ii) monotonicity: if X € Ly, X > 0 a.s., then E(X|G) > 0 a.s.

(iii) if X7, X5 € Lg, X1 > X5 a.s., then E(X;|G) > E(X3|G) a.s.

Property (i) is clear because the orthogonal projection is a linear map. Property (ii)
follows by an argument identical to the one from Step 1. Property (iii) follows from (i)

and (ii).

Step 3: existence of E(X|G) for X € L1, X > 0. Let X,, = min{X,n}. Then each X,
is bounded, in particular X,, € Ly and X,, / X as n — oo. Let Y,, be a version of
E(X,|G) (constructed in Step 2). By Property (iii), ¥,, is a monotone sequence. Let
Y =1limY,. As a limit of G-measurable functions, Y is G-measurable. By Lebesgue’s

monotone convergence theorem, for G € G,
EY 16 =E(limY,)1lg =limEY, 14
but since Y, is a version of E(X,|G), by (2), we have EY,, 1¢ = EX,, 1. Thus,
ImEY, 1¢ = imEX, 1¢ = E(lim X,)) 1¢ = EX 14,

so EY 1¢ = EX 1. In particular, EY = EX < co. These show that Y has the desired

properties.

Step 4: existence of B(X|G) for arbitrary X € L;. We decompose X = X — X~ and
set E(X|G) = E(XF|G) — E(X~|G). 0
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12.2 Important properties

12.2 Theorem. All random variables are assumed to be integrable, G is sub-o-algebra.
(a) If Y = E(X|G), then EY = EX.

(b) If X is G-measurable, then E(X|G) = X.

(¢) Linearity: E(a1 X1 +a2X3|G) = a1 E(X1]|G) + a2E(X32|G) a.s., a1,as € R (understood
as: if Yy is a version of B(X;|G), then a1Y14a2Ys is a version of E(a1 X1 +a2X3|G)).

(d) Positivity: if X > 0 a.s., then E(X|G) > 0 a.s. If X1 > X,, then E(X4|G) >
E(X2|G) a.s.

(e) Lebesgue’s monotone convergence theorem: if 0 < X,, /' X a.s., then
E(X,|G) "E(X|G) a.s.
(f) Fatou’s lemma: if X, >0, then

E(liminf X,,|G) < liminf E(X,|G) a.s.

(9) Lebesgue’s dominated convergence theorem: if Vn |X,| <V for some V € Ly and
X, — X, then
E(X,|G) = E(X|G) a.s.

(h) Jensen’s inequality: if f: R — R is conver and f(X) € Ly, then
E(f(X)I9) = F(E(X]G)) a.s.
(i) Tower property: if H C G is a sub-o-algebra, then
E(E(X|G)[%) = E(X[H) = E(E(X[)\G) a.s
(j) “Taking out what is known”: if Z is a G-measurable bounded random variable, then
E(ZX|G) = ZE(X|G) a.s.
(k) “Role of independence”: if H is a o-algebra independent of o(X,G), then
E(X|o(G,H)) = E(X|G) a.s.
In particular, if X is independent of H, for G = {@,Q}, we get
E(X|H) =EX a.s.
Proof. (a) We use (2) with G =Q to get EX =EX 1o =EY 15 =EY.
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(b)
()
(d)
()

(f)
(2)
(h)

Obvious because Y = X clearly satisfies (1) and (2).
It follows from the linearity of E(-) 15 for every fixed G € G.
It is done in a similar way as in Step 1 of the proof of Theorem 12.1.

It is done is a similar way as in Step 3 of the proof of Theorem 12.1. We let
Y, = E(Y,|G), use monotonicity to put ¥ = limY;, and argue through the usual

Lebesgue’s monotone convergence theorem.
Use (e) to deduce it as in the unconditional case.
Use (f) to deduce it as in the unconditional case (see Appendix E).

It is done as in the unconditional case in the proof of Theorem 6.2. We write
f(x) = supye, €(z) for a countable family of linear functions £. Fix ¢ € L. Since
f(X) > £(X), by monotonicity and linearity, E(f(X)|G) > E(4(X)|G) = ¢(E(X|G))
a.s. Since L is countable, this also holds for all £ € £ a.s. Taking the supremum

over { finishes the argument.
Let Y = E(X|#H). It is H-measurable, so also G-measurable and by (b),
E(E(X|H)|G) =E(Y|G) =Y.
To check that
E(E(X|G)/H) =Y,
it suffices to show that for every H € H, EE(X|G)1y = EY 1y. Since H € G,

by the definition of E(X|G), the left hand side is EX 15. Since H € H, by the
definition of E(X|H), the right hand side is also EX 1.

Thanks to linearity, without loss of generality we can assume that X > 0. Then the
standard argument of complicating Z works because we can use monotone conver-
gence (first we check the claim for Z = 1, G € G, then by linearity we have it for
simple Z and then for all G-measurable bounded Z).

Thanks to linearity, without loss of generality we can assume that X > 0. Let
Y = E(X|G). We want to show that for every A € o(G,H), EY 1, = EX 14. By
Dynkin’s theorem, it suffices to this for all A in a 7-system generating o(G,H), so

for every A =GN H with G € G and H € ‘H. Then, we have
EY 1ghug =E(Y 1¢)1g =EY 1cE1y

because Y 1 is G-measurable, hence independent of H. By the definition of E(X|G),
EY 1 = EX 1¢. Since X 1 and 1y are independent, we conclude that

EY 1gng = EX16E1y = EX long .
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12.3 Basic examples
12.3 Example. Let (X, Z) be a continuous random vector in R? with density f. Then
/ flzx, 2) is the density of X,
z) = /]Rf(aﬂ7 z)dx is the density of Z.

Recall we define the conditional density fx|z of X given Z as

L&2) i fu(2) > 0
fX\Z(17|Z) _ ) fz(2)
0, otherwise.

Let h: R — R be a Borel function such that E[h(X)| < co. Let

o) = /}R h(e) fxz (o)) de

Claim. Y = g(Z) is a version of E(h(X)|Z).

Proof. Clearly Y is Z-measurable (i.e. o(Z)-measurable), so it suffices to check that for
every A € 0(Z), Eg(Z)14 = Eh(X)14. We have A = {Z € B} for some Borel set B.
Then, by the definition of g,

Eg(Z)1a = Eg(Z) 1zes = / 9(2) 15(2) f2(2)dz = / / W) 15(2) f(x, 2)dardz
— Eh(X)1scs.
O

12.4 Example. Let X1,..., X, be independent random variables. Let h: R™ — R be

a bounded Borel function. Then
E(h(Xl, e ,Xn)|X1) = g(X1)7

where g(x) = Eh(z, Xs2,...,X,), * € R. Clearly g(X;) is Xi-measurable. That condi-

tion (2) holds, follows from Fubini’s theorem.

12.5 Example. Let Xi,...,X,, be i.i.d. integrable random variables and let S, =
X1+ -+ X, Let G, = 0(Sn, Xn+1,Xnt2,...). By the “Role of independence”
property (point (k) of Theorem 12.2), we have

E(X1]Gn) = E(X1[S,).
To find the latter, we use symmetry, which gives
Y =E(X4|Sn) = E(X3|S,) = ... = E(X,|Sh).
By linearity, nY = E(Sy,|Sn) = Sy, thus Y = S—;, that is

Sn
E(X1]S,) = —.
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We finish by remarking that in all of these examples E(X|Z) is of the form g(Z) for
some Borel function g. This holds in general and immediately follows from the following

lemma.

12.6 Lemma. If Z is a random vector in R™ and X is a Z-measurable random variable,

then X = g(Z) for some Borel function g: R™ — R.

A proof by a standard complication of X is left as an exercise. Thus we immediately

get the following general observation about conditional expectations.

12.7 Theorem. Let Z be a random vector in R™ and let X be an integrable random
variable. Then there is a Borel function g: R® — R such that g(Z) is a version of
E(X|Z).

This in particular gives a way around defining conditioning on events of probability
0. We set E(X|Z = z) = g(2), z € R", where g is the function provided by Theorem
12.7.
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12.4 Exercises

1. We toss a fair coin 10 times. Let X be the number of heads altogether and Y in the
first 4 tosses. Find E(X|Y) and E(Y]X).

2. Give an example of random variables X and Y which are nmot independent, but
E(X|Y) =EX.
3. Let (X,Y) be a centred Gaussian random vector in R%. Show that E(X|Y) = 2XXy.

4. Let p € (—1,1) and let (U, V) be a random vector in R? with density

1 1 2 2 } 2
U, V) = ———expq ————(u” — 2puv +v°) 5, u,v) € R=.
o) = s exp{ g 0 =20 ) ()
Find E(U|V).
5. Let X1,...,X, be i.i.d. random variables uniform on [0,1]. Find the conditional

expectation E(X;| max{Xy,...,X,}).

6. Let X be a nonnegative integrable random variable and let G be a sub-o-algebra.

Show that

a) E(X|G) = [;°P(X > t|G)dt,
b) P(X > t|G) <t PE(X?|G), p,t > 0, provided that X € L,,.

7. Let X and Y be independent random variables uniform on [—1,1]. Find E(X|X?+Y?)
and E(X?|X +Y).

8. Suppose X,Y are integrable random variables such that E(X|Y) = Y as. and
E(Y|X)= X a.s. Then X =Y a.s.

9. Prove Lemma 12.6
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13 Martingales 1

13.1 Definitions and basic examples

By a process X = (X,)n>0 = (X0, X1, X2,...) we just mean a sequence of random
variables X, X1, ... (index n is thought of as time which is discrete here). A filtration
{Fn}n>0 on a probability space (2, F,P) is a nondecreasing sequence of sub-o-algebras
of F,

FoCFICFC...CF.

We set
Fo=0||JFn
n>0
which is also a sub-c-algebra of F. Sometimes (Q, F, {F, }n>0,P) is then referred to as
a filtered probability space.
Intuitively, F,, carries information available at time n.

Given a process X = (X,,)n>0, its natural filtration is given by
.7:7120'(X0,X17...,Xn), n > 0.

The process X is called adapted (to {F,}) if for every n > 0, X,, is F,,-measurable.
It is called predictable or previsible if for every n > 1, X,, is F,_1-measurable and
X is constant. Intuitively, if X is adapted, then at time n we know X, (w) (and
Xo(w), ..., Xn—1(w)); if it is predictable, at time n we additionally know X,, 11 (w).

A process X = (X,,)n>0 is a martingale (with respect to a filtration {F},>0) if

(i) X is adapted,
(ii) E|X,| < oo, for every n > 0,
(i) E(Xp|Fn-1) = Xn—1 a.s., for every n > 1.

It is called a supermartingale (respectively submartingale) if (iii) is replaced by:
E(X,|Fno1) < X,—1 (resp. > X,,_1) a.s., for every n > 1.
Submartingales correspond to subharmonic functions (f on R™ is subharmonic if and

only if f(B) is a local submartingale, where B is a standard Brownian motion on R™).
13.1 Remark. If X is a supermartingale, then
EX, = E(E(XnLanl)) < Eanla

so its averages do not increase over time. For martingales, the averages are of course

constant.
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The word ‘martingale’ origins from the Spanish word ‘almataga’ = fastening. In ev-
eryday use, a martingale refers to a horse gear item which is a strap attached to the reins
of horse used to prevent the horse from raising its head too high (P. Halmos allegedly
sent J. Doob such a martingale as a “gift”; J. Hammersley, after his lecture in 1965
was made aware of this meaning of the word martingale, thought that the mathematical
term originated from its equestrian meaning and started calling his martingale process,
“harness process”). As a mathematical term, it was first used in French by J. Ville in
his thesis in 1939, where initially he writes “game system or martingale” and then just
continues with “martingale”. It was J. Doob, the godfather of martingale theory, who

after reviewing Ville’s thesis, coined and used the term ‘martingale’.

13.2 Example. Let X7, X5, ... be independent integrable random variables with mean

0, EX; =0 for every kK > 1. Let
So =0,
Sp=X1+--+X,, n>1
and
Fo=1{2,0},
Fn=0(X1,...,Xn), n > 1.

Then (Sp)n>0 is a martingale with respect to the natural filtration {F,}. Indeed,
because S, = 5,-1 + X, and S,,_1 is F,_1 measurable, whereas X, is independent of

Fn_1, we have
E(Sn|—7:n71) = E(Sn71|fn71) + ]E(Xn‘fnfl) = Snfl + ]EX’I’L — Oon—1-

13.3 Example. Let X7, Xo, ... be independent nonnegative integrable random variables

with EXy = 1 for every k > 1. Let

and
]:0 = {®>Q}7
Fpo=0(X1,...,Xn), n>1.

Then (M,,)n>0 is a martingale with respect to the natural filtration {,,}, thanks to the

“taking out what is known property”.

13.4 Example. Let X be an integrable random variable and let {F,, },,>0 be a filtration.
Let
X, =E(X|F), n>0.
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Then (X,,)n>o0 is a martingale (with respect to {F,,}), by the tower property.

Intuitively, martingales model fair gambling games. If X, is your capital at time n,
then X,, — X,,_1 are your net winnings in game n. Note that (X,) is a martingale if
and only if E(X,, — X,,_1|Fn—1) = 0, that is the game is fair (with all the knowledge at

time n — 1, the net winnings for game n are 0 on average).

13.2 Martingale transforms and stopping times

Let X = (X,,)n>0 be an adapted process and let H = (H,,),>0 be a predictable process.
Define

Y, =Y Hy(Xp—Xp—1), n>1
k=1

The process Y = (Y, )n>0, denoted Y = H o X, is called the martingale transform of
X by H. (It is a discrete analogue of the stochastic integral [ HdX).

Intuitively, thinking of H,, as your stake on game n, your total winnings at time n
are Y,, = (H ¢ X),.

The fundamental lemmasays that martingale transforms of martingales are of course

martingales.

13.5 Lemma. Let H = (H,,) be a bounded predictable process, that is for some constant

K, |H,| < K a.s. for every n. Let X = (X,,) be an adaptable process.

(i) If H is nonnegative, that is for every n, H, > 0 and X is a supermartingale, then

H o X is a supermartingale.
(i) If X is a martingale, then H e X is a martingale.

Proof. (i): Let Y = H e X. Since H is bounded, Y is in L;. Moreover, Y,, —Y,,_1 =

H,(X, — X,—1) and since H,, is F,_1-measurable (as being predictable), we have
E(Yn - Ynfl‘fnfl) = ]E(Hn(Xn - Xn71)|fn71) = HnE(Xn - Xn71|-Fn71) < 0

because H,, > 0 and E(X,, — X,,_1|Fn—1) (X is a supermartingale). The proof of (ii) is

the same. O

A function 7: Q@ — {0,1,2,...} U {400} is a stopping time if for every n > 0,
{r < n} € F, (equivalently, {r = n} € F,). Intuitively, 7 tells you when to stop
playing.
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13.6 Example. Let X = (X,,) be an adapted process and let B € B(R) be a Borel set.
The time of the first entry of X into B,

T =1inf{n >0, X,, € B}

is a stopping time. Indeed,

{r<n}=J{XreBteo | |J 7| CFu
k<n k<n

On the other hand, in general, n = sup{n < 10, X,, € B} is not a stopping time (why?).
We shall often use notation
a A'b=min{a,b}, a Vb= max{a,b}, a,b €R.

13.7 Example. If o, 7 are stopping times, then ¢ A7, 0 V 7, 0 + 7 are also stopping

times.

For a process X = (X,,)n>0, we set X7 = (X;an)n>0 which is called the stopped
process.

The following, often called the optional sampling (or stopping) lemma, says that the
stopped process of a supermartingale is a supermartingale (Without any extra assump-

tions).

13.8 Lemma (Doob’s optional sampling lemma). If X is a supermartingale and T is a

stopping time, then the stopped process X7 is a supermartingale.

Proof. Let H,, = 1:>, (we bet 1 until we quit the game and then bet 0). This process
takes values in {0, 1}, so it is in particular nonnegative and bounded. To check that it
is predictable, it thus suffices to check that {H,, = 0} is in JF,,—; which is clear because
{H, =0} = {r <n—1}. Finally,

n

(HoX)y =Y Hpy(Xp—Xp1)= > lpcr (X — Xj1)

k=1 1<k<n
= E (Xt — Xp—1)
1<k<rAn
= XT/\n - XOa

so H e X = X7 — X, the stopped process is a martingale transform. We are done by

Lemma 13.5. O

13.9 Example. Let X = (X,,),>0 be a supermartingale and let 7 be a stopping time.
Then, for every n > 0,
EXT/\n S ]EXO
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and

EXT/\TL Z EXn

The first inequality follows because X7 is a supermartingale, so in particular,
EX nn =EX] <EX] =EX, r0 =EXj.

The second inequality follows because {T = k} € F, so for every k < n, EX} li—py 2
EX, 1¢—ky (since Xj > E(X,|F%)), hence

n n

EX(rnny = 3 EXp Lpmpy +EX, Lipony > Y EX, 1rmpy +EX, 1oy = EX,..
k=0 k=0

13.10 Lemma (Doob’s optional sampling lemma — continuation). Let X be a super-

martingale and let T be a stopping time. Then
XT € Ll and EX.,— S IEX(),

if one of the following conditions holds

(i) 7 is bounded,

(i) X is bounded (say, |X,| < K for everyn >0) and 7 < 00 a.s.

(iti) BT < 0o and X has bounded increments: | X,, — X,—1| < K for everyn > 1,
(iv) X is nonnegative and T < 00 a.s.

Moreover, if X is martingale and one of the conditions (i)-(iii) holds, then
X, ely and EX, = EXy.
Proof. Let X be a supermartingale. We have

Xonn = Xol < ) | Xk — Xp-
1<k<7An

If (i) holds, say 7 < T a.s. for some positive integer T, then applying the above inequality
ton =T gives | X;| < |Xo|+ > 4 <7 | Xk — Xp—1| showing that X, € L;. If (i) holds, we
trivially have | X, | < K, so X € L;. If (iii) holds, we get | X an| < |X0|—|—Zlgk§7 | X5 —
Xk-1] <|Xo|+ 7K which is in L, so taking the expectation, letting n — oo and using
Lebesgue’s dominated convergence theorem shows that E|X | < E|Xo| + KE7. If (iv)
holds, since X is assumed to be nonnegative, X, € L; follows from the inequality
EX, <EXj, argued below.

Now we show EX, < EXy. From Lemma 13.8 we know that X, A, € L; and
EX an < EXp. For (i), say 7 < N a.s., simply take n = N. For (ii), take n — oo

and use Lebesgue’s dominated convergence theorem. For (iii), as noted earlier, X,y
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is dominated by |Xo| + K7, so we can use Lebesgue’s dominated convergence theorem

again. For (iv), we use Fatou’s lemma,
EX, = Eliminf X, <liminf EX, A, < EX,.

Finally, if X is a martingale, in each of the cases (i)-(iii), we use the previous part for

X and —X. O

13.11 Example. Let X be a simple random walk on Z, that is Xg = 0, X,, = €1 +
-+ 4 &p, where €1, €9, ... are i.i.d. symmetric random signs, so X is a martingale (with
respect to the natural filtration). Let 7 = inf{n > 1, X,, = 1} be the first moment of
visiting 1. It is known that P (7 < oo0) = 1. However, EX, =El1 =1and EXy, =0, so in
this case EX, # EXj. Since X has bounded increments, in view of Lemma 13.10 (iii),
we have ET = 4-o0.
We shall now determine the distribution of 7 using a martingale argument. Fix A > 0

and let M,, = e*» /(Ee*1)". By Example 13.3, M is a martingale. We have

XA
Ee*t = % = cosh ),

S0
M,, = (cosh \) " "e*n,

By Doob’s optional sampling lemma,
E[(cosh \)~™"\"erXran] = EM, p,, = 1.

Since A > 0 and X, < 1, we have that e’ is bounded by e*. Clearly, we have
(cosh A\)~™" < 1, so by Lebesgue’s dominated convergence theorem, letting n — oo
yields

E(cosh\)~Te =1

because

(cosh )TN M o (coshA\)~7e*, on {7 < oo},

0, on {7 = oo}
(Xran stays bounded by 1 and if 7 < oo clearly converges to X,). Letting A — 0+
in a decreasing way, we have (coshA\)™7 — 1¢ o0}, thus P(7 < 00) = Elfc0) = 1.
Finally, letting # = (cosh A\)~! and using e™* = @, we find the generating function
of 7,
Ez™ — o> — 1—v1—2a* z? i Laz (1/2) 2k=1
=1

hence the distribution of 7, P (7 = 2k — 1) = (—=1)*1(}/2), k > 1.
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13.3 Convergence theorem

The main martingale convergence theorem is due to Doob.

13.12 Theorem (Doob’s “forward” convergence theorem). Let X be a supermartingale
bounded in Ly, that is for some constant K, E|X,| < K for all n. Then there is an

integrable random variable X such that X, —>= X ..
n—oo

13.13 Corollary. If X is a monnegative supermartingale, then there is an integrable

random variable X such that X, —=% X .
n—oo

Proof. We have E|X,,| = EX,, <EX, (Remark 13.1), so X is bounded in L;. O

13.14 Remark. Since each X, is F measurable, so is X,. Suppose X is nonnegative.

Then, for a fixed index m, by Fatou’s lemma,
E(Xeo|Fm) = E(liminf X, |F,) < liminf E(X,|Fn) < EX,,,

so the extended sequence (X, X1, Xa,..., X ) satisfies the supermartingale property
(with respect to {Fo, F1, Fa,...,Feo}). In particular,

EX, <...<EX; <EX,.

Figure 1: The number of upcrossings is 3.

The proof (undoubtedly from the book) of Doob’s convergence theorem relies on the
so-called upcrossings. For a < b, a sequence (z,,)n>0 and an index N > 0, we define the

number of upcrossings by time N as
Un(a,b) = largest k > 1 such that there are indices
0<s1<t1 <89 <tla<...<8 <t <N

with z,, < a and x4, >bforeachi=1,... k.
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See Figure 1.

13.15 Lemma (Doob’s upcrossing inequality). Let X be a supermartingale, let a < b,
N > 0. Let Uy(a,b) be the number of uprossings by time N of (X, )n>0. Then

(b —a)EUn(a,b) <E(Xy —a)-_.
Proof. Define

Hy =1(x,<a}

Hyt1 =11, -1y Lix,<vy + Lim, =0} 1{x.<a}s n>1

OH,=0
» . _
o :, ®H, =1
O - 0 ® o
b R
o o PR o
‘e o o
o S
.
a ' X
o O O o
@) ® (Xy—a)
o ;
o

Figure 2: The process Y increases along upcrossings and (X — a)_ bounds the loss in

the last interval of play {n, H, = 1}.

This is a predictable process taking values in {0,1}. Informally, H =1 on the ways
to upcross, or as a gambling strategy: “wait until X gets below a, play stake 1 until X
gets above b, repeat”.
Let Y = H e X be the martingale transform of X by H. The crucial observation is
that
Yy > (b—a)Un(a,b) — (Xy —a)-—.

Explanation: every upcrossing increases Y by at least (b — a) and the nonpositive term
—(Xn — a)_ offsets the potential loss incurred in the last interval of play (see Figure 2).

Taking the expectation and using that EYy <EY, = 0 (Y is a supermartingale, see
Lemma 13.5) finishes the proof. O
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Proof of Theorem 13.12. Consider the event

€ ={w, X, (w) does not converge to a limit in [—oo, o]}

= {liminf X,, < limsup X,,}

U {liminf X,, < a < b < limsup X,}.

a<b
a,beQ

Fix a < b. Note that by the definition of liminf and lim sup,
{liminf X,, < a <b < limsup X,,} C {Ux(a,b) = oo},

where Uy (a,b) is defined (pointwise) as the limit limy_,oo Un(a,b) € [0, +00] (which
exists by the monotonicity of Ux(a,b)). By Lemma 13.15,

(b—a)EUyx(a,b) <E(Xy —a)- <E|Xn|+ |a| < K +|al,

so in particular, letting N — oo, we get (by Lebesgue’s monotone convergence theorem)
that EUx(a,b) < oo and thus P (U (a,b) = co) = 0. As a result, P(£) = 0. On £°, we
can define

Xoo =lim X,, € [—00,00].

By Fatou’s lemma,
E|Xw| = Eliminf | X, | < liminf E| X, | < K,

so X, is integrable (and thus X, € (—00,00)). O
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13.4 Exercises

1.

Verify the claim made in Example 13.3.
Verify the claim made in Example 13.4.

Let 7, o be stopping times (relative to (Q, {F,}, F,P)). Prove that 7 Ao, 7V o and
T + o are also stopping times. Are 7 + 1, 7 — 1 stopping times as well?
Here and throughout: a A b = min{a, b}, a V b = max{a, b}, a,b € R.
Let X = (X,)n>0 be an adaptable process (to a filtration {F,}n>0). Let B be a
Borel subset of R. Define

7 =inf{n: X, € B} the first visit in B,

T = inf{n > 7,1 : X, € B} the kth visit in B, k > 2.
We know that 77 is a stopping time. Show that each 7 is also a stopping time.

Let X = (X,,)n>0 be a martingale and let f: R — R be a convex function such that
E|f(X,)| < oo for every n > 0. Show that (f(X,,))n>0 is a submartingale.

Let Xo, X1, ... be i.i.d. square-integrable random variables with mean 0. Let Yy =0
and Y, = Xo X1 + X1 Xo+ -+ X,,_1X,,, n > 1. Show that (Z,,),>0 is a martingale
relative to the natural filtration {F, }n>0 of (Xn)n>0-

Let X = (X,,)n>0 be an integrable adapted process (to a filtration {F, }n>0). Show
that X is a martingale if and only if for every bounded stopping time 7, we have

EX, = EX,.

Hint: First show that EX,, = EX{ for every n > 0. Then, given n > 0 and A € F,,

consider 7 =nlg+(n+ 1)1 e.
Let X be a nonnegative supermartingale and let 7 be a stopping time. Show that

EXT ]-'r<oo S IEJXV(J

Deduce that P (sup,, X, > t) < 2¥¢ for ¢t > 0.

Pdlya’s urn. At time 0, an urn contains 1 black ball and 1 white ball. At each time
n=1,23,... a ball is chosen at random from the urn and is replaced together with
a new ball of the same colour. Just after time n, there are therefore n+ 2 balls in the
urn, of which B,, + 1 are black, where B,, denotes the number of black balls chosen

by time n, By = 0. Let M,, = %3517 n > 0. Prove that

(a) M is a martingale (relative to the natural filtration F,, = 0(Bo, ..., By)),

(b) P(B, =k) = 717, for 0< k <n,
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10.

11.

12.

13.

14.

(¢) M, converges a.s., say to My,
(d) M is uniform on [0, 1],

(e) X, = %93"(1 — 6)"~Br is a martingale, where 0 < 6 < 1 is fixed.

Bellman’s Optimality Principle. Let % < p <1 Let Xi,Xo,... be i.i.d. random
variables with P(X,, =1) =p=1-P(X,, = —1). Your winnings per unit stake on
game n are X,. Your stake H, on game n must satisfy H,, € (0,Y,,_1), where Y,
is your fortune at time n, Yj is a positive constant and Y,, = Y,,_1 + H,X,,. Show
that if H is a predictable process, then (logY,, — na),>o is a supermartingale, where
a = plogp+ (1 — p)log(l — p) + log2. Deduce that Elog(Y,,/Yy) < na. Find the
best strategy H, that is the one that gives a martingale, hence equality.

Suppose that 7 is a stopping time (relative to {Fy,}n>0) such that for some N > 1

and ¢ > 0, we have for every n,
P(r <n+ N|F,) > ¢ as.
Show that for k =1,2,..., we have P (7 > kN) < (1 —¢)¥ and deduce that Er < oco.

ABRACADABRA. At each of times 1,2,3,..., a monkey types a capital letter at
random, the sequence of letters typed forming an i.i.d. sequence of random vari-
ables each chosen uniformly from the 26 capital letters. Let 7 be the first time by
which the monkey has produced the consecutive sequence ‘ABRACADABRA’. Using

martingale theory, show that

Er = 26" + 26* + 26.

Gambler’s ruin. Let 0 <p < 1,p # % Let X1, X9, ... bei.i.d. random variables with
P(X,=1)=p=1-P(X, = —1) for every n. Let a and b be integers with 0 < a < b.
Let So=a, S, =a+X1+...+X,,n>1and 7 =inf{n >0: S, € {0,b}}. Show
that E7 < co. Let X,, =S, —n(2p—1) and Y,, = (%)Sn, n > 0. Show that X
and Y are martingales. Deduce the values of P (S, = 0) and ES,. What about the

symmetric case p = %?

Wald’s identity. Let {F,}n>0 be a filtration and let X be an integrable adaptable
process such that the Xj have the same distribution and X1 is independent of Fy
for every kK > 0. Let S,, = X1 + ...+ X,,. Let 7 be a stopping time with ET < oco.
Show that

E(Xi+ -+ X;)=Er-EX;.

If additionally EX? < oo, then

E(S, — TEX;)? = (E7) Var(X,).
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15. Baby version of Kakutani’s theorem. Let X1, Xo,... be i.i.d. nonnegative random
variables with mean 1 such that P(X; =1) < 1. Let M,, = X;-...- X,,, n > 1. Show

that M,, converges a.s. but not in L;.

Hint. Use Corollary 13.13 (M is a nonnegative martingale). To tackle convergence
in L4, first using a Cauchy condition in Lq, show that M, — M, in L; implies that
. o . ~ - ﬁ'-~»'*/Xn . .

lim,, M,, = 1 a.s. Then consider a.s. convergence of M,, = W using again a

martingale argument.
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14 Martingales 11

14.1 L, martingales

Whenever possible, one of the easiest ways to prove that a martingale is bounded in L1 is
to show that it is bounded in Ly and use E|X| < (E|X|?)'/2. For martingales, verifying
Lo-type conditions can be done very efficiently. Moreover, bounded Ly martingales
admit better convergence results and have nice applications to classical topics such as
series of independent random variables.

We begin with a basic condition saying that a martingale is bounded in Lo if and

only if the series of the squares of the Ly-norms of its increments is convergent.

14.1 Theorem. Let M = (M,),>0 be a square-integrable martingale, that is EM? < oo
for every n > 0. Then

M is bounded in Ly, that is 3K > 0Vn >0 EM2 < K (14.1)
if and only if
> E(My, — My,_1)* < oo (14.2)
E>1

Moreover, when this holds, there exists a random variable My, which is in Lo such that

M, —— My, a.s. and in Ls.

n—oo
Proof. For ¢ < j, E(M;|F;) = M;, that is E(M; — M;)14 = 0 for every A € F;,
or, in other words, M; — M; is orthogonal to the subspace Ly(F;). In particular, if
k <l <m <n, then

E(M; — My,)(M,, — M,,) = 0.

Consequently, writing M as the sum of its increments,

n
M, = Mo+ Y (Mg — My_y),
k=1

we find that all the terms are orthogonal, so in particular,

EM} = EMG + Y E(Mj, — My_1)>.
k=1

This identity explains the equivalence of (14.1) and (14.2).

Suppose these conditions hold. By Doob’s convergence theorem for martingales
bounded in L; (Theorem 13.12), there is an integrable random variable M, such that
M, — M, a.s. To see that M, is in fact square-integrable and the convergence is also
in Lo, first note that, by orthogonality, for n,r > 0, we have

n—+r
E(Mpyr — Mp)? = Y E(My, — My_1)?,
k=n-+1
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so letting » — oo and using Fatou’s lemma, we conclude

E(Mo — M,)* < > E(My — My_1)* < 0,
k>n+1

hence M., € Lo. Moreover, since tails of convergent series go to 0, this bound also
shows that
E(Mo — M,)? —— 0,

n—oo

that is M,, — My, in Lo. O

We introduce Doob’s decomposition, which will be particularly fruitful to study Lo

martingales.

14.2 Theorem (Doob’s decomposition). Let X = (X,,)n>0 be an adapted, integrable

process. It admits the decomposition
X7L:XO+Mn+An7 ?’LZO,

where M = (My,)n>0 s a martingale with My = 0 and A = (A,)n>0 s a predictable
process with Ag = 0. Moreover, if X = Xo+ M + A is another such decomposition, then

P(VnEOMn:Mn,An:fln> — 1.

Moreover, X is a supermartingale if and only if the process A is nonincreasing, that is

Ap > Apgr foralln >0 a.s.

Proof. Let

Plainly, A satisfies the desired properties. Moreover, M is integrable and adaptable and

it satisfies the martingale property because

Mn+1 - Mn = Xn+1 - Xn - (An+1 - An) = Xn+1 - Xn - ]E(Xn-H - Xn‘]:n)
- Xn+1 - E(Xn+l|fn)7

SO

E(Mn+1 - Mn|]:n) = ]E(Xn-&-l‘]:n) - E(Xn+1|]:n) =0.
Moreover, if X = Xo+ M + A for a martigale M and a predictable process A, then for
every n > 1,

E(Xn - Xn71|~/—'.n71) = E(Mn - ~nfl‘-/_'.nfl) + E([ln - Anfl‘fnfl)
=0 + A’Zin - An—l - A’Zin - An—h
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which gives that A=Aas. and consequently M =M as. Finally, by the identity,
E(Xn - Xn71|fn71> = An - Anfla
we have that E(X,, — X,,_1|Fn—1) <0 if and only if A, < A,,_1. O

We note that Doob’s decomposition of the stopped process comes from stopping

Doob’s decomposition processes.

14.3 Lemma. Let X be an adapted, integrable process with Doob’s decomposition X =
Xo+ M + A with M being a martingale and A being a predictable process. Let T be a
stopping time. Then

XT=Xo+ M+ A"

is Doob’s decomposition of the stopped process X7 .

Proof. By Doob’s optional sampling lemma, we know that M7 is a martingale, so it

suffices to show that A7 is predictable. This can be seen from the identity

AZL =Arpn = An 1T2n + Z Apl—p
k<n

because {7 > n} is in F,_1. O

Let M be a martingale in Ly, that is EM?2 < oo for every n > 0. We define its
quadratic variation process (the angle-brackets process), denoted (M) = (M),)n>0 as

n

(M) =Y B(M; — M}_;|Fi—1),
k=1

that is (M) = A, where
M?*=M§+N+ A

is Doob’s decomposition of M? into a martingale N and a predictable process A.

14.4 Remark. Since E(MyMjy_1|Fi—1) = Mp_1E(Mg|Fr—1) = M?_,, we have

n

(M) = E((My, — My_1)*| Fr1).
k=1

In particular, (M) is a nonnegative process. Moreover,

<M>n *<M>n—1 = E(M2 - M72L—1|~7'—n—1) = ]E((Mn - Mn—1)2|]:n—1) >0,

n

hence (M) = A is nondecreasing (which also follows from the fact that M? is a sub-
martingale — by Jensen’s inequality, see Exercise 13.5). Consequently, we can define
(point-wise)

(M)oo = lim (M), € [0, +o0].

n— oo
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14.5 Example. Let X1, Xo,... be independent random variables which are in L,. Let
My=0and M, =X; +---+ X, — (EX; +--- + EX,,). We know this is a martingale
(Example 13.2). We have,

(M), =) Var(Xy)
k=1
(exercise). Thus, M2 — Var(M,,) is a martingale.

14.6 Remark. From Doob’s decomposition, EM?2 = EMZ + EN,, + E(M),, = EM§ +
E(M),,, thus
M is bounded in Lo if and only if E(M) < . (14.3)

In view of Theorem 14.1 and the above remark, if E(M)., < oo, then M,, converges
a.s. and in Lo. The next theorem refines that and describes very precisely convergence

of Lo martingales in a general situation.

14.7 Theorem. Let M be a martingale with Mo = 0 which is in Lo, that is EM? < oo

or every n.
f Y
(i) On the event {M)s < 00}, we have “im,, M, exists and is finite”.

(i) If M has additionally bounded increments, that is there is a constant K > 0 such
that |M,, — My,_1| < K for all n > 0 a.s., then the converse holds: on the even
{lim,, M,, ezists and is finite}, we have (M) < 00.

(i1i) On the event {{M)s = o0}, we have d\\g—g; — 0.

L n—o0

(All the inclusions hold modulo sets of measure 0).

14.8 Remark. Part (iii) can be thought of a strong law of large numbers for Lo mar-
tingales. To illustrate this point, let X7, Xo,... be i.i.d. random variables which are
in Ly. We consider the sum martingale M,, = X; + --- + X,, — nEX;, for which
(M),, = nVar(X;) (see Example 14.5). Thus, {{M)s = oo} = €, so, a.s.,

X1+"'+Xn—TLEX1_ Mn -0
n Var X, (M), ’

equivalently,

X, 4.t X
Q—HE)Q .5.
n

Proof. (i): For I =1,2,..., we define
7 =inf{n >0: (M),41 > 1}.

Since (M) is predictable, this is a stopping time. Moreover, by its definition,

(M)

<l

1
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Thus, for the stopped process M™,

(M™)oo =(M)%, =(M),

o)

(in the first equality we use Lemma 14.3). In view of (14.1), the stopped process M ™

is a bounded in Lo martingale, so lim,, M exists (a.s.) and is in Ly. Therefore,

{M)oo < 00} = U{Tl = oo} C {lim M,, exists and is finite}
1>1

because on {7, = oo}, we have M* = M,,. This shows (a).
(ii): For I =1,2,..., we define
op=inf{n >0: |M,| > 1}.
This is a stopping time. Since M has bounded increments, the stopped process is

bounded,
|Mgl| = |Mal/\n| < |M(o'l/\n)—1| + K < |+ K.

Thus M°" is bounded in Ly. Therefore E(M7') s, < oo and

E(M),, = E(M)7 = E(M) < co.

1 o

In particular, on {0y = oo}, we have (M),, = (M) and thus (M), < oo a.s. on
{07 = oo}. Since convergent sequences are bounded, by the definition of oy, this finishes

the proof of (b),

{lim M,, exists and is finite} C {sup |M,,| < 0o} = Z{Ul =00} C{{M)x < 0}

1>1
(iii): We define the process Y with Y5 = 0 and
Vo= > (M- M), n
— 1 +(M) N

k=1

which is the martingale transform of M by the predictable process ﬁM} (which is
bounded because (M) is nonnegative). Thus Y is a martingale (in Ly) and since (M) is

nondecreasing, we have,

< <M>" 7<M>n—1
= (L (M), (1 + (M), 1)
L 1

Therefore,

- 1
EY,} =Y E(Yi — Yio1)’ =E <1 - 1+<M>) <1,
k=1 "
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so Y is bounded in L, and, consequently, limY,, exists and is finite a.s. On the event

{M), oo} = {{M)x = 0}, we get (J\I‘%” — 0, by the following standard Cesdro-type

lemma. O

14.9 Lemma (Kronecker). Let (by,) be a sequence of positive real numbers with b,  co.

Let (x,,) be a sequence of real numbers. Then,

x x e ‘T
if Z b—: converges, then % — 0.

Proof. Let s, = > 1_, gg—:. Then s; = ’5—11, Sp = Sp—1 = %, N >2,80
- n

I —+ ... +.’En - b181 + b2(82 — 81) + b3(83 — 82) + ...+ bn(Sn — Snfl)

b, bn
_ (bl — 52)81 + (b2 - 1)3)82 + -+ (bn—l — bn)Sn—l + b, Sn
= b
_ (b1 —b2)(s1 — 8p) + (b2 — b3) (52 — 5p) + -+ + (bn—1 — bn)(Sn—1 — Sn)
bn
b13n
by,

Fix e > 0. Since (s,,) is a convergent sequence, it is bounded, say |s,| < M for every n,
and by the Cauchy criterion, there is N such that for n,m > N, we have |s,, — s;,| < €.

Consequently, for n > N,

1 +...+x,
bn
< (b2 — b1)2M + -4 (bN — bN_1)2M + (bN+1 — bN)E + -4 (bn — bn_1)€ n by M
by — b1 b, — by biM by — b1 b M
= <
M T T, oy, SAM T ety

which is less than, say 2¢ for n large enough. O

14.2 Uniformly integrable martingales

We say that a family of random variables { X }+c7 is uniformly integrable if for every
€ > 0, there is K > 0 such that for all £ € T', we have E|X;|1{x,|>x} < . We refer to

Appendix I for basic results. We recall one: for p > 0, we have

X, L X if and only if X, P, X and {|X,|P} is uniformly integrable
o o (14.4)
(see Theorem 1.6
In the context of martingales, the following construction of a uniformly integrable

family is rather important.

14.10 Lemma. If X is an integrable random variable and {F;}ier is a family of sub-

o-algebras, then the family {X; = E(X|F:) }hrer is uniformly integrable.

159



Proof. Fix e > 0. We choose 6 > 0 such that for every event A with P(A) < §, we have
E|X|14 < e (see Remark 1.5). First note that, by Jensen’s inequality,

| Xe| = [E(X|F)] < E(1X][F)

and, consequently,

E| X;| <E|X]|.
For the event A = {|X;| > K}, if K is large enough, we have, by Markov’s inequality,
P(A) < LE|X,| < ~E|X| < 6
=K t] = K ’
o, using that A € Fy,
EIX | 1, o) = EIX0| 14 < B(E(X]|15) 14) = EE(X| 14 |F) = E|X|14 < <,
which is the definition of uniform integrability. O

Uniformly integrable martingales are bounded in L; (see (i) of Theorem 1.4). Thus
such martingales converge a.s. Moreover, the following basic result gives L, convergence

and says that such martingales are of the tower form (see Example 13.4).

14.11 Theorem. Let M be an uniformly integrable martingale. Then there is an inte-

grable random variable Mo, such that M, - My, a.s. and in Li. Moreover,
M, = E(Mso|Fn), n > 0.

Proof. As we said, the existence of M., € Ly such that M, - M. a.s. follows from
Doob’s convergence theorem (Theorem 13.12). Since {M,,} is uniformly integrable and
converges in probability to M, by (14.4), M,, = M also in Ly. It remains to show
that M, = E(My|F,) for every n. To this end, we fix n > 0, fix an event A € F,, and
argue that EM,, 14 = EM,, 14. By the martingale property, for every r > n, we have
EM,14 =EM,1,4. Moreover,

IEM, 14 —EMo 14| < E|M, — My| —— 0,
T—00

so EM,14 = EM,, 14 - EM, 14 as r — oo and thus, EM, 14 = EM, 1,4, as
desired. O]

For tower-type martingales, we have two refinements.

14.12 Theorem (Lévy’s “upward” convergence theorem). Let X be an integrable ran-
dom variable and let {F,}n>0 be a filtration, Foo =0 (UnZO fn). Let X,, = E(X|Fn),
n > 0. We have,

X, — E(X|Fs) a.s. and in L.
n—oo
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Proof. By Lemma 14.10, the martingale (X,,),>0 is uniformly integrable, so by Theorem
14.11, there is X, € Ly such that X,, — X, a.s. and in Lq. It remains to show that
Xoo = E(X|Fux)- Since X, is Foo-measurable, it suffices to argue that for every event
A € Fo, we have EX 14 = EX 14. All events satisfying this form a A-system.
By Dynkin’s theorem, it thus suffices to show that it contains the m-system Unzo F.
Suppose A € F,, for some n. Then,

EX14=EX,14=EXy14,

where the first equality holds because X,, = E(X|F,,) and the second one holds because
X, = E(X|Fn), as provided by Theorem 14.11. This finishes the proof. O

14.13 Theorem (Lévy’s “downward” convergence theorem). Let {G_,,n = 1,2,...}

be sub-o-algebras such that
G 126G 2D --DG «

with G_oo = ﬂnzl G_n. Let X be an integrable random variable and X_,, = E(X|G_,),
n>1. Then

X_p, — E(X|G_w) a.s. andin Ly.
n—oo

Proof. We consider the martingale (X_xn, X_n+1,...,X_1). By Doob’s upcrossing in-
equality from Lemma 13.15,

(b—a)EUn(a,b) <E(X_; —a)- < oo,

so as in the proof of Doob’s convergence theorem, X_ ., = lim,, X_,, exists and is finite
a.s. By the uniform integrability of {X_,},>1, we get that also X,, - X_ in Ly. As
in the proof of Lévy’s upward convergence theorem, X_ ., = E(X|G_). O

14.3 Maximal inequalities

Maximal inequalities concern tail and moment bounds for the maximum maxy<, X of

a process X.

14.14 Theorem (Doob’s maximal inequality). Let X = (X,,)n>0 be a submartingale.
Then for every t > 0, we have

1 1
P <r;1§ay>l<xk > t) < zEXn L maxye,, X0t} < zIEX;, (14.5)
1 1
P (glank < —t) < E(]EXn I{minkgn Xp<—t} —EX()) < E(EX: — EX()), (146)
1
P <%1<ax | X5| > t> < S CEX — EX). (14.7)

161



Proof. For the first inequality, consider the stopping time 7 = inf{n > 0: X,, > t¢}. By
Example 13.9,
EXn Z EXT/\’I’L

and

EX A, = EX, 1{7—§n} +EX,, 1{7—>n} >tP(r <n)+EX, 1{T>n},

hence

tP (1 < n) <EX, 1,<p,

so {7 < n} = {maxy<, X > t} finishes the argument.

For the second inequality, we consider the stopping time o = inf{n > 0: X,, < —t},
use EXy < EX,; A, and proceed analogously (we leave the details as an exercise).

The third inequality follows from maxy |Xj;| = max{maxy X, maxy(—X}y)}, the
union bound and applying the previous two inequalities (we leave the details as an

exercise). O

14.15 Corollary. Let f: R — R be convexr and let X be a martingale such that
E|f(X,)| < oo for every n. Then for every t > 0, we have

P (rgggf(xk) > t> < TEIF(X))

Proof. Tt follows from (14.5) applied to the submartingale (f(X,)) (see also Exercise
13.5). O

14.16 Corollary (Kolmogorov’s maximal inequality). Let Xi,...,X,, be independent
square-integrable random wvariables, each with mean 0 and let S, = X7 + ... + X,
1<k<n. Then

P <%1§L§|Sk| > t) < %Esﬁ, t>0.

Proof. We have,

P <maX|Sk| > t> =P <maX|Sk2 > t2>
k<n k<n

and the result follows from the previous corollary applied to the sum martingale (Sy =

0,51,...,S,) and convex function f(z) = z2. O

14.17 Theorem. (Doob’s mazimal inequality in L,) Let p > 1 and let X = (X;,)n>0

be a nonnegative submartingale. Then
1/p p
(Emaxx,f> < ——(EXP)'/P,
k<n p— 1

Proof. If the right hand side is 400, there is nothing to prove. Suppose that it is finite.
Then, by a trivial bound,

n
EmaxX? <ES XP =S EX? < nEX?
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(we use EXY < E(E(Xpq1|F))? < E(E(X |Fr) =EX},,), we conclude that the left
hand side is also finite. By (14.5), we have
Emax X, = /0 ptP P <I’£1<ELEL(Xk > t) dt < /0 ptP?EX,, 1 tmasy <, X, >t} At

k<n

By Fubini’s theorem (all the terms are nonnegative), we have

) maxg<n Xk
/ PP PEXy max, <, X, >4} At = pEX,, / P24t
0 0
_ P
p—1

p 1 1-1
< S EXDYPEmax XE)' T,

EX,, X5 )P 1
O X)

where in the last estimate we use Holder’s inequality. Thus
p 1/ py1—1/
E XP < 2 (EXPYYP(RE X p
nax k_p_l( m) P max k) :

so dividing by (Emaxy<, X})'~!/P finishes the proof (it is finite; if it is 0, the inequality
is trivial). O
14.4 Martingales bounded in L,, p > 1
14.18 Theorem. Letp > 1.

(i) If X = (Xn)n>0 s a nonnegative submartingale bounded in L,, then there is

a random variable Xoo € Ly, such that X, — Xo a.s. and in L,. Moreover,

[ Xnllp /7 [ Xooll-

(1) If M = (My)n>0 is a martingale bounded in Ly, then there is a random variable

My, € L, such that M,, — My, a.s. and in L,.

Proof. Let X, = supy>q Xx. From Doob’s maximal inequality in L,, Theorem 14.17,

and Lebesgue’s monotone convergence theorem, we obtain

p
Xl < sup || Xx
Xl < P sup Xl

and the right hand side is finite by the assumption. Since —X is a supermartingale,
which is bounded in L;, thanks to Doob’s convergence theorem, there exists a random

variable X, € L; such that X,, = X, a.s. By the triangle inequality,
| Xn — Xool? < (2X,)P.

Consequently, X € L, and by Lebesgue’s dominated convergence theorem, from the
pointwise convergence we can conclude that X,, — X in L,. Finally, as we saw in
the proof of Doob’s maximal inequality in L, || X, ||, is a nondecreasing sequence, so

| X5 llp /* I Xoollp- This finishes the proof of ().
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To prove (ii), we apply (i) to X = |M]. The existence of My, € L; such that

M, — My, a.s. is guaranteed by Doob’s convergence theorem. Since
|Mn - MOO‘p < (an| + ‘MOODP < (2X*)pa

we get the convergence of M, to M in L,, as before, thanks to Lebesgue’s dominated

convergence theorem. O
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14.5 Exercises

1.

Find the quadratic variation process of the sum martingale (see Example 14.5).

Give an example of a family of random variables {X,,}n=1,2, . which is uniformly

integrable and Esup,, | X,| = co.
Prove inequality (14.6) and then deduce inequality (14.7).

Show that there is no positive finite constant C' such that for every nonnegative

submartingle (X,,),>0, we have

Emax X3 < CEX,,.
k<n

Show that for every nonnegative submartingle (X,,),>0, we have

e
<
Er]?g;(Xk c 1(1—|—IEanog Xn),

where log, x = max{logz,0}, z > 0.

Hint. For a >0, b > 0, we have alogb < alog, a+ g

Prove that the constant ;27 in Doob’s maximal inequality from Theorem 14.17 is

optimal.

Azuma’s inequality. Let (M,,)n>0 be a martingale with My = 0 and | My —Mj_1| < ay

for every k > 1 for some positive constants a1, as,.... Then for every n > 1 and ¢ > 0,

t2
P M | < —— 7.
(I@’f ’“) . eXp{ 250 ai}
Hint. Follow the proof of Bernstein’s inequality (Exercise 6.19). Using convexity,

show that for a random variable X with |X| < a for some a > 0 and EX = 0, we
have Ee?X < cosh(ta), t € R.
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15 Applications of martingale theory

15.1 Series of independent random variables

We begin with applications of the Ly theory to series of independent random variables.
The main classical result is Kolmogorov’s three-series test which gives necessary and
sufficient conditions for a series Y X; of independent random variables to be convergent
a.s. Combined with Kronecker’s lemma, it leads to the strong law of numbers. An
advantage of this approach is that it gives a way of obtaining rates of convergence.
First, we need a lemma which is a direct consequence of the convergence result for
L bounded martingales. Historically, it was established by means of Kolmogorov’s

maximal inequality.

15.1 Lemma. Let X, Xo,... be independent random variables with IEX,? < oo and
EXy =0 for every k. If " | Var(X,) < oo, then Y.~ | X, converges a.s.

Proof. Of course, we consider the sum martingale Sy = 0 and S,, = X7 + -+ + X,
n > 1. Since

supES? = ZVar(Xk) < 00,
n E>1

the martingale (S,) is bounded in Lq, so S, converges a.s. (and in L), by Theorem

14.1. O

15.2 Remark. Alternatively, we can say that since (S)oo = Y 7o, < 00, we get the
assertion by (i) of Theorem 14.7.

15.3 Remark. If the variables X, are all bounded, that is there is a constant K > 0
such that |X,| < K for every n, then (S,,) has bounded increments and the converse
holds: if Y ° | X,, converges, then >, Var(X,,) < co. This follows immediately from
(ii) of Theorem 14.7. We shall strengthen it soon by removing the assumption of mean
0.

15.4 Theorem (Kolmogorov’s three-series test). Let X1, Xs, ... be independent random
variables. Then Y X,, converges a.s. if for some K > 0 (equivalently, every K > 0) the

following three conditions hold

(1) 2P (|Xn| > K) < oo,

(ii) Y EX, 1fx, <k} converges,
(iii) ) Var(X, 1{x,|<kx}) < 0.

Conversely, if > X,, converges a.s., then (i)-(iii) hold for every K > 0.
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Proof of sufficiency. Suppose that for some positive K conditions (i), (ii) and (iii) hold.
Let X, = X, 14x,|<k}- First note that, thanks to (i),

SP(Xu# %) = D P(X| > K) < ox,
so by the first Borel-Cantelli lemma,
P (Xn = X, for all but finitely many n’s) =1,

so it is enough to show that 3 X,, converges a.s. Thanks to (ii), it is enough to show

that (X, — EX,,) converges a.s. which in view of Lemma 15.1 follows from (iii). [

Proof of necessity. Fix K > 0 and suppose that > X, converges a.s. In particular,
X, — 0 as., so P(|X,| > K for infinitely many n’s) = 0, so by the second Borel-
Cantelli lemma, > P (]X,,| > K) < oo, that is (i) holds. As in the proof of sufficiency,
this in turn gives that X,, = X, eventually, a.s., so we also know that ZXn converges

a.s. The following lemma applied to the sequence (X,,) finishes the proof. O

15.5 Lemma. Let (X,,) be a sequence of independent random variables bounded by some
positive constant K, that is | X,| < K for everyn. If > X,, converges, then Y EX,, and
> Var(X,,) converge.

Proof. We shall use characteristic functions. Let Y, = X,, — EX,,. First note that,
|Y,,| < 2K and, plainly, ¢y, (t) = e " EXngx (t), so

Py, ()] = |8y, ()]

Denote 02 = Var(X,,) = EY,2. By Lemma 10.4,

by, () — (1~ 5038

, 1
— ‘]E {e”y" — (1 +itY,, — QtQYn?]

3 3 3 2
<l WPCRBY K o

Consequently, for all [t| < {3, we have

1 1 1
|y, (t)] <1-— 502752 + 1‘7721752 =1- Zait?
Since S, = X7 + -+ + X,, converges a.s., say to S, we have ¢g_ (t) = ¢s(t) for every
t. By continuity, |¢s(t)| > % for all ¢t sufficiently small. Fix one such positive ¢ with

t < %. Then, for all n large enough,
1 - ~ 12y g2
1 <195, = [T lox. O] = [] low ()] < e i,
k=1 k=1

which gives > 2 02 < o0, as desired. Finally, by Lemma 15.1 applied to Y,,, we get
that the series > Y, = > (X,, — EX,,) converges a.s., which together with > X,, being

convergent a.s., gives that > EX,, converges. O
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We refer to the exercises for applications of the basic lemma 15.1 combined with
Kronecker’s Lemma 14.9 allowing to obtain strong laws of large numbers with rates of

convergence.

15.2 Kolmogorov’s 0 — 1 law and strong law of large numbers

Here we present applications of Lévy’s convergence theorems.

Martingale proof of Theorem 8.17 (Kolmogorov’s 0 — 1 law). Let F,, = o(X1,...,Xp).
Let A € T and X = 14. Clearly X is independent of F, for every n and X is
Foo = o(lJ,, Fn)-measurable. Thus, E(X|F,) = EX = P(A) and E(X|F) = X.
By Theorem 14.12,

E(X|F,) 2o E(X|Fw),

so P(A4) — X a.s. and because X € {0, 1}, this gives P (A4) € {0, 1}. O

Strong law of large numbers: martingale proof. Suppose X1, Xa,... are i.i.d. random

variables with E|X;| < co. Then

X144 Xn

n n— 00

EX; a.s. andin L;

(compare this to Etemadi’s strong law, Theorem 7.16, where we only assume pairwise
independence but only conclude a.s. convergence).
For the proof, let S,, = X1+ + X, G—rn = 0(Sn, Snt1,--.), n > 1 and as in Lévy’s

downward convergence theorem, G_o, = (,, G—n. By Example 12.5,

S,
E(X4|G_,) = —.
n
Thus, by Lévy’s theorem (Theorem 14.13), there is an integrable random variable Y
such that
S,

2 5Y as. andin Ly.
n

X1+ +Xn .
%. As a result, Y is

Observe that for every fixed m, ¥ = lim, % = lim,,
0(Xm+1, Xm+2, - . .)-measurable, thus it is T-measurable, where T is the tail o-algebra.
By Kolmogorov’s 0 — 1 law, Y is therefore constant a.s., say ¥ = c a.s. for some c € R.
By the Ly convergence, EX; = lim,, Ei—" =EY =c. O

15.3 Kakutani’s theorem

The next result is obtained as a basic application of Doob’s convergence theorem to

product martingales and Doob’s maximal inequality in Lo.

15.6 Theorem (Kakutani’s theorem on product martingales). Let X1, Xo,... be in-

dependent nonnegative random variables, each one with mean 1. Let My = 1 and

168



M, = Xi-...-X,,. Then there is an integrable random variable M. such that M, — M

a.s. and the following conditions are equivalent
(i) EM, =
(i) M, — My in Ly
(111) M = (My,)n>0 is uniformly integrable
(iv) T3, BX;/* > 0
(v) £y (1 - EX,/?) < oc.
If they fail to hold, then My, =0 a.s.

Proof. Here is how we proceed: (ii) < (iii), (iv) & (v), (iv) = (i)-(iii), NOT(iv) =
My =0 a.s. and as a result NOT(i),NOT(ii). These suffice.

Since M is a nonnegative martingale (see Example 13.3), the existence of My, € Ly
with M,, — M, a.s. immediately follows from Doob’s convergence theorem.

Note that (ii) and (iii) are equivalent because of the characterisation of L, conver-
gence in terms of uniform integrability, Theorem I.6.

Let ap = ]EX;/2 which is positive (because EX; = 1). By Jensen’s inequality,
IEJX;/2 < (EXj)Y/2 = 1, so in fact ax € (0,1]. Then the equivalence of (iv) and (v),
[Tar > 0 & >2(1 — ax) < oo, is a straightforward consequence of the inequalities
l-z<e® zcRand say 1l —z>e 2 z€l0,3]

Suppose (iv) holds. Consider

Yo =1,

LXE

al e * an .
This is a nonnegative martingale, bounded in L, because
1 1
EY;? = < 00.

Hk 1 ak HZ; a%

Note that M,, =Y,2(ay - ... a,)? <Y2. Therefore, by Doob’s maximal Ls inequality,

Esup M,, < ]Esqun2 < élsuleE‘Yn2 < 00.

n>1 n>1 n>1
Letting M, = sup,,~; My, which is in Ly by the above, we have M,, < M, showing that
(M,,) is uniformly integrable (Lemma I.1). Thus (iii) holds, hence (ii), too. Of course,
(i) and EM,, = 1 implies (i).

Suppose (iv) does not hold, that is [];_, ax — 0. Then, since Y,, — Y., a.s. for

some integrable random variable Y, (Y is a nonnegative martingale!), we have
vz (fla) 22
that is Mo = 0 a.s. Consequently, neither (i) nor (ii) do hold. O
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In particular, when the X; are i.i.d., unless they are constant a.s., the product

X1 ... X, converges a.s. but not in L, to My = 0 a.s. (see also Exercise 13.15).

15.4 The law of the iterated logarithm for Gaussians

15.7 Theorem. Let X1, X5, ... be i.i.d. standard Gaussian random variables and set

Sp=X1+---+X,,n>1. Then
Sn

limsup ————=—=—==1 a.s.
n—oo V2nloglogn
and
limian =-1 a.s.
n—oo +/2nloglogn
Proof. Let

h(z) = v/2zloglog z, x> e.

The statement about lim inf follows from the one about lim sup by symmetry (—S,, has

the same distribution as Sy,,). To prove the latter, we split the argument into two parts.

Upper bound. First we exploit Doob’s maximal inequality, to get an exponential bound

on tail probabilities for the maximum. Fix A > 0. We have,

EeMn — e3A°n

(because S,, ~ N(0,n)). Moreover, (e**"),>; is a submartingale because = +— e® is

convex. By Doob’s maximal inequality 14.5, for every ¢, we have

P (Il?<ax Sy > t) =P <max Mk > eM) < e MEeM = e AN
c<n

<n

and optimising over \ yields

k<n

P (max S >

V
~
N———
IN
o
|
V|
Y

Fix a > 1 and let a,, = ah(a™"1). Since

o a2 - 20" togloga™ !
P(&aXSkzan> <e 27 zexp{— g 08
<an

2amn
= exp {—aloglog an ! }

_ (n _ 1)—046—0410g10go¢7

the series Y P (maxg<an Sk > ay,) converges and by the first Borel-Cantelli lemma, a.s.,

maxg<qr Sk = G, holds only for finitely many n’s. Consequently, the event

{Igréax Sk < an for all but finitely many n’s}
7a71,
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has probability 1. This invent is contained in the event
Uy = {3ng ¥n > ng Vol <k<a® Sp< ah(k)}
because of the monotonicity of h(z), so U, has probability 1. On the event U,,

S
limsup — < a,

n—oo h(k) ~
thus on the event ﬂ?; Ui41/1, which also has probability 1,
Sk
limsup —— < 1,
e (k) =
hence
lim sup i <1 as.

n—oo (k)

Lower bound. We shall need the following elementary estimate on Gaussian tails (cf.

Lemma 11.4).

Claim. If g is a standard Gaussian random variable, then for ¢ > 0,

t —t2/2

1
P(g>t)> —
>0 et

Indeed,

5, dx 14272 o, dx
P > ¢) = / e " /2 M > e " /2
b=0=, Vo A E N =

1 </ 1 L.\ de
- - _Zewt2) &
1+t2 ), x Vo
1

t
e_tz/g.

- Vorl+1t2

We fix € € (0,1) and an integer N > 1. We consider the events
Ap = {Syni1 — Syn > (1 —)h(N™T — N™)}.

Since Synt1 — Syn has the same distribution as v N"+! — Nng, where g is standard

Gaussian, by the claim, we get

P(A,) =P (g > (1 —€)y/2loglog(N"+1 — Nn))
1 (1—¢)y/2loglog(N"+1 — Nn)
~ V2114 2(1 —¢)?loglog(N"+! — Nn)
= o)

(log N"(N — 1))~1~)°

provided N is large enough. This gives > P (A4,) = oo and of course, the events A,
are independent, so by the second Borel-Cantelli lemma, infinitely many A,, occur with

probability 1. In other words,

P (Syn+1 > (1 —e)h(N™ — N™) + Syn, for infinitely many n’s) = 1.
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By the upper bound, a.s., Syn» > —2h(N™) eventually, so the events
Vne = {Snnt1 > (1 —)h(N™T! — N™) — 2h(N™), for infinitely many n’s}

have probability 1. On Vy ., we have

. Sn ) Snnt1 ) h(N"+L — N7 h(N™
limsup —— > hmsupNiJr > lim sup ((1 —¢€) ( BN ) _Qh(Z(\]7'+)1)>

h(n) h(N7HT)
= lim sup ((1 _ 5)\/2Nn(N —1)loglog N*(N — 1)

2N+l ]oglog N+l

9 2N™loglog N™
2N+l ]oglog N+l

C(1—e) N-—-1 2
= N~ Uy
Therefore, on NN_s (=2 Viv,1/1, we have
lim sup hf:z) >1
O
15.8 Remark. We have,
Sn P

0
v2nloglogn n—oo

This is very simple: since S, has the same distribution as y/ng, where g is standard

Gaussian, we have

Sn
Pllos===—|>¢) =P lg| > evlogl 0.
(‘\/W 5) (\g| e\/m) N

15.9 Remark. Theorem 15.7 can be substantially generalised: it holds for an arbitrary
sequence of i.i.d. random variables with mean 0 and variance 1 (the Hartman-Wintner
law of the iterated logarithm). There are several proofs (see e.g. [1] for an elementary

proof, or [3] for a modern proof using Brownian motion and Donsker’s theorem).

15.5 The Radon-Nikodym theorem

Let p and v be finite measures on (2, F). We say that v is absolutely continuous
with respect to p if for every A € F with u(A) = 0, we also have v(A) = 0. This is
sometimes denoted v < u. The Radon-Nikodym theorem implies that then v has a
density with respect to p, that is there is a measurable function g: Q — [0, +00) such

that for every measurable set A,
v(A) = / gdpu.
A

This function is sometimes called the Radon-Nikodym derivative, denoted g—z. Clearly,
the converse holds as well. We shall present a martingale proof of the Radon-Nikodym

theorem.
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15.10 Theorem (Radon-Nikodym). Let u and v be finite measures on (2, F). There
is an F-measurable function g: Q — [0,400) and a set S € F such that u(S) =0 and

I/(A):I/(AQS)Jr/gdu, AeF.
A

Moreover, g is unique up to sets of p-measure 0 and S is unique up to sets of (u + v)-

measure 0.

15.11 Remark. In particular, if v < p, then v(S) =0, so
V(A):I/(AﬂS)—i—/gdu, AeF.
A

15.12 Remark. Considering p and v on pieces where they are finite, the theorem

extends to the case when u and v are o-finite.

To “construct” g, we will work with sequences in Lq (2, F, u 4+ v) indexed by finite
sub-c-algebras of F, so we need to extend a bit notions of convergence to such sequences.
The completeness of L, will play a crucial role.

Let (E,d) be a metric space. Let T be a directed set, that is a partially ordered set
by a relation = (reflexive, antisymmetric and transitive) with the property that every
two elements of T' have an upper bound, that is for every s,t € T', there is u € T with
s < uwand t < u. We say that a sequence (a¢)ier in F indexed by T converges to a € E
if

Ve>0 JtoeT VteT t=ty = dla,a) <e. (15.1)
We say that the sequence (a;)ier satisfies the Cauchy condition (or, simply, is Cauchy)
if

Ve>0 FoeT VteT t=ty = d(at,a,) <e. (15.2)
15.13 Lemma. Let (F,d) be a complete metric space and let (T,<) be a directed set.

(i) If (at)ter is a sequence in E such that for every nondecreasing sequence of indices

t1 < ta < ..., the sequence (at, )n>1 converges, then (ay)ier is Cauchy.

(ii) If (at)ter is a Cauchy sequence in E, then it converges to some a € E and there

exists a nondecreasing sequence of indices t; < ta <X ... such that a;, — a in E.

Proof. (i): If (a;) does not satisfy the Cauchy condition, then there is € > 0 such that
for every tog € T, there is t € T with t = ¢t and d(ay, at,) > €. Choose t; € T arbitrarily.
Given t,, define ¢, as the index ¢ given by the previous condition applied to tg = t,.
We obtain the sequence t; < t2 < ... with d(as,,a4,,,) > €, so (ay, ), does not converge

in E, a contradiction.

(ii): For n = 1,2,..., we apply the Cauchy condition with ¢ = % and set t!, to be the

index to provided in (15.2). Then we define the sequence ¢, recursively, t; = t} and
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given t,, we choose t,1; as any common upper bound of ¢, and t;, ;. This way we
obtain the sequence of indices t; < t2 < ... such that for every n > and every t € T

with ¢ = t,,, we have
2
d(ar,,ar) < d(ar,,, ar,) +dlay,, ar) < .

This shows that the sequence (a, ), is Cauchy. Since E is complete, it converges to, say
a € E. Tt remains to show that the whole sequence (at):cr also converges to a in the
sense of (15.1). Fix e > 0. Let n be such that € > + and d(a,,a) < e. Choose tg = t,.
Then for every t € T with t = ty, we have

2
d(at,a) < d(at,a,) + d(ay, ,a) < te< 3e.
Thus (15.1) holds and the proof is finished. O

Proof of Theorem 15.10. Let ¢ = pu(2) + v(Q). If ¢ = 0, there is nothing to prove, so
we assume ¢ > 0. Let P = %(,u + v), so that (2, F,P) is a probability space. We shall
denote the integral against P by E, that is

Ef = /Q fw7 f: Q= R, fis measurable.

Step I (martingale argument). We define

T ={G C F: G is a finite sub-c-algebra, i.e.
G=o0(A4y,...,A,) for some Ay,..., A, € F}

Equipped with the inclusion relation C, this is a directed set (a common upper bound
for G1,Go € T is simply o(G1,G2)). We set

E = Ly(Q, F,P)

which is a complete metric space (see Theorem 6.10). For G € T generated by atoms
Ay, ..., A, (meaning that Q = A; U---U A, is a disjoint partition and every set in G is
of the form | J;o; A; for a subset I of {1,...,n}), we define

Zent
0, for w € Aj, ifIP’(Aj):O'

for w e A;, if P(A;) >0
Xg(w) =

Note that
(a) 0< Xg <e¢
(b) Xg is the density of v with respect to P on G, that is

v(A) =EXg1a, for every A € G,
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(¢) For every sequence Gy CGa C ..., G, € T, n=1,2,..., letting X,, = Xg, , we have
(Xn)n>1 s a martingale on (Q, F,{Gn}n>1,P).
This is because for every n > 1 and every A € G,, thanks to (a), we have
EX,114 = v(A) =EX, 14,

or, equivalently, E(X,,+1|Gn) = Xp.

Moreover, since (X,,) is bounded (by virtue of (a)), (X,) is a uniformly integrable

martingale (Lemma 1.1), so it converges a.s. and in L.

By (c¢) and Lemma 15.13, the sequence (Xg)ger converges in Ly (in the sense of (15.1))
to a random variable X € L;. Moreover, there is a sequence G; C Gy C ... in T such
that Xg — X in L;. As a uniformly integrable martingale, this sequence (Xg, ) also
converges a.s. and in Lj to some L; random variable, say X,,. By the uniqueness of

limits in Ly, Xoo = X and by the a.s. convergence, X € [0, ¢] a.s.

Step II (limit argument). The idea is of course that because each Xg is the density of v
with respect to P on G, the random variable X constructed in the previous step as the
limit of Xg, should be the density of v with respect to P on the whole F.
Formally, fix € > 0. Since Xg — X (in the sense of (15.1)), there is K € T such that
for every G D K, we have
E|Xg — X| <e.

Fix A € F and let G = (K, A). Since G D K, we have
IEXg1a-EX14| <E|Xg— X|14 <e.
By (b), EXg14 = v(A), so we obtain
[V(A) —EX 14| <e,

hence

v(A)=EX 1,4

(because ¢ is arbitrary). In view of EX14 = 1 [, Xdpu+ 1 [, Xdv, we equivalently

C

/A(C—X)du:/AXdu,

for every A € F. By a standard argument of complicating measurable functions, we

have

also obtain from this that

[ =30 = [ Xpap, (15.3)

for every A € F and every F-measurable function f: Q — R.
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Step III (derivation of density). It remains to define S and g. We set

Choosing A =S, f =1 in (15.3) yields

O:/S(c—X)dy:/SXdu:/Scduzcu(S),

hence 1(S) = 0. Recall that X € [0, ] P-a.s., so in particular we have, u({X > ¢}) =
v({X > c}) =0. Applying now (15.3) with

%7 WESC7
flw) = ¥
0, w e S,

we get
X

V(AHSC):/A(C—X)de:/Adeu:/AmscC_Xd,u.

Therefore, we define

X
—x, onS°

0, on S,

g:

and the previous identity becomes

V(AﬂSC):/Agdu.

Finally,
v(A)=v(ANS)+v(ANSY) =v(ANS) +/ gdy,
A

as desired.

Step IV (uniqueness). Suppose we have another set S and function § satisfying the

required properties. Then, for every A € F,
V(AOSH—/ gdu:V(Aﬁ§)+/ gdp.
A A

Taking A = S gives v(S) = v(S N S) (because [qgdu = 0 = [, gdpu, as u(S) = 0).
By symmetry, v(S) = (SN S), hence v(SAS) = 0. Thus S is unique up to sets of
(11 + v)-measure 0. In particular, now we know that v(ANS) =v(ANS), so

/ gdp = / gdu,
A A

for every A € F. As aresult, g = g p-a.e. O
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15.6 Exercises

1.

Let €1,€9, ... be i.i.d. symmetric random signs, that is P (e, = 1) = 3 =P (g, = —1)

1
2
for every k. Then Y 7 | a,&, converges a.s. if and only if Y >7 a2 < oo.

. Let X3, X5,... beiid. exponential random variables with parameter 1. Let (an)n>1

be a sequence of nonnegative numbers. Show that Y a, X, converges a.s. if and only

if Y~ an < o0.

If X1, Xo, ... are i.i.d. random variables with EX? < oo and EX; = 0, then for every
€ > 0, we have
X1+ + X, as

n1/2 1og1/2+5n n—oo 0-

X+ Xn _ clog'/2te
n - 0(

In other words, —75—) a.s., giving the rate of convergence in the

strong law large numbers under the assumption that EX? < oo.

Prove Marcinkiewicz’s theorem: if p € (0,2) and X1, Xo, ... are i.i.d. with E|X1|P <

00, then
X1++Xn_n//‘ a.s.

nl/P n—00

where =0 for p € (0,1) and p =EX; forp € [1,2).

0,

In other words, for p € (1,2), % —EX; = o(n'/P~1) a.s. which is the strong

law of large numbers with the rate of convergence.

Let u, v be two finite measures on (€2, F). Show that v is absolutely continuous with
respect to p if and only if for every € > 0, there is 6 > 0 such that for every A € F
with p(A) < 6, we have v(A) < e.

177



16 Large deviations

The weak law of large numbers tells us that for every ¢ > 0,

P (Sn - > 5) — 0,
n n—o00

where S, = X1+...4+X,, X1, Xo,...areii.d. integrable random variables and p = EX;.
How fast do these probabilities converge to 07

Large deviations theory answers this question and establishes, under additional as-
sumptions, precise exponential rates of convergence. Cramér’s theorem provides a con-
vex function I: (p, +00) — (0,400) (determined by the distribution of X;) such that

lim llogp(%>a) = —1I(a), a> u,

n—o00 N

so that, roughly, P (% > a) ~ e (@)
We stress out that as opposed to the c e n t r a1 limit theorem, which identifies the
limiting behaviour of the probabilities for the bulk (centre), that is a narrow window of

width O(ﬁ) around the mean,

S, oa ob b 2, dz
lim P22 —pe|—,—=))=[ e*/2—=, a<b,
n o (n : (ﬁ ﬁ)) / Var

lar g e deviations treat the limiting behaviour of the probabilities for the tail, a constant

away from the mean,

1 S,

lim logP<"u>s>I(u+s), e>0.
n—oo N n

We end this introduction with a simple lemma showing that as a consequence of

independence, such limit always exists. The ultimate goal would be to determine its

value.

16.1 Lemma. Let X1, X5, ... be i.i.d. integrable random variables. For every a € R,
the limit
1

lim —logP (S, > na) € [—o0,0]

n—oo N
exists. It equals —oo if and only P(X; > a) = 0.
Proof. Fix a. Let b, =logP (S, > na) € [—00,0], n > 1. Note that for n > m > 1,

bptm = logP (S, — S > (n —m)a, S, > ma),

so, thanks to independence,

anrm 2 bn + bma

that is the sequence (b,) is subadditive and hence lim,, b;“ exists and it is equal to
SUD,;,>1 bm € [—00,0], as explained in the next basic lemma. The last part is left as an

exercises. O
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16.2 Lemma. Let (by)n>1 be a sequence of real numbers which is subadditive, that is
for every m,n > 1,

bn
n

Then lim,,_, o 2= exits and equals sup,, > - € (—00, +oa].

n

Proof. Let a = sup, > %. Plainly, lim sup %" < a. To show that liminf % > a, it is

enough to prove that for every m, we have liminf %" > bﬁ. Fix m > 1. For n, we
write n = km +r with k > 0 and r € {0,1,...,m — 1}. Iterating the assumption yields
bp, > kby, + b, (bg = 0), thus, dividing by n = km + r,
bn, < km  bpy, b,

n " km+rm  km+r

As n — oo, also k — o0, so taking liminf and using that |b,| < maxi<j<m |b;]| is

bounded gives the desired claim. O

16.1 Moment generating functions

For a random variable X, we define its moment generating function ¢: R — (0, +-00)

as

Note that

16.3 Lemma. Function log is convex (in other words, ¥ is log-convez).

Proof. Tt is evident from the fact that sums of log-convex functions are log-convex (by
Hélder’s inequality) and A +— e*X is log-affine. Alternatively, it can be seen by applying
Hélder’s inequality directly (with weights 1/p=t, 1/¢ =1 —t),

log (tA1 + (1 — t)Ag) = log Be' X (17022 X < Jog (Rt X ) (Eer2X) !~

= tlogtp(Ar) + (1 — £)logp(Az),
for every A1, A2 € R and ¢ € (0,1). O

16.4 Corollary. If for some A1 < Az, ¥(A1),¥(A2) < oo, then () < oo for all
X [, Aol

In view of this corollary, it makes sense to define
A =inf{A e R: Ee** < o0}, Ay =sup{A € R: EeM < o0} (16.1)
and then (A_, A;) is the largest open interval where 1) < co. Since ¥(0) = 1, of course

AL <0< A,
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16.5 Lemma. Suppose (\) = Ee*X is the moment generating function of a random

variable X.
(i) If ¢ < oo on (—8,8) for some & > 0, then E|X|* < oo and * (0) = EX*, for

every integer k > 0.

(ii) If v < oo on (Ao — 0, \g + &) for some Ao € R and & > 0, then E|X|Fer¥X <
and Yp®) (X)) = EX*eX | for every integer k > 0.

Proof. (i): Note that e/l < e® 4+ e~ 2 € R. In particular, for —6 < h < §, k >0,

k| x|k
|h| I<|;'X| < X < omhX | hX
and the right hand side is integrable because ¥(—h),9(h) < co. Thus E|X|* < oc.
Moreover,
- hlk|X
5° (0] S HIE o
k=0 k=0
SO > oo 0 is integrable and by Fubini’s theorem,
- -5
ko
k=0

Consequently, ¢ is C™ on (—4,8) (as a convergent power series) and (¥ (0) = EX*.

(ii): We shall deduce this part from (i) using the so-called “exponential tilting” of
measure, one of the key ideas of large deviations. Since ¥(\g) < oo, we can define a new
random variable Y which is absolutely continuous with respect to X with density %

n (2, F,P), that is
Ao X

e
P(Y € A) =B s xea,

or, equivalently,
e )\o x

dpy (z) = mdﬂX@)-

Then,

e)\UX

Ef(Y)=Ef(X)——,
W =E500
for every Borel function f (for which the right hand side exists). In particular, for the
moment generating function ¢y of Y, we get

e v YA+ o)

Py (\) = Ee?Y = et =
) (%) (%)
which is finite on (—6,4). Applying (i) to Y, we thus get
E| X |FeroX
EY|f=—"——— <
¥ ¥(Ao)
and ® X
PP o) K R €07
— = 0)=EY*=EX
¥(Ao) v (0 Y(Xo)’
which gives 1(®)(\g) = EX¥erX | as desired. O
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16.6 Corollary. Function ¢ is C* on (A_, ;).

When A_ = Ay =0, we will not be able to establish exponential rates of convergence
to 0 for probabilities P (% > pu+ ¢) (for a reason — the rates are slower — see exercises).
We shall thus make the minimal assumption that at least one of A\_, Ay is nonzero.

Since we can always consider —X instead of X, we shall focus on the case when
Ay =sup{A € R: EeM < o0} > 0. (16.2)

As it will turn out, this assumption allows to control upper tails: P (S,, > an) for a > p.
In view of Corollary 16.6, the next two lemmas concerning continuity of ¢ and its
derivatives at 0 are trivial when (A_, A4) contains 0, but since we want to work under

the minimal assumption (16.2), it requires some care and extra work when A_ = 0.

16.7 Remark. If (16.2) holds, then JEXE < o0, for every k > 1. In particular,
EX € [—o0, +00).
Proof. Fix 0 < A\g < A4. Since (/\02(7,*)’” < e*X+ | we have ]EX_"; < 00. O

16.8 Lemma. Suppose ¥ is the moment generating function of a random variable X

and (16.2) holds. Then
(i) ¢ is continuous at 0,
(ii) limy o YF) (X)) = EX*, for every k > 1.

Proof. (i): We need to show that limy oy ¥(\) = ¥(0), that is limy o, Ee*?* = 1,
which will of course follow if we can change the order of taking the limit and expectation.

Fix 0 < Ao < A4+ and note that
e’\X§1—|—e>‘°X7 0< A<\

(this holds because if X < 0, then e < 1 and if X > 0, then e < eroX| by

monotonicity). Lebesgue’s dominated convergence theorem finishes the argument.

(ii): Following the same argument, we want to dominate X*e*X for all 0 < A < )\ by
an integrable random variable. We write X* = X fﬁ — X*. For small enough ¢ > 0,
ek xk

+ X X
TSGE +§1+66 ,

so that X¥e* is dominated by (14 e*¥)(1 4 e**) which is integrable provided that
Ao + € < A;. Hence,

: kX _myk
Agrg+EX+e =EXY.
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Now we analyse X*e*X . If EXF = 400, Fatou’s lemma gives

liminf EX* e > Eliminf X* e = EX* = +0c.
A—=0+ A—=0+
As a result, in this case,

lim ®(A) = lim EX*e? = —0o = EXF.
A—0+ A—0+

If EX* < oo, then since
XFM < XF (14 e20Y) = XF 4 XFeroX
as well as
XEehoX < gesx, roX _ gesX++(Ag—e)X < g(l + X )ePo—a)X

we can conclude by Lebesgue’s dominated convergence theorem. O

16.9 Remark. A similar argument shows that ¢()\) — ¥(Ay) as A — Ay —: we write
e = e 1501 +eM 1ix oy and use Lebesgue’s monotone convergence theorem for

the first term and Lebesgue’s dominated convergence theorem for the second one.

We close this section with a relationship between moment generating functions and

tilted measures.

16.10 Lemma. Let X be a random variable with moment generating function i and let
A+ be given by (16.1). For X € (A_, Ay), let py be the probability measure on (R, B(R))
defined by

e)\x
i (A) = / Ty, AcB®).

where px is the distribution of X. Let Yy be a random variable with distribution ).
Then

(log )’ (A) = EY,
(log )" () = Var(Y2).

Proof. By the definition of Y,

e)\X

Y(A)’
for every measurable function f for which the right hand side exists. Thus, by Lemma
16.5,

Ef(Ya) = Ef(X)

W) _ EXAX

and
" _ P’ (A) _ P'(N) ? _ EX?eX . 2 2 2 _ Var
(o)) = 3 — (L) = Zr - (BN = BYE - (B¥3)° = Van(13).

O
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16.2 Upper bounds: Chernoft’s inequality

16.11 Lemma (Chernoff’s bound). Let X be a random variable with moment generating

function 1 and let a € R. Then
P(X >a) < e (@losv) -y >
Proof. The assertion follows from exponential Chebyshev’s inequality, since for A > 0,

IP)(X > CL) :P(e)\X > e)\a) < e—ka]Ee)\X _ e—()\a—logw(k)'

O

16.12 Corollary. Let X1, Xs,... be i.i.d. random wvariables with moment generating

function ¢, S, = X1+ ...+ X,,. Fora €R,
P (S, > an) < exp {—nsup{)\a - logw()\)}} .
A>0
If (16.2) holds, then for every a > p=EX; € [—00, +00), we have

sup{Aa — log(\)} > 0,
A>0

that is the above upper bound is meaningful (and is exponentially small in n).

Proof. The upper bound on P (S,, > an) follows from Chernoff’s bound applied to X =
Sp. Independence yields, ¥g, (A) = 1(A)™ and the supremum appears because the bound
holds for all A > 0.

If (16.2) holds, then by the intermediate value theorem applied to log on (0, ), we
have

aX —log(A) = aX — (log () —log¢(0)) = A - [a — (log )’ ()],

for some 6 € (0, ). Since (log®)'(0) = % — EX = pas A — 0 (Lemma 16.8), for
small A\, the expression in the square bracket is close to a — 1 > 0, which shows that the

supremum supyo{Aa — log ¥ (\)} is positive, as desired. O

The above upper bound motivates the following definition: the rate function
I: R — [0, +00] of a random variable X with moment generating function ¢ is defined
as

I(a) = sup{\a — logy(\)}, a€R.
AER

(It is the Legendre transform of the log-moment generating function log.) As a point-

wise supremum of linear functions, I is a convex function.

16.13 Example. For the common distributions, in some cases, the rate function can

be written down explicitly (see exercises).
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1) Standard Gaussian distribution, X ~ N(0,1). We have
Y(A) = EM = /2
Then, given a € R, Aa — log¥(A) is maximised over A € R when

a = (log1)'(A) = A,

which gives
a2
I(a) = a® —log(a) = 5
2) Standard exponential distribution, X ~ Exp(1). We have

2o <1,
YA =
400, A>1

and
a—1—1loga, a>0,

I(a) =
400, a <0.

3) Bernoulli distribution, X ~ Ber(p). We have

PY(A) =1—p+pe

and
alog 2 + (1 —a)log =2, 0<a<1,
—log(1 —p), a =0,
I(a) = (1-p)
_logp7 azlv
+00, a<0ora>1l.

4) Poisson distribution, X ~ Poiss(u). We have

() = exp{—p + pe*}

and
+00, a <0,

I(a) = q p, a=0,

alogﬁqLu, a > 0.

16.14 Example. Let X be a random variable with density g(z) = Caz~3e™* 111 4o0) (),

where C' is a normalising constant. We have

P(A) = C’/ e dr < 0o
1
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if and only if A <1, s0 A_ = —o0, Ay = 1. Note that as A — 1—,

Y'(1) _ f1oo a?dw —9
WD) " [

Thus, the supremum in the definition of I(a) is attained if and only if a < 2, the case

when the equation a = % has a solution.

16.3 Cramér’s theorem

16.15 Theorem. Let X1, Xs,... be i.i.d. random variables with moment generating
function ¢ satisfying (16.2) and rate function I. Let p = EXq and S, = X1 +...+ X,

n > 1. For every a > u, we have

lim 1 logP (S, > na) = —1(a).

n—o0o N

Proof. We begin with two remarks which will help us understand better the claimed

value of the limit —I(a). By its definition, the rate function I(a) is supycg f(A) with
FN) = Xa — log (M),

First, we remark that under our assumptions, in fact we have

I(a) = sup f(A). (16.3)
0<A<AL
Plainly A > Ay results in f(A) = —oo, so those A do not count in the supremum.

Moreover, note that by Jensen’s inequality,
f(N) = Aa —logEe** < Aa —log e = A(a — p).

For a > p and A < 0, the above is thus nonpositive. If (16.2) holds, we know that the
supremum over A > 0 is positive (Corollary 16.12). Thus A < 0 can also be neglected in
the supremum defining I(a).

Second, thanks to Lemma 16.10,

f"(A) = —(log ))"(A) = — Var(Y)

which is strictly negative (unless Yy, equivalently X is a point mass, in which case there
is nothing to do). Thus, f’ is strictly increasing and f is strictly concave on (0, Ay). In
particular, if f attains its supremum, it is unique, attained at A = A, € (0, A;) which is

a unique solution of the equation

f'(\) =0, thatis  a = (logv)'(\) =

We now break the proof into two parts.
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Upper bound. By Chernoff’s bound,

1
limsup — log P (S, > na) < —sup{ia — logy(A\)} = —1(a),
n A>0

where the last equality is justified by (16.3).

Lower bound. Fix a > p. It remains to show that

lim inf 1 logP (S, > na) > —I(a) (16.4)

n—oo N

with the right hand side given by (16.3).

Claim. If there is A\, € (0, A4) such that a = ﬁ/(()’\\:)), then lower bound (16.4) holds.

To prove the claim, fix A\, < A < Ay. Let Yq,...,Y,, beii.d. copies of the tilted random
variable Y from Lemma 16.10. Note that then, thanks to independence, the vector

A(X 4.4 Xn)

1,.-.,Yy) has density =———~~+—— with respect to 1,...,Xy) and we have
Y] Y, ) has density € oY) ith X X d h

eASn

LIV

for every measurable function f: R™ — R for which the right hand side exists. For

Ef(Y1,...,Y,) =Ef(Xy1,...,X,)

a’ > a, we thus have

P (S, > na) > P(S, € (na,na’)) = Ee*¥ e ™" 15, nanar))
= w(A)nei/\na/E 1{Y1+-~~+Yn,€(na,na’)}

=p(\)"e P (Y, + -+ Y, € (na,nd’)).

By the weak law of large numbers,

Y1++Yn—nIEY1 P

n n—00

0,
so as long as a’ > EY; > a, we get

P(Yy+ -+ Y, € (na,na’))

_P(Y1+--~+Yn—nEY1
n

€ (a—EYy,d —EYl)) 1

n—oo

Since EY; = qu,((;\)) > Q) a, given A > \,, we thus fix ¢’ such that o’ > qu/((;\)) and
get

lim inf 1 logP (S, > na) > —(Aa’ — log¥(N)).

n—oo 1
Letting A \( A\, and then a' \ a, we get
lim inf 1 logP (S, > na) > —(Aga —logp(N,)) = —I(a),

n—oo N

as desired. This finishes the proof of the claim.
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Depending on the behaviour of 1, the claim may or may not be applicable. To decide
when it is, we consider

A =esssup X € (—o0,+00].

Case 1: A < 4+o00. Then A} = +oo. First we claim that

() EXeMX
00 T EAX ow (16.5)

Indeed, since X < A, clearly % < A. On the other hand, for € > 0, we have
EXeM > (A— E)Ee)‘X lix>a—¢) +EX M lix<a—c}
= (A—)EeM +E(X — (A —¢))eM lix<a—e}
1
= (A - e)EeM + XeW‘—f)JEA(X —(A—e)er?F A=D1y .
Since |ye¥ 1,<o| < e~ ! and

e)\(A—s)

< <
EerX — EerX 1{X>A—e/2} - P(X > A—E/Q),

A(A—¢) e—)\s/Q

we obtain X
2 G WA B
Ee A eP(X > A—¢/2)
thus
. JEXeM
N w247

Consequently, (16.5) holds.

In view of (16.5), if a < A, then there is A, with ﬁl((:‘:)) = a and the claim finishes

the proof in this case. If a > A, then trivially P (S, > an) = 0 for every n, so it

remains to argue that I(a) = 4+o0o. This holds because f'(A) > a — A > 0 for every
A > 0 (as f’ is strictly decreasing), so f(\) — 0o as A\ — oco. Finally, if a = A, then
P (S, > an) =P (X; = A)", so it remains to argue that [(A) = —logP(X; = A). On
one hand, for every A > 0, )(\) = Ee*1 > MP (X, = A), so
I(A) = sup{ A —logyp(\)} < —logP (X1 = A).
A>0

On the other hand, this upper bound is attained in the limit as A — oo because by

Lebesgue’s dominated convergence theorem,
M — p(N) = —log EeMX—4) —— —logP (X1 = 4),
— 00
which finishes the whole argument in this case.

Case 2: A = +oo. If \; = oo, then the proof of the lower bound in (16.5) shows that

¥'(N)
P(A)

— 00 as A — 09,
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so regardless of the value of a, the claim is applicable. Suppose now that Ay < co. Let

a= lim ¥
A=Ar ()
Note that then, thanks to the monotonicity of (logvy) = %,

Ay
logw(r) = [ (logw) < Ao <o

Writing e?X = e*X x>0} +erX 1;x<0}, by Lebesgue’s monotone and dominated con-

vergence theorems we see that in fact
() = EM S BN = (3,

and

P'(A) = EXeM — EXeM X = ¢/(Ay)

as A = A;. It remains to consider the case when o < oo and a > « (otherwise, again,

the claim is applicable). We have,
I(a) = ary — logy(Ay), a>a,

(I(a) is linear). Indeed, f'(A\) = a — (log®)’'(A) > a—a >0, for every A < A4, so [ is
strictly increasing, hence I(a) = supgcycy, f(A) = f(A4) = aly —logyp(Ay). We fix

a > « and our goal is to show that

lim mf —logP (S, > an) > —(aAy —logp(Ay)).

n—oo M
Let Y1,...,Y, be ii.d. random variables with the law given by the tilted measure py
from Corollary 16.6 with A = Ay, so that EY; = a. We proceed as in the proof of the

claim: for @’ > a, we have

P (S, > an) > P(Ay) e P (ZYkG an an).

Using independence, for € > 0,

P (i: Yy € (an,a’n))

k=1
>]P’<§:Y;c (a—e)n, (a +6)n)>]P’(Yn€ ((a—a+e)n,(a —a—e)n)).

By the weak law of large numbers, the first term is at least, say % for large n. Choosing
a’ = a+ 3¢ and using that (¢/ —a—e)n=(a —a+2e)n > (a —a+¢e)(n+ 1) for large

n, we thus get
me5>m) — ((a+3e)A+ —logp(Ay))

—&—Elogg—i—glog]}”(}ﬁE(a—a—i—s)n,(a—a—i—e)(n—i—l)),
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for large n. Finally, if we had
1
lim sup - logP(Y1 € (a—a+eée)n,(a—a+e)(n+1)) <0,

then for some small enough § > 0, the series

Z edlamet)ntUp (v € (a—a+e)n, (a —a+e)(n+1))

n=1
would converge, so
EedYt < 0o

)X

and, equivalently, Ee®t2)X < oo contradicting the definition of At+. Therefore the

lim sup above is zero and thus
1
limsup — logP (S, > an) > —((a + 3e) AL —log(Ay))
n—oo N
for every € > 0. By virtue of Lemma 16.1, this limsup is the same as liminf because

the limit in fact exists, so we get the desired lower bound after letting ¢ — 0. O

16.4 Quantitative bounds

We present a result asserting that for sums of i.i.d. random variables, with probabilities

exponentially close to 1 (in n), % is e-close to its mean for all k > n. It relies on
maximal inequalities combined with the basic idea used in Chernoff’s bounds. It can be
thought of as a quantitative version of the strong law of large numbers (cf. Exercises

15.3 and 15.4).

16.16 Theorem. Let X, Xs,... be i.i.d. random wvariables with moment generating
function ¥ such that ¥ < oo on (—§,0) for some § > 0. Let I be the rate function of
Xq. Let u =EX,. Then for every € > 0, we have

P (sup
k>n

Proof. Fix A > 0 and a such that Aa — log(\) > 0. Observe that

Sk u‘ S 5) < 9p—nmin{I(u—e),I(u+e)}
; <

P sup%>a =P(3k>n: S, > ak)
k>n K
(3k > Siklogu(d) o ek(xaqogwu)))
< (gk > ASe—klogt(y) 5 en(Aa—logd;(A)))

—P <sup e)\Skfklogw()\) > en(Aalogd)(A))) )

Since (e*Sx—klog¥(N\)y, o is a martingale (as the product of independent random vari-

ables with mean 1), by Doob’s maximal inequality (14.5),

P <Sup Sk a> < p-n(Aa-logB(X)
k>n K -
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Using this with @ = p + ¢ and optimising over A > 0 with aX — logy(A\) > 0 (recall
(16.3)) gives

P sup% >p+e | <eninte),
k>n K

To finish the proof, note that

Tl = L) > o (e 7))
Sup |— —p| >€ep =<qsup | — —p | > U<sup —— | >c¢
k>n | K k>n \ K k>n k

so it remains to apply the above inequality to — X7, — X5, ..., to get

P (sup
k>n

k

Sk _ u’ S 5> < e~nl(nte) 4 mnl(u=e) < go—nmin{I(u—e)l(ute)}

O

The last two subsections are related to large deviations by methods, rather than
by the topic itself. We shall see how moment generating functions also play a key
role in establishing nonasymptotic bounds in estimating the expected value of maxima
of random variables as well as (large) deviation inequalities for sums of independent

random variables.

16.5 Bounds on the expected maximum of random variables

We begin with a technical lemma which summarises the properties of the Legendre

transform and discusses the inverse function.

16.17 Lemma. Let 6 > 0 and let h: [0,8) — R be a C* convex, nondecreasing function
with h(0) = h'(0) = 0. We define its Legendre transform,

h*(a) = sup {Aa—h(\)}, a > 0.
A€(0,8)

Then h* is a nonnegative convex nondecreasing function. Moreover, for every b > 0, the

set {a > 0:h*(a) > b} is nonempty and for the “generalised inverse” function of h*,
(h*)71(b) = inf{a > 0: h*(a) > b},

we have

_ b+ h(N)
R*) 1) = inf — 27
(R*)77(b) s T

Proof. Note that h* is defined as a pointwise supremum of nondecreasing linear func-
tions, hence it is nondecreasing and convex. By the assumptions h(z) > 0, z € [0,0), so
h*(0) = supy¢(o,5) —h(A) = 0. By monotonicity, h*(a) > h*(0) = 0, for every a > 0. If
we fix A\g € (0,9), then h*(a) > Aoa — h(N\g) and the right hand side as a function of a
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is unbounded. This explains why the sets {a > 0: h*(a) > b} are nonempty. Finally,

ha)>b <  IAE(0,6) da—h(\) > b

b+ h(A
e e a> Y
< a> inf Lh()\)
2€(0,8) A
This shows that the set {a > 0: h*(a) > b} is the half-line (infy¢(o,s) bH;\()‘) ,+00) and
the claimed formula for (h*)~! follows. O

16.18 Theorem. Let X1,..., X, be random variables such that for some § > 0 and a

C! convexr nondecreasing function h: [0,0) — R, we have
log Ee**i < h()), A€ 1[0,6),

for every i < n. Then

E <max Xi> < (h*)"*(logn),

i<n

where (h*)~1 is defined in Lemma 16.17.

Proof. Using a simple inequality maxa; < Y a; valid for nonnegative numbers a; and

Jensen’s inequality, for every A € (0,6), we have

E (e ) = e < Jmis (3200 ) < Jo (2350

By the assumption,

SO

E (max Xi) < logn + h())
i<n A

Taking the infimum over A € (0, §), in view of the formula for (h*)~! from Lemma 16.17,

we get

E <maxXi> < (h*)"(logn).

i<n

O

As an example, we apply this to Gaussian random variables. The above upper bound,
as crude as it seems, can be matched from below giving the correct behaviour for large

n in the independent case.

16.19 Theorem. There are positive universal constants ¢, C' such that if X1, Xs,... are

Gaussian random variables, each one with mean 0, we have

E (m<axXi> < C-, /maxVar(X;) - +/logn (16.6)

i<n
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and if additionally the X; are independent identically distributed,

E <m<axXi> > c-+/Var(X;) - logn. (16.7)
i<n
Proof. For the upper bound, we let o = y/max;<, Var(X;) and since
EeMXi — eVar(Xi)/\2/2 < 602/\2/2 AER

we simply use Theorem 16.18 with § = oo and h()\) = ”2;2. We have

2
inf M — inf <1°§" + 02/\> = ov/2logn,

A>0 A>0

which proves (16.6) with C = v/2.
For the lower bound, first of all, by homogeneity, we can assume that the X; are
standard Gaussian, that is with mean 0 and variance 1. When n = 1, the assertion is

trivial. When n = 2, we have
Emax{Xy, Xo} > El{x, x,13 = P (X1 > 1)°.

When dealing with n > 2, because of this and Emax;<, X; > Emax;<s X;, in what
follows we can assume that n is large enough. Exploiting symmetry reduces our task to

estimating the maximum of absolute values. Indeed,
Emax | X;| < E[X:| +Exax | X; — X | < E[Xy|+E max | X; — X1,
but max; j<, | X; — X;| = max; j<,(X; — X;) (pointwise), so
Elnjlz%); |X: — X;| = Ez_r}rjlg)fl(Xi -X;) < ErznéagiXi + IEIJnSaT)L((—Xj) = QEI%aKXi,

where the last equality holds because of the symmetry of the X;. Altogether,
1 2
Emax X; > = (\/>+Emax|Xi|> .
i<n 2 s i<n

Em<ax | X;| > c/logn.

Using independence and monotonicity, we obtain for any a > 0,

]EmaX|Xi|:/ P(maxXi|>t>dt/ [1-P(|X:] <t)"]dt
i<n 0 i<n 0

It suffices to show that

> [ - <o ar
0
>a[l-P(|X1| <a)"].
We choose a = y/logn. To estimate the probability P (| X;| < a), we can use the precise

Gaussian tail bound (the claim from the proof of Theorem 15.7), or just for simplicity,

crudely,

(%) a\/§
1 2 1 2 V2-1 2 2
P(|X >a:—/ eft/2dt>7/ e 24t > ae”® >e %,
(%4 ) Vo Ja Vo Ja V2T
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for a, equivalently, n large enough, which gives

n 1 n
P(X:| <a)" < (1 — e‘az) = <1 - ) <et
n
and
Em<ax|Xi| > (1—e1)y/logn,
i<n
for n large enough. O

We finish with two remarks left as exercises.

16.20 Remark. The lower bound can be substantially improved to produce an asymp-

totically exact result
Em<axXi = (14 0(1))y/21logn,

for i.i.d. standard Gaussians X;.

16.21 Remark. If X;,..., X, are independent Gaussians with mean 0 and variances

0? > ...02, then

¢ - max ory/log(l+ k) < Em<axXi <C- max oy, log(1 + k)

with some positive universal constants ¢ and C.

16.6 A flavour of concentration inequalities

Concentration inequalities concern upper bounds on probabilities P (| X — a| > ¢), where
a is usually the mean or a median of X (anti-concentration inequalities seek upper
bounds on sup, P (] X —a| < €)). We have seen a very simple example of a concentra-
tion inequality, namely Chebyshev’s inequality P (| X —EX| >¢) < V%g)” Another
examples are in Exercises 6.19, 6.21, 14.7. To merely give a flavour of concentration
inequalities for sums of independent random variables, we shall discuss a basic result for

the so-called sub-exponential random variables. We begin with a motivating example.

16.22 Example. Let X5, ..., X, bei.i.d. exponential random variables with parameter
1. Let X = 13" | X; which has mean 1. We would like to upper bound P (X — 1 > ¢)
for e > 0. Since > ; X; has the distribution Gamma with parameter n, we have an

exact expression

n [e%e) n—1
IP(X—1>6):IP<ZX¢>(1+5)71>:/ xn' e %dx.
i=1 ( :

14+e)n

However, there is no closed expression for this integral. Chernoff’s bound from Lemma

16.11 yields

P(X —1>¢)<exp {—nsup(l +e)A— log]EeAxl} =exp{—n(e —log(l+¢)}.
A>0
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From large deviations theory (Cramér’s theorem), we know this bound is asymptotically
tight because »logP (X —1 >¢) — —I(1 + ¢) with the rate function I(a) = a — 1 —
log(1 + a). We point out two features of this bound.

1) Ase - 0,e—log(l+¢) =~ % which means, roughly, that X has a Gaussian tail in

this regime (which is not surprising because of the central limit theorem).

2) As e — 00, e —log(l + ¢) & ¢ which means, roughly, that X has an exponential tail

in this regime.

We shall present a result which will capture such behaviours in a much greater generality

than just for sums of i.i.d. exponentials.

For a random variable X, we define its ¥;-norm as
Xy, = in {t >0, Ee X/t < 2}.

We say that X is sub-exponential if || X|,, < co. The following lemma helps decide

whether a particular distribution is sub-exponential (we defer its proof to exercises).
16.23 Lemma. For a random variable X, the following conditions are equivalent.
(i) X is sub-exponential.
(ii) There are constants c1,c2 > 0 such that P (|X| > t) < cie™ 2, for every t > 0.
(iii) There is a constant C > 0 such that | X||, < Cp, for every p > 1.
(iv) There are constants 3,C > 0 such that EeMN X < e for every A € (0,46).

We shall need yet another characterisation of sub-exponentiality saying that for
centred random variables, the moment generating function near the origin is bounded

by the Gaussian one.

16.24 Lemma. If X is a random variable with mean 0, then

1
(Do

2 2
EeMX < N IXI5,

<

Proof. If || X ||y, = oo, there is nothing to do. If || Xy, < oo, by homogeneity, we can
assume that || X ||y, = 1, say for simplicity EelXl = 2 (otherwise, by the definition of
infimum, for every £ > 0, we find to > 1 with EelX/%l < 1 4 ¢). For [A] <1, we have

)\kX 5 o= ANFT2EXF
=K Z =14+ AEX + 2 ) —
k=2

(the usage of Fubini’s theorem is justified because the integrand is majorised by elX1).
Since EX = 0 and

)\k QEXk
k!

IEXk
<Z | | =Xl 1 -E|X|=1-E|X]| <1,

k=2
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for |A\| <1, we get
EAM <1422 < eV

O

16.25 Theorem (Bernstein’s inequality). Let X1, ..., X, be independent random vari-

ables, each one with mean 0. Then for every t > 0, we have

. 1 t2 t
P X;>t] <exp| —=min - , .
(; ) ( 2 {QZi_l 113, " maxi<n | Xl v, })

Proof. For A > 0, by exponential Markov’s inequality, independence and Lemma 16.24,

we get
n n 2 5
P (Z X’i > t) S e—)\tEe)\ Z?:l X — e—)\t HE€>\X7; S e—)\te)\ Z;nzl HXi,le’
i=1 i=1
provided that A < m for every i < n, that is A < = with m = max;<, || X;lly,. It
il S

remains to optimise over A\. We let S = 7" | [ Xi[|7, . The minimum of the function

—\t + A28 is attained at \g = %

Case 1. Mg < %, that is t < % Then we set A = )y and obtain

P (Z X; > t) < e t/(49),

i=1
Case 2. \o > %, that is ¢t > % Then we let A\ — % and obtain

(30 ) <o < om,

i=1

S

where we use that in this case = < L

2m*

It remains to observe that these two bounds can be concisely written together as

- 1 . (¢
P (;Xi > t) < exp (—2 mln{2S7 m}) ,
which is the assertion. O

It is instructive to see what this gives us in the special case of weighted sums of i.i.d.

sub-exponential random variables.

16.26 Corollary. Let Y1,...,Y, be independent random variables, each with mean 0,

sub-exponential with ||Y;|ly, < K for all i for some constant K > 0. Then for every

ai,...,an € R andt >0, we have
n
1 t? ¢
P a;Y; >t ] <exp (—min{ , })
(; o > 2 2K23""  a?’ K max;<p |a;
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In particular,
1< n 2t
Pl=MYV>t]|< ——min{ ——, — ¢ |.
<nZ z ) _exp( . mm{2K2 K})
The latter can be viewed as a quantitative version of the law of large numbers for
sub-exponential random variables. These bounds exhibit the mixture of two behaviours

of the Gaussian tail (for small ¢) and the exponential tail (for large t), as anticipated.
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16.7 Exercises

1. Under the hypothesis of Lemma 16.1, we have that lim 2 logP (S, > an) = 0 if and
only if P (S,, > an) = 0 for all n, if and only if P (X; > a) = 0.

2. Find the rate functions claimed in Example 16.13.

3. Let X, Xs,... be i.i.d. integrable random variables with EX; = 0. Suppose that
Ee*X1 = 400 for all A > 0. Then for every a > 0, we have

1
—logP(X;+...+ X, >an) —— 0.
n

n—oo

This shows that assumption (16.2) is necessary for the exponential convergence in

Cramér’s theorem.
4. Prove Remark 16.20.
5. Prove Remark 16.21.

6. Let ¢: [0,400) — [0,400) be a convex strictly increasing function with (0) = 0.

For a random variable X, define
[ X[y = inf{t >0, Ep(|X]) <1}
Show that ||AX ||y = |A||X]|l4, A € R and for every two random variables X, Y,
X+ Y[y <Xy + Yy

(This explains the name “i;-norm”, where 1 (x) = 11 (z) = el*l — 1. Note that the

choice 9 (z) = |z|? gives the familiar L, norms.)
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A Appendix: Carathéodory’s theorem

Our goal here is to give a proof of Carathéodory’s theorem about extensions of measures.
A.1 Theorem (Carathéodory). Let Q be a set and let A be an algebra on . Suppose
a function P: A — [0, 4+00) satisfies

(1) P(Q) =1,

(i) P is finitely additive, that is for every Ay, ..., A, € A which are pairwise disjoint,

we have . .
P (U AZ) =Y P(4),
i=1 i=1

(iii) for every Ay, As,... € A with Ay C Ay C ... such that A =J,_, A, is in A, we
have
nler;OP(An) =P(4).

Then P can be uniquely extended to a probability measure on the o-algebra F = o(A)
generated by A.

Proof. We break the proof into 3 steps.

I. We define a nonnegative function P* on all subsets of Q satisfying: P*(Q2) = 1, P* is
monotone and subadditive (the so-called exterior or outer measure).

II. We define a family of subsets M of Q which is a o-algebra and P* is countably-
additive on M.

ITI. We show that P* agrees with P on M and that M contains A.

We proceed with proving the steps I, I, III. Then we argue about the uniqueness.
I. For a subset A of €2, we define
P*(A) = inf Y P (Ay),

where the infimum is taken over all sets Ay, Ay, ... € A such that |J, A, D A.
Clearly, P* is nonnegative. Since @ € A, we have P*(&) = 0. It is also clear that
P* is monotone, that is if A C B, then P*(A) < P*(B). Finally, we show that P* is

subadditive, that is for every sets A, Ag, ..., we have

P* <U An> <Y PH(A).

Indeed, by the definition of P*, for € > 0, there are sets B,, , € A such that A, C |J, Bnk
and ), P(Bp k) < P*(An) +27". Then U, An C U, 1, Bn,k and consequently,

P* <UA,L> <Y P(Bug) < PH(An) e
n n,k n
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Since € > 0 is arbitrary, we get the desired inequality.

I1. We define the following class of subsets of €2,
M={ACQ VECQP(ANE)+P (A°NE)=P"(E)}.

Since P* is subadditive, A € M is equivalent to the so-called Carathéodory’s condition:

for all £ C €,
P*(ANE)+P(A°NE) <P*(E). (A1)

First we show that M is an algebra and P* is finitely additive on M. Clearly, Q € M
and if A € M, then A° € M. Let A, B € M. Then for an arbitrary subset E of ), we

have

P*(E)

P*(BNE) +P*(B°NE)

Vv

(
P(ANBNE)+P(A°NBNE)+P(ANB°NE) +P*(A°NB°NE)
P*(AmBmE)HP*((ACHBOE)u(AmBCmE)U(AcmBCmE))
]P)*

((AmB)mE) +P*((AmB)CmE>.

Thus AN B € M and consequently, M is an algebra.
To prove the finite additivity of P* on M, take A, B € M with AN B = & and note
that since A € M, we have

P*(AU B) :]P’*(Aﬁ (AUB)) HP’*(ACD (AUB)) — P*(A) + P*(B).

By induction, we easily get the desired finite additivity.
Now we argue that P* is in fact countably additive on M. If Ay, As,... € M are

pairwise disjoint and we let A = |J{—, A, then
3+ (U a)
k=1 k=1
=P <A nUJ Ak>

k=1
<P*(4)

because P* is monotone (see I.). Taking the limit n — oo, we get >, | P*(A4;) < P*(A).
By the subadditivity of P*, we also have the reverse inequality, hence we have equality
and the countable additivity of P* follows.

It remains to show that M is a o-algebra. It is enough to consider pairwise disjoint
sets Ay, As,... € M and argue that A = |J7—; 4, € M (if they are not disjoint,

we consider B, = A, NAS_, N...N A§ which are pairwise disjoint, which are in M
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and |J,, B, = A). To this end, we want to verify (A.1) for A. Fix E C Q and let
K, = Uj_, Ak. By induction, we show that

P*(K,NE) =Y P*(ANE).
k=1

The base case n = 1 is clear. Further,

P*'(Kpt1NE)=P (K, NK,11NE)+P(K;NK,1NE)
=P (K,NE)+P'(4,11NE)
Z (AN E) 4+ P*(4,41 NE),
k=1
where in the last equality we used the inductive hypothesis. This finishes the inductive

argument. Since K, € M, we obtain

P*(E) =P*(ENK,) +P(ENK]) > Y P*(A.NE)+ P (ENK)
k=1

Z (Ax N E) +P*(E N A°),

where the last inequality holds because P* is monotone (see I.) and K,, C A. Letting

n — oo and using subadditivity, we get
> P (AN E)+ P (ENA°) >P(ENA)+P*(ENA°),
k=1

so A satisfies (A.1).

IIT. We show 1) A C M which also gives o(A) C M because M is a o-algebra.
Moreover, we show 2) P* = P on A, so P* is the desired extension of P on o(A). The
uniqueness follows immediately from Dynkin’s theorem on 7-\ systems (see Appendix
B and Remark 2.11).

To prove 1), take A € A and an arbitrary subset E of 2. Fix ¢ > 0. By the definition
of P*, there are sets By, Bo, ... € Asuch that E C |J,, B, and Y- | P(B,,) < P*(E)+e.
Since ENA C | J(B,NA) and ENA° C (B, NA°) and B, N A, B, N A° € A, by the
definition of P*,

P*(ENA) <) P(B,NA)

and similarly
P*(ENA°) <) P(B,NA).

Adding these up and using the additivity of P on A, we get

P*ENA)+P(ENAY) <) (P(ByNA)+P(B,NA%))=> P(B,) <P*(E)+e,

n
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so (A.1) holds, so A € M.

To prove 2), take A € A. By the definition of P*, clearly, P*(4) < P(4). To
argue for the opposite inequality, suppose A C,, A, for some A, As,... € A. Let
Cn = Up_; (AN Ag). We have that C1,Cs,... are all in A, C; C Cy C ... and
U, Cn =Uie (AN Ag) = ANz, A = Ais also in A. Using finite subadditivity of
P on A and its monotonicity, we have

n

P(C,) < anp(AmAk) <> P(4).

k=1 k=1

Letting n — oo, by assumption (ii) (finally used for the first and last time!), we obtain

P(A) = lim P(C,) <

n—oo

P (Ay).

NE

>
Il

1

After taking the infimum over the Ay, this gives P(A) < P(A*), hence P(A) =P (A*).
This finishes the whole proof. O
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B Appendix: Dynkin’s theorem

Recall that a family A of subsets of a set 2 is a m-system if it is closed under finite
intersections, that is for every A, B € A, we have AN B € A. A family L of subsets of
a set {2 is a A-system if Q € L, for every A, B € £ with A C B, we have B\ A € £ and
for every Ay, As, ... € L such that Ay C Ay C ..., we have | J7— 4, € L.

B.1 Remark. If a family is a 7m-system and a A-system, then it is a o-algebra.

B.2 Theorem (Dynkin). Let 2 be a set. If a A-system L on Q contains a w-system A
on Q, then L contains o(A).

Proof. Let Ly be the smallest A-system containing .A. By Remark B.1, it suffices to

show that Ly is a m-system. To this end, we first consider the family
C={ACQ, ANB € L for every B € A}.

Clearly, C contains A. Moreover, C is a A-system. Indeed,
(i) © € C because A C Ly,

(ii) let U,V € C with U C V, then for B € A,
(VANU)NB=(UNB)\ (VNB)
which is in £y because U N B C V N B and L is a A-system

(iii) let A1, Ay, ... € Cwith Ay C Ay C ..., then for B € A, we have AyNB C AsNB C

. and

(LnJ Al> NB= O(AZDB)

=1

which is in £y because A; N B are in Ly and it is a A-system.

We thus get that C, as a A-system containing A, contains the smallest A-system
containing A, that is Ly. This means that AN B € Ly whenever A € Ly and B € A.

The rest of the proof is a repetition of the same argument. We consider the family
C={ACQ, ANB e L, for every B € Ly}.

By the previous step, we know that C > A. We show that C is a A-system, hence, as
above, it contains Lg. Therefore, for every A, B € Ly, AN B € Ly, that is Ly is a

m-system, as required. O
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C Appendix: Fubini’s theorem
Let (£;, F;,P;), i = 1,2 be two probability measures. Let
Q=0Q; x Q.
Define the product o-algebra
F=0(41 x Ay, Ay € F1, A5 € F2),

denoted F1 ® Fo.
For A C €, define the sections of A,

Aw1 = {UJQ S Q2a (w17w2) S A}7 w1 € Qh

A¥? = {w1 S Ql, (wl,wg) S A}, wo € Q.
Similarly, for a function X : Q — R, define its section functions

le Qs — R, le (wg) = X(wl,wg), wi € Ql,
X2 0 — R, XWQ(wl) = X(wl,wg), wo € Q.

We have the following lemma about F-measurability.

C.1 Lemma. For every A € F, every wy € 1 and we € o, we have
Ay, € Fo, A¥? e Fy.
For every F-measurable function X : Q — R, every w1 € Q1 and ws € s, we have
X, 18 Fa-measurable, X“? 45 Fi-measurable.
If moreover X is nonnegative, we have that
w1 Xo, (we)dPs(we) is Fi-measurable
Qo

and

Wy X2 (w1)dPy(wy) is Fa-measurable
Q

Proof. Let M be the class of all subsets A of Q such that for every wi, Ay, is Fo-
measurable. Clearly M contains product sets By X Bs, B; € F;, i = 1,2 which form
a m-system generating F. Moreover, it is easy to check that M is a o-algebra. Thus
M D F. We argue similarly about A“2.

To prove the Fy-measurablity of X, , note that for B € B(R),

X;HB) = {ws € Qy, X(w1,w2) € B} = X Y(B),,

wi
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which is in F» by the previous part because X ~}(B) € F. The JFj-measurability of
X« we proceed in the same way.

Finally, if X = 1p,xp, for some B; € F;, i = 1,2, we have

/ X (w2) APy (w3) = 15, (w1) / 15, (w2)dPy(w2),
Qo

Qo

which is clearly Fj-measurable. Thus, by the standard arguments (see the proof of
Theorem E.6), the same holds when X is a simple function and consequently, thanks to

Lebesgue’s monotone convergence theorem, when X is nonnegative. O

We define P: F — [0,1] as follows: for A € F, let X =14 and

- [ ( [ x., (wa)dPa(an) ) B o)

We have the following important result saying that P is the so-called product measure

on €.

C.2 Theorem (The uniqueness of product measures). The set function P is a unique

probability measure on (0, F) such that for every A; € Fi, Ay € Fa, we have
]P(Al X AQ) = Pl(Al)PQ(Ag)

Moreover,

P (A) —/Q< X Xw2(w1)dIP’1(w1)> APy (ws).

Proof. By Lemma C.1, the inner integral in the definition of P is an Fs-measurable
function, thus P is well defined on F. Clearly, P(A; x A2) = P1(A41)P2(Az), so in
particular P(Q2) = 1. If By, Ba,... € F are disjoint, then so are their sections, that

is we have 1 (p =>.1 Bu)u, > consequently, by the linearity of integrals, we get

n)ws

that P is countably-additive. The uniqueness follows from the fact that the product sets
A x Ag, A; € F;, form a w-system generating F, combined with Remark 2.11. The

formula with the integrals over €2 and €25 swapped follows by considering
P(A) = / ( X2 (wl)d]P’l(wl)> dPs(ws),
2, \Jo,

checking that P satisfies the same defining property, P(4; x Ay) = Py(A;)P2(Az) and

using the uniqueness. O

We say that P is the product of P; and Py, denoted
P=P ®Ps.

C.3 Theorem (Fubini). Let X: Q — R be F-measurable.
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(i) If X >0, then

/lez rdr= /Ql ( Qs Xen wz)dp?(w)) dPy (wr)

= /Q2 </91 X“’2(w1)dIP’1(w1)> dPs (ws).

(i) If
/Ql (/g2 X (w2)|dp2(”2)> dPy (w1) < oo,
Or /92 </91 |Xw2(wl)|d]?1(wl)> dPy(ws) < 00,
then

/ | X|dP < oo,
Ql XQQ

that is X is (Q, F,P)-integrable.

(iii) If X is (0, F,P)-integrable, then

Py {wl € Ql, / |Xw1 (CUQ)|d]P)2(UJ2) < OO} 1,
Qo

1

Py {WQ S 927 / |Xw2(w1)|d]P’1(w1) < OO}
951
and (i) holds.

Proof. (i) By Theorem C.2, the formula holds for X = 14, A € F. Thus it holds
for simple functions and by Lebesgue’s monotone convergence theorem, it holds for

nonnegative functions.
(ii) Follows from (i) applied to | X]|.
(iii) By the construction of Lebesgue integrals, | X| being integrable gives
/X+dIP’<oo and /de]P’<oo.
Q Q
Thus from (a) applied to X,

/QXJFOUP’Z /Q1 ( o, X:fl(wz)dpz(wz)> dPy (w1),

which by basic properties of Lebesgue integrals means that
/ X} (w2)dPa(ws) < 00
Qo
for P1-a.e. wy. Simarly for X ~. Therefore,

Pq {w1 S Ql, / ‘le (WQ)‘d]PQ(OJQ) < OO} =1.
Qo
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In particular, for every w; in this event,

le (CUQ)CUPQ CUQ / )(Jr WQ)d]P)Q(WQ) X;l (UJQ)dIPQ((UQ).

Qz Q2

For the remaining wy, we can set all these integrals to be 0 and then we get

/Ql ( Qs Ko (WQ)dpz(wz)) dPy(w1) /91 ( 0 X} (wa) dpz(w)) dP; (w1)
_/Ql ( o Xon (W2)d]}”2(w2)) dP; (w)
o SE

= / XdP.
Q1 X Qs

We proceed in the same way for the swapped order of taking the integrals over 2; and

Qs. O

Fubini’s theorem generalises to o-finite measures as well as products of more than
two but finitely many measures. Extensions to products of infinitely many measures are

more delicate and are handled in the next appendix.
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D Appendix: Infninte products of measures

D.1 Theorem. Let puy, pio, ... be probability measures on (R, B(R)). We set

Q:ﬁR:RxRx...,

i=1
Xn(w17w25"'):wna (wlaw27"') €Q7

and

.FZO-(X17X2,...).

There is a unique probability measure P on (2, F) such that for every k > 1 and
Aq,..., A € B(R), w have

P(A; x - x A xR x...) =pu1(A1) - ... - e (Ag).
Moreover, X1, X, ... are independent random variables on (Q, F,P) with px, = p;.

Proof. For n > 1, we set
fn:U(Xl,...,Xn).

It is a o-algebra generated by the m-system of the product sets of the form
F,=A; x-- - xA, xRxRx...,

where Ay,..., A, € B(R). We consider the algebra

A=J 7

n>1

along with P: A4 — [0, 1], given by
]P)(Fn) = ,ul(Al) T M(An)

(the product measure). By the construction of the finite product measures (Fubini’s
theorem), P is finitely additive on (2, .4). Moreover, for each n, (2, F,,,P) is a probability
space and X1, ..., X, are independent. It remains to argue that P can be extended to
a probability measure on o(A) and such an extension will be the desired measure P.
Thanks to Carathéodory’s theorem, it suffices to verify the condition given in Remark

1.9:

for every sequence (H,),>1 of sets in A with H; D Hy D ... such that

for some € > 0, P(H,.) > ¢ for every r > 1, we have ﬂHT #+ .

We break the argument into several steps.
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I. For every r, there is some n, such that H,. € F,, and then there is an F,,_-measurable

bounded function h, such that
1y (W) =he(wr,...,wn,)
and
Eh,(Xy,..., X, ) =P(H,) > ¢.
II. Define a function g,: R — R,
gr(w1) =Ehy (w1, X, ..., X,,)
(here E is understood on the probability space (2, F,.,P)). Since 0 < g, < 1, we have

€ €
e <Eh, = /grdul < migr >¢/2} + 5#1{% <e/2} <migr >¢/2} + 2

SO
€
pi{gr > ¢/2} > 7
III. Since H, D H,41, we have h, > h,41, thus
gr(w1) > gria1(wi), for every w; € R.

This gives that the events {g, > ¢/2} decrease, so by the continuity of probability

measures and Step II, we get
€
w{vr g, >¢/2} > 5> 0.
Hence, there exists wj € R such that for every r > 1,

gr(wy) = Ehp(wy, Xo,..., X, ) >

DO ™

IV. Repeating Steps II and III applied to the functions
gT(WQ) = ]Ehr(wfvw%X& v 7an)
yields existence of w3 € R such that for every r > 1,

ok €
Ehr(wl,WQ,X37 PN 7an) Z 27

Continuing this procedure (inductively), we obtain an infinite sequence
wy = (Wi, w3,...) €Q

with the property that for every r,

*
N

Eh, (w],ws,wi,...,wh ) = he(w], ws,wi, ... wh ) >
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On the other hand,

hy(wi,wy,w3,...,w, ) =1y, (W")

is either 0 or 1, so it has to be 1, which gives that w, € H, and this holds for every r.
Therefore, (| H, # &, which shows the desired property allowing to use Carathéodory’s
theorem and thus finishes the proof. O
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E Appendix: Construction of expectation

The goal of this section is to define expectation of random variables and establish its
basic properties. We shall only consider real-valued random variables. Recall that a
function X : Q — R on a probability space (2, F,P) is called a random variable if for
every z € R, the preimage {X <z} ={w e Q, X(w) <z} = X"!((—00,z]) is an event
(belongs to the sigma-field F).

A random variable X is called simple if its image X (Q) is a finite set, that is

Xzzxkl,qk,
k=1

for some distinct z1,...,2, € R (values) and events Ay, ..., A, which form a partition
of Q (we have, Ay = {X = a}).

The expectation of the simple random variable X, denoted EX, is defined as

EX = Zka(Ak) .
k=1

The expectation of a nonnegative random variable X is defined as
EX =sup{EZ, Z is simple and Z < X}.

Note that EX > 0 because we can always take Z = 0. We can have EX = 400 (for
instance, for a discrete random variable X with P (X =k) = 175y, k= 2,3,...). For

an arbitrary random variable X, we write

X=Xt-X"

)

where

)(+ = maX{X,O} =X 1{X20}

is the positive part of X and
X = *Hlln{X,O} =-X l{XSO}

is the negative part of X. These are nonnegative random variables and the expectation
of X is defined as
EX =EXT -EX~

provided that at least one of the quantities EX*, EX ~ is finite (to avoid oo — o). We
say that X is integrable if E|X| < oco. Since |X| = X* 4+ X, we have that X is
integrable if and only if EX* < oo and EX~ < oo.

One of the desired properties of expectation is linearity. It of course holds for simple

random variables.
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E.1 Theorem. Let X andY be simple random variables. Then E(X+Y) =EX+EY.

Proof. Let X = 271:21 Trla, and ¥ = 27:1 y1 1p, for some reals zy,y; and events
Ay, and By are such that the A partition €2 and the B; partition 2. Then the events
AN By, k <m,l <n partition © and

X+Y= Y (ox+y)laws, -

E<m,l<n

This is a simple random variable with

E(X+Y)= Y (zx+y)P(AxNBy)

k<m,l<n
= Z P (Ak ﬂBl) + Z y P (Ak ﬂBl)
k<m,l<n k<m,l<n
= Z IkZP(Ak ﬁBl) JrZyl Z ]P)(Ak ﬂBl)
k<m I<n I<n  k<m
:ZajkP AkmUBl +ZyﬂP UAkmBl
k<m I<n I<n k<m
=D P (A) + ) uP(B),
k<m I<n
which is EX 4+ EY and this finishes the proof. O

E.1 Nonnegative random variables

Our main goal is to prove linearity of expectation. We first establish a few basic prop-

erties of expectation for nonnegative random variables.

E.2 Theorem. Let X and Y be nonnegative random variables. We have
(a) if X <Y, then EX <EY,

(b) fora>0,E(a+ X)=a+EX and E(aX) = aEX,

(c) if EX =0, then X =0 a.s. (i.e. P(X=0)=1)

(d) if A and B are events such that A C B, then EX 14 <EX 1p.

Proof. (a) Let ¢ > 0. By definition, there is a simple random variable Z such that
Z < X and EZ > EX —e. Then also Z < Y, so by the definition of EY, we have
EZ <EY. Thus EX — ¢ < EY. Sending ¢ to 0 finishes the argument.

(b) For a simple random variable Z, clearly E(a + Z) = a + EZ and E(aZ) = aEZ. Tt

remains to follow the proof of (a).
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(c) For n > 1, we have X > X 11x>1/n} > %1{){21/”}, so by (a) we get
1 1

thus P (X > 1/n) =0, so

P(X>0)=P( (){X >1/n} = lim P(X >1/n) =0.

n>1

(d) follows immediately from (a). O

The following lemma gives a way to approximate nonnegative random variables with

monotone sequences of simple ones.

E.3 Lemma. If X is a nonnegative random variable, then there is a sequence (Z,) of
nonnegative simple random variables such that for every w € Q, Zp(w) < Zp11(w) and

Zn(w) — X(w).

Proof. Define

nl271,
k—1
Zn = Z Ton Loaoxemytnlixony .
k=1

27
Fix w € Q. Then Z,(w) is a nondecreasing sequence (check!). Since n > X (w) for large

enough n, we have for such n that 0 < X(w) — Z,(w) < 27™. O

The following is a very important and useful tool allowing to exchange the order of

taking the limit and expectation for monotone sequences.

E.4 Theorem (Lebesgue’s monotone convergence theorem). If X, is a sequence of

nonnegative random variables such that X, < X,+1 and X,, —— X, then
n—oo

EX, —— EX.

n—oo

Proof. By E.2 (a), EX,, <EX,,+1 and EX,, <EX] so lim, EX,, exists and is less than
or equal to EX. It remains to show that EX < lim, EX,,. Take a simple random
variable Z such that 0 < Z < X, with the largest value say K. Observe that for every
n>1and e >0,

Z < (Xnte)lizex, 1oy TEK 1iz>x, 4o} - (E.1)

Claim. For nonnegative random variables X, Y and an event A, we have
E(X144Y 14) <EX144EY 14c.

Proof of the claim. Fix ¢ > 0. Take a simple random variable Z such that Z <
X144Y 14 and EZ > E(X 14 +Y1Ac) — &. Note that

Z1,< X1y and Z1ge <Y 1ye.
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Thus by E.2 (a),
EZ14<EX14 and EZ14c <EY 14e.

Adding these two inequalities together and using that EZ 14 +EZ14. = EZ, which

follows from linearity of expectation for simple random variables (Theorem E.1), we get
E(X144Y14c)—e<EZ<EX144EY 14..

Sending £ — 0 finishes the argument. O

Applying the claim to (E.1), we obtain
EZ<EX,+ec+KP(Z>X,+¢).

The events {Z > X,, + ¢} form a decreasing family (because X,, < X, 11 and their
intersection is {Z > X + e} = & (because X,, — X and Z < X). Therefore taking

n — oo in the last inequality gives
EZ < liTILnIEXn +e.

Taking the supremum over simple random variables Z < X gives
EX < hrILnEX" +e€.

Letting € — 0, we finish the proof. O

As a corollary we obtain a result about the limit inferior of nonnegative random

variables and its expectation.

E.5 Theorem (Fatou’s lemma). If X1, Xs,... are nonnegative random variables, then

Eliminf X,, <liminf EX,,.

n—oo n—oo

Proof. Let Y,, = inf>, Xj;. Then this is a nondecreasing sequence which converges to

liminf, ., X, and Y,, < X,,. Note that

liminf EX,, > liminf EY,, = lim EY,,,

n—oo n—oQ n—oo

where the last equality holds because the sequence EY,,, as nondecreasing, is convergent.

By Lebesgue’s monotone converge theorem,

lim EY, = E ( lim Yn) — Eliminf X,,,
n—00 n—o00 n—00

which in view of the previous inequality finishes the proof. O

We are ready to prove linearity of expectation for nonnegative random variables.
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E.6 Theorem. Let X and Y be nonnegative random variables. Then
E(X+Y)=EX +EY.

Proof. By Lemma E.3, there are nondecreasing sequences (X,,) and (Y;,) of nonnegative
simple random variables such that X,, — X and Y;, — Y. Then the sequence (X, +Y,,)
is also monotone and X,, +Y,, - X + Y. By Theorem E.1,

E(X,+Y,) =EX, +EY,.
Letting n — oo, by the virtue of Lebesgue’s monotone convergence theorem, we get in

the limit E(X +Y) = EX +EY. O

E.2 General random variables

Key properties of expectation for general random variables are contained in our next

theorem.

E.7 Theorem. If X and Y are integrable random variables, then

(a) X +Y is integrable and E(X +Y) =EX 4+ EY,

(b) E(aX) = aEX for every a € R,

(c) if X <Y, then EX <EY,

(4) [EX]| < E|X].

Proof. (a) By the triangle inequality Theorem E.2 (a) and Theorem E.6,
EX +Y| <E(|X|+Y]) = E|X|+E[Y]|

and the right hand side is finite by the assumption, thus X + Y is integrable.
To show the linearity, write X + Y in two different ways

(X+Y)" - (X+Y) =X+Y=XT-X"+Y" -V,

rearrange

X4+ 4+ X 4+Y =(X+Y) +XT+YT,

to be able to use the linearity of expectation for nonnegative random variables (Theorem

E.6) and get
EX+Y)"+EX  +EY =E(X+Y) +EXt +EY ™,
which rearranged again gives E(X +Y) = EX + EY.

(b) We leave this as an exercise.
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(c) Note that X <Y is equivalent to saying that X* < YT and X~ >V~ (if X = X,
then X <Y implies that Y = Y+, hence X < Y T; similarly, if Y = —Y ~, then X <Y
implies that X = —X~, hence X~ > Y 7). It remains to use Theorem E.2 (a).

(d) Since —|X| < X < |X]|, by (c) we get —E|X| < EX < E|X]|, thatis |[EX| < E|X|. O

E.3 Lebesgue’s dominated convergence theorem

We finish with one more limit theorem, quite useful in various applications; we also show

one of them.

E.8 Theorem (Lebesgue’s dominated convergence theorem). If (X,,) is a sequence

of random variables and X is a random wvariable such that for every w € Q, we have

Xn(w) —— X(w) and there is an integrable random variable Y such that |X,,| <Y,
n—oo

then

E|X, — X| —— 0.
n— o0

In particular,

EX, — EX.

n— oo
Proof. Since | X,,| <Y, taking n — oo yields | X| < Y. In particular, X is integrable as
well. By the triangle inequality,

| X, — X|<2Y
and Fatou’s lemma (Theorem E.5) gives

E(2Y) = Eliminf(2Y — |[X,, — X]|) < liminf EQ2Y — [X,, — X])
= 2EY — limsupE|X,, — X|.
As a result, limsupE|X,, — X| <0, so
E|X, — X| — 0.
n—0o0
In particular, since by Theorem E.7 (d),

|E(Xn _X)| < Ean —X‘,

we get that the left hand side goes to 0, that is EX,, - EX. O

215



F Appendix: Lindeberg’s swapping argument

We begin by a useful observation regarding the definition of weak convergence: for
random variables (and random vectors in R™), the weak convergence is already captured
by all compactly supported smooth test functions (instead of all continuous bounded

test functions as per the definition).

F.1 Lemma. Let pu, i1, pto, ... be Borel probability measures on R. The following are

equivalent

(i) for every continuous bounded function f: R — R, we have

/ Fdjin ——s / fdu
R n—oo R
(b — 1 weakly),

(ii) for every compactly supported smooth function f: R — R, we have

/R [ p— /R fdu.

Proof. Only (ii)=(i) requires explanation. Repeating the first part of the proof of The-
orem 8.5 with the function g; . replaced with its smooth approximation, we show that

(ii) implies (8.1) which we already know is equivalent to (i) (by Theorem 8.5). O

F.2 Remark. Thanks to multidimensional cumulative distribution functions, this char-

acterisation of weak convergence can be extended to Borel probability measures on R™.

The goal of this section is to present a classical argument of Lindeberg relying on
consecutive swapping summands with independent Gaussians, leading to a quantitative
version of the central limit theorem. The heart of the argument lies in the following

lemma.

F.3 Lemma. Let Xq,...,X, be independent random variables, each with mean 0 and
variance 1. Let Z be a standard Gaussian random variable. For every smooth function

f: R — R with bounded derivatives up to order 3, we have

X144+ X, Moo Sr_ B X |2
lm(lv%>lwwﬁgcwn %%1|”,

1+ 8/71'
6 .

where C' is a universal positive constant. One can take C =

Proof. Let Zy,...,Z, be ii.d. copies of Z. Since Z has the same distribution as

Zr\+..+2Zy
T, we have

Ef(X1+”'+X”

Tn >—Ef(Z)—IEf <X1+"'+X")_]Ef <Zl++Z")

vn vn
==Y [Ef (St) —Ef (k1) ],

k=0



where the telescoping sum involves

X4t Xy 4 7 ez,
S = 1+ + Xp + Zpy1 + + ’ 0<k<n,

NG

with the convention Sy = Z1+7\/gz” and S,, = % It thus suffices to show that

for every 0 < k <n —1,

EIX .3 £ -
EF(S) — Ef(Seer)] < CEE I oo
n3/
Z X
Sy =V 4 2kl Spuy = v 4 k1

i’

and by Taylor expansion for f with Lagrange’s remainder,

" 2 1 3
£80) = fV) + ponZes STV Zia  F70) Zi

N

—~

NGO 2 n 6 n3/2’
17 X2 (g’ X3
F(Si) = £V + 1) 52+ 1 e

where 6 and 6’ denote mean points. Crucially, V is independent of Zy; as well as of
Xk11, so after taking the expectation and subtracting and using that Zx11 and X1

have matching moments up to order 2, we obtain

1" Nl

6TL3/2

[Ef(Sk) = Ef(Sks1)| < (B Zk11]* + E|Xi41]%).

By Hélder’s inequality, E|Xp41]* > (E|Xk41/%)*? = 1 = \/FE|Zk+1/?, which concludes
8
the argument with C = FY= < .44, 0

Alternative proof of the vanilla central limit theorem — Theorem 10.5.

Let Xi,...,X, beiid. copies of a random variable with mean 0 and variance 1. Let

Z be a standard Gaussian random variable. If E|X;|?

X—l—-'-—l-Xn EX3 ///oo
o (Xt ) g < EOL

for every smooth compactly supported function f. Since the right hand side converges

< 00, by Lemma F.3,

to 0 as n goes to co, Lemma F.1 finishes the proof in the case of finite third moment.
If X; does not have a finite third moment, we use a truncation argument. Fix ¢ > 0.

For each k, let

Vi = Xk (x| <evmy —Hns
Vi = Xe 1ix, >eym) Hhns
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with

tn = BXk 1x, <eymys

so that
X,=Y, + Yk/
and
EY, = EY, =0.
Let

By Lebesgue’s dominated convergence theorem,

pn —— 0,
n—00

02— 1.

n—oo

Let f: R — R be a smooth function with compact support. Fix § > 0. From Lemma
F.3 applied to the Yy,

Yi+--4Y,
= (M

Using (a + b)® < 4(a® + b3), we obtain

E|Y1 [/ loo
ni/2g3

) —Ef(e,Z)| <C
E|Y1 > <AEIX1 + [un]?) < 4(evnEIX1]? + |punl?) = 4(ev/n + ] ),

so that for n large enough,

'Ef (W) - ]Ef(crnZ)‘ <4

Since f is continuous and bounded, Ef(0,Z) — Ef(Z), so
[Ef(onZ) —Ef(Z)] <3,
also for all n large enough. It remains to deal with the Y;. They all have mean 0 and
E|Y;? = E|Y{[* = Var(Y{) = E[X1]* 1 x, |>c v} —Hns

with the right hand side converging to 0 as n — oo, by Lebesgue’s dominated convergence
theorem. Thus for n large enough,
I !
Yl + + }/:IL < E
VIR

Vb4 Yy

- Vi

o\ 1/2
) = EY/)2 <.
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Since f is smooth and compactly supported, it is Lipschitz, say with constant L, and
because Xy — Yy =Y/, we finally get

por (P ) e < for (P ) e ()

Y44 Y,
+‘]Ef <ﬁ )—Ef(anZ)’
+ [Ef(0nZ) —Ef(Z)]
Y1’_|_..._|_YTQ
<LIE’\/E 426 < (L +2)8,

for all n large enough. This shows that

(BN gy

Xit 4+ X a0,

\/ﬁ n—00 ’
as desired. O

Lemma F.1 thus gives

Lemma F.3 is powerful enough to also give quantitative bounds in the central limit
theorem (weaker than the optimal one provided by the Berry-Esseen theorem, but with a
much simpler proof). We need an elementary fact providing approximations of indicator

functions by smooth functions.

F.4 Lemma. For every real number t and positive €, there is a smooth nonnegative
function f equal to 1 on (—oo,t], equal to 0 on [t+¢,00) with f <1 and |f"'| < 200e—3

everywhere.

Proof. Consider

1, z € (—00,0],
h(z) = < exp (— 1jw2) , x€(0,1),
0, z € [1,+00).
This function has the desired properties when ¢ = 0 and € = 1. Moreover, it can be
checked that ||h"]|o < 200. In general, we take the function f(z) = h(%E). O
F.5 Theorem. Let X1,...,X, be i.i.d. random variables with mean 0, variance 1 and

finite third moment. Let Z be a standard Gaussian random variable. We have

P Xi+--+ X, (E|X|3)1/4
- Vn ol

Proof. Denote Z,, = )(1"’7\/7;”(” Fix t € R and € > 0. Let f be the function provided
by Lemma F.4. In particular, 1(_ 4 (z) < f(2), for every = € R, thus

sup
teR

gt)—P(th)’g?,

P(Zy < 1) = EL(o(Zs) < Ef(Z,) < Ef(2) + 220 +6\/8/7) IEEL))%S’
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where the last inequality follows from Lemma F.3. Since f(z) < 1(_q 4¢)(z) and the

density of Z is bounded by \/%7, we also have

g
Ef(Z) SEL(_oorse)(Z) <P(Z <t) + ——.
f(Z) SEL(so4(Z) < P( ) Nors
As a result,
200(1 3
P(Z, <t)—P(Z<t) < ——e+ 00(1 + /8/m) E| X s
V2 6 vn

and optimising over ¢ yields

P(Z, <t)—P(Z <t) <CE|X|*)/*n" /8

1/4
with C' = (% + (3v 277)_3/4) (W) = 2.68... Similar arguments lead

to an identical lower bound (we approximate the indicator 1(_. ¢—.] using Lemma F.4
with ¢ — e and ). This finishes the proof. O
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G Appendix: The moment method
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H Appendix: Feller’s converse to the central limit

theorem

H.1 Theorem. Let {X, }n>11<k<n be a triangular array of random variables with
IEX?UC < oo for each n and k, such that for every n > 1, the variables Xy 1,...,Xnn

are independent. Suppose that EX,, =0 for each n and k and for each n,

> EXZ, =1
k=1
Fore >0, set

Ln(é—) = ZEX?%]? 1{‘X71‘k‘>5} .
k=1
Let Z,, = 22:1 Xk Suppose that

max EX2, —— 0. (H.1)
1<k<n " n—oo

If the sequence (Z,,),, converges in distribution to a standard Gaussian random variable,

then
for everye >0, Ly,(e) —— 0. (H.2)

n—oo

Proof. Let ¢, 1(t) = Ee®®™Xn* be the characteristic function of X,, . By Lemma 10.4,
, t2
11— ¢ i(t)] = [E(1 +it X, — )| < §]EX,2L,€, (H.3)

which thanks to (H.1), for every fixed t, converges to 0 (uniformly in k) as n — co. We
fix t and define R, (t) by

n

2
Rult) = 5 — S Re(l = 6ua(0).
k

=1

Claim. For every t, |R,(t)| — 0 as n — oc.

Proof. Fix t. Using (H.3),
2

t
1 — énr(t)] < E%Ef]EXZ)’“ —0

as n — 00, so, we have that for sufficiently large n and all k¥ <n, |1 — ¢ 1 (t)| < % and
|Arg(dn k(t))| < %, say. Using the principal value of the complex log function, we can

thus write

Z log ¢ i (t) = log H Gn k(1)
k=1 k=1
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and by the assumption of the theorem, the right hand side converges to —t2/2. Therefore,

2 n

R (t)] < % — 3 (1= Gu(®))
k=1
2 n "
< % + log H Oni(t)| + Z { log ¢ 1 (t) — (1 — ¢n,k(t))} ‘ .
k=1 k=1

The first term goes to 0. Setting z=1— ¢nx(t), we have |z| < 1 and using the Taylor

series —log(1 —2) =) 7o, 2 2" for the principal value of log, we obtain

|Z|]C 2 1/2 2
|—10g ¢ 1 (t) = (1 = ¢ (1) = | —log(1 - 2) —Z|<Z < |2| Z —|Z|~

k=2

Thus for the second term we get

5 [~ log () — (1= 6,4

k=1

Z|1_¢nk

<max|1f¢nk |Z\1*¢nk 1)

k=1
which, by virtue of (H.3), is upper bounded by
n t4 )
_ — _ <
I]?ax|1 Ot ZE k= max|1 Oni(t)] < 1 I]tcﬂgazi]EXn)k
The right hand side goes to 0 which finishes the proof of the claim. O

Having the claim, we finish the proof as follows. We fix ¢ > 0 and write

R,(t) = tz iIE 1 — cos(tX,. k)]

t2 .

ZE [1—cos(tXp k)] 1x, xl<c} — Z]E (1 —cos(tXn k)l 11X, 4|>e) -

= k=1

If |x| > e, we have 1 — cos(tz) <2 < 2‘:—2. This is how we bound the second sum. The

first sum will be bounded using 1 — cos(tz) < % These yield

t2 t2 n n ) t2 9
Rn(t) 2 2 92 ZEXn K L{Ix kl<ey — Z]EXn,k = ELn(E> T
k=1 k=1
equivalently,
4 2R, (t)
Ln(5) < @ + o

This shows that L,(¢) — 0 as n — oo (given § > 0, we fix t such that 5 < 6/2 and
for this ¢, for all n large enough, we have 2 2Bn®) 5 /2, by the claim). O
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I Appendix: Uniform integrability

We recall the definition: a family of random variables { X} }+cr is uniformly integrable
if for every € > 0, there is K > 0 such that for all £ € T', we have E[X¢|1¢x, >k} < €.

We start with two easy criteria guaranteeing uniform integrability.

1.1 Lemma. Let {X;}ier be a family of random variables such that there is a nonneg-
ative random variable Y with EY < oo and | X;| <Y for every t € T. Then the family

{ X et is uniformly integrable.

1.2 Remark. In particular, if {X;};cr is a finite family of integrable random variables,

then it is uniformly integrable (we simply take Y =%, . | X;]).

Proof of Lemma I.1. We have, E|X;|1{x,>x} < EY 1{ysky and the right hand side

goes to 0 as K — oo (by Lebesgue’s dominated convergence theorem). O

1.3 Lemma. Let {X,}ier be a family of random variables bounded in Ly, for somep > 1

(that is, M = sup,ep E|X¢[P < 00). Then the family {X;}ier is uniformly integrable.
Proof. Write p =1+ 6 with § > 0. We have,

E|X| 1gix, 155y = EIX 701X 70 1y x, 51y < KPBIX 70 < KM,
where M = sup,c E|X¢|?, so that the right hand side goes to 0 as K — oc. O

There is an equivalent definition of uniform integrability which perhaps explains the

name better and is often useful.

1.4 Theorem. Let {X;}ier be a family of random variables. It is uniformly integrable

if and only if the following two conidtions hold
(i) it is bounded in Ly, that is sup,cp E|X:| < o0,

(ii) for every e > 0, there is § > 0 such that for every event A with P(A) < § and
every t € T, we have E|X;| 14 < €.

Proof. “=": Fix € > 0 and choose K > 0 such that E|X;| 1 x, >k} < ¢ forevery t € T.

For an event A, we have
E|Xt| 14 = E|Xt‘ 14 1{|Xt\SK} +]E|Xt| 14 1{|Xt|>K} < KP(A)4e<2e
if P(A) < = 4. This shows (ii). Taking A = Q, the first inequality shows (i).

“<”": Fix € > 0 and take ¢ provided by (ii). We would like to choose K such that
E|X¢1{x,>k}) < ¢ forevery t € T. Let A = {|X;| > K}. Let M = sup,c7 E|X;| which
is finite by (i). By Chebyshev’s inequality,

1 M
P(A) < =E|X¢ < —
(4) < LEIX| < J <
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provided that K > %. Thus, for this choice of K, what we want follows from (ii) with
A={|X,| > K}. O

1.5 Remark. Let X be an integrable random variable. Combining Remark 1.2 (applied
to the one-element family {X}) with (ii) of Theorem 1.4, we get a “uniform continuity”

property of expectation:
Ve>03>0VA:P(A) < E|X|14 <e. (L.1)

The usefulness of uniform integrability lies in the fact that it captures L, convergence.

1.6 Theorem. Let p > 0. For random variables X, X1, Xo,... in L,, we have that
Xy — X in Ly if and only if the following two conditions hold

(i) X,, — X in probability,
(i) {|Xn|P}n>1 s a uniformly integrable family.

Proof. “=": Clearly (i) holds (see Theorem 6.14). To see (ii), we shall use Theorem
I.4. Fix e > 0. Let A be an event. First we use |a + b? < C(|a|? + [bP), a,b € R
(C = max{2P~! 1} is good), to bound

E‘Xn|p 14 < C(E|X‘p 14 +E|Xn —le 1A)~

For large n, say n > N, we have E|X,, — X|P14 <E|X,, — X|? < ¢e. For n < N, we can
choose § from (ii) of Theorem 1.4 applied to the finite family {|X]|, |X, — X|,n < N} to

bound each term by e. This finishes the argument.

“<": Fix € > 0. Let d be chosen from (ii) of Theorem 1.4 for the uniformly integrable
family {|X,, — X |P},>1 (it is uniformly integrable because | X, — X P < C(|X,,[?+|X?)).
We have,

E|Xn — X|p = Ean — X|p 1{\anX|§5} —I—E‘Xn — X‘p 1{|Xn7X|>€}
<P +E|Xn - X|p 1{\X,,,—X\>s} .

Let A = {|X,, — X| > ¢}. For n large enough, by (i), P(A) < d, thus the second term
for all such n is bounded by €. This shows that X,, — X in L,. O

1.7 Example. Consider the probability space ([0,1],8([0,1]),Leb) and the random
variables X,, = n1j1/n, n > 1. Then, E[X,| = 1, so (|X,]|) is bounded in L;, but
the family is not uniformly integrable: for every K > 0, we have E|X,|1{x, >k} =
E|X,| =1 for all n > K. In this example, X,, — 0 a.s. and in probability, but not in
L, (see Example 6.15).
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