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1 Introduction

1.1 Euclidean space

We shall work in d-dimensional Euclidean space Rd = {(x1, . . . , xd), xi ∈ R, i ≤ d},
the space of all length d real sequences x = (x1, . . . , xd). Its elements are called points

or vectors, the origin is 0 = (0, . . . , 0). It is a real vector space. We add vectors

coordiante-wise,

x+ y = (x1 + y1, . . . , xd + yd), x, y ∈ Rd,

and the same for scalar multiplication

λx = (λx1, . . . , λxd), λ ∈ R, x ∈ Rd.

The standard basis consits of the vectors e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),

and so on, ed = (0, 0, 0, . . . , 0, 1) and plainly x =
∑d
j=1 xjej . Addition of vectors suggests

a natural way of adding nonempty subsets A, B of Rd, which is defined by

A+B = {a+ b, a ∈ A, b ∈ B}

and called the Minkowski sum of A and B. Similarly for multiplication by a scalar λ,

λA = {λa, a ∈ A},

called the dilation of A. In particular, (−1)A, denoted −A is the symmetric image of

A. The set A is called symmetric if A = −A.

0

v

A

A+ v

Figure 1.1: A+ v is A translated by v.

1.1 Example. The Minkowski sum involving a singleton, say A+{v} is the translation

of A by v, denoted A+ v, or v +A (see Figure 1.1).

1.2 Example. The Minkowski sum of a square and a disk is a rounded square (see

Figure 1.2).
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b

b b

A

B

A+B

Figure 1.2: The Minkowski sum of a square and a disk.

1.3 Example. The Minkowski sum of two intervals is a a parallelogram. The Minkowski

sum of several intervals is a polygon (see Figure 1.3).

A

BC

A+B + C

Figure 1.3: The Minkowski sum of several intervals.

The Euclidean structure of Rd is given by the standard scalar product

〈x, y〉=
d∑
j=1

xjyj , x, y ∈ Rd.

Recall the defining properties of a scalar product: 〈·, ·〉 : Rd ×Rd → R is symmetric and

bilinear and satisfies 〈x, x〉≥ 0, for every x ∈ Rd, with equality if and only if x = 0. The

Euclidean norm of x is

|x| =
√
〈x, x〉=

√∑
j

x2
j

which is its distance to the origin. Recall that a function ‖ · ‖ : Rd → R is called a norm

if: 1) ‖x‖ ≥ 0, for every x ∈ Rd with equality if and only if x = 0, 2) ‖λx‖ = |λ|‖x‖, for

every λ ∈ R and x ∈ Rd, 3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for every x, y ∈ Rd. The (Euclidean)

distance between x and y in Rd is

d(x, y) = |x− y|

6



which defines the Euclidean metric on Rd. In general, every scalar product gives rise

to a norm by ‖x‖ =
√
〈x, x〉. The triangle inequality is a consequence of the Cauchy-

Schwarz inequality.

1.4 Theorem. If x, y ∈ Rd, then |〈x, y〉| ≤ |x| · |y|. Equality holds if and only if x = λy

or y = λx for some λ ∈ R.

Proof. If y = 0, the statement is clear. Assume y 6= 0 and consider the following

polynomial of degree 2

P (t) =〈x− ty, x− ty〉= |x|2 + t2|y|2 − 2t〈x, y〉.

Since P is nonnegative and the leading coefficient |y|2 is positive, the discriminant of P

is nonpositive, hence 4〈x, y〉2 − 4|x|2|y|2 ≤ 0. If we have equality, P has a zero at say

λ, that is 0 = P (λ) = 〈x− λy, x− λy〉which by the axioms of a scalar product implies

that x− λy = 0.

1.2 Linear and affine hulls

A linear combination of points x1, . . . , xk in Rd is
∑k
j=1 λjxj , where λj ∈ R. We

call it an affine combination if additionally the scalars (weights) λj add up to 1,∑k
j=1 λj = 1. We define the linear hull (or simply the span) of points x1, . . . , xk as

the set of all linear combinations of x1, . . . , xk. Similarly for the affine hull.

1.5 Example. The linear hull of two points a, b is a line if they are colinear with the

origin and otherwise, it is a plane. The affine hull of two different points a, b is the line

passing through a and b. The linear hull of e1, e2, e3 in R3 is R3 and their affine hull is

the plane {x ∈ R3, x1 + x2 + x3 = 1}.

a

b

aff{a, b}

span{a, b}

0

Figure 1.4: The affine and linear hull of two points.

The definitions of linear and affine hulls extend from finite sets to arbitrary ones.

That is, given a subset A of Rd, its affine hull is defined as
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aff(A) = {all affine combinations of points from A}

=

{
k∑
i=1

λixi, k ≥ 1, ai ∈ A, λi ∈ R,
k∑
i=1

λi = 1

}
.

Similarly for the linear hull of A, denoted lin(A) or span(A).

A set A in Rd is called a flat (or an affine subspace) if it is a translate of a subspace

F , that is A = F + x0 for some x0 ∈ Rd. The dimension of A is the dimension of F .

We have a basic result relating flats and affine hulls.

1.6 Theorem. If x1, . . . , xk are points in Rd, then their affine hull is

(a) a flat,

(b) the smallest flat containing them, that is if x1, . . . , xk ∈ F for some flat F , then

aff(x1, . . . , xk) ⊂ F ,

(c) aff(x1, . . . , xk) =
⋂{F : F is a flat containing x1, . . . , xk}.

Proof. Exercise.

Some affine subspaces have spacial names: 1-dimensional ones are called lines, 1-

codimensional ones are called hyperplanes and in general k-dimensional ones are called

k-flats. A hyperplane H in Rd can be specified by a single linear equation a1x1 + · · ·+
adxd = b, that is H = {x ∈ Rd, 〈a, x〉= b} and H is perpendicular to a. It gives rise to

two closed half-spaces: H− = {x ∈ Rd, 〈a, x〉≤ b} and H+ = {x ∈ Rd, 〈a, x〉≥ b}.

a

HH+

H−

Figure 1.5: Convex sets are intersections of halfspaces.

Affine and linear notions are obviously connected. Recall that points x1, . . . , xk in

Rd are affinely dependent if one of them can be written as an affine combination of the
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others. Equivalently, there are reals α1, . . . , αk not all zero such that
∑k
j=1 αj = 0 and∑k

j=1 αjxj = 0. We have the following convenient criterion.

1.7 Theorem. Given points x1, . . . , xk in Rd, define yj = [ xj1 ] in Rd+1 by appending 1

as the last coordinate. Then x1, . . . , xk are affinely independent if and only if y1, . . . , yk

are linearly independent.

Proof. Exercise.

This correspondence of affine notions in Rd and linear notions in Rd+1 is quite general.

For example, d dimensional nonhorizontal subspaces in Rd+1 are bijective to d − 1

dimensional affine subspaces in Rd × {1} (see Figure 1.6).

R
d × {1}

R
d+1

Figure 1.6: Subspaces in Rd+1 are bijective to flats in Rd × {1}.
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1.3 Exercises

1. Show that for any set A in Rd, the set A−A is symmetric.

2. Give an example of a subset A of R such that A+A 6= 2A.

3. Consider the unit disk D = {x ∈ R2, x2
1 + x2

2 ≤ 1}. Give an example of a set A

different than 1
2D such that A−A = D.

4. Let f : [0,∞) → [0,∞) be a continuous strictly increasing function with f(0) = 0.

Then for every nonnegative a, b, we have

ab ≤
∫ a

0

f +

∫ b

0

f−1

(called Young’s inquality). Here f−1 denotes the inverse function.

Hint: Draw a plot of f and interpret the integrals as areas.

5. Let p, q ∈ (1,∞) satisfy 1
p + 1

q = 1. Show that for positive a, b, we have

ab ≤ ap

p
+
bq

q
.

Show that for vectors x, y in Rd, we have

|〈x, y〉| ≤

 d∑
j=1

|xj |p
1/p d∑

j=1

|yj |q
1/q

(called Hölder’s inequality).

6. Show that for vectors x, y in Rd, we have d∑
j=1

|xj + yj |p
1/p

≤

 d∑
j=1

|xj |p
1/p

+

 d∑
j=1

|yj |p
1/p

(called Minkowski’s inequality).

7. Using the first part of Exercise 5, show that for t ≥ 0, α ≥ 1, we have

t(α− tα−1) ≤ α− 1.

Given nonnegative numbers a1, . . . , an, apply it to t =
(

naj∑n
k=1 ak

)1/n

to obtain the

inequality of arithmetic and geometric means (the AM-GM inequality):
∑n
j=1 aj

n ≥(∏n
j=1 aj

)1/n

.

8. Prove Theorem 1.6.

9. Prove Theorem 1.7.
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10. Points x1, . . . , xk in Rd are affinely independent if and only if x2 − x1, . . . , xk − x1

are linearly independent.

11. Show that every k ≥ d+ 2 points in Rd are affinely dependent.

12. Write an equation of a hyperplane in R3 orthogonal to the vector (1, 2, 1), passing

through (1,−1, 0). Given two vectors x0 and a in Rd, describe geometrically the set

{x ∈ Rd, −1 ≤〈x− x0, a〉≤ 1}.
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2 Basic convexity

2.1 Convex hulls

A set K in Rd is convex if for every two points x, y in K the whole segments [x, y] =

{λx + (1 − λ)y, λ ∈ [0, 1]} belongs to K. In other words, for every x, y ∈ K and

λ ∈ [0, 1], we have λx + (1 − λ)y ∈ K, or equivalently λK + (1 − λ)K ⊂ K (if fact we

can write equality instead of the inclusion “⊂” because the opposite inclusion always

holds). The dimension of a convex set is the dimension of its affine hull. Convexity is

clearly preserved by taking intersections.

Figure 2.1: An example of a convex and a nonconvex set.

2.1 Theorem. Intersections of (arbitrarily many) convex sets are convex.

2.2 Example. Subspaces, flats are convex. Open/closed half-spaces are convex.

p = 1

p = 2

p = ∞

p =
1

2

Figure 2.2: Bdp

2.3 Example. Given p > 0 define

‖x‖p =

 d∑
j=1

|xj |p
1/p

, x ∈ Rd
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and

‖x‖∞ = max
j≤d
|xj |

(as suggested by taking the limit p→∞). Define the set

Bnp = {x ∈ Rd, ‖x‖p ≤ 1}

called the unit `p-ball in Rd. It is convex if and only if p ∈ [1,∞] (see Figure 2.2).

In particular, Bd1 is called the cross-polytope, Bd2 is the unit (centred) Euclidean ball,

Bd∞ = [−1, 1]d is the d-dimensional cube (see Figure 2.3).

b

b

b

b

b

b b

b b

b

bb

Figure 2.3: The cross-polytope, Euclidean ball and cube.

A convex combination of points x1, . . . , xk in Rd is
∑k
j=1 λjxj for some nonneg-

ative λ1, . . . , λk with
∑k
j=1 λj = 1 (often called weights). The convex hull of a subset

A of Rd is the set of all convex combinations of points from A,

conv(A) =


k∑
j=1

λjxj , k ≥ 1, x1, . . . , xk ∈ A, λ1, . . . , λk ≥ 0,

k∑
j=1

λj = 1

 .

Similarly to affine hulls, convex hulls are smallest convex sets containing given ones.

b

b

b

b

b

b

b

b

b

b
e1

e2

e3

Figure 2.4: The convex hull of several points in the plane and the convex hull of the

standard basis in R3.
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2.4 Theorem. Let A be a subset of Rd. Then

(a) convA is convex,

(b) convA is the smallest convex set containing A, that is if A ⊂ K for a convex set K,

then convA ⊂ K,

(c) convA =
⋂{K : K is convex and K ⊃ A}.

Proof. Exercise.

A d-dimensional simplex (or just d-simplex) is a convex hull of d+ 1 affinely inde-

pendent points in Rd. A convex polytope in Rd is the convex hull of finitely many

points in Rd (we often say just “polytope” meaning “convex polytope”).

2.2 Carathéodory’s theorem

A basic theorem in combinatorial geometry due to Carathéodory asserts that points

from convex hulls can in fact be expresses as convex combinations of only dimension

plus one many points.

2.5 Theorem (Carathéodory). Let A be a subset of Rd and let x belong to convA.

Then

x = λ1a1 + . . .+ λd+1ad+1

for some points a1, . . . , ad+1 from A and nonnegative weights λ1, . . . , λd+1 adding up

to 1.

Proof. For y ∈ Rd and t ∈ R by [ yt ] we mean the vector in Rd+1 whose last component

is t and the first d are given by y. Since x belongs to convA, we can write for some

a1, . . . , ak from A and nonnegative λ1, . . . , λk,

[ x1 ] =

k∑
i=1

λi [ ai1 ]

(the last equation taking care of
∑
λi = 1). Let k be the smallest possible for which

this is possible. We can assume that the λi used for that are positive. We want to show

that k ≤ d+ 1. If not, k ≥ d+ 2, the vectors [ a11 ] , . . . , [ ak1 ] are not linearly independent,

thus there are reals µ1, . . . , µk, not all zero, such that

[ 0
0 ] =

k∑
i=1

µi [ ai1 ] .

Therefore, for every t ∈ R we get

[ x1 ] =

k∑
i=1

(λi + tµi) [ ai1 ] .

14



Notice that the weights λi + tµi are all positive for t = 0, so they all remain positive

for small t and there is a choice for t so that (at least) one of the weights becomes zero

with the rest remaining positive. This contradicts the minimality of k.

In particular, Carathéodory theorem says that convex sets can be covered with d-

simplices.
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2.3 Exercises

1. Prove that subspaces, flats, half-spaces are convex.

2. Prove that a centred ellipsoid
{
x ∈ Rd,

∑d
i=1

x2
i

α2
i
≤ 1
}

is convex (the αi are positive

numbers – the lengths of the principal axes).

3. Prove that a set K in Rd is convex if and only if for every n ≥ 2 points from K, their

convex combination is in K.

4. Prove Theorem 2.4.

5. Describe all convex subsets of R.

6. If sets K1, . . . ,Kn in Rd are convex, then so is their Minkowski sum K1 + · · ·+Kn.

7. Show that Bd∞ = [−e1, e1] + · · ·+ [−ed, ed].

8. Let p ∈ [1,∞]. Prove that the function x 7→ ‖x‖p is a norm on Rd.

9. Prove that Bdp is convex if and only if p ∈ [1,∞].

10. Show that Bd1 = conv{−e1, e1, . . . ,−ed, ed}. Find an analogous statement for Bd∞.

11. Show that for a set A in Rd and a hyperplane H such that A ⊂ H−, we have

conv(A ∩H) = (convA) ∩H.

12. Show that for subsets A, B in Rd, we have conv(A+B) = conv(A) + conv(B).

13. Consider the following vertices of B4
∞:

a1 = (−1, 1, 1,−1), a2 = (1,−1, 1,−1) a3 = (1, 1,−1,−1)

b1 = (1,−1,−1, 1), b2 = (−1, 1,−1, 1), b3 = (−1,−1, 1, 1).

a) Show that K = conv{a1, a2, a3, b1, b2, b3} is a 3-dimensional regular octahedron.

b) Prove that B4
∞ ∩H = K, where H = {x ∈ R4, x1 + · · ·+ x4 = 0}.

What is the analogous result in R3, that is what do we obtain by intersecting the

cube [−1, 1]3 with the hyperplane H = {x ∈ R3, x1 + x2 + x3 = 0}?

14. Show that for every polynomial P (with complex coefficients), the roots of its deriva-

tive P ′ all lie within the convex hull of the roots of P (the Gauss-Lucas theorem).

16



3 Separation

3.1 Supporting hyperplanes

Let K be a closed convex subset of Rd. Let H be a hyperplane. We say that H is a

supporting hyperplane of K if: 1) H touches K, that is K ∩ H 6= ∅, and 2) K is

contained in one of the half-spaces of H. Then K∩H is called a face of K. For instance,

any face of a Euclidean ball is a singleton.

K

H

K ∩H

Figure 3.1: H is a supporting plane of K.

3.1 Theorem. Faces of polytopes are polytopes.

Proof. It follows immediately from Exercise 2.11 (if, say K ⊂ H− for a supporting

hyperplane H of a polytope K = conv(A), then we have K ∩ H = conv(A) ∩ H =

conv(A ∩H)).

We give special names to commonly used types of faces of polytopes: 0-dimensional

faces are called vertices, 1-dimensional ones are called edges and 1-codimensional ones

are called facets. If we denote fk(P ) to be the number of k-dimensional faces of a

polytope P in Rd, then

d−1∑
k=0

(−1)kfk(P ) = 1 + (−1)d−1. (Euler’s formula)

(We shall not prove this.)

No. of vertices No. of edges No. of facets

B3
1 8 12 6

B3
∞ 6 12 8

Table 1: The number of faces of the cross-polytope and cube.

Supporting hyperplanes exist along any direction, which can be argued by compact-

ness.
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3.2 Theorem. Let K be a compact convex set in Rd and let u be a unit vector. Then

K has a supporting hyperplane H with equation 〈x, u〉= b and K ⊂ H− (that is, u is a

normal vector pointing outwards).

Proof. Consider the function f(x) =〈x, u〉. Since it is continuous, it attains its maximum

on the compact set K, say at x0 ∈ K. Then f(x) ≤ f(x0) for every x ∈ K, so we define

H = {x ∈ Rd, 〈x, u〉 = 〈x, u〉}. This inequality means that K ⊂ H−. Moreover, H

touches K because x0 ∈ K ∩H.

3.3 Example. Let K = B3
1 and u = ( 1√

3
, 1√

3
, 1√

3
). Then H = {x ∈ R3, x1+x2+x3 = 1}

is a supporting hyperplane of K with an outward pointing unit vector u and the facet

K ∩H is the triangle conv{e1, e2, e3}.

The above theorem motives the definition of support functions. The support func-

tion hK : Rd → R of a compact and convex set K in Rd is defined by

hK(x) = max
y∈K
〈x, y〉.

Geometrically, if u is a unit vector, then hK(u) is the (signed) distance from 0 to the

supporting hyperplane of K with outward normal u.

b

K

0

u

hK(u)

Figure 3.2: The support function hK(u).

3.4 Example. Let a ∈ Rd. The support function of the singleton {a} is linear,

h{a}(x) = 〈x, a〉. The support function of the symmetric interval [−a, a] is also sim-

ple, given by h[−a,a](x) = |〈x, a〉|. The support function of the unit ball Bd2 is the

Euclidean distance, hBd2 (x) = |x|.

3.5 Example. Let p ∈ [1,∞]. The support function of the `p-ball Bdp is given by the

`q norm, hBdp (x) = ‖x‖q, where 1
p + 1

q = 1.

We have the following basic properties of the support function hK of a compact and

convex set K in Rd.
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1) hK(0) = 0.

2) hK(λx) = λhK(x), for every x ∈ Rd and λ ≥ 0.

3) hK(x+y) ≤ hK(x)+hK(y), for every x ∈ Rd (consequently, hK is a convex function).

4) h−K(x) = hK(−x), for every x ∈ Rd.

5) hK is Lipschitz.

Support functions behave nicely when we take Minkowski sums and convex hulls (we

leave proofs as exercises).

3.6 Theorem. For every compact convex sets K and L in Rd, we have

hK+L = hK + hL.

3.7 Theorem. For every family of compact convex sets {Kα} in Rd, we have

hconv{⋃Kα} = max
α

hKα .

In particular, for a polytope P = conv{xi}ki=1, we have that the support function of P

is piecewise linear, hP (x) = maxi≤k〈x, xi〉.

Support functions determine compact convex sets uniquely (we leave proof as an

exercise).

3.8 Theorem. For compact convex sets K and L in Rd, we have K ⊂ L if and only if

hK ≤ hL. In particular, hK determines K uniquely, K = L if and only if hK = hL.

The width of a compact convex set K in Rd in the direction of a unit vector u is

defined as

wK(u) = hK(u) + hK(−u).

The width of K is the minimal width over all directions,

wK = min
|u|=1

wK(u).

Geometrically, this is the width of a thinnest plank fully covering K. Note that by the

properties of support functions, wK = hK−K , that is the width of K is given by the

support function of K −K. We say that K is of constant width if wK is a constant

function.

3.9 Example. Of course, Euclidean balls are of constant width. The Reuleaux triangle

(the intersection of three unit disks centered at vertices of a unit equilateral triangle) is

an example of a planar set of constant width.
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wK(u)u

Figure 3.3: The Reuleaux triangle. Its width function wK(u) is constant.

Let A be a closed subset of Rd. The distance from a point x to A is

d(x,A) = inf
a∈A
|x− a|.

The infimum is attained. Moreover, if A is convex, the minimiser is unique, called the

nearest point from x to A. These are explained in the following theorem.

3.10 Theorem. Let K be a closed subset of Rd. For every point x, there is a point y

in K realizing the distance from x to K, that is d(x,K) = |x − y|. Moreover, if K is

convex, this point is unique.

Proof. Consider a sequence of points yn from K such that |x − yn| → d(x,K) (which

exists by the definition of infimum). Since |yn| ≤ |x| + |x − yn|, eventually |yn| ≤
|x| + d(x,K) + 1, so the sequence |yn| is bounded, say by R, that is all the points yn

are in the ball RBd2 . By its compactness, we can find a convergent subsequence, say

ynk → y. Since K is closed, y ∈ K. By the continuity of the Euclidean distance,

|x− y| = limk |x− ynk | = d(x,K). This proves that y is a closest point in K to x.

b

b

x

y

y′

K
y+y′

2

b

b

bb

d(x,K)

d(x,K)

Figure 3.4: An argument explaining why a nearest point is unique.

Suppose now that K is additionally convex. Say there is another point y′ in K such

that |x − y′| = d(x,K), different that y. By convexity, the whole segment [y, y′] is in
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K. On the other hand, its midpoint y+y′

2 is nearer to x than y (see Figure 3.4): by the

parallelogram identity, we have∣∣∣∣y + y′

2
− x
∣∣∣∣2 =

|(y − x) + (y′ − x)|2
4

=
2|y − x|2 + 2|y′ − x|2 − |y − y′|2

4

=
2d(x,K)2 + 2d(x,K)2 − |y − y′|2

4
< d(x,K)2.

This gives a contradiction.

3.2 Separation theorems

We are ready to prove two separation theorems and then present some important con-

sequences. The first theorem is sometimes called the easier supporting theorem which

is about separating points outside convex sets by hyperplanes. The second theorem is

sometimes called the harder supporting thereom which is about existence of supporting

hyperplanes at boundary points.

3.11 Theorem. Let K be a closed convex set in Rd and let p be a point outside K,

that is p ∈ Rd \ K. Let y the the nearest point in K to p. Then the hyperplane

H = {x ∈ Rd, 〈x− y, p− y〉= 0} is a supporting hyperplane of K.

b

p

y
y′

K
H

(1− ε)y
+ εy

′

Figure 3.5: The proof of the easier supporting theorem.

Proof. Since y ∈ H, H touches K. If K is not entirely in H−, say y′ ∈ K ∩ (H+ \H),

then points on the segment [y, y′] (which is in K by convexity!), which are very close to

y, are nearer to p than y (see Figure 3.5). To justify this rigorously, we consider

|(1− ε)y + εy′ − p|2 = |(y − p) + ε(y′ − y)|2

= |y − p|2 − 2ε〈y′ − y, p− y〉+ ε2|y′ − y|2.

Since the coefficient at ε is negative (because y′ ∈ H+\H), for sufficiently small positive

ε, the value of this function will be smaller than its value at ε = 0.

3.12 Theorem. Let K be a closed convex set in Rd and let b ∈ ∂K be a point on its

boundary. Then there exists a supporting hyperplane of K containing b.
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b

K

b

H

Figure 3.6: The the harder supporting theorem.

Proof. Consider the unit sphere S = {x ∈ Rd, |x − b| = 1} centred at b. Take a point

s0 on S furthest from K, that is d(s0,K) = maxs∈S d(s,K).

Claim. d(s0,K) = 1.

Since |s0 − b| = 1 = d(s0,K) = minx∈K |s0 − x|, b is the nearest point in K to s0. It

remains to apply Theorem 3.11. We are left with showing the claim.

b

K

b

b

bx1

b+ u

u

H

b
s0

Figure 3.7: The proof of the claim.

Proof of the claim. Let ε > 0, take x1 /∈ K such that |x1 − b| < ε. Separate x1 from

K by the hyperplane given by Theorem 3.11, and let H be the hyperplane parallel to

it passing through x1, say given by H = {x ∈ Rd, 〈x− x1, u〉= 0}, where u is a unit

vector oriented such that H− ⊃ K. Note that for a point x in K, we have

|b+ u− x| ≥〈b+ u− x, u〉

=〈b, u〉+ 1−〈x, u〉

≥〈b, u〉+ 1−〈x1, u〉

=〈b− x1, u〉+ 1

≥ 1− |b− x1|

> 1− ε
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(the first and fifth lines follow by the Cauchy-Schwarz inequality and the third one holds

because K ⊂ H−). This means d(b+ u,K) ≥ 1− ε. Since u is a unit vector, b+ u ∈ S
and we get, maxs∈S d(s,K) ≥ 1 − ε. Sending ε to 0 gives maxs∈S d(s,K) ≥ 1. On the

other hand, for every s ∈ S, we clearly have d(s,K) ≤ |s−b| = 1, so maxs∈S d(s,K) ≤ 1.

This shows that maxs∈S d(s,K) = 1 and finishes the proof.

3.13 Theorem. Let K and L be compact convex disjoint sets in Rd. Then there is a

hyperplane H such that K ⊂ H+ and L ⊂ H−.

b

K

x0

b
L

y0

H

Figure 3.8: The separation theorem for two sets.

Proof. Since K × L is compact and the function (x, y) 7→ |x − y| is continuous, the

minimum minx∈K,y∈L |x− y| is attained, say at (x0, y0). Choose H to be perpendicular

to the segment [x0, y0], passing through its midpoint. Since x0 is the nearest point in

K to y0, we get that K is entirely on one side of H (by Theorem 3.11). Similarly, L is

also entirely on one side of H. Since x0 and y0 are on different sides, K and L are in

fact separated by H.

3.14 Remark. By additional approximation arguments, the compactness assumption

can be removed.

We are ready to show that compact convex sets are intersections of half-spaces.

3.15 Theorem. Let K be a compact convex set in Rd. Then

K =
⋂
{H− : H is a supporting hyperplane of K oriented such that K ⊂ H−}.

Proof. Let

L =
⋂
{H− : H is a supporting hyperplane of K oriented such that K ⊂ H−}.
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Figure 3.9: Convex sets are intersections of halfspaces.

Since H− ⊃ K if H is a supporting hyperplane, we clearly have L ⊃ K. To show the

opposite inclusion, L ⊂ K, take x /∈ K. Separate x from K by the hyperplane H given

by Theorem 3.11. Since x ∈ H+, we get x /∈ L.

3.3 Application in linear optimisation – Farkas’ lemma

As an application of separation theorems, we show Farkas’ lemma concerning solvability

of linear systems of inequalities.

3.16 Lemma (Farkas). For every d× n matrix A, exactly one of the following occurs

(i) Ax = 0 has a nontrivial nonnegative solution (that is, Ax = 0 for some x ∈ Rn

with nonnegative coordiates, not all equal 0)

(ii) there is y ∈ Rd such that y>A is a vector with all entries negative

3.17 Remark. Note that if (ii) holds, (i) is ruled out because multiplying jth equation

of Ax = 0 by yj and adding we get
∑

[y>A]ixi = 0; since all the coefficients [y>A]i are

negative, this equation cannot have a nontrivial nonegative solution.

Proof. Let V = {v1, . . . , vn} be the column vectors of A. We have two possibilities.

Case 1. 0 ∈ conv(V ), then

0 =
n∑
i=1

λivi = A

[
λ1

...
λn

]
for some nonnegative λi adding up to 1 (not all zero). We thus can take x = [λi]

n
i=1 and

(i) holds.

Case 2. 0 /∈ conv(V ), then we separate 0 from conv(V ) by a hyperplane H, that is

there is a vector u such that [u>A]j = 〈u, vj〉< 〈u, 0〉= 0 for every j. We thus can take

y = u and (ii) holds.
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3.4 Exercises

1. Let P be a polytope. Show that P has finitely many faces.

2. Show that every compact convex set K in Rd has at least one 0-dimensional face.

Hint. Consider maxx∈K |x|.

3. Show that for the number of k-dimensional faces of the cube, we have fk(Bd∞) =

2d−k
(
d
k

)
, 0 ≤ k ≤ d− 1. Check that Eurler’s formula holds.

4. Show that for the number of k-dimensional faces of the cross-polytope, we have

fk(Bd1 ) = 2k+1
(
d
k+1

)
, 0 ≤ k ≤ d− 1. Check that Eurler’s formula holds.

5. Prove properties 1) - 5) of the support function hK of a compact convex set K in Rd.

6. Prove Theorems 3.6 and 3.7.

7. Find the support function of the ellipse E = {(x, y) ∈ R2, x2

a2 + y2

b2 ≤ 1}. Deduce

that all the circumscribed rectangles on E have vertices on a fixed circle (called the

director circle of E).

8. Prove the claim from Example 3.5 that hBdp (x) = ‖x‖q.

9. For a compact convex set K in Rd, let x1, x2 ∈ K realise its diameter, that is

|x1 − x2| = diam(K). Show that Hi defined as the hyperplane orthogonal to x1 − x2

and passing through xi is a supporting hyperplane and K ∩ Hi = {xi}, i = 1, 2.

(Consequently, unless K is a singleton, it has at least two 0-dimensional faces.)

The diameter of a compact set A in Rd is diam(A) = maxa,a′∈A |a− a′|.

10. Prove that for a compact convex set K in Rd, we have diam(K) = max|u|=1 wK(u).

11. Show that for a compact set A in Rd, we have diam(conv(A)) = diam(A).

12. Show that an elephant can be packed inside Bn∞ for n sufficiently large.

Hint. B4n
∞ has 4 vertices:

(−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

)

(1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

), etc.

13. Prove Theorem 3.8.

14. Prove Remark 3.14.
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4 Further aspects of convexity

4.1 Extreme points and Minkowski’s theorem

Let K be a compact convex set. A point x in K is an extreme point of K if x is

not “between” two points of K: there is no x1, x2 ∈ K, x1 6= x2, λ ∈ (0, 1) such that

x = λx1 + (1− λ)x2.

4.1 Example. Any boundary point of a Euclidean ball is extreme. Only the vertices

of the cube Bd∞ are its extreme points. Closed half-spaces have no extremal points.

4.2 Lemma. Every 0-dimensional face of a compact convex set is its extreme point.

Proof. Consider a 0-dimensional face {x} = K ∩ H for a supporting hyperplane H.

Suppose x = λx1 + (1 − λ)x2, for some x1, x2 ∈ K, x1 6= x2, λ ∈ (0, 1). Consider

the segment [x1, x2] = conv{x1, x2} which is entirely in K. Note that x ∈ H (because

{x} = K ∩H) and clearly x ∈ conv{x1, x2}, so {x} ⊂ conv{x1, x2} ∩H. On the other

hand, {x} = K ∩H ⊃ conv{x1, x2} ∩H, so {x} = conv{x1, x2} ∩H. Thus, by Exercise

2.11,

{x} = conv({x1, x2} ∩H).

As a result, x1 or x2 is in H (otherwise the right hand side would be empty). If both

x1 and x2 were in H, then the right hand side would be the whole segment [x1, x2].

Therefore, exactly one of these points is in H, say x1, but then the right hand side is

{x1}, thus x = x1, a contradiction.

bb

bb

b
a b

c d

p

Figure 4.1: A stadium: the “corners” a, b, c, d are extreme points, but they are not

0-dimensional faces. A point p is not extreme.

4.3 Remark. The converse is not true in general: not every extreme point has to be a

0-dimensional face – see Figure 4.1 for the example of a stadium.

4.4 Lemma. Let F be a face of a compact convex set K in Rd. Let x be a point in F .

Then x is an extreme point of F if and only if x is an extreme point of K.

26



Proof. Since F ⊂ K, extreme points in K are extreme in F . For the other implication,

suppose F = K∩H for a hyperplane H such that K ⊂ H− and x is an extreme point of

F . Suppose that x is not extreme in K. Then x = λx1 +(1−λ)x2, for some x1, x2 ∈ K,

x1 6= x2, λ ∈ (0, 1). Using Exercise 2.11, we have

conv{x1, x2} ∩H = conv({x1, x2} ∩H).

As in the proof of Lemma 4.2, x ∈ conv{x1, x2}∩H, so the right hand side is nonempty,

in which case x1 or x2 is in H. Say x1 ∈ H, but since x ∈ H, the whole line xx1 is in

H, too. In particular, x2 ∈ H. Since F = K ∩H, we get x1, x2 ∈ F , which contradicts

the fact that x is extremal in F .

We are ready to prove a fundamental result about extreme points, saying that convex

sets are convex hulls of their extreme points. For finite dimensional Euclidean spaces, it

is called Minkowski’s theorem (in fact, Minkowski proved it in 3 dimensions which was

extended by Steinitz to any finite dimension), whereas the general form for topological

vector spaces is the famous Krein-Milman theorem.

4.5 Theorem (Minkowski). For a compact convex set K in Rd, let E be the set of all

extreme points of K. Then

K = conv(E).

Proof. Since E ⊂ K, we have conv(E) ⊂ K. We show the opposite implication, that is

K ⊂ conv(E) by induction on the dimension d. It is clear for d = 1. Fix d ≥ 2. Suppose

the implication holds for all dimensions less than d. Let x ∈ K. If x is a boundary

point, then x belongs to a face F of K (by the harder separation theorem, Theorem

3.12). Since F is at most d− 1 dimensional (as contained in a supporting hyperplane),

x is a convex combination of extreme points of F , which are also extreme in K (Lemma

4.4). If x is not a boundary point, it is on an interval whose end points (say y and z)

are on the boundary. By the previous argument, each of these end points y and z is a

convex combination of the extreme points of K, hence x, too.

4.2 Extreme points of polytopes

We first prove that a polytope is the convex hull of its vertices (0-dimensional faces).

Then we indentify that the set of all vertices (the set of 0-dimensional faces) is the set

of its extreme points.

4.6 Theorem. Let P be a convex polytope in Rd with vertex set V . Then P = conv(V ).

Proof. By definition, P = conv{x1, . . . , xk} for some points x1, . . . , xk in Rd. Assume

that these points are such that k is minimal (so in particular, no point xi is a convex com-

bination of the other points). We show V = {x1, . . . , xk}. Let P ′ = conv{x2, . . . , xk}.
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x1

x′
1

x2

xk

P ′

H

Figure 4.2: The proof of Theorem 4.6.

Then x1 /∈ P ′. Let x′1 be the nearest point in P ′ to x1 and let H be the hyper-

plane passing through x1 and parallel to the supporting hyperpane from Theorem

3.11 separating x1 from P ′. Then P ⊂ H− and H ∩ P = H ∩ conv{x1, . . . , xk} =

conv(H ∩ {x1, . . . , xk}) = conv{x1} = {x1}. This means that x1 is a vertex, that is

x1 ∈ V . Similarly for the other points, so {x1, . . . , xk} ⊂ V . For the opposite inclusion,

if x ∈ V , that is {x} = P ∩H for a supporting hyperplane H, then

{x} = conv{x1, . . . , xk} ∩H = conv({x1, . . . , xk} ∩H),

and as a result, the intersection {x1, . . . , xk} ∩ H is a singleton, say {xi} and then

x = xi.

4.7 Theorem. Let P be a convex polytope in Rd. Let V be the set of its vertices and

let E be the set of its extreme points. Then V = E.

Proof. By Lemma 4.2, V ⊂ E. If x ∈ P \ V , then by Theorem 4.6, we can write

x =
∑k
i=1 λixi for some xi ∈ V , λi ∈ (0, 1) and

∑k
i=1 λi = 1. Writing,

x = (1− λ1)x1 + (1− λ1)

(
λ2

1− λ1
x2 + · · ·+ λk

1− λ1
xk

)
,

we conclude that x ∈ P \E. Thus, P \ V ⊂ P \E and since V and E are subsets of P ,

we obtain E ⊂ V .
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4.3 Exercises

1. Let D = {x ∈ R3,
√
x2

1 + x2
2 + |x3| ≤ 1}. Prove that D is convex, describe the

extreme points of D and give an intuitive description as to why Minkowski’s theorem

holds for D.

2. The set of extreme points of a compact convex set with nonempty interior in Rd,

d ≥ 3, need not be closed.

3. Give an example of two disjoint closed convex sets on the plane which are not strictly

separable (K and L are strictly separable if for some hyperplane H, we have K ⊂
H− \H and L ⊂ H+ \H).

4. Let f : Rd → Rn be an affine map (that is f is of the form f(x) = Ax + b, x ∈ Rd,

for some n× d matrix A and a vector b ∈ Rn).

a) If K ⊂ Rd is convex, then f(K) is convex.

b) Is the preimage of a convex set always convex?

c) For any subset A of Rd, we have conv f(A) = f(convA).
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5 Polytopes I

Combinatorial objects often give rise to interesting polytopes and vice-versa.

b

b

(1, 2, 3)

(1, 3, 2)

(2, 3, 1)

(2, 1, 3)

b

b

(3, 1, 2)

(3, 2, 1)

b

b

b

b

b

Figure 5.1: A permutohedron of order 3 is a regular hexagon (obtained as a section of

the cube [1, 3]3).

5.1 Example. Let

P = conv{(σ(1), σ(2), . . . , σ(n)), σ is a permutation on {1, 2, . . . , n}}.

This is a permutohedron of order n, an n − 1-dimensional polytope with n! vertices

(all vertices lie on the hyperplane {x ∈ Rn,
∑n
i=1 xi = n(n+1)

2 }).
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Figure 5.2: A permutohedron of order 4 can be obtained by trimming an octahedron.

Each of its 24 vertices has 3 neighbours. Each edge has length
√

2 and connects two

vertices which differ by swapping two coordinates with values differing by 1.
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5.2 Example. A tetrahedron, cube, octahedron, dodecahedron, icosahedron are pla-

tonic solids whose faces are congruent regular polygons (triangles, squares, triangles,

pentagons, triangles, respectively). Their graphs are planar.

bb

b

b

b

b

b

b

Figure 5.3: A tetrahedron (fire).
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bb
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bb

Figure 5.4: An octahedron (air) and cube (earth).

5.1 Duality

Recall that a (convex) polytope in Rd is the convex hull of a finite set of points in Rd.

We showed that it is in fact the convex hull of its 0-dimensional faces, called vertices

and these are exactly its extreme points (Theorems 4.6 and 4.7). We shall now develop

another view-point, motivated by the fact that convex sets are intersections of half-spaces

(Theorem 3.15). We first discuss the powerful concept of duality.

The duality transform on Rd is a mapping which assigns to a point a ∈ Rd \ {0}
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Figure 5.5: A dodacehedron (universe) and icosahedron (water).

the hyperplane

D(a) = {y ∈ Rd, 〈a, y〉= 1}

and to a hyperplane H not passing through 0, uniquely written as {x ∈ Rd, 〈a, x〉= 1},
the point

D(H) = a.

Duality preserves incidences, as explained in the next lemma.

b
b

b

H

D(H)

s

1/s

Figure 5.6: If a hyperplane is H is at distance 1/s from the origin, then its dual point

D(H) is at distance s from the origin.

5.3 Lemma. For a point a and a hyperplane H in Rd, we have
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(i) a ∈ H if and only if D(H) ∈ D(a).

(ii) a ∈ H− if and only if D(H) ∈ D(a)−.

Proof. Suppose H = {x ∈ Rd, 〈x, p〉= 1} for a vector p ∈ Rd. Then p = D(H) ∈ D(a)

if and only if 〈p, a〉= 1 which holds if and only if a ∈ H. This proves (i). The proof of

(ii) is identical modulo changing “=” to “≤”.

5.4 Example. Consider a triangle ∆ = conv{a1, a2, a3} with vertices a1, a2, a3 on the

plane. To describe the set of all lines intersecting ∆ we can use duality. A line l

intersects ∆ if and only if there is a point p ∈ ∆ such that p ∈ l which is equivalent to

D(l) ∈ ⋃p∈∆D(p). The condition p ∈ ∆ is equivalent to p ∈ H−1 ∩ H−2 ∩ H−3 , where

H1 is the line a1a2, etc. Let vi = D(Hi) be the points dual to the lines bounding ∆.

Now, by duality again, p ∈ H−1 ∩ H−2 ∩ H−3 , if and only if v1, v2, v3 ∈ D(p)−, which

gives that
⋃
p∈∆D(p) is the union of all lines l such that v1, v2, v3 ∈ l−, which is exactly

conv{v1, v2, v3}c. Summarising,

l ∩∆ 6= ∅ ⇔ D(l) ∈
⋃
p∈∆

D(p) = conv{v1, v2, v3}c.

In words, all lines intersecting ∆ are the lines dual to the points conv{v1, v2, v3}c.

b

b

b

b

0

H1

H2
H3v1

v2

v3

∆

Figure 5.7: The lines intersecting ∆ are exactly the ones dual to the points from the

complement conv{v1, v2, v3}c of the dual triangle.

For a set X in Rd we define its dual (polar) set X◦ (sometimes also denoted X?)

as

X◦ = {y ∈ Rd, ∀x ∈ X 〈x, y〉≤ 1}.

Note that

X◦ =
⋂
x∈X
{y ∈ Rd, 〈x, y〉≤ 1}

=
⋂
x∈X
D(x)−.

In words, the polar set is the intersection of all dual half-spaces D(x)− as x ranges over

the set X. Straight from the definition we get the following properties:
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1) X◦ contains the origin 0,

2) X◦ is a closed convex set,

3) if X ⊂ Y , then Y ◦ ⊂ X◦.

5.5 Example. Consider a triangle ∆ = conv{a1, a2, a3} with vertices a1, a2, a3 on the

plane. We have

∆◦ =
⋂
p∈∆

D(p)−.

To describe this geometrically, recall that as done in the previous example, p ∈ ∆ is

equivalent to p ∈ H−1 ∩ H−2 ∩ H−3 , where H1 is the line a1a2, etc. Let vi = D(Hi) be

the points dual to the lines bounding ∆. Now, by duality again, p ∈ H−1 ∩H−2 ∩H−3 ,

if and only if v1, v2, v3 ∈ D(p)−, which gives that
⋂
p∈∆D(p)− is the intersection of

all half-spaces containing v1, v2, v3, which is exactly conv{v1, v2, v3}. Summarising, the

dual set ∆◦ = conv{v1, v2, v3} is the triangle with vertices being the duals of the edges

of the initial set ∆ (see again Figure 5.7). This of course extends to polygons.

5.6 Example. Let H be a hyperplane in Rd such that 0 ∈ H−. Then H◦ is the ray

(−∞,D(H)] and (H−)◦ is the interval [0,D(H)].

b

0

b

H

D(H)

b
x

D(x)−

H◦

Figure 5.8: The dual set of a hyperplane H is the ray (−∞,D(H)].

Duality operations are expected to be involutions (applied twice, they give back

the initial input – recall for instance the complex conjugate or matrix transpose). The

following theorem explains what happens for our notion of geometric duality for sets

(cl(A) denotes the closure of A).

5.7 Theorem. For every subset X of Rd, we have (X◦)◦ = cl(conv(X ∪ {0})). In

particular, if X is closed, convex and contains 0, then (X◦)◦ = X.
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Proof. To show (X◦)◦ ⊃ cl(conv(X ∪ {0})), it is enough to show (X◦)◦ ⊃ X (because

(X◦)◦ is a closed, convex set which contains 0). To this end, take x ∈ X. Then for

every y ∈ X◦, we have 〈x, y〉≤ 1, meaning x ∈ (X◦)◦.

To show the opposite inclusion, we use a separation argument. Take x ∈ (X◦)◦

and suppose x /∈ cl(conv(X ∪ {0})). Then x can be separated from cl(conv(X ∪ {0}))
by a hyperplane H and we can assume that 0 does not belong to H (it is enough to

translate the supporting hyperplane from Theorem 3.11 a little bit towards x). Say,

H = {y ∈ Rd, 〈y, a〉= 1} for some vector a and X ⊂ H−. Then, 〈y, a〉 ≤ 1 for every

y ∈ X, which gives a ∈ X◦ and consequently 〈x, a〉≤ 1 because x ∈ (X◦)◦. On the other

hand, x ∈ H+ \H gives 〈x, a〉> 1, a contradiction.

The “in particular” part follows instantly: if X is closed, convex and contains 0,

then

cl(conv(X ∪ {0})) = cl(conv(X)) = cl(X) = X.

The next result shows that taking the convex hull will not enlarge the dual set.

5.8 Theorem. For every subset X of Rd, we have (conv(X))◦ = X◦.

Proof. Since conv(X) ⊃ X, we have (conv(X))◦ ⊂ X◦. For the opposite inclusion, if

x ∈ X◦, then 〈x, y〉≤ 1 for every y ∈ X, which by linearity gives that 〈x, y〉≤ 1 for every

y ∈ conv(X), hence x ∈ (conv(X))◦.

5.9 Remark. By the definition of the dual set, X◦ =
⋂
x∈X D(x)−, so

(conv(X))◦ =
⋂
x∈X
D(x)−.

Combining the last two theorems, we obtain a description of the dual set of a finite

intersection of half-spaces. First we need two lemmas.

5.10 Lemma. Let A be a compact subset of Rd. Then convA is a closed set.

Proof. Let S = {(λ1, . . . , λd+1) ∈ Rd+1, λi ≥ 0,
∑d+1
i=1 λi = 1} be a simplex and define

a function F : (Rd)d+1 × S → Rd, F (x1, . . . , xd+1, λ) =
∑d+1
i=1 λixi. By Carathéodory’s

theorem, convA = F (A× · · · ×A︸ ︷︷ ︸
d+1

×S). Since F is continuous and A × · · · × A × S is

compact, the assertion follows.

5.11 Example. Consider the following subset of the plane A = {0}×[0, 1]∪[0,∞)×{0}
which is closed (but not compact). Its convex hull is not closed (see Figure 5.9).

5.12 Lemma. For a convex set K in Rd its polar K◦ is bounded if and only if 0 is in

the interior of K.
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b

b

A

conv(A)

Figure 5.9: An example of a closed set whose convex hull is not closed.

Proof. If 0 is in the interor of K, then εBd2 ⊂ K for some ε > 0. Then K◦ ⊂ (εBd2 )◦ =

1
εB

d
2 , which means that K◦ is bounded.

If 0 is not in the interior of K, then 0 is either on the boundary of K or is outside

K. In any case, there is a hyperplane H passing through 0 such that H− ⊃ K (by

separation – see Theorems 3.11, 3.12). Then (H−)◦ ⊂ K◦. But (H−)◦ is a ray from ∞
to 0 in the direction normal to H, hence K◦ is not bounded.

5.13 Theorem. Let H be a finite family of hyperplanes in Rd not passing through 0

oriented such that 0 ∈ H− for every H ∈ H. Suppose
⋂
H∈HH

− is bounded. Then( ⋂
H∈H

H−
)◦

= conv{D(H), H ∈ H}.

Proof. Let X = {D(H), H ∈ H} and K = conv(X) (the right hand side of the state-

ment). Then, by Theorem 5.8

K◦ = (conv(X))◦ = X◦ =
⋂
x∈X
D(x)− =

⋂
H∈H

D(D(H))− =
⋂
H∈H

H−.

In particular, K◦ is bounded, so by Lemma 5.12, K contains 0. Moreover, K is compact

(as the convex hull of a finite set – see also Lemma 5.10). By Theorem 5.7, (K◦)◦ = K.

Consequently,
(⋂

H∈HH
−)◦ = (K◦)◦ = K, as desired.

5.2 Bounded polyhedra are polytopes

The identities (conv(X))◦ =
⋂
x∈X D(x)− and

(⋂
H∈HH

−)◦ = conv{D(H), H ∈ H}
say that the duals of polytopes can be described by finite intersections of closed half-

spaces and their duals are polytopes (if they are bounded). This motivates the following

definition (of the dual of a polytope).

A polyhedron in Rd is the intersection of finitely many closed half-spaces.

5.14 Example. The cube [−1, 1]d is the intersection of the half-spaces {x ∈ Rd, xi ≤ 1}
and {x ∈ Rd, xi ≥ −1}, i = 1, . . . , d.
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As suggested by Example 5.5, it turns out that the duals of polytopes are polytopes,

that is polyhedra (if bounded) are polytopes, and vice versa.

5.15 Theorem. Every bounded polyhedron in Rd is a polytope and vice versa.

Proof. We split the proof into two parts.

Part 1. A bounded polyhedron is a polytope. We do this by induction on dimension. The

base case d = 1 is clear. Fix d ≥ 2 and consider a bounded polyhedron P given as the

intersection of a finite family of half-spaces, say P =
⋂
H∈HH

−. For each hyperplane

H ∈ H, let FH = P ∩ H. Each FH is a bounded polyhedron in dimension d − 1 (for

H ′ ∈ H, H ′ 6= H, the intersection H ′ ∩ H is a half-space in H). By induction, FH

is a polytope, say FH = conv(VH) for some finite subset VH of FH . We claim that

P = conv(∪H∈HVH). Since VH ⊂ P , the inclusion conv(∪H∈HVH) ⊂ P is clear. To

prove the opposite inclusion, take x ∈ P . Let l be a line passing through x. Then l∩P is

a segment with end points y, z which are on the boundary of P (otherwise the segment

can be extended within P ). Thus y ∈ FH , z ∈ FG for some H,G ∈ H. Consequently,

x ∈ conv{y, z} ⊂ conv(VH ∪ VG), which finishes the argument.

Part 2. A polytope is a bounded polyhedron. Let P be a polytope in Rd, say P = conv(V )

for a finite set V in Rd. Without loss of generality, let 0 ∈ intP . By Theorem 5.8,

P ◦ =
⋂
v∈V
D(v)−.

By Lemma 5.12, P ◦ is bounded because 0 is in the interior of P , hence the intersection

on the right hand side is a bounded polyhedron. By Part 1, it is a polytope, so we can

write it as conv(Ṽ ) for a finite set Ṽ in Rd. Now we have,

P = (P ◦)◦ = (conv(Ṽ ))◦ =
⋂
v∈Ṽ
D(v)−

(the first equality holds because P is compact and contains 0 and the third equality

follows from Theorem 5.9). This shows that P is a polyhedron, which finishes the proof.
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5.3 Exercises

1. Find the dual of rBd2 , a centred Euclidean ball of radius r.

2. Show that (Bnp )◦ = Bnq , for p, q ∈ [1,∞], 1
p + 1

q = 1.

3. Find the dual set of a hyperplane passing through the origin and a corresponding

half-space.

4. Let K be a subset of Rd. Show that K = K◦ if and only if K = Bd2 .

5. Show that every d-dimensional simplex in Rd is an intersection of d+ 1 half-spaces.

6. Prove that every polytope in Rd is an orthogonal projection of a simplex of a suffi-

ciently large dimension N onto Rd × {0}N−d.

7. Prove that every symmetric polytope is a linear image of a cross-polytope of a suffi-

ciently large dimension.
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6 Polytopes II

The main goal of this chapter is to present a construction of polytopes with many (in

fact, maximal) number of faces in a given dimension with a given number of vertices.

6.1 Faces

Recall the definition of a face of a polytope P : it is P itself or P ∩H for some supporting

hyperplane H. The dimension of the face P ∩H is the dimension of its affine hull. Zero-

dimensional faces are called vertices.

We begin with a description of vertices and faces of faces. Recall that we showed

that a polytope is the convex hull of its vertices (Theorem 4.6) and the vertices are

exactly the extreme points (Theorem 4.7).

6.1 Theorem. Let P be a polytope in Rd and let F be its face.

(i) F is a polytope.

(ii) The vertices of F are exactly those vertices of P that lie in F .

(iii) The faces of F are exactly those faces of P that are contained in F (“faces of faces

are faces”).

Proof. (i) This was exactly Theorem 3.1. Equipped with the equivalent description

of polytopes as bounded polyhedra (Theorem 5.15), we can give a different proof. If

P =
⋂
H∈HH

− and F = P ∩H0 for a supporting hyperplane H0, then F = P ∩H0 =(⋂
H∈HH

−) ∩H−0 ∩H+
0 , so F is a bounded polyhedron, so it is a polytope.

(ii) By Theorem 4.7, the vertices of F are its extremal points. Moreover, by Lemma

4.4, an extreme point of a face of P is extreme in P and consequently, by Theorem 4.7,

it is its vertex.

H
G

F
F ′

H̃

b

b
b

b

P ⊂ H−

Figure 6.1: Proof of Theorem 6.1 (iii).

(iii) Suppose F = P ∩H for a supporting hyperplane H, P ⊂ H−. Let F ′ ⊂ F be

a face of F , that is F ′ = F ∩ G for a supporting hyperplane of G in H (so it is d − 2-

dimensional). We rotate H around G in a direction such that the rotated half-space

H̃− still contains P . If we rotate only a bit, then the vertices of P not in F are still in
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H̃−. Moreover, H̃− also contains all the vertices of F which are not in F ′. Therefore

H̃ defines the face of P , namely P ∩ H̃ which has exactly those vertices of P which are

in G. By (ii), these are all vertices of F ′ and this shows that F ′ is a face of P .

6.2 Example. Let P be a d-dimensional simplex in Rd with vertex set V . By Theorem

6.1 (ii), if F is a face of P , then F = conv(S) for S ⊂ V . Thus, P has at most
(
d+1
k+1

)
faces of dimension k, k ∈ {0, 1, . . . , d}. In fact, it has exactly

(
d+1
k+1

)
faces of dimension k

(exercise).

6.3 Example. For the cross-polytope Bd1 = conv{±ei}di=1, a subset S ( {±ei}di=1

determines a face F = conv(S) if and only if there is no i such that both ei and −ei are

in F (exercise). Consequently, Bd1 has 3d faces (S arises by making a choice for each i:

take ei or −ei or neither, so excluding S = ∅, there are 3d − 1 choices for S).

6.4 Example. For the cube Bd∞ = conv({−1, 1}d), each face F corresponds to a vector

v ∈ {−1, 0, 1}d, F = conv{u ∈ {−1, 1}d, ui = vi for each i such that vi 6= 0} and v is

the barycentre of Fv (exercise). Consequently, Bd∞ has 3d faces.

Recall that for a polytope in Rd, its d − 1-dimensional faces are called facets. A

polytope P is called simplicial if each of its facets is a simplex and is called simple if

each of its vertices is in d facets.

6.5 Example. Tetrahedron, octahedron, icosahedron are simplicial. Tetrahedron, cube,

dodecahedron are simple. The cross-polytope Bd1 is simplicial. The cube Bd∞ is simple.

A pyramid B3
1 ∩ {x1 ≥ 0} is neither simplicial nor simple. Simplices (in any dimension)

and two-dimensional polygons are both simplicial and simple.

A simplicial polytope in R3 contains only triangular faces. Its graph is a maximal

planar graph (a simple graph is maximal planar if it is planar but adding any edge

destroys this property). Maximal planar graphs have necessarily triangular faces. The

deep theorem of Steinitz asserts that every 3-dimensional polytope forms a 3-connected

planar graph and every 3-connected planar graph can be represented as the graph of

a 3-dimensional polytope. In view of this corresponedence, 3-dimensional simplicial

polytopes correspond to maximal planar graphs.

As we showed, the dual of a polytope P is a polytope. The vertices of the dual

correspond to the facets of P and vice-versa. Moreover, the dual of a simplicial polytope

is simple and vice-versa. For example, the dual of an octahedron is a cube, the dual of

a dodecahedron is an icosahedron, the dual of a simplex is a simplex.

6.2 Cyclic polytopes have many faces

The f-vector of a polytope P in Rd is

f(P ) = (f0(P ), . . . , fd(P )), fk(P ) = the number of k-dimensional faces of P .
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In particular, f0(P ) is the number of vertices of P , fd−1(P ) is the number of its facets

and fd(P ) = 1.

6.6 Example. If P is a d-dimensional simplex in Rd, then f(P ) =
((

d+1
k+1

))d
k=0

.

In a given dimension d, for a given number of vertices n, that is if f0(P ) = n, how

large can the number of facets fd−1(P ) get? How about the total number of faces∑d
k=0 fk(P )?

6.7 Example. In dimension 2, if f0(P ) = n, then f(P ) = (n, n, 1). In dimension 3, by

looking at the graph of P , which is planar, Euler’s formula gives f1(P ) ≤ 3n − 6 and

f2(P ) ≤ 2n− 4 (see (A.3)).

We shall now construct examples for which, given d and f0(P ) = n, fd−1(P ) is

of the order nbd/2c. On the other hand, the behaviour for random polytopes is quite

different: if P is the convex hull of n independently chosen points uniformly in Bd2 , then

fd−1(P ) = o(n) with high probability (as n→∞), as shown in [4].

The moment curve in Rd is

γ = {(t, t2, . . . , td), t ∈ R}.

6.8 Lemma. Every hyperplane H intersect the moment curve γ in Rd in at most d

points. If there are d points of intersection, then H cannot be tangent to γ, so at each

intersection γ passes from one side of H to the other side.

b

b

b

γ

H

Figure 6.2: The moment curve γ in Rd intersect a hyperplane in at most d points.

Proof. Let H = {x ∈ Rd, 〈x, a〉= b}. Then

H ∩ γ =

{
(t, . . . , td),

d∑
k=1

akt
k = b

}
.

The polynomial p(t) =
∑d
k=1 akt

k − b is of degree d, so it has at most d roots. Conse-

quently, H ∩γ has at most d points. If there are d distinct points, p has d distinct roots,
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they are all simple and p(t) changes sign at each root. This explains the second part of

the assertion.

6.9 Corollary. Every d points on γ are affinely independent.

Proof. If some d points on γ are affinely dependent, then there is a hyperlane passing

through them plus one more point on γ, which contradict Lemma 6.8.

b b

b

bb

b

Figure 6.3: A cyclic polytope in R3 with 6 vertices.

The convex hull of finitely many points on γ is called a cyclic polytope. Let us

count the number of facets of a cyclic polytope. Each facet is determined by a set of

d vertices and by Corollary 6.9, distinct d-sets cannot determine the same face. Which

d-sets give rise to facets? There is a convenient criterion due to Gale. For two distinct

points u, v on γ, we write u ≺ v if v corresponds to a larger parameter t of γ than u.

6.10 Lemma (Gale). Let V be the vertex set of a cyclic polytope P in Rd. Let F =

{v1, . . . , vd} ⊂ V be a d-set of vertices of P labelled such that v1 ≺ · · · ≺ vd. Then F

determines a facet of P if and only if for every two vertices u, v not in F , u, v ∈ V \F ,

the number of vertices vi from F such that u ≺ vi ≺ v is even.

Proof. Let H = aff(F ). Note that this is a hyperplane by Corollary 6.9. This hyperplane

determines a facet if and only if all points V \ F lie one the same side of H. We have

H ∩ γ = F and γ is partitioned into d+ 1 consecutive pieces γ0, . . . , γd. By Lemma 6.8,

γ0

γ1

γ2

γ3

γ4

γd

bc
b

b
b b

bbc
bc bc bc

bc

Figure 6.4: Gale’s criterion.
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each piece is contained completely in either H− or H+. Therefore, V \ F must be all

on γ1 ∪ γ3 ∪ . . . or on γ0 ∪ γ2 ∪ . . . . It remains to observe that these are equivalent to

Gale’s criterion.

6.11 Theorem. The number of facets of a d-dimensional cyclic polytope with n vertices

equals 
(
n−bd/2c
bd/2c

)
+
(
n−bd/2c−1
bd/2c−1

)
, if d is even,

2
(
n−bd/2c−1
bd/2c

)
, if d is odd.

(6.1)

6.12 Remark. For a fixed dimension d, (6.1) is asymptotic to nbd/2c as n→∞.

Proof of Theorem 6.11. By Gale’s criterion (Lemma 6.10), the number of facets is the

number of ways of placing d black beads and n− d white beads in a row in such a way

that we have an even number of black beads between each two white beads.

Case 1. d = 2k + 1 is odd. We examine the run of black beads before the first white

bead and the run of black beads after the last white bead. Since there is an even number

of black beads in between and the total number is odd, exactly one of these two runs is

of odd size. Say the first run is of odd size. Then remove the first bead (black); what

remains is a sequence of 2k black beads and n−2k−1 white beads such that every run of

black beads is even. There are
(

(n−2k−1)+k
k

)
=
(
n−k−1

k

)
such sequences (to see that take

out every other black bead, arrange the remaining k black beads among (n−2k−1) +k

possible positions and put back the removed beads). The same happens when the last

run is odd and we get the second case of (6.1).

bcb b b b bbc bc bcb bb b b b

first run last run

Figure 6.5: Proof of Theorem 6.11, Case 1, d is odd.

Case 2. d = 2k is even. We again examine the run of black beads before the first white

bead and the run of black beads after the last white bead. If the first run is of even

length, then the last run is also even and we have a sequence of 2k black beads and

n − 2k white beads where each black run is even. There are
(

(n−2k)+k
k

)
=
(
n−k
k

)
such

sequences. If the first run is odd, then the last run is also odd. By removing the first

and the last bead (which are both black), we get a sequence of 2k− 2 black and n− 2k

white beads where each black run is even. There are
(

(n−2k)+(k−1)
k−1

)
=
(
n−k−1
k−1

)
such

sequences. In total, we get
(
n−k
k

)
+
(
n−k−1
k−1

)
possible sequences, which gives the first

case of (6.1).
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6.13 Remark. The so-called upper bound theorem of McMullen asserts that for every

polytope P in Rd, we have fk(P ) ≤ fk(C), k = 0, . . . , d, where C is a cyclic polytope

in Rd with the same number of vertices as P , that is f0(P ) = f0(C). In other words,

cyclic polytopes maximise the numbers of facets for a given number of vertices. We refer

to [19] or [33] for McMullen’s proof and to [16] or [26] for a slick and short proof of a

weaker bound of the optimal order.
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6.3 Exercises

1. Show that a d-dimensional simplex has
(
d+1
k+1

)
k-dimensional faces, k = 0, 1, . . . , d.

2. Show that for the cross-polytope Bd1 = conv{±ei}di=1, a subset S ( {±ei}di=1 deter-

mines its face F = conv(S) if and only if there is no i such that both ei and −ei are

in F .

3. Show that for the cube Bd∞ = conv({−1, 1}d) every face F corresponds to a vector

v ∈ {−1, 0, 1}d, F = conv{u ∈ {−1, 1}d, ui = vi for each i such that vi 6= 0} and v

is the barycentre of Fv.

4. Show that a permutohedron of order n has n! vertices.

5. If F and G are faces of a polytope P in Rd, then so is F ∩G.

6. Let V be the vertex set of a polytope P in Rd. Let U be a subset of V . Show that

U is the vertex set of a face of P if and only if aff(U) ∩ conv(V \ U) = ∅.

7. Show that the graph of a 3-dimensional polytope is (vertex) 3-connected (removing

any 2 vertices leaves the graph connected).

8. Consider the curve ψ =
{(

1
t+1 , . . . ,

1
t+d

)
, t > 0

}
in Rd. Show that ψ intersects every

hyperplane in at most d points and if there d points of intersections, the hyperplane

is not tangent to ψ.
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7 Combinatorial convexity

7.1 Radon’s theorem

Radon’s theorem says that there are some good partitions of sets having enough points.

7.1 Theorem (Radon). Let A be a subset in Rd with |A| ≥ d + 2. Then there is a

partition, A = X ∪ Y (X ∩ Y = ∅), such that convX ∩ conv Y 6= ∅.

7.2 Remark. The constant d+2 is the best possible because for a d-dimensional simplex

in Rd, there is no such partition (exercise).

7.3 Remark. When d = 1 the theorem is clear as considering three points on a line,

there is always one, say x between some two others, say y, z, so it suffices to take X = {x}
and Y = A \X ⊃ {y, z}.

bcb b
x y z

Figure 7.1: Radon’s theorem in dimension 1.

7.4 Remark. When d = 2, considering 4 points in the plane, there are two possibilities.

Either certain three of them are the vertices of a triangle containing the fourth point,

or the points are the vertices of a convex quadrilateral. In any case, it is clear what to

take for the partition (see Figure 7.2).

bc

b b
x

b

y1 y2

y3

b

b
bc

bc

x1

x2y1

y2

Figure 7.2: Radon’s theorem in dimension 2.

Proof of Radon’s theorem. Since |A| ≥ d+ 2, the set {[ a1 ] , a ∈ A} of vectors in Rd+1 is

not linearly independent. Therefore there are ai ∈ A and nonzero coefficients αi such

that

[ 0
0 ] =

∑
αi [ ai1 ] .

Because the sum of the αi is 0, some of them are positive, some are negative. Let I be

the set of all the indices i for which αi > 0 and J for which αi < 0 (neither I nor J is

empty). Breaking the sum into two pieces yields∑
i∈I

αi [ ai1 ] =
∑
j∈J

(−αj) [ aj1 ] .
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Dividing this through t =
∑
i∈I αi =

∑
j∈J(−αj), which is positive, shows that we can

take X = {ai, i ∈ I} and Y = A \X, for then

convX 3
∑
i∈I

1

t
αi [ ai1 ] =

∑
j∈J

1

t
(−αj) [ aj1 ] ∈ conv Y.

We should remark that there is a generalisation of Radon’s theorem, Tverberg’s

theorem.

7.5 Theorem (Tverberg). Let r ≥ 2 be an integer. Let X be a subset of Rd with

|X| = (r− 1)(d+ 1) + 1. Then there is a partition X = X1 ∪ . . .∪Xr (Xi’s are pairwise

disjoint) such that
⋂r
i=1 convXi 6= ∅.

7.6 Remark. Taking here r = 2 recovers Radon’s theorem.

7.7 Remark. The constant (r− 1)(d+ 1) + 1 is the best possible. To see this, consider

(r− 1)(d+ 1) points in Rd in general position, meaning that no d+ 1 of them lie in the

same hyperplane.

7.2 Helly’s theorem

We shall now discuss Helly’s theorem. We say that a family of sets in Rd has Helly’s

property if every d+ 1 of them have a nonempty intersection.

7.8 Theorem (Helly). Let K1,K2, . . . ,Kn, n ≥ d+1, be convex sets in Rd with Helly’s

property. Then
n⋂
i=1

Ki 6= ∅.

In words, having empty intersection has a finite reason.

Proof. By induction on n. Case n = d + 1 is trivial. Now suppose that n ≥ d + 2 and

the theorem holds for smaller n.

For each j = 1, . . . , n set

Gj =

n⋂
i=1
i 6=j

Ki.

By induction, Gj 6= ∅. Take arbitrary zj ∈ Gj . By Radon’s Theorem, there is a

partition of z1, . . . , zn into two sets X, Y such that convX ∩ conv Y 6= ∅. Take z in this

intersection. We claim that z ∈ Gi for all i = 1, . . . , n. Without loss of generality, focus

on K1 and suppose that z1 ∈ X. Then all zj ∈ Y belong to K1, hence conv Y ⊂ K1

(because K1 is convex), so z ∈ K1 (because z ∈ conv Y ).

7.9 Remark. In a special case d = 1 (intervals on a line), we can give a different

argument. Sketch: Take the rightmost left-endpoint x of these intervals. Then every

interval starts to the left of x and ends to the right of x.
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Note that Helly’s Theorem in general fails for infinite families. For example, take

the family of intervals of the form In = [n,∞), or the family of intervals of the form

Jn = (0, 1/n]. However, if all the sets are compact, the theorem holds.

7.10 Theorem (Helly’s Theorem, infinite version). Let K1,K2, . . . be compact convex

sets in Rd with Helly’s property. Then
⋂∞
i=1Ki 6= ∅.

Proof. Fix n ≥ 1. Then the family of the sets K1, . . . ,Kn has Helly’s property, hence,

by usual Helly’s Theorem, there exists zn ∈
⋂n
i=1Ki. Of course, zn ∈ K1 for every n.

By compactness, take a convergent subsequence (znk) of (zn) and assume it tends to

some z0. Then for a fixed l, since eventaully znk ∈ Kl (for k such that nk ≥ l), we have

z0 ∈ Kl as Kl being compact is closed. Thus,
⋂∞
i=1Ki 6= ∅.

Helly’s Theorem has many applications. We present several now and defer many

others to exercises.

7.11 Example. Let F be a finite family of convex sets in Rd, |F| = n ≥ d+ 1 and let

C ⊂ Rd be convex. Then there exists a translate of C intersecting every set from F if

and only if there exists a translate of C intersecting every (d+ 1)-tuple from F .

Proof. For K ∈ F , let K̃ = {x ∈ Rd, (x + C) ∩K 6= ∅} be the set of translates of C

intersecting K. The key observation is that every K̃ is convex and then we are done by

Helly’s Theorem. We leave the details as an exercise.

7.12 Example. Let H be a finite family of closed half-spaces in Rd and let C be a

convex set in Rd such that C ⊂ ⋃
H∈HH. Then there exists a subfamily H′ ⊂ H,

|H′| = d+ 1 such that C ⊂ ⋃H∈H′ H.

Proof. For every H ∈ H, set H̃ = C \ H. Then H̃ is convex and
⋂
H∈H H̃ = ∅. By

Helly’s Theorem, there exists a (d + 1)-tuple H̃1, . . . , H̃d+1 with empty intersection.

Then C ⊂ H1 ∪ · · · ∪Hd+1.

7.13 Example. (Kirchberger’s Theorem) Let R and B be finite sets of points in Rd (of

say red and blue points). Then R and B can be strictly separated by a hyperplane if

and only if for every Y ⊂ R ∪ B with |Y | ≤ d+ 2, we can separate the sets Y ∩ R and

Y ∩B. (A hyperplane H strictly separates sets A and B if A lies in one open half-space

determined by H and B lies in the opposite open half-space.)

Proof. With every r ∈ R we associate a half-space

Cr =
{

[ aα ] ∈ Rd+1, 〈[ aα ] , [ r
−1 ]〉> 0

}
.

Likewise, with every b ∈ B we associate

Db =
{

[ aα ] ∈ Rd+1,
〈
[ aα ] ,

[
b
−1

]〉
< 0
}
.
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By the assumption, every d + 2 half-spaces have a point in common, hence by Helly’s

Theorem all the half-spaces have a point in common. This point determines a strictly

separating hyperplane.

7.3 Centrepoint

Helly’s theorem provides an elegant argument justifying existence of a centrepoint,

an important and useful notion in computational geometry (especially in divide-and-

conquer type algorithms).

Let X be an n-element set in Rd. A point x in Rd is called a centrepoint of X if

every closed half-space containing x contains at least 1
d+1n points of X. When d = 1, it

is just a median of X. A centrepoint need not belong to X.

7.14 Theorem (Rado). Every finite set in Rd has a centrepoint.

7.15 Remark. Replacing the factor 1
d+1 in the definition of a centrepoint with θ > 1

d+1

would be too restrictive for the existence, for consider the example of a simplex. For

θ = 1
d+1 , there are no efficient algorithms for finding exact cetnrepoints (needless to say

that our proof, based on Helly’s theorem, cannot be constructive). Efficient algorithms

often use θ-centrepoints with an appropriate θ < 1
d+1 , which are easier to find.

Proof of Theorem 7.14. Let X ⊂ Rd have size n. It suffices to find a point x such that

x is in every open half-space H such that |X ∩ H| > d
d+1n. Indeed, take F , a closed

half-space containing x. If F contains fewer than n
d+1 points from X, then H = F c

is an open half-space containing strictly more than d
d+1n points, but not containing x,

contradicting the definition of x.

b

x
F

H

< 1
d+1n

> d
d+1n

Figure 7.3: An explanation of an equivalent definition of a centrepoint.

To show that such x exists we use Helly’s theorem: consider the family

C =

{
conv(X ∩H), H is an open half-space such that |X ∩H| > d

d+ 1
n

}
.

Clearly this is a finite family (of size at most 2|X|). The intersection of any d + 1 sets
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from C misses less than (d + 1) n
d+1 = n points from X, so it is nonempty. By Helly’s

theorem, there is x ∈ ⋂C∈C C. This is a desired point.

7.16 Remark. Using the infinite version of Helly’s theorem, This theorem can be

generalised to Borel probability measures (exercise).

We mention in passing the ham-sandwich theorem, a result of similar flavour but

without convexity. It is proved using topological arguments.

7.17 Theorem (Banach’s ham-sandwich theorem). Every d finite sets in Rd can be

simultaneously bisected by a hyperplane.

(A hyperplane H bisects a finite set A if each of the two open half-spaces defined by

Hcontains at most b |A|2 c points of A.) This theorem also generalises to Borel probability

measures.
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7.4 Exercises

1. Fill out the details of Remark 7.2.

2. Fill out the details of the proof of Example 7.11.

3. Find an example of 4 convex sets on the plane such that the intersection of every 3

of them contains an interval of length 1, but the intersection of all of them does not

contain such an interval.

4. Let I1, . . . , In, n ≥ 3, be vertical intervals in R2 such that for every 3 of them there

is a line intersecting them. Show that then there is a line intersecting all of the

intervals.

5. Show that every Borel probability measure has a centrepoint.

Hint: first show that for a Borel probability measure µ on Rd and an open half-space

H such that µ(H) > α for some α ∈ [0, 1), there is a compact convex set C such that

µ(C) > α and then use the infinite version of Helly’s theorem.

6. Let A1, . . . , An+1 be nonempty subsets of the n-element set {1, . . . , n}. Show that

there are nonempty disjoint subsets I, J of {1, . . . , n+ 1} such that⋃
i∈I

Ai =
⋃
j∈J

Aj .

(This can be viewed as a discrete analogue of Radon’s theorem, without any convex-

ity.)

Hint: consider the n× n+ 1 matrix whose columns are indicator vectors of the sets

Ai (which are nonzero) and use the fact that the columns are linearly dependent.

There is a generalisation for partitions to more than two sets due to Lindström (see

[15]).

7. (a) Let X be subset of Rd. If every d+ 1 points from X can be covered by a (closed)

ball of radius r, then X can be covered by such a ball.

(b) Every set of d+ 1 points in Rd of diameter at most 2 can be covered by a closed

ball of radius r ≤
√

2d
d+1 (which is sharp for a regular simplex).

(c) If X is a subset of Rd with diameter at most 2, then X can be covered by a closed

ball of radius at most
√

2d
d+1 (Jung’s theorem).

8. (a) A compact convex set in Rd of width 1 contains a segment of length 1 of every

direction.

(b) Let C be a finite family of compact convex sets in Rd such that the intersection

of every d+ 1 of them is of width at least 1. Then
⋂
C∈C C has width at least 1.
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8 Arrangements and incidences

8.1 Arrangements

For a finite set H of hyperplanes in Rd, its arrangement is the partition of Rd into

relatively open convex sets called the faces of the arrangement of H. Their dimensions

are 0 (vertices), through d (cells).

8.1 Remark. The cells are the connected components of Rd \ ⋃H∈HH. To obtain

the facets, we take an element H from H, the induced arrangement in H by H ∩ H ′,
H ′ ∈ H \ {H} and the cells of this arrangement, etc.

b

b b

Figure 8.1: An arrangement of 3 lines in R2 with: 7 cells (blue), 9 rays (red), 3 vertices

(black).

8.2 Example. Let H = {{x ∈ R3, xi = 0}, i = 1, 2, 3} be the family of the coordinate

hyperplanes in R3. The arrangement of H consists of 8 cells: a) (0,∞)×(0,∞)×(0,∞),

(−∞, 0) × (0,∞) × (0,∞), etc., b) 12 facets (0,∞) × (0,∞) × {0}, etc, c) 6 rays (the

oriented axes) (0,∞)× {0} × {0}, etc, and d) 1 vertex, the origin.

The arrangement of H is called simple if the hyperplanes from H satisfy: the in-

tersection of every k of them is (d − k)-dimensional, k = 2, 3, . . . , d, d + 1 (with the

convention that only the empty set is of dimension −1). If |H| ≥ d+ 1, for the arrange-

ment of H to be simple, it suffices that every d hyperplanes intersect at a single point

and no d+ 1 hyperplanes have a common point. In particular, such an arrangement has(|H|
d

)
vertices.

How complex are simple arrangements? For instance, we can find the number of

cells in simple arrangements.

8.3 Theorem. The number of cells in a simple arrangement of n hyperplanes in Rd

equals

Φd(n) =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
. (8.1)
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Proof. For d = 1, we have n points on the line and they divide it into n+1 components,

so Φ1(n) = n + 1. Suppose we have a family H of n − 1 hyperplanes in Rd forming a

simple arrangement (with Φd(n − 1) cells). We insert a new hyperplane H. Then H

gets divided by H into Φd−1(n−1) cells. Each cell of this arrangement in H divides one

d-cell of H into two. Therefore,

Φd(n) = (number of cells initially in H) + (cells gained by inserting H)

= Φd(n− 1) + Φd−1(n− 1).

This recurrence and the initial condition Φ1(n) = n+ 1 determine the sequences Φd(n)

uniquely. It remains to check that the values Φd(n) =
∑d
k=0

(
n
k

)
satisfy the recurrence.

H

Figure 8.2: A new hyperplane divides existing cells into two.

8.4 Remark. For a fixed d, we have Φd(n) = O(nd) (as n→∞).

8.5 Remark. By Remark, 8.1, knowing Φd(n), we obtain the number of k-faces of a

simple arrangement of n hyperplanes in Rd. We have,

Number of d-faces = Φd(n),

Number of d− 1-faces = nΦd−1(n− 1),

Number of d− 2-faces =

(
n

2

)
Φd−2(n− 2),

. . . . . . . . .

Number of d− k-faces =

(
n

k

)
Φd−k(n− k), k = 0, 1, . . . , d,

with the convention that Φ0(n) = 1.
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Moreover, it follows by a standard perturbation-type argument that the number of

k-faces of a non-simple arrangement is upper-bounded by the number of k-faces of a

simple arrangement.

8.6 Remark. The number of vertices in a d-cell of an arrangement of n hyperplanes in

Rd is O(nbd/2c). Explanation: a cell is the intersection of at most n-hyperplanes, so its

dual is a polytope with at most n vertices which has at most O(nbd/2c) facets (by the

upper bound theorem – see Remark 6.13), so by duality again, the cell has at most this

many vertices.

Of course, it is interesting to ask about combinatorial complexity of arrangements

of other geometric objects, say segments, or spheres. This has many applications, is

important for analysis of geometric algorithms and has extensively been studied. We

refer to the survey [1].

8.2 Incidences

Suppose we have a finite set L of lines on the plane and a finite set P of points on the

plane. Let I(P,L) be the number of incidences, that is pairs (p, l) such that p is a

point in P , l is a line in L and p is on l. What is the maximal number of incidences

given that there are say m points and n lines? In other words, we define

I(m,n) = max
P,L:|P |=m,|L|=n

I(P,L)

and ask about bounds on I(m,n).

8.7 Example. Considering 3 lines bounding a triangle, we get I(3, 3) ≥ 6.

b b

b

Figure 8.3: This configuration shows that I(3, 3) ≥ 6.

There is of course a trivial upper bound I(m,n) ≤ mn, but it is never attained unless

m = 1 or n = 1. An optimal bound is provided by the Szemerédi-Trotter theorem.

8.8 Theorem (Szemerédi-Trotter, [30]). For the maximal number I(m,n) of incidences

for sets of m points and n lines on the plane, we have

I(m,n) = O(m2/3n2/3 +m+ n).
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8.9 Remark. Our proof will give I(m,n) ≤ 4(m2/3n2/3 +m+ n). Currently the best

bound is 2.5m2/3n2/3 + m + n and it is known that the factor 2.5 cannot be replaced

with 0.42 (see [23], [25]).

There are several other related problems of similar flavour:

1) What is the maximal number of unit distances in the plane,

U(n) = max
S⊂R2,|S|=n

|{(x, y) ∈ S × S, |x− y| = 1}| ?

2) What is the minimal number of distinct distances in the plane,

g(n) = min
S⊂R2,|S|=n

|{(|x− y|, x, y ∈ S}| ?

3) What is the maximal total number K(m,n) of vertices of m distinct cells in an

arrangement of n lines in the plane?

8.10 Example. There is an example of sets of n points and n lines with at least Ω(n4/3)

incidences, hence I(n, n) = Ω(n4/3). Consequently, the Szemerédi-Trotter theorem is

asymptotically tight. Let n = 4k3 = k · 4k2 = 2k · 2k2 and consider the sets of grid

points

P = {(i, j), i = 0, 1, . . . , k − 1, j = 0, 1, . . . , 4k2 − 1}

and lines

L = {y = ax+ b, a = 0, 1, . . . , 2k − 1, b = 0, 1, . . . , 2k2 − 1}.

For x ∈ [0, k) and every line in L, we have ax + b < ak + b < 2k2 + 2k2 = 4k2. As a

result, for each i = 0, 1, . . . , k − 1, each line of L contains a point (i, j) ∈ P and thus

I(n, n) = I(P,L) ≥ k · |L| = kn =
(
n
4

)1/3 · n = Ω(n4/3).

We shall present Szekely’s proof (see [29]) of the Szemerédi-Trotter theorem, who

ingeniously employed the notion of the crossing number of a graph (introduced by Ajtai

et al and independently by Leighton – see [2] and [14]).

e1
e2

e3

Figure 8.4: There are 3 crossings for this drawing: {e1, e2}, {e1, e3}, {e2, e3}.
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8.3 The crossing number of a graph

A drawing of a graph G = (V,E) is a set of points on the plane corresponding to the

vertices of G and arcs between these points (continuous curves without self-intersections)

corresponding to the edges of G. The crossing number of a drawing of the graph is the

number of unordered pairs of different arcs which intersect (nontrivially – outside the

vertices). The crossing number cr(G) of the graph G is the minimal crossing number

over all of its drawings. Of course, we always have cr(G) ≤
(|E|

2

)
.

8.11 Example. The crossing number cr(G) is 0 if and only if G is planar. The clique

K5 is not planar, so cr(K5) ≥ 1. In fact, cr(K5) = 1. Similarly for the complete bipartite

graph K3,3, cr(K3,3) = 1. (see Figures 8.5 and 8.6).

b

b

bb

b

b

b

bb

b

Figure 8.5: Two drawings of K5: the left one has many crossings, the right one is optimal

and it has only 1 crossing.

b bb

b bb

b bb

b bb

Figure 8.6: Two drawings of K3,3: the left one has many crossings, the right one is

optimal and it has only 1 crossing.

Recall a known fact about planar graphs: if a graph G = (V,E) has n vertices and is

planar, then G has at most 3n−6 edges. In other words, if |E| ≥ 3n−5, then cr(G) > 0.

In general, if G has relatively many edges with respect to the number of vertices, its

crossing number should be large. This intuition can be quantified which is done in the

following theorem (discovered independently by Ajtai et al and Leighton).
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8.12 Theorem (The crossing number inequality). For a simple graph G = (V,E), we

have

cr(G) ≥ 1

64

|E|3
|V |2 − |V |. (8.2)

8.13 Remark. This bound is tight. For instance, let G be the complete graph. Then

|E| =
(|V |

2

)
, so cr(G) ≤ |E|2 = |E|3

|E| = O
(
|E|3
|V |2

)
.

We shall present a proof based on the so-called amplification trick. First we amplify

the statement “if G is planar, then |E| ≤ 3|V |” to arbitrary graphs by exploiting the

freedom to delete edges. This gives a (suboptimal) lower bound on the crossing number

stated in the following lemma.

8.14 Lemma. For a simple graph G = (V,E), we have

cr(G) ≥ |E| − 3|V |.

Proof. Take a drawing of G which has cr(G) crossings. By deleting at most cr(G) arcs,

we remove all the crossings, so we obtain a planar graph with at least |E|− cr(G) edges,

thus |E| − cr(G) ≤ 3|V |.

Now we amplify this lower bound by exploiting the freedom to remove vertices. For

the edges, it was clear which edges should be removed to make G planar. For vertices

the situation is more complex and we make a random choice.

Proof of Theorem 8.12. Consider a drawing of G with n vertices, m edges and x cross-

ings. Without loss of generality, we can assume that m > 4n (otherwise the right hand

side of (8.2) is nonpositive. Let p ∈ (0, 1) and let V ′ ⊂ V be selected at random in-

cluding each element v ∈ V into V ′ independently with probability p. Let n′,m′, x′ be

the inherited parameters for the induced (random) graph and its induced drawing. We

compute the expectations

En′ = np,

Em′ = E

(∑
e∈E

1e

)
=
∑
e∈E

E1e = mp2,

Ex′ = E

 ∑
crossings c={e,e′}

1c

 =
∑

crossings c={e,e′}
E1c = xp4,

where 1e and 1c are the indicator random variables of an edge e and a crossing c

respectively. By Lemma 8.14, we have x′ ≥ m′ − 3n′, thus Ex′ ≥ Em′ − 3En′ which

becomes xp4 ≥ mp2−3np, or x ≥ m
p2− 3n

p3 . We choose positive p < 1 to maximise the right

hand side (which is increasing for p ∈ (0, 9n
2m ) decreasing for p > 9n

2m ). For simplicity, we

take p = 4n
m (which we know is less than 1) and obtain x ≥ m3

42n2 − 3m3

43n2 = 1
64
m3

n2 . This

finishes the proof.
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8.15 Remark. Carrying out the optimisation over p carefully, we can slightly improve

the constant 1
64 and get cr(G) ≥ 4

243
|E|3
|V |2 − 3

2 |V |.

8.4 Proof of the Szemerédi-Trotter theorem

b b

b

b b b

Figure 8.7: A construction of a graph (blue edges) based on sets of points P and lines

L (in black).

Proof of Theorem 8.8. Let P and L, |P | = m, |L| = n be the sets of points and lines

realising the maximal number of incidences, I(P,L) = I(m,n). Define a graph G =

(V,E) as follows: V = P and

E = {{p, q}, p, q,∈ P, p, q ∈ ` for some ` ∈ L

and the segment [p, q] does not contain any other point r ∈ P}.

Note that

|E| =
∑
`∈L

(number of points on `− 1) = I(P,L)− |L|.

By looking at the drawing of G given by P and L, we get a trivial upper bound

cr(G) ≤
(|L|

2

)
(a possible crossing arises only if two lines from L cross). On the other hand, by the

crossing number inequality (8.2),

cr(G) ≥ 1

64

|E|3
|P |2 − |P |.

Combining yields
1

64

(I(m,n)− n)3

m2
−m ≤

(
n

2

)
,

hence

I(m,n) ≤ n+ 4m2/3

[(
n

2

)
+m

]1/3

≤ n+ 4m2/3

[(
n

2

)1/3

+m1/3

]
≤ n+ 4m2/3(n2/3 +m1/3)

≤ 4(m2/3n2/3 +m+ n).
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8.5 Application in additive combinatorics

We show an application of the Szemerédi-Trotter theorem to sum-product estimates

from additive combinatorics. Suppose A is a finite subset of R \ {0}. We form the sum

set

A+A = {a+ b, a, b,∈ A}

and the product set

A ·A = {ab, a, b ∈ A}.

Typically, if A is not appropriately structured to cause cancellations in sums or prod-

ucts, the size of A + A as well as A · A will be roughly |A|2. However, they can be

significantly smaller: if the elements of A form an arithmetic progression, then |A+A|
will be comparable to just |A|, or similarly, if the elements of A form a geometric pro-

gression, then |A ·A| will be small. However, A cannot form an arithmetic and geometric

progression simultaneously (unless it is very short). Therefore, it is reasonable to believe

that |A+A| or |A ·A| is always much larger than |A|. Erdös and Szemerédi quantified

such a conjecture and asked in [11] whether for every positive δ there is n0 such that

max{|A+A|, |A ·A|} ≥ |A|2−δ,

provided that |A| ≥ n0. This conjecture remains open. In that paper, Erdös and

Szemerédi showed that there are positive constants ε, c and C such that for every

A ⊂ R \ {0}, we have

c|A|1+ε ≤ max{|A+A|, |A ·A|} ≤ C|A|2 exp

{
− c log |A|

log log |A|

}
.

The (inexplicit) constant ε in the exponent in the lower bound has been improved, first

to ε = 1
31 by Nathanson in [22], then to ε = 1

4 by Elekes in [10], who used the Szemerédi-

Trotter theorem in a simple and powerful way. Currently the best lower bound is of the

order |A|
1+ 3

11

log
3
11 |A|

, due to Solymosi from [27], who also used the Szemerédi-Trotter theorem

(in a sophisticated way). We present Elekes’ slick argument.

8.16 Theorem ([10]). For every subset A of R \ {0} with |A| ≥ 8, we have

max{|A+A|, |A ·A|} ≥ 1

8
|A|5/4.

Proof. Define the set of points in the plane

P = (A ·A)× (A+A)

and the set of lines

L = {y =
1

a1
x+ a2, a1, a2 ∈ A}.

We have |P | = |A · A||A + A| and |L| = |A|2. Note that every line from L contains

at least |A| points from P , namely for a line ` : y = 1
a1
x + a2, we have that a point
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(a1a, a+ a2) is on ` for every a ∈ A. Thus the number of incidences I(P,L) is at least

|L||A| = |A|3. On the other hand, by the Szemerédi-Trotter theorem (Theorem 8.8),

we have I(P,L) ≤ 4(|P |2/3|L|2/3 + |P | + |L|). Let m = max{|A + A|, |A · A|}. Since

|P | = |A ·A||A+A| ≤ m2 and crudely m ≤ |A|2, we also have |P | ≤ m4/3|A|4/3. Thus,

|A|3 ≤ I(P,L) ≤ 4(m4/3|A|4/3 +m4/3|A|4/3 + |A|2) = 8m4/3|A|4/3 + 4|A|2,

so

m4/3 ≥ |A|
3 − 4|A|2
8|A|4/3 = |A|2/3 |A| − 4

8
≥ |A|2/3 |A|

16
=
|A|5/3

16
,

which gives m ≥ |A|
5/4

163/4 = |A|5/4
8 .
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8.6 Exercises

1. Justify the claim made in Remark 8.5 that the number of k-faces in a simple arrange-

ment of n hyperplanes in Rd is
(
n
k

)
Φd−k(n− k).

2. Show that the maximal number of incidences for m points and n lines such that every

point is on at least 2 lines is at most a half the maximal number of vertices of m

distinct cells in an arrangement of n lines in the plane.

3. Show that the number of incidences of n lines in R3 and m points in R3 is at most

O(m2/3n2/3 +m+ n).

4. Show that the number of lines in R2 such that each contains at least k points from

a given set of m points in R2 is O(m2/k3 +m/k).

5. Show that n points on the plane determine at most

(a) O(n7/3) triangles with a given angle α,

(b) O(n7/3) triangles with area 1,

(c) O(n7/3) isosceles triangles.

(These results are from [24].)
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9 Volume

We shall denote Lebesgue measure (volume) on Rd by vold(·) or, for brevity, |·| (whenever

it is not ambiguous). If a set A in Rd is lower dimensional, say it is contained in a k-

dimensional affine subspace, by volk(A), or |A|, we mean its Lebesgue measure on that

subspace. We write vold−1(∂A) or simply |∂A| to denote the surface measure of the

boundary of A. Recall two crucial properties of volume: it is translation invariant,

|A + x| = |A| for any x ∈ Rd, it is d-homogeneous, that is |λA| = λ|A| for any λ ≥ 0,

and more generally, if f : Rd → Rd is a linear map, then |f(A)| = |det(f)| · |A|.

9.1 The Brunn-Minkowski inequality

We begin with a simple example. Let K be a convex compact set in R2 and let u be a

unit vector in R2. Consider the function

fu(t) = vol1

(
K ∩ (tu+ u⊥)

)
, t ∈ R,

which gives the length of the section of K by a line perpendicular to u passing through

tu. Since K is convex, the function fu is concave on its support (the support of a

u

span(u) tu

tu+ u⊥

fu(t)

Figure 9.1: Brunn’s principle.

function f is the closure of the set {x, f(x) 6= 0} where it is nonzero). Note that the

support of fu is the projection of K onto the line spanned by u. Suppose u = e1.

The concavity of fu can be seen for instance by viewing K as the region between two

functions: K = {(x, y), x ∈ [a, b], f1(x) ≤ y ≤ f2(x)}. Since K is convex, f1 is convex
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and f2 is concave. Then fu(x) = f2(x) − f1(x), x ∈ [a, b] is concave as the sum of two

concave functions. This can be generalised to higher dimensions and is usually referred

to as Brunn’s principle. Before stating it, let us consider one more example.

9.1 Example. Consider the cone K = conv({(0, 0, 0)} ∪ {0} × Bd2 ) in R3. Let u = e1

and consider the function of the volume of sections of K by hyperplanes perpendicular

to u defined as

fu(t) = vol2

(
K ∩ (tu+ u⊥)

)
, t ∈ R.

Plainly, fu(t) = πt21[0,1](t). This is not a concave function on its support, but f
1/2
u is

concave, even linear, on [0, 1].

tu+ u⊥

b b b

0 tu

Figure 9.2: Brunn’s principle for a cone.

9.2 Theorem (Brunn’s principle). Let K be a compact convex set in Rd. Let u be a

unit vector in Rd. Then the function

fu(t) = vold−1

(
K ∩ (tu+ u⊥)

)
, t ∈ R,

satisfies: f
1
d−1
u is concave on its support.

Historically, this was shown by Brunn for d = 2 and d = 3 and later by Minkowski for

any d. He established a more general result, traditionally called the Brunn-Minkowski

inequality.

9.3 Theorem (Brunn-Minkowski inequality). Let A and B be compact nonempty sets

in Rd. Then

|A+B| 1d ≥ |A| 1d + |B| 1d . (9.1)
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b b b

0

b

s t

Kλs+(1−λ)t ⊃ λKs + (1 − λ)Kt

Figure 9.3: Proof of Brunn’s principle: by convexity Kλs+(1−λ)t ⊃ λKs + (1− λ)Kt.

Note that we do not assume the convexity of A or B. First we show how to deduce

Brunn’s principle from the Brunn-Minkowski inequality and then prove the latter.

Proof of Theorem 9.2 using Theorem 9.3. Define Kt = {x ∈ u⊥, x+tθ ∈ K}, t ∈ R and

let f(t) be the d− 1-dimensional volume (on u⊥) of Kt. Note that Kt is the translation

of K ∩ (tu + u⊥) so that it is contained in the subspace u⊥, hence f(t) = fu(t). Take

λ ∈ [0, 1], s, t in the support of f and set A = λKs and B = (1 − λ)Kt. By convexity,

Kλs+(1−λ)t contains λKs + (1− λ)Kt = A+B, thus, using (9.1),

f(λs+ (1− λ)t)
1
d−1 ≥ |A+B| 1

d−1 ≥ |A| 1
d−1 + |B| 1

d−1 = λ|Ks|
1
d−1 + (1− λ)|Kt|

1
d−1

= λf(s)
1
d−1 + (1− λ)f(t)

1
d−1 ,

which shows that f is 1
d−1 -concave on its support.

Proof of Theorem 9.3. By a box in Rd, we mean a set of the form [a1, b1] × [a2, b2] ×
· · · × [ad, bd] (a closed axis-parallel parallelopiped). Note that the volume of A is |A| =∏d
i=1(bi − ai), where αi = bi − ai are the side lengths of A. First we claim that (9.1)

holds for boxes.

Claim 1. If A and B are boxes, then (9.1) holds.

Proof. Suppose A has side lengths α1, . . . , αd > 0 and B has side lengths β1, . . . , βd > 0.

Then A+B is a box with side lengths α1 + β1, . . . , αd + βd and (9.1) becomes(
d∏
i=1

(αi + βi)

)1/d

≥
(

d∏
i=1

αi

)1/d

+

(
d∏
i=1

βi

)1/d

.

Showing this is left as an exercise.

We call a set in Rd a brick set if it is a union of finitely many boxes with disjoint

interiors. Now we claim that it is enough to establish (9.1) for brick sets.

Claim 2. If (9.1) holds for all sets A, B which are nonempty brick sets in Rd, then it

holds for all nonempty compact sets A, B in Rd.
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Proof. We use the following fact from measure theory: if measurable sets X1, X2, . . . of

Rd satisfy X1 ⊃ X2 ⊃ . . . , then limn→∞ |Xn| = |
⋂∞
i=1Xi|. Suppose A,B are nonempty

compact sets in Rd. Fix an integer n ≥ 1 and consider the tiling of Rd by the translates

of the cube [0, 2−n]d by the lattice 2−nZd. Let An be the union of all such cubes which

intersect A. Then A1 ⊃ A2 ⊃ . . . and
⋂∞
i=1Ai = A (exercise). Thus limn→∞ |An| =

|⋂∞i=1Ai| = |A|. Similarly for Bn and B. By compactness, A + B ⊃ ⋂∞n=1An + Bn (if

x = an + bn for every n and some an ∈ An, bn ∈ Bn, then by passing to convergent

subsequences, we have an → a and bn → b for some a ∈ A, b ∈ B, thus x = a+b ∈ A+B).

By this inclusion, for every n, we get |A+B| ≥ |An+Bn|. Since An and Bn are nonempty

brick sets, (9.1) yields |An +Bn|1/d ≥ |An|1/d + |Bn|1/d, thus

|A+B|1/d ≥ |An|1/d + |Bn|1/d.

Letting n → ∞, we have |An| → |A|, |Bn| → |B| and we get (9.1) for A and B, as

desired.

H

H+

H−

A

B

Figure 9.4: Proof of the Brunn-Minkowski inequality for brick sets.

It remains to show (9.1) if A and B are brick sets. Suppose A and B contain in

total k boxes. We argue by induction on k than (9.1) holds. The base case k = 2 has

been done in Claim 1. Suppose k > 2 and (9.1) holds for all brick sets A,B having in

total fewer than k boxes. Suppose A,B are brick sets having in total k boxes, with say

A having at least 2 boxes. There is a coordinate hyperplane H (that is a hyperplane

of the form {x ∈ Rd, xi = t} for some i ≤ d and t ∈ R) such that one box of A is

fully in H− and one in H+ (why?). Consider A− = A ∩H− and A+ = A ∩H+. These

are also brick sets. By the choice of H, each of them has at least one brick less than

A. Let λ = |A−|
|A| . Since the interiors of A− and A+ are disjoint, |A| = |A−| + |A+|

and, consequently, 1 − λ = |A+|
|A| . We also define B− = B ∩ H− and B+ = B ∩ H+.

Translating B if necessary, we can assume that λ = |B−|
|B| and then 1 − λ = |B+|

|B| . Note

that

A+B ⊃ (A− +B−) ∪ (A+ +B+)

(simply because A ⊃ A−, B ⊃ B−, so A+ B ⊃ A− + B− and similarly for A+ + B+).

Moreover, A−+B− ⊂ H− and A+ +B+ ⊂ H+, so A−+B− and A+ +B+ have disjoint
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interiors. Thus,

|A+B| ≥ |A− +B−|+ |A+ +B+|.

By induction, (9.1) holds for A−, B− (they have altogether fewer than k boxes), as well

as for A+, B+. Thus,

|A+B| ≥ |A− +B−|+ |A+ +B+|

≥
(
|A−|1/d + |B−|1/d

)d
+
(
|A+|1/d + |B+|1/d

)d
=
(
λ|A|1/d + λ|B|1/d

)d
+
(

(1− λ)|A|1/d + (1− λ)|B|1/d
)d

= λ
(
|A|1/d + |B|1/d

)d
+ (1− λ)

(
|A|1/d + |B|1/d

)d
=
(
|A|1/d + |B|1/d

)d
.

9.2 Isoperimetric and isodiametric inequality

The isoperimetric problem asks to determine which sets of fixed perimeter have largest

volume (isos from Greek means equal and perimetros means perimeter). The isodia-

metric problem asks to determine which sets of fixed diameter have largest volume. The

Brunn-Minkowski inequality gives a way to solve both of these questions.

For a compact set A in Rd, we define its perimeter (the surface area of its boundary),

denoted |∂A|, as follows

|∂A| = lim inf
ε→0+

|A+ εBd2 | − |A|
ε

.

ba

b

ε

Figure 9.5: The perimeter of a rectangle of side lengths a and b of course equals

lim infε→0+
2aε+2bε+4 1

4πε
2

ε = 2a+ 2b.

In particular, for the unit Euclidean ball,

|∂Bd2 | = lim inf
ε→0+

|Bd2 + εBd2 | − |Bd2 |
ε

= lim inf
ε→0+

|(1 + ε)Bd2 | − |Bd2 |
ε

= lim inf
ε→0+

(1 + ε)d − 1

ε
|Bd2 | = d|Bd2 |.
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It is left as an exercise to compute the volume of Bd2 .

9.4 Theorem (The isoperimetric inequality). Let A be a compact set in Rd. Let B be a

Euclidean ball in Rd with the same volume as A, |B| = |A|. Then for every nonnegative

t, we have

|A+ tBd2 | ≥ |B + tBd2 |. (9.2)

In particular,

|∂A| ≥ |∂B|. (9.3)

Proof. By translation invariance, we can assume that B is centred, say B = rBd2 . By

(9.1),

|A+ tBd2 |1/d ≥ |A|1/d + t|Bd2 |1/d = |B|1/d + +t|Bd2 |1/d

= (r + t)|Bd2 |1/d = |(r + t)Bd2 |1/d = |B + tBd2 |1/d.

Inequality (9.3) says that among all compact sets with the same volume as B, the

ball B has the smallest surface area. In other words, the solution to the isoperimetric

problem is a Euclidean ball (exercise).

9.5 Theorem (The isodiametric inequality). Let A be a compact set in Rd. Let B be

a Euclidean ball such that diam(A) = diam(B). Then

| conv(A)| ≤ |B|. (9.4)

Proof. Since diam(conv(A)) = diam(A), we can assume that A is convex. By the Brunn-

Minkowski inequality, ∣∣∣∣A−A2

∣∣∣∣ ≥
(∣∣∣∣A2

∣∣∣∣1/d +

∣∣∣∣−A2
∣∣∣∣1/d

)d
= |A|.

Note also that

diam

(
A−A

2

)
= diam(A).

Indeed, one inequality follows by the triangle inequality, that is if a, a′ ∈ A−A
2 , then

a = a1−a2
2 and a′ =

a′1−a′2
2 for some a1, a2, a

′
1, a
′
2 ∈ A, so

|a− a′| =
∣∣∣∣a1 − a2

2
− a′1 − a′2

2

∣∣∣∣ =

∣∣∣∣a1 − a′1 + a′2 − a2

2

∣∣∣∣ ≤ |a1 − a′1|+ |a′2 − a2|
2

≤ diam(A),

which gives diam
(
A−A

2

)
≤ diam(A). The opposite inequality holds because if we have

that diam(A) = |a1 − a2| for some a1, a2 ∈ A, then a = a1−a2
2 and a′ = −a are in A−A

2

and |a− a′| = |a1 − a2|. Since A−A
2 is symmetric, we have

A−A
2

⊂ diam(A)

2
Bd2 .
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Thus,

|A| ≤
∣∣∣∣A−A2

∣∣∣∣ ≤ ∣∣∣∣diam(A)

2
Bd2

∣∣∣∣
and diam(A)

2 Bd2 is a Euclidean ball with the same diameter as A.

Theorem 9.5 says that the solution to the isodiametric problem is a Euclidean ball.

We will need later a generalisation of Theorem 9.5 to arbitrary norms. Note that

in the proof, we only used the triangle inequality, thus repeating the whole argument

verbatim, we obtain the following result.

9.6 Theorem (The isodiametric inequality for arbitrary norms). Let ‖ · ‖ be a norm

on Rd. Let A be a compact set in Rd. Let B be a ball with respect to ‖ · ‖ such that

diam‖·‖(A) = diam‖·‖(B), say B = {x ∈ Rd, ‖x‖ ≤ r} with r = 1
2 diam‖·‖(A). Then

| conv(A)| ≤ |B|.

Here, for a compact set X in Rd, diam‖·‖(X) = max{‖x− x′‖, x, x′ ∈ X}.

9.3 Epsilon nets

We finish this chapter by explaining the existence of small nets, which is a very useful

fact. Recall that a δ-net of a metric space (M,d) is a subset X of M such that that

for every point y from M , there is a point x in X such that d(x, y) < δ. In other

words, M is covered with the (open) balls with radius r centred at the points in X,

M ⊂ ⋃x∈X B(x, δ).

9.7 Theorem. Let ‖ · ‖ be a norm on Rd. For every δ > 0, the unit sphere {x ∈
Rd, ‖x‖ = 1} admits a δ-net, with respect to the distance measured by ‖ · ‖, of size at

most (1 + 2/δ)d.

Proof. Let B = {x ∈ Rd, ‖x‖ < 1} be the unit ball and let S = {x ∈ Rd, ‖x‖ = 1}
be the unit sphere with respect to ‖ · ‖. Let X be a subset of S of maximal cardinality

with the property that every two points of X are at least δ-apart in distance measured

by ‖ · ‖, equivalently, the balls {x+ δ
2B}x∈X are disjoint. Note that by its maximality,

X is also a δ-net of S (otherwise, we could add a point to X). By a volume argument,

X cannot be too large,

|X| · (δ/2)d vold(B) = vold

( ⋃
x∈X

(x+
δ

2
B)

)
≤ vold

((
1 +

δ

2

)
B

)

=

(
1 +

δ

2

)d
vold(B),

hence |X| ≤ (1 + 2/δ)d.
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9.4 Concentration of measure on the sphere

We equip the unit Euclidean sphere Sd−1 = ∂Bd2 in Rd with a probability measure σ

defined as follows

σ(A) =
|Ã|
|Bd2 |

, Ã = {ta ∈ Rd, a ∈ A, t ∈ [0, 1]}

for all Borel subsets A of Sd−1.

b

A
Ã

Figure 9.6: For a set A in Sd−1, we define a cone Ã. Its normalised volume is σ(A), the

normalised surface measure of A.

Note that σ is rotationally invariant. In fact, it is the usual surface measure on Sd−1

normalised to be a probability measure. For a subset A of Sn−1 and t ≥ 0, we define its

t-enlargement At by

At = {x ∈ Sn−1, dist(x,A) ≤ t} = (A+ tBd2 ) ∩ Sd−1.

Note that for t ≥ 2, At becomes the whole sphere.

The concentration of measure phenomenon asserts that enlargements of sets result

in sets of measure almost 1. Formally, we have the following result.

9.8 Theorem. For a Borel subset A of the unit Euclidean sphere Sd−1 with measure

at least one-half, σ(A) ≥ 1/2, we have for positive t,

σ(At) ≥ 1− 2e−dt
2/4.

Proof. We can assume that t < 2. Let B be the complement of the t-enlargement At of

A, B = Sd−1 \At. For x ∈ A and y ∈ B, we have |x− y| ≥ t, so∣∣∣∣x+ y

2

∣∣∣∣ =

√
1−

( |x− y|
2

)2

≤
√

1− t2

4
≤ 1− t2

8
.

Let Ã be the part in Bd2 of the cone built on A, Ã = {αx, α ∈ [0, 1], x ∈ A}, so that

σ(A) = |Ã|/|Bd2 |; similarly for B and B̃. Consider x̃ ∈ Ã and ỹ ∈ B̃, say x̃ = αx and
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ỹ = βy, for some α, β ∈ [0, 1] and x ∈ A, y ∈ B. If, say α ≤ β, we have∣∣∣∣ x̃+ ỹ

2

∣∣∣∣ =

∣∣∣∣αx+ βy

2

∣∣∣∣ = β

∣∣∣∣ αβx+ y

2

∣∣∣∣ = β

∣∣∣∣αβ x+ y

2
+

(
1− α

β

)
y

2

∣∣∣∣
≤
∣∣∣∣αβ x+ y

2
+

(
1− α

β

)
y

2

∣∣∣∣
≤ α

β

∣∣∣∣x+ y

2

∣∣∣∣+

(
1− α

β

) ∣∣∣y
2

∣∣∣ .
Since

∣∣x+y
2

∣∣ ≤ 1− t2

8 and
∣∣y

2

∣∣ ≤ 1
2 ≤ 1− t2

8 , we get∣∣∣∣ x̃+ ỹ

2

∣∣∣∣ ≤ 1− t2

8
,

thus
Ã+ B̃

2
⊂
(

1− t2

8

)
Bd2 .

By the Brunn-Minkowski inequality,(
1− t2

8

)d
|Bd2 | ≥

∣∣∣∣∣ Ã+ B̃

2

∣∣∣∣∣ ≥
√
|Ã| · |B̃| = |Bd2 |

√
σ(A)σ(B).

Using, σ(A) ≥ 1
2 , σ(B) = 1 − σ(At), 1 − t2

8 ≤ e−t
2/8 and rearranging finishes the

proof.
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9.5 Exercises

1. Prove that for every nonnegative numbers α1, . . . , αd and β1, . . . , βd, we have(
d∏
i=1

(αi + βi)

)1/d

≥
(

d∏
i=1

αi

)1/d

+

(
d∏
i=1

βi

)1/d

.

2. Let A be a nonempty compact set in Rd. Let n ≥ 1 be an integer and consider the

tiling of Rd by the translates of the cube [0, 2−n]d by the lattice 2−nZd. Let An

be the union of all such cubes which intersect A. Show that A1 ⊃ A2 ⊃ . . . and⋂∞
n=1An = A.

3. Justify the existence of the hyperplane H from the inductive argument for brick sets.

4. Using Theorem 9.4, show that if A is a compact set in Rd and B is a Euclidean

volume of the same perimeter, |∂A| = |∂B|, then |A| ≤ |B|. In other words,

|∂A| ≥ d|Bd2 |
1
d |A| d−1

d .

5. Recall that Γ(t) =
∫∞

0
xt−1e−xdx, t > 0 is the Gamma function. In particular,

Γ(t+ 1) = tΓ(t) and for a positive integer n, Γ(n) = (n− 1)!.

(a) Show that
∫
Rd e

−(x2
1+···+x2

d)dx = d|Bd2 |
∫∞

0
rd−1e−r

2

dr = |Bd2 |Γ(d2 + 1).

(b) Using Fubini’s theorem, note that
∫
Rd e

−(x2
1+···+x2

d)dx =
(∫

R e
−x2

dx
)d

and using

the case d = 2 evaluate
∫
R e
−x2

dx.

(c) Conclude that |Bd2 | =
√
πd

Γ( d2 +1)
.

6. We say that a function f : Rd → R is locally Lipschitz if the quantity ‖∇f(x)‖ =

lim supy→x
|f(y)−f(x)|
|y−x| is bounded on Rd. Note that if f is a C1 function, then ‖∇f(x)‖

is simply the Euclidean norm of ∇f(x). Prove the so-called co-area inequality∫
Rd
‖∇f(x)‖dx ≥

∫
R
|∂At|dt,

where At = {x ∈ Rd, f(x) > t}.

7. Using the isoperimetric inequality and the co-area inequality prove the L1–Sobolev

inequality with sharp constant: for every locally Lipschitz function f : Rd → R with

a compact support, we have(∫
Rd
|f | d

d−1

) d−1
d

≤ 1

d|Bd2 |1/d
∫
Rd
‖∇f(x)‖dx.

Show that this inequality when applied to f approximating the indicator function of a

measurable set A in Rd, recovers the isoperimetric inequality: |∂A| ≥ d|Bd2 |
1
d |A| d−1

d .
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10 Equilateral and equiangular sets

Let ‖ · ‖ be a norm on Rd. A set X in Rd is called ‖ · ‖-equilateral if there is a

positive number α such that ‖x − y‖ = α for every two distinct elements x and y in

X. In particular, `p-equilateral means equilateral with respect to the `p-norm, that is

‖x‖ = ‖x‖p = (
∑d
i=1 |xi|p)1/p. The basic question we are interested in is: given a norm

‖ · ‖, what is the size of the largest (in terms of the cardinality) ‖ · ‖-equilateral set?

10.1 Example. Let X be the set of the vertices of a regular d-dimensional simplex in

Rd. Then X is `2-equilateral and |X| = d+ 1.

10.2 Example. Let X = {−1, 1}d (the vertices of the cube [−1, 1]d, that is the unit

ball in `∞-norm). Then X is `∞-equilateral and |X| = 2d.

10.3 Example. Let X = {−e1, e1, . . . ,−ed, ed} (the vertices of the cross-polytope, that

is the unit ball in `1-norm). Then X is `1-equilateral and |X| = 2d.

To address the above question, we shall take a geometric view-point on norms and

then equilateral sets. Norms are intimately connected to convex sets. A convex body

in Rd is a convex set which is compact and has nonempty interior.

10.4 Theorem. Given a norm ‖ · ‖ on Rd, its (closed) unit ball, {x ∈ Rd, ‖x‖ ≤ 1} is

a symmetric convex body. Conversely, given a symmetric convex body K in Rd, there is

a norm ‖ · ‖ on Rd whose unit ball is K.

The proof is the content of two exercises. We have the following geometric charac-

terisation of equilateral sets. We say that two convex bodies K and L touch if they

intersect, but only along their boundaries, that is K ∩ L 6= ∅ and K ∩ L ⊂ ∂K ∩ ∂L.

b

b

b
x+K

y +K

x

y
x+y
2

Figure 10.1: Two translates x+K, y +K of the unit ball K touch if and only if x and

y are exactly 2 apart.

10.5 Theorem. Let ‖ · ‖ be a norm on Rd. Let K = {x ∈ Rd, ‖x‖ ≤ 1} be its unit ball.

If X is a ‖ · ‖-equilateral set such that ‖x− y‖ = 2 for every two distinct x, y in X, then

the family {x + K}x∈X is a family of pairwise touching translates of K. Conversely,

every such family defines an equilateral set.
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Proof. If ‖x − y‖ = 2, then x+y
2 is a common point of x + K and y + K. Moreover, if

there was a common point in the interior of one of them, say p ∈ int(x + K), meaning

‖p − x‖ < 1, then ‖x − y‖ ≤ ‖x − p‖ + ‖p − y‖ < 2. Conversely, if x + K and y + K

intersect, say p is their common point, then ‖x− y‖ ≤ ‖x− p‖+ ‖p− y‖ ≤ 2. Moreover,

if ‖x − y‖ < 2, then x+y
2 satisfies ‖x − x+y

2 ‖ < 1 and ‖y − x+y
2 ‖ < 1, that is x+y

2 is in

the interior of both x+K and y +K.

10.1 Upper bound for equilateral sets for arbitrary norms

10.6 Theorem. If ‖ · ‖ is a norm on Rd and X is a ‖ · ‖-equilateral set in Rd, then X

is finite with cardinality satisfying |X| ≤ 2d.

10.7 Remark. The example of the vertices of the cube (see Example 10.2) shows that

this upper bound is sharp for the `∞-norm. In other words, the largest `∞-equilater set

is of size 2d.

Proof of Theorem 10.6. Let K be the unit ball of ‖ · ‖ and suppose that X is such that

‖x− y‖ = 2 for every two distinct points x, y in X (rescale X if needed). We shall use

a volume argument. Consider the set

L =
⋃
x∈X
{x+K}.

By Theorem 10.5, the sets x + K pairwise touch, so in particular, they have disjoint

interiors, hence the volume of L satisfies

|L| = |X| · |K|,

where |X| is the cardinality of X and |K| is the volume of K (|X| =∞, hence |L| =∞
if X is not finite). On the other hand, note that

diam(L) ≤ 4.

Explanation: take two elements from L, say x+ a and y + b for x, y ∈ X and a, b ∈ K,

and then ‖x+ a− (y + b)‖ ≤ ‖x− y‖+ ‖a‖+ ‖b‖ ≤ 2 + 1 + 1 = 4. By the isodiametric

inequality for the norm ‖ · ‖ (see Theorem 9.6), we get the upper bound on the volume

of L,

|L| ≤ |2K| = 2d|K|,

which combined with |L| = |X| · |K| gives the desired |X| ≤ 2d.

10.2 Upper bound for equilateral sets for Euclidean norms

10.8 Theorem. If X is an `2-equilateral set in Rd, then |X| ≤ d+ 1.
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10.9 Remark. The example of the vertices of a regular simplex (see Example 10.1)

shows that this upper bound is sharp. In other words, the largest `2-equilateral set is of

size d+ 1.

10.10 Lemma. For every d × n matrix B, we have ker(B>B) = ker(B) and, conse-

quently, rank(B>B) = rank(B). In particular, rank(B>B) ≤ min{d, n}.

Proof. The statement about the ranks follows from the statement about the kernels

thanks to the rank-nullity theorem. Clearly, ker(B) ⊂ ker(B>B). To prove the re-

verse inclusion, if x ∈ ker(B>B), then B>Bx = 0, so 0 = x>B>Bx = (Bx)>(Bx) =

〈Bx,Bx〉= |Bx|2, so Bx = 0, that is x ∈ ker(B).

Proof of Theorem 10.8. Suppose X = {x0, . . . , xn} is such that |xi − xj | = 1 for every

i 6= j (rescale X if needed). We can assume that x0 = 0 (translate X if needed). Then

1 = |xi − x0| = |xi| for every 1 ≤ i ≤ n. We consider the Gram matrix A of x1, . . . , xn:

aij = 〈xi, xj〉, 1 ≤ i, j ≤ n. For i = j, we have aii = |xi|2 = 1. For i 6= j, we have

aij = 1
2 because 1 = |xi − xj |2 = |xi|2 + |xj |2 − 2〈xi, xj〉= 2 − 2〈xi, xj〉. Thus A has 1

on the diagonal and 1
2 at every other entry and it can be checked that A is of full rank,

that is rank(A) = n. On the other hand, rank(A) ≤ d because A is the Gram matrix

of vectors in Rd (A = B>B, where the columns of B are the vectors xi – see Lemma

10.10). Therefore, |X| = n+ 1 ≤ d+ 1, as desired.

There is a robust version of the above result providing an upper bound on the size

of approximately equilateral sets (we shall need it later to discuss the `1 case). Its proof

also uses algebraic methods.

10.11 Theorem. If x1, . . . , xn are vectors in Rd such that

1− 1√
n
≤ |xi − xj |2 ≤ 1 +

1√
n
, i 6= j,

then n ≤ 2(d+ 2).

10.12 Lemma. If A is an n× n symmetric nonzero matrix, then rank(A) ≥ (tr(A))2

tr(A>A)
.

Proof. Let λ1, . . . , λn be the eigenvalues of A (listed with multiplicities). If r = rank(A),

then exactly r eigenvalues are nonzero, say these are λ1, . . . , λr. Then by the Cauchy-

Schwarz inequality,

tr(A) =

n∑
j=1

λj =

r∑
j=1

λj ≤
√
r

√√√√ r∑
j=1

λ2
j =
√
r
√

tr(A>A).

Proof of Theorem 10.11. Consider a matrix A with entries aij = 1−|xi−xj |2. We have

aii = 1 and |aij | ≤ 1√
n

, i 6= j. As a result,

tr(A) =

n∑
i=1

aii = n
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and

tr(A>A) =

n∑
i,j=1

a2
ij = n+

∑
i 6=j

a2
ij ≤ n+

1

n
(n2 − n) = 2n− 1,

so, by Lemma 10.12,

rank(A) ≥ n2

2n− 1
≥ n

2
.

We now upper bound the rank of A in terms of d. For j = 1, . . . , n, consider the functions

fj(y) = 1− |y − xj |2, y ∈ Rd.

We have, A = [fj(xi)]
n
i,j=1. Observe that each fj is a linear combination of d + 2

functions: gk(y) = yk, k = 1, . . . , d and gd+1(y) = |y|2, gd+2(y) = 1, say

fj =

d+2∑
k=1

λj,kgk.

Then the jth column of A can be written as[
fj(x1)

...
fj(xn)

]
=

d+2∑
k=1

λj,k

[
gk(x1)

...
gk(xn)

]
=

d+2∑
k=1

λj,kvk,

where vk =

[
gk(x1)

...
gk(xn)

]
, k = 1, . . . , d+ 2. In other words, each column of A is in the span

of v1, . . . , vd+2, hence rank(A) ≤ d + 2. Since, as we saw, rank(A) ≥ n
2 , we conclude

n ≤ 2(d+ 2).

10.3 Upper bound for equilateral sets for the `1 norm

10.13 Theorem. If X is an `1-equilateral set in Rd, then |X| < 100d4.

The idea here is to first embed such a set into a higher dimensional space to make

it approximately `2-equilateral and then use the robust results for the Euclidean norm

(Theorem 10.11).

10.14 Lemma. For every positive integers d,N , there is a function fd,N : [0, 1]d → RNd

such that for every x, y ∈ [0, 1]d, we have

‖x− y‖1 −
2d

N
≤ 1

N
|fd,N (x)− fd,N (y)|2 ≤ ‖x− y‖1 +

2d

N
. (10.1)

Proof. First we consider the case d = 1. For x ∈ [0, 1], we define

f1,N (x) = (1, 1, . . . , 1︸ ︷︷ ︸
bxNc

, 0, 0, . . . , 0︸ ︷︷ ︸
N−bxNc

).

Then, for x, y ∈ [0, 1],

|f1,N (x)− f1,N (y)|2 =
∣∣∣bxNc − byNc∣∣∣.
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Since ‖x− y‖1 = |x− y|, it remains to check that

|x− y| − 2

N
≤ 1

N

∣∣∣bxNc − byNc∣∣∣ ≤ |x− y|+ 2

N
.

This follows since bxNc differs from xN by at most 1 and byNc differs from yN by at

most 1, so bxNc − byNc differs from xN − yN by at most 2.

When d > 1, we define fd,N (x) by concatenating f1,N (x1), . . . , f1,N (xd) and since

‖x− y‖1 =
∑d
i=1 |xi − yi|, the error bounds add up.

Proof of Theorem 10.13. Suppose, to argue by contradiction, that X is an `1-equilateral

set in Rd with n = |X| = 100d4 and ‖x − y‖1 = 1
2 for every two distinct points

x, y ∈ X. By translating if needed, we can assume that one of the points from X is

( 1
2 , . . . ,

1
2 ). Then X ⊂ [0, 1]d. Let N = 40d3. We apply Lemma 10.14 to get a function

fd,N : [0, 1]d → RNd satisfying (10.1). Let Y = fd,N (X). This is an n-element set in

RNd. Since X is `1-equilateral, for every u, v ∈ Y , we have

1

2
− 1

20d2
≤ 1

N
|u− v|2 ≤ 1

2
+

1

20d2
.

Equivalently, since 10d2 =
√
n,

1− 1√
n
≤
∣∣∣∣∣
√

2

N
u−

√
2

N
v

∣∣∣∣∣
2

≤ 1 +
1√
n
.

This means that the set
√

2
N Y satisfies the hypothesis of Theorem10.11. Thus, 100d4 =

n ≤ 2(Nd+ 2) = 2(40d4 + 2) = 80d4 + 2, a contradiction.

10.4 Upper bound for equiangular sets

Here, by Sd−1 we mean the unit centred Euclidean sphere in Rd, that is Sd−1 = ∂Bd2 .

A set X of unit vectors in Rd (X ⊂ Sd−1) is called equiangular if there is 0 ≤ α < 1

such that for every two distinct points x, y in X, we have |〈x, y〉| = α. This means that

the lines {l = span(x), x ∈ X} are equiangular, that is the angle between every two of

them is the same. We are interested in the maximal number of such lines,

N(d) = sup{|X|, X ⊂ Sd−1, X is equiangular}.

For instance, in R2 there are 3 equiangular lines meeting at 120◦. In R3, there are

6 equiangular lines: the longest diagonals of a regular icosahedron. These are in fact

optimal because we have the following general upper bound.

10.15 Theorem. If X is an equiangluar set of unit vectors in Rd, then its cardinality

satisfies |X| ≤
(
d+1

2

)
.
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Figure 10.2: There are 3 equiangular lines in R2 (the main diagonals of a regular

hexagon) and 6 equiangular lines in R3 (the main diagonals of a regular icosahedron).

Table 2: The values of N(d) in small dimensions in comparison to
(
d+1

2

)
.

d 1 2 3 4 5 6 7 8 9 10 11 12 13

N(d) 1 3 6 10 16 28 28 28 28 28 28 28 28(
d+1

2

)
1 3 6 10 15 21 28 36 45 55 66 78 91

Proof. Consider the set of d × d symmetric matrices {xx>, x ∈ X}. We show it is

linearly independent. This suffices to conclude the assertion because the space of all

d× d real symmetric matrices is
(
d+1

2

)
dimensional. Suppose

n∑
i=1

λixix
>
i = 0

for some reals λi. Fix j ∈ {1, . . . , n}. Multiplying both sides on the left by x>j and on

the right by xj , since |〈xi, xj〉| = α for every i 6= j, we get

0 =

n∑
i=1

λj〈xi, xj〉2 = λj |xj |2 + α2
∑
i6=j

λj |〈xi, xj〉|2 = λj + α2
∑
i 6=j

λi = [Aλ]j ,

where λ = (λ1, . . . , λn is the vector of the coefficients λi, A is the n × n matrix with 1

on the diagonal and α2 on the off-diagonal and [Aλ]j is the jth component of the vector

Aλ. It can be checked that for every α ∈ [0, 1) matrix A is nonsigular (in fact, it is

positive semi-definite – exercise), hence λ = 0, which shows that the considered set of

matrices is linearly independent.

10.16 Remark. The exact value of N(d) has been found only for finitely many d. The

upper bound from Theorem 10.15 gives N(d) = O(d2) which turns out to be of the
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correct order. There are constructions giving N(d) ≥ 2
9 (d+ 1)2 for every d = 6 · 4k − 1,

k = 0, 1, 2 . . . and this in fact implies that N(d) = Θ(d2) for all d. For the known

examples of sets giving N(d) = Ω(d2), the common value α of the inner product tends

to 0 as d → ∞. It is of interest to consider a different question: what is the maximal

number of equiangular lines in high dimensions, that is as d → ∞, but with a fixed

common angle? Formally, for α ∈ [0, 1), define

Nα(d) = sup{|X|, X ⊂ Sd−1,∀x, y ∈ X,x 6= y |〈x, y〉| = α}.

Note that then

N(d) = max
α∈[0,1)

Nα(d). (10.2)

Bounds on Nα(d) have a long history and the behaviour is quite different. Here we only

mention a recent breakthrough result of Bukh from [8], whose theorem in particular gives

Nα(d) ≤ Cαd with a constant Cα which depends only on α (and, of course, Cα →∞ as

α→ 0). See also [12] for latest results and a nice brief historical account.

Using similar algebraic arguments as in the proof of Theorem 10.15, but for carefully

chosen polynomials instead of rank 1 matrices, we can prove a generalisation for sets

which allow several angles.

10.17 Theorem. Let A ⊂ [0, 1) be a finite set and let m be the cardinality of A∪ (−A).

Suppose X is a set of unit vectors in Rd such that |〈x, y〉| ∈ A for every two distinct

points x, y in X. Then the cardinality of X satisfies |X| ≤
(
d+m−1
m

)
.

10.18 Remark. Suppose A has only one element. If it is 0, then m = 1 and the

theorem gives |X| ≤
(
d+1−1

1

)
= d, as expected (when A = {0}, X is a set of unit vectors

which are orthogonal to each other). If A = {α} for some α ∈ (0, 1), then m = 2 and

the theorem gives |X| ≤
(
d+2−1

2

)
=
(
d+1

2

)
, that is Nα(d) ≤

(
d+1

2

)
. Since this bound does

not depend on α, taking the maximum over all a ∈ (0, 1) (see (10.2)) recovers Theorem

10.15.

Proof of Theorem 10.17. Let ε = 1, if 0 ∈ A and ε = 0, if 0 /∈ A. Then the cardinality

of A ∪ (−A) is m = 2k − ε. For every x ∈ X, define a polynomial Fx of d variables

z = (z1, . . . , zd) by

Fx(z) =〈x, z〉ε
∏

α∈A\{0}

〈x, z〉2 − α2|z|2
1− α2

.

Note that this is a homogeneous polynomial of degree m. Every such polynomial is a

linear combination of monomials zj11 · . . . ·zjdd for nonnegative integers j1, . . . , jd with j1 +

· · ·+jd = m and the linear space of homogeneous polynomial of degree m has dimension(
d−1+m
d−1

)
. Thus it suffices to show that the set {Fx}x∈X is linearly independent. If

n∑
i=1

λiFxi = 0
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for some x1, . . . , xn ∈ X, then evaluating this at z = xj (for a fixed j) gives λj = 0

because we check that Fxi(xj) = δi,j (here δi,j is the Kronecker delta symbol, δi,j = 1 if

i = j and δi,j = 0 if i 6= j).
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10.5 Exercises

1. Show that all norms on Rd are equivalent, that is if ‖ · ‖ and ‖ · ‖′ are two norms on

Rd, then there are positive finite constants α, β such that for every x in Rd, we have

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖.

2. Let ‖ · ‖ be a norm on Rd and let K = {x ∈ Rd, ‖x‖ ≤ 1} be its unit ball. Show that

K is symmetric, convex, compact, with nonempty interior (K is a symmetric convex

body).

3. Let K be symmetric convex body in Rd. Define for x ∈ Rd,

pK(x) = inf{t > 0, x ∈ tK}

(the so-called Minkowski’s functional of K). Show that pK is a norm on Rd and

its unit ball is K.

4. Let p ∈ (1,∞). Find an `p-equilateral set in Rd of size d+ 1.

5. Let α ∈ [0, 1) and let A = [aij ]
n
i,j=1 be an n× n matrix with aii = 1 for every i ≤ n

and aij = α for every i 6= j. Then A is positive semi-definite, that is 〈Ax, x〉> 0 for

every vector x 6= 0. In particular, A is nonsingular.
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11 Diameter reduction – Borsuk’s question

Borsuk asked in 1933 (see [7]): can every set X in Rd of finite diameter D be partitioned

into d + 1 subsets, each of diameter strictly less than D? It will be convenient to say

that a partition is diameter reducing, if every piece of the partition has a strictly

smaller diameter than the initial set. For example, if X is the set of the vertices of a

regular d-dimensional simplex in Rd, then every partition of X into at most d sets will

not reduce the diameter (because there will be a piece with at least 2 points from X and

every two points in X achieve its diameter). Borsuk showed that for the ball, X = Bd2 ,

there are no partitions into at most d parts which reduce the diameter, but there is one

into d+ 1 parts.

Borsuk’s question has an affirmative answer when

? X ⊂ R3 (Borsuk, 1933)

? X ⊂ Rd and X is convex with smooth boundary (Hadwiger, 1946)

? X ⊂ Rd and X is symmetric convex (Riesling, 1971)

? X ⊂ Rd and X is a body of revolution (Dekster 1995) However, for sufficiently large

dimensions, the answer is negative!

11.1 Theorem (Kahn, Kalai, [13]). For every prime p, there is a set X in Rd2 , d = 4p

with no diameter deducing partition into fewer than 1.1d parts.

In particular, if 1.1d > d2 + 1, then such X provides a negative answer in dimension

d2. Since the smallest such d is d = 96, we need p ≥ 96/4 = 24, so the choice p = 29,

d = 126 gives an example of a set X in R13456, thus answering Borsuk’s question in the

negative.

11.1 A result from extremal set theory

Kahn and Kalai’s ingenious proof of Theorem 11.1 uses a result in extremal set theory.

11.2 Lemma. Let p be a prime and let F be a family of subsets of size 2p − 1 of an

n-element set. If for every distinct sets A and B in F , we have |A ∩B| 6= p− 1, then

|F| ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

p− 1

)
. (11.1)

Note that there are
(

n
2p−1

)
2p − 1-element subsets of an n-element set. The size of

the intersection of every two distinct such subsets is of size 0, 1, . . . , 2p− 2. This lemma

says that forbidding one size intersection, the middle one p − 1, implies that there are

much fewer such sets.

11.3 Corollary. Under the assumptions of Lemma 11.2, if additionally, n = 4p, then

|F| <
(

n
2p−1

)
1.1n

.
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Proof. Since
(
n
k−1

)
= k

n−k
(
n
k

)
≤ 1

3

(
n
k

)
if n ≥ 4k, we get from (11.1) (recall that n = 4p),

|F| ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

p− 1

)
≤
(

1

3p
+

1

3p−1
+ · · ·+ 1

3

)(
n

p

)
<

1

2

(
n

p

)
.

Therefore, (
n

2p−1

)
|F| ≥ 2

(
n

2p−1

)(
n
p

) = 2
(4p)!

(2p− 1)!(2p+ 1)!

p!(3p)!

(4p)!

= 2
3p

2p− 1
· 3p− 1

2p− 2
· . . . · 2p+ 2

p+ 1

≥ 2

(
3

2

)p−1

=
4

3

(
3

2

)n/4
> 1.1n.

Proof of Lemma 11.2. Given A ∈ F , we define its characteristic vector 1A ∈ {0, 1}n

which has 1 at i-th coordinate if and only if i ∈ A. We also define the polynomial

fA : {0, 1}n → Fp over the finite field Fp,

fA(x) =

p−2∏
k=0

((∑
i∈A

xi

)
− k
)
.

For instance, when p = 3, n = 7 and A = {1, 2, 3, 6, 7}, then 1A = (1, 1, 1, 0, 0, 1, 1) and

fA(x) = (x1 + x2 + x3 + x6 + x7)(x1 + x2 + x3 + x6 + x7 − 1).

Consider the vector space V of all functions f : {0, 1}n → Fp (over Fp) and its

subspace VF = span{fA, A ∈ F}. We make the following two observations.

Claim 1. The set {fA, A ∈ F} is linearly independent. Hence, dim(VF ) = |F|.

Claim 2. dim(VF ) ≤
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
p−1

)
.

It remains to prove the claims. For Claim 1, first note that for A ∈ F (recall that we

do computations in Fp)

fA(1A) =

p−2∏
k=0

(|A| − k) =

p−2∏
k=0

(2p− 1− k) =

p−2∏
k=0

(p− 1− k) = (p− 1)! 6= 0

and for distinct A,B ∈ B,

fA(1B) =

p−2∏
k=0

(|A ∩B| − k) = 0,

since |A ∩B| 6= p− 1, so |A ∩B| ∈ {0, 1, . . . , p− 2} (in Fp). Consequently, if∑
B∈F

λBfB = 0

for some scalars λB , then evaluating this at 1A gives λAfA(1A) = 0, so λA = 0 and this

holds for each A ∈ F .
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For Claim 2, note that each fA is a multinomial of degree at most p− 1, so fA is a

linear combination of monomials xj11 · . . . ·xjnn with j1 + · · ·+ jn ≤ p−1. For xk ∈ {0, 1},
we have xjkk = xk, so each fA is in fact a linear combination of monomials xj11 · . . . · xjnn
with j1 + · · ·+jn ≤ p−1 and j1, . . . , jn ∈ {0, 1}, or, in other words,

∏
j∈J xj for a subset

J of {1, . . . , n} of size at most p− 1. Thus, there are exactly
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
p−1

)
of

them.

11.2 Construction via tensor product

Recall that the tensor product x1⊗ x2 of two vectors x1 ∈ Rd1 and x2 ∈ Rd2 is a vector

in Rd1d2 whose components are all the products x1,ix2,j , i ≤ d1, j ≤ d2,

x1 ⊗ x2 = [x1,ix2,j ]i≤d1,j≤d2 .

The standard scalar product behaves nicely: for x1, y1 ∈ Rd1 and x2, y2 ∈ Rd2 , we have

〈x1 ⊗ x2, y1 ⊗ y2〉=
∑
i,j

x1,ix2,jy1,iy2,j =
∑
i

x1,iy1,i

∑
j

x2,jy2,j

=〈x1, y1〉〈x2, y2〉.

Proof of Theorem 11.1. Let p be a prime, d = 4p and let A be the set of all 2p − 1

element subsets of the set {1, . . . , d}. For A ∈ A, define the vectors in Rd (1 denotes

the vector (1, . . . , 1) of all 1s)

uA = 21A − 1, [uA]i =

1, if i ∈ A,

−1, if i /∈ A.

Then define the vectors in Rd2 ,

qA = uA ⊗ uA.

The set X in Rd2 with no diameter reducing partitions into fewer than 1.1d parts is set

to be

X = {qA, A ∈ A}.

To check that, first we note that for every A,B ∈ A, we have

〈uA, uB〉= 4[|A ∩B| − p+ 1].

Explanation: since 〈1A,1B〉 = |A ∩ B|, we obtain 〈uA, uB〉 = 〈21A − 1, 21B − 1〉 =

4〈1A,1B〉− 2〈1A,1〉− 2〈1B ,1〉+ 〈1,1〉 = 4|A ∩ B| − 2|A| − 2|B| + d = 4|A ∩ B| −
2(2p− 1)− 2(2p− 1) + 4p.

In particular,

〈uA, uA〉= d

and

〈uA, uB〉= 0 if and only if |A ∩B| = p− 1.
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Finally note that

|qA − qB |2 =〈qA, qA〉+〈qB , qB〉− 2〈qA, qB〉

=〈uA, uA〉2 +〈uB , uB〉2 − 2〈uA, uA〉2

= 2d2 − 2〈uA, uB〉2.

Since〈uA, uB〉2 ≥ 0 with equality if and only if |A∩B| = 0, the diameter of X is 2d2 and

any subset of X has diameter 2d2 as long as it contains two points qA, qB corresponding

to sets A,B ∈ A with |A ∩B| 6= p− 1.

Consequently, if we partition X, equivalently A into fewer than 1.1d parts, then (the

pigeon-hole principle) at least one of parts is of size greater than |A|
1.1d

=
( d
2p−1)
1.1d

. By

Corollary 11.3, this part has two elements A,B with |A∩B| = p−1, so such a partition

of X is not diameter reducing.

11.3 A positive answer in dimension 2

A convex set K in R2 is called a universal cover if every set X in R2 of diameter 1 can

be covered by a congruent copy of K (i.e. a possibly translated and rotated copy of K).

For instance, plainly a disk of radius 1 is a universal cover. Jung’s theorem (Exercise

7.7) says that a disk of radius 1√
3

is a universal cover. Pál’s theorem asserts that a

regular hexagon of side length 1√
3

is a universal cover. This can be used to explain why

Borsuk’s question has an affirmative answer in R2 (exercise).

b

√
3
2

Figure 11.1: A set of diameter 1 can be covered by a regular hexagon of side length 1√
3

(Pál’s theorem). Consequently, it can be partitioned into 3 sets, each of diameter at

most
√

3
2

To prove Pál’s theorem, it is convenient to have the following important result whose

proof we defer to exercises.

11.4 Theorem. If X is a bounded set in Rd, then X is a subset of a compact convex

set of constant width having the same diameter as X.

84



Recall that by Exercise 3.10, the diameter of a convex set of constant width equals

its width.

11.5 Theorem (Pál). If X is a set in R2 with diameter 1, then X is a subset of a

regular hexagon of side length 1√
3

.

Proof. Let K be a compact convex set of constant width 1 which contains X, as provided

by Theorem 11.4. It suffices to argue that K can be covered by a regular hexagon of

side length 1√
3
. To this end, consider three unit vectors v1, v2, v3 equally spaced on the

unit circle, that is the angles between v1, v2 and between v2, v3 and between v3, v1 are

all 2π
3 . Let `1, `

′
1 be parallel supporting lines of K in direction v1 such that K is between

them. The lines are distance 1 apart because K is of constant width. Define similarly

`2, `
′
2 and `3, `

′
3 for directions v2 and v3. These lines give two equilateral triangles T and

T ′ both of which contain K (see Figure 11.2). If T and T ′ are of the same size, then

their intersection gives the desired hexagon (because the lines are distance 1 apart –

check!). If not, we simultaneously rotate the vectors v1, v2, v3 and follow what happens

to the triangles T and T ′ which also rotate. After rotating by π, the triangles T and T ′

interchange, thus by continuity, at some point they are of the same size.

v1

v2 v3

ℓ1

ℓ′1T ′

T

Figure 11.2: Proof of Pál’s theorem.
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11.4 Exercises

1. Show that there is a partition of the unit ball Bd2 in Rd into d + 1 parts such that

each part has diameter smaller than 2.

2. Using Theorem 11.5, show that every set X in R2 of diameter 1 can be partitioned

into 3 parts with each part having diameter at most
√

3
2 , hence showing that Borsuk’s

question has an affirmative answer in R2.

The goal of the next exercises is to prove Theorem 11.4.

3. Show that a compact set K in Rd is of constant width if and only if for every set L

in Rd such that L ⊃ K, we have L = K or diam(L) > diam(K).

4. Let X be a compact convex set in Rd of diameter 1. Define

U(X) = {x ∈ Rd, diam(X ∪ {x}) = diam(X)},

ρ(X) = sup
x∈U(X)

dist(x,X),

B(X) = {x ∈ U(x), dist(x,X) = ρ(X)}.

Argue that if X is not of constant width, then U(x) is nonempty and take x1 ∈ B(X)

and set X1 = conv{x,X}. Iterate this procedure and show that
⋃∞
i=1Xi is of constant

width (by using the equivalence from the previous exercise). Deduce Theorem 11.4.
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12 Zonotopes and projections of the cube

A zonotope in Rd is the Minkowski sum of finitely many compact segments. Conse-

quently (see Exercise 2.6), zonotopes are convex. They are also compact.

12.1 Example. The Minkowski sum of 3 segments on the plane is a hexagon (see Figure

1.3).

12.2 Example. Recall Exercise 2.7: Bn∞ = [−e1, e1] + · · · + [−ed, ed], so the cube is a

zonotope.

Recall that we denote a segment between two points a, b in Rd by [a, b] which is

conv{a, b} = {λa+ (1− λ)b, λ ∈ [0, 1]}. Thus a zonotope K in Rn is a set of the form

K =

n∑
i=1

[ai, bi]

for some a1, . . . , an, b1, . . . , bn ∈ Rd. Note that [ai, bi] = ai + [0, vi] with vi = bi − ai, so

putting a = a1 + . . .+ an, K can be written as

K = a+

n∑
i=1

[0, vi],

If we let A : Rn → Rd to be the linear map sending ei to vi (which is surjective onto

span{v1, . . . , vn}), then A[0, ei] = [0, vi], thus

K = a+A([0, e1] + · · ·+ [0, en]) = a+A([0, 1]n).

This establishes the following fact.

12.3 Theorem. Every zonotope is an affine image of the cube [0, 1]n for some n. In

particular, every zonotope is a centrally symmetric polytope.

Since zonotopes are polytopes, it is reasonable to ask about their faces. They are

zonotopes as well.

12.4 Theorem. The faces of a zonotope are zonotopes.

Proof. Let K be a zonotope in Rd and let F be its face given by a supporting hyperplane

H = {x ∈ Rd, 〈x, u〉 = t}, that is F = K ∩ H and K ⊂ H−. By Theorem 12.3,

K = a + A([0, 1]n) for some n, a linear map A : Rn → Rd and some a ∈ Rd. Consider

H̃ = {x ∈ Rn, 〈Ax, u〉 = t −〈a, u〉}. This is a hyperplane in Rn (because 〈Ax, u〉 =〈
x,A>u

〉
), which defines a face F̃ of the cube [0, 1]n. Indeed, for every x ∈ [0, 1]n, we

have 〈Ax, u〉+〈a, u〉= 〈Ax+ a, u〉≤ t because Ax + a ∈ K and we have equality if and

only if Ax+ a ∈ F , that is F = A(F̃ ) + a. Finally, F̃ as a face of [0, 1]n is a cube (recall

Exercise 6.3), thus F , as its projection by A, is a zonotope.
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[−1, 1]3

Px = Ax+ a

K

Figure 12.1: Zonotopes are projections of cubes. Preimages of their faces are faces of

cubes (Theorem 12.4

12.1 Dissections and volume of zonotopes

For linearly independent vectors v1, . . . , vk in Rd and numbers σ1, . . . , σk ∈ {0, 1} define

the parallelopiped

Pσ1,...,σk
v1,...,vk

=


k∑
j=1

λjvj , λj ∈ [0, 1) if σj = 0 and λj ∈ (0, 1] if σj = 1

 .

and the trivial one P∅ = {0}, corresponding to the empty set is just the origin. Every

zonotope can be dissected (partitioned) into such parallelopipeds.

=

b
v1

v2

P∅

P 1
v2

P 1
v2

P 1,1
v1,v2

Figure 12.2: A dissection of a parallelopiped.

12.5 Theorem (Shephard, [28]). Let v1, . . . , vd be vectors in Rd. Then the zonotope

Z =
∑n
i=1[0, vi] is a disjoint union of translates of parallelopipeds Pσ1,...,σk

vi1 ,...,vik
, where

{vi1 , . . . , vik} runs over all subsets of {v1, . . . , vn} which are linearly independent and

σ1, . . . , σk are appropriately chosen signs.

Proof. We proceed by induction on n and dim(Z). When n = 1 or dim(Z) = 1, the

statement is clear. Suppose n and dim(Z) are both at least 2. Let Z ′ =
∑n−1
i=1 [0, vi]. By
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induction, Z ′ = P1 ∪ · · · ∪ Pm for some parallelopipeds P1, . . . , Pm given by subsets of

{v1, . . . , vn−1} which are linearly independent. Let B be the union of those facets of Z

whose outer normal u is such that 〈u, vn〉> 0. Let π be the orthogonal projection onto

v⊥n . Note that π(Z) is a zonotope of dimension smaller than Z. By induction, π(B) =

π(Z) = Q1 ∪ . . . Ql for some parallelopipeds Q1, . . . , Qm. Define P̃j = π−1(Qj) ∩ B −
[0, vn]. We obtain P̃1, . . . , P̃l which form a partition of Z \Z ′. These are paralellopipeds

corresponding to subsets containing vn. Together with P1, . . . , Pm which form partition

of Z ′, we thus obtain a desired partition of Z.

b

v1

v2

−v3

π

B

Z ′

π(B)

Q1

Q2

P̃1

P̃2

b

Figure 12.3: Proof of Theorem 12.5.

12.6 Corollary (Shephard’s formula). Let v1, . . . , vd be vectors in Rd. The volume of

the zonotope Z =
∑n
i=1[0, vi] equals

|Z| =
∑

1≤i1<...<id≤n
|det[vi1 . . . vid ]|, (12.1)

where det[vi1 . . . vid ] is the determinant of the d× d matrix with columns vi1 , . . . , vid .

Proof. We partition Z according to Theorem 12.5. Only the d-dimensional parallelop-

ipeds contribute to the volume of Z (the lower dimensional ones have d-dimensional

volume 0). The volume of a parallelopiped Pw1,...,wd is given by the determinant of the

matrix with columns w1, . . . , wd, hence the formula.

12.2 Volume of projections of the cube on orthogonal subspaces

Using the dissection theorem for zonotope and a fact about orthogonal matrices, we

shall prove the following result about projections of the cube.

12.7 Theorem (McMullen, [20]). Let V be a subspace of Rd. Let PV and PV ⊥ be the

orthogonal projections onto V and V ⊥. Then we have

|PV ([0, 1]d)| = |PV ⊥([0, 1]d)|

(the equality for the dimV and d − dimV dimensional volumes of the corresponding

projections).
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We start with a result from linear algebra saying that the determinants of comple-

mentary minors of an orthogonal matrix are equal.

12.8 Theorem. Let U be a d × d real orthogonal matrix, that is U>U = Id. Let J be

a nonempty subset of {1, . . . , d}. Then

|detUJ | = |detUJc |,

where UJ = [ui,j ]i,j∈J is the |J | × |J | matrix obtained from U by crossing out the rows

and columns indexed by Jc.

Proof. Since permuting rows and columns changes determinant only up to a sign, with-

out loss of generality we can assume that J = {1, . . . , k} for some 1 ≤ k ≤ d − 1. We

divide U into blocks of first k rows and k columns etc.,

U =

 A B

C D

 .
In particular, A = UJ and D = UJc . Since U is orthogonal, we have Idk×k 0

0 Idd−k×d−k

 = Idd−k = U>U =

 A> C>

B> D>

 A B

C D


=

 A>A+ C>C A>B + C>D

B>A+D>C B>B +D>D

 .
In particular, A>A+ C>C = Id and A>B + C>D = 0. Thus A> C>

0 Idd−k×d−k

 =

 A B

C D

 =

 A>A+ C>C A>B + C>D

C B>D


=

 Idk×k 0

C D

 .
Taking the determinants of both sides yields

detA> · detU = detD.

Since detU = ±1, we conclude |detA| = |detD|, as desired.

Proof of Theorem 12.7. Let u1, . . . , uk ∈ Rd be an orthonormal basis of V and let

uk+1, . . . , ud ∈ Rd be an orthonormal basis of V ⊥. Let vi = PV (ei) and let wi = PV ⊥(ei),

1 ≤ i ≤ d. The projections Z = PV ([0, 1]d) and Z ′ = PV ⊥([0, 1]d) are zonotopes and

Z =

d∑
i=1

[0, vi], Z ′ =

d∑
i=1

[0, wi].
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(recall [0, 1]d =
∑d
i=1[0, ei]). By Shephard’s formula (12.1), we obtain

|Z| =
∑

1≤i1<...<ik≤d
|det[ṽi1 . . . ṽik ]|

and

|Z ′| =
∑

1≤j1<...<jd−k≤d
|det[w̃j1 . . . w̃jd−k ]|,

where the ṽi and w̃j are understood as the vectors in Rk and Rd−k respectively being

the components of the vi and wj written in the orthonormal bases of V and V > chosen

earlier. Since vi = PV (ei) =
∑k
l=1〈ei, ul〉ul, the l-th component of vi in the basis

{u1, . . . , uk} of V is equal to 〈ei, ul〉= ul,i, that is the i-component of ul in the standard

basis, or in other words the (l, i)-entry of U . The indices in the sum for volume of Z can

be paired-up with the indices in the sum for the volume of Z ′: fix a set I = {i1, . . . , ik}
of indices in the first sum and consider its complement, Ic = {j1, . . . , jd−k}. If we let U

be the d× d orthogonal matrix whose columns are ui1 , . . . , uik , uj1 , . . . , ujd−k , then the

minor U{1,...,k} is exactly the matrix [ṽi1 . . . ṽik ] and the minor U{1,...,k} is the matrix

[w̃j1 . . . w̃jd−k ]. Thus by Theorem 12.8,

|det[ṽi1 . . . ṽik ]| = |detU{1,...,k}| = |detU{k+1,...,d}| = |det[w̃j1 . . . w̃jd−k ]|,

consequently, |Z| = |Z ′|.
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12.3 Exercises

1. Give an example of a convex set which is not a zonotope.

2. Explain why the “in particular” part of Theorem 12.3 holds.

3. Let v1, . . . , vn ∈ Rd and let K =
∑n
i=1[0, vi] be a zonotope in Rd. Show that K =

conv{∑n
i=1 σivi, σ1, . . . , σn ∈ {0, 1}}.

4. Show that a set K in R2 is a zonotope if and only if K is a symmetric polygon.

5. Show that Bd1 is not a zonotope for d ≥ 3.

6. Show that the permutohedron of order n is a zonotope for every n ≥ 1 (see Example

5.1).
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13 Minkowski’s theorem in geometry of numbers

Geometry of numbers is a field belonging to number theory which employs geometric

arguments to establish number theoretic results. It was initiated by Minkowski in his

seminal paper [21]. The basic result is his theorem which we shall discuss in this section,

along with several easy applications.

13.1 Minkowski’s theorem

The so-called Minkowski’s (first) theorem in geometry of numbers asserts that every

symmetric convex set which is large enough in terms of its volume contains a nonzero

lattice point. The so-called Minkowski’s second theorem is more sophisticated and we

do not discuss it here.

13.1 Theorem (Minkowski). Let K be a symmetric convex set in Rd with its volume

satisfying |K| > 2d. Then K contains a nonzero point x ∈ Zd.

13.2 Remark. The example of the open cube K = (−1, 1)d shows that the constant

2d in the volume bound cannot be replaced with any smaller number.

13.3 Remark. If K is additionally compact, then Minkowski’s theorem holds true if

|K| ≥ 2d. The reason being that we can consider Kn = (1 + 1/n)K, n = 1, 2, . . . and

then we know that there are nonzero lattice points xn ∈ Kn. By compactness, the

sequence (xn) has a convergent subsequence, say xnk → x, which has to be in fact

eventually constant to be convergent (as a sequence of integral vectors). Thus the limit

x is a nonzero lattice point and x ∈ ⋂nKn = K.

13.4 Remark. A first guess may be that K in fact need contain a lattice point x which

is close to the origin. That is false: given a nonzero lattice point x ∈ Zd with relatively

prime coordinates, there is a symmetric convex set K with |K| = 2d such that the only

nonzero lattice points in K are ±x.
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Figure 13.1: Minkowski’s theorem.

93



Proof 1. Without loss of generality we can assume that K is bounded by considering

K ∩ [−r, r]d instead of K for some large r > 0. Let K ′ = 1
2K. It suffices to show the

following claim.

Claim. There is a nonzero point x ∈ Zd such that K ′ ∩ (K ′ + x) 6= ∅.

Indeed, if K ′ ∩ (K ′ + x) 6= ∅, then a′ = b′ + x for some a′, b′ ∈ K, that is 1
2a = 1

2b+ x

for some a, b ∈ K and then

x =
a− b

2
∈ K −K

2
=
K +K

2
= K

(the last equality follows from the convexity of K and the second last from the symmetry

of K).

bb b

bb b

bb b

K ′

R R+D

Figure 13.2: Translates of K ′ from C are pairwise disjoint, all contained in the cube

[−R−D,R+D]d.

For the proof of the claim, suppose it does not hold. Then take a positive integer R

and consider the family of translates of K ′ by integer vectors from the box [−R,R]d,

C = {K ′ + v, v ∈ [−R,R]d ∩ Zd}.

Note that every two distinct translates are disjoint (if, say (K ′ + v1) ∩ (K ′ + v2) 6= ∅,

then a1 +v1 = a2 +v2 for some a1, a2 ∈ K ′, so a1 = a2 +v2−v1, that is K ′∩(K ′+v) 6= ∅

for v = v2 − v1 ∈ Zd). All the translates are contained in [−R − D,R + D]d, where

D = diam(K ′). Taking the volume yields

(2R+ 2D)d = |[−R−D,R+D]d| ≥ |C| · |K ′| = (2R+ 1)d · |K ′|,

thus

1 <
1

2d
|K| = |K ′| ≤

(
2R+ 2D

2R+ 1

)d
.

Letting R→∞ gives a contradiction.
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Proof 2. We have the following lemma (which only relies on volume estimates, not con-

vexity).

13.5 Lemma (Blichfeld, 1914). Let k be a positive integer and let A be a measurable

subset of Rd with its volume satisfying |A| > k. Then there is a point x ∈ Rd such that

A+ x contains at least k + 1 points from Zd.

Applying this lemma to A = 1
2K with k = 1 gives a translate A+ x which contains

two (distinct) lattice points p, q ∈ Zd. Then p− q is a nonzero lattice point and

p− q ∈ K + x

2
− K + x

2
=
K −K

2
= K,

where, again, the last equality holds because K is symmetric and convex.

Proof of Lemma 13.5. Without loss of generality we can assume that A is bounded

(consider A ∩RBd2 for large R > 0). Define the function

f(x) = number of points from Zd in A+ x =
∑
y∈Zd

1A+x(y).

We show that its integral over [0, 1]d is large,∫
[0,1]d

f(x)dx =
∑
y∈Zd

∫
[0,1]d

1A+x(y)dx =
∑
y∈Zd

∫
−[0,1]d+y

1A(t)dt

=

∫
Rd

1A(t)dt = |A| > k,

so there is a point x ∈ [0, 1]d with f(x) > k and since f is integer valued, in fact,

f(x) ≥ k + 1.

By a simple linear transformation, Theorem 13.1 can be generalised to arbitrary

lattices. Given linearly independent vectors z1, . . . , zd in Rd we define the lattice gen-

erated by z1, . . . , zd as the following set (a discrete subgroup of Rd)

Λ = Λ(z1, . . . , zd) =

{
d∑
i=1

xizi, x1, . . . , xd ∈ Z

}
.

b
b

b

b
b

b

b
b

b

b
b

b
z1

z2

Figure 13.3: An example of a lattice.

The vectors z1, . . . , zd are called the basis of Λ. Of course, a particular lattice can

be generated by many sets of vectors, that is it has many bases. For instance,

Z2 = Λ([ 1
0 ] , [ 0

1 ]) = Λ([ 1
0 ] , [ 3

1 ])
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For a lattice Λ in Rd generated by, say z1, . . . , zd, we define its determinant, det Λ as

the volume of the parallelopiped spanned by the generating vectors,

det Λ = |{λ1z1 + · · ·+ λdzd, λ1, . . . , λd ∈ [0, 1]}| = |det[z1 . . . zd]|.

This is a well-defined quantity of the set Λ, that is it does not depend on the choice of the

basis (zi) (exercise). This quantity appears in a natural generalisation of Minkowski’s

theorem to arbitrary lattices.
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detΛ

Figure 13.4: The determinant of a lattice Λ is the volume of the parallelopiped spanned

by its basis.

13.6 Theorem (Minkowski’s theorem for general lattices). Let Λ be a lattice in Rd and

let K be a symmetric convex set in Rd such that its volume satisfies |K| > 2d det Λ.

Then there is a nonzero point from Λ in K.

Proof. Let vectors z1, . . . , zd generate Λ. Consider the linear bijection f(x1, . . . , xd) =∑d
i=1 xizi, that is f(ej) = zi. We have Λ = f(Zd) and note that det Λ = det f . Let

K ′ = f−1(K). Then |K ′| = |K|
| det f | = |K|

det Λ > 2d. Thus, by Minkowski’s theorem

(Theorem 13.1), there is a nonzero point x ∈ K ′ ∩ Zd. Then f(x) is a nonzero point in

K from Λ

13.2 Application: approximations by rationals

13.7 Theorem. Let α ∈ (0, 1) and let N be a positive integer. There are integers m,n

with 0 < n ≤ N and
∣∣α− m

n

∣∣ < 1
nN .

Proof. Consider the set

K =

{
(x, y) ∈ R2, −N − 1

2
≤ x ≤ N +

1

2
, |αx− y| < 1

N

}
.

This is a convex symmetric set (it is a parallelogram) with area

|K| = (2N + 1)
2

N
> 4 = 22,

so by vanilla Minkowski’s theorem (Theorem 13.1), there is a nonzero point (n,m) ∈ K
with integer coordinates m,n. By the definition of K, n 6= 0 and by symmetry, we can

assume n > 0. Moreover, n ≤ N + 1
2 , so n ≤ N and |αn−m| < 1

N .
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−N − 1
2

2
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N + 1
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y =
αx

+
1
N

y =
αx

−
1
N

K

Figure 13.5: The parallelogram K used in the proof of Theorem 13.7.

13.3 Application: The sum of two squares theorem

As an application of Minkowski’s theorem for general lattices, we give a proof of the

sum of two squares theorem.

13.8 Theorem. Let p be a prime number with p ≡ 1 (mod 4). Then p = x2 + y2 for

some integers x and y.

Recall that for a prime p, Fp = {0, 1, . . . , p− 1} is the finite field of residues modulo

p with the usual addition and multiplication modulo p. We recall two elementary facts.

13.9 Lemma. For every prime number p, we have (p− 1)! ≡ −1 (mod p).

Proof. First remark that the equation x2 ≡ 1 (mod p), x ∈ Fp has only two solutions:

x = 1 and x = p − 1 ≡ −1 (these obviously solve the equation and there cannot be

more solutions because it is a polynomial equation of degree 2). Consequently, for every

x ∈ Fp, x 6= 1, p− 1, there is a unique y ∈ Fp, y 6= x such that xy ≡ 1 (mod p), namely

the inverse of x in Fp. So all the elements 2, 3, . . . , p − 2 are joined in pairs with the

product of each pair being 1 modulo p. Thus

(p− 1)! = 1 · 2 · 3 · . . . · (p− 2) · (p− 1) ≡ 1 · (p− 1) ≡ −1 (mod p).

13.10 Lemma. Let p be a prime number with p ≡ 1 (mod 4). Then x2 ≡ −1 (mod p)

for some integer x.

Proof. If the equation x2 ≡ −1 (mod p) has no solution in Fp, then for every x ∈ Fp,
there is a unique y ∈ Fp, y 6= x such that xy ≡ −1 (mod p), namely “minus the inverse

of x” in Fp. Then, pairing up the elements 1, . . . , p− 1 accordingly,

(p− 1)! ≡ (−1)
p−1
2 ≡ 1 (mod p),
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where the last equivalence holds because p−1
2 is even (by the assumption). This however

contradicts Lemma 13.9.

Proof of Theorem 13.8. By Lemma 13.10, choose an integer q with q2 ≡ −1 (mod p).

Consider the lattice Λ generated by the vectors z1 =
[

1
q

]
and z2 =

[
0
p

]
. We have

det Λ = p. Let K be a centred open disk of radius
√

2p,

K = {(x, y) ∈ R2, x2 + y2 < 2p}.

Since

|K| = 2pπ > 4p = 22 det Λ,

by Theorem 13.6, there is a nonzero point (a, b) in K ∩ Λ. In particular, (a, b) =

k1z1 + k2z2 = (k1, k1q + k2p) for some integers k1, k2 and we get

a2 + b2 = k2
1 + (k1q + k2p)

2 ≡ k2
1 + k2

1q
2 ≡ k2

1 − k2
1 = 0 (mod p),

that is a2 +b2 is divisible by p. Since (a, b) is nonzero and is in K, we have 0 < a2 +b2 <

2p. Thus, a2 + b2 = p.
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13.4 Exercises

1. Let m be a positive integer. Show that every symmetric convex set K in Rd with its

volume satisfying |K| > m · 2d contains at least m nonzero distinct points from Zd.

2. Let α ∈ (0, 1) be irrational. Using Theorem 13.7, show that there are infinitely many

integers m,n such that |α− m
n | < 1

n2 .

3. Let α1, . . . , αk ∈ (0, 1) and let N be a positive integer. Show that there are integers

m1, n1 . . . ,mk, nk with 0 < nj ≤ N and
∣∣∣α− mj

nj

∣∣∣ < 1
njN1/k for every j ≤ k.

4. If Z,Z ′ are two d × d matrices with column vectors being bases (zi) and (z′i) of the

same lattice Λ in Rd, then Z = UZ ′ for a d× d integral matrix U with detU = ±1.

In particular, detZ = ± detZ ′ and thus det Λ is well-defined.

5. Let A = [aij ] be a d × d matrix with detA = 1. Let b1, . . . , bd be positive numbers

with
∏d
i=1 bi = 1. Show that there is nonzero integral solution x to the system of

inequalities |∑d
j=1 aijxj | ≤ bi, i = 1, . . . , d.
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14 The plank problem

How many planks of width 1 foot each do you need to cover a circular tabletop of

diameter k feet? Obviously k planks suffice, but can we do any better?

1

k

Figure 14.1: Obviously k planks suffice to cover the disk of diameter k, but can we do

better?.

Tarski asked in [31] a general question of this sort about covering convex sets by

strips and solved the planar case (the so-called plank problem). About 20 years later

Bang in [3] resolved Tarski’s question in the affirmative.

A strip S in Rd is a set of the form S = {x ∈ Rd, s ≤ 〈x, a〉 ≤ t} for some

vector a ∈ Rd and reals s < t. That is, S is the set of all points between two parallel

hyperplanes perpendicular to a. The width w(S) of S is simply the distance between

those hyperplanes, that is w(S) = t−s
|a| . Recall the definition of the width of a convex

set K, denoted w(K) as the minimal width of a strip containing K (Chapter 3.1).

14.1 Theorem (Bang, [3]). Let K be a convex set in Rd of width w. If K is covered

by finitely many strips, then the sum of their widths is at least w.

14.1 Archimedes’ Hat-Box Theorem and a solution on the plane

Archimedes’ hat-box theorem asserts that if we intersect a Euclidean sphere in R3 with

a strip in R3, then the surface measure of the intersection depends only on the width

of the strip (see Figure 14.2). This unique feature of dimension 3 is explained in the

following lemma.
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h

R
R

Figure 14.2: Archimedes’ hat-box theorem.

14.2 Lemma. Let Sd−1 be the centred unit sphere in Rd. Then for every unit vector u

in Rd and −1 ≤ a ≤ b ≤ 1, we have

|{x ∈ Sd−1, a ≤〈x, u〉≤ b}| = |Sd−2|
∫ b

a

(1− t2)
d−3
2 dt.

In particular, when d = 3, the integral becomes simply b− a.

b bθ

√
1− t2Bd−1

2

dθ

t

x1

b

dt

0

1

Figure 14.3: The surface measure of a thin strip equals perimeter× height.

Proof. By symmetry, we can assume u = e1. The surface measure of a thin strip

t ≤ x1 ≤ t+ dt equals |∂(
√

1− t2Bd−1
2 )|dθ =

√
1− t2d−2|∂Bd−1

2 |dθ. Since t = cos θ, we

have dθ = dt
sin θ = dt√

1−t2 , so

|{x ∈ Sd−1, a ≤〈x, u〉≤ b}| = |∂Bd−1
2 |

∫ b

a

√
1− t2

d−2 dt√
1− t2

= |Sd−2|
∫ b

a

(1− t2)
d−3
2 dt
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which finishes the proof.

We leave it as an exercise to deduce the solution to Tarski’s question for a disk on

the plane.

14.2 Bang’s solution

Let K be a convex set in Rd of width w(K). We begin with 3 lemmas.

14.3 Lemma. Given an arbitrary direction, there is a chord in K in that direction of

length at least w(K).

b b

K K ′

a b
v

HH ′
w(S)

Figure 14.4: Proof of Lemaa 14.3.

Proof. Let a segment [a, b] be a longest chord in K in the given direction. Translate K

by v = b − a to obtain K ′. Note that K and K ′ have no interior points in common

(otherwise, there is a longer cord, for if a ball q+εBn2 is in int(K)∩int(K ′), by translating

“back”, the ball q− v+ εBn2 is in int(K) and the chord [q− v, q] can be extended within

K to a longer one). Thus, K and K ′ can be separated by a hyperplane, say H. The

translate of H by −v, say H ′ is a supporting hyperplane for K (because it is for K ′).

Then the strip S formed by H and H ′ contains K, so

w(K) ≤ w(S) ≤ |b− a|,

so [a, b] is the desired chord.

14.4 Lemma. If v is a vector in Rd with |v| < 1
2w(K), then

w
(

(K − v) ∩ (K + v)
)
≥ w(K)− 2|v|.

Proof. By Lemma 14.3, there is a chord [a, b] parallel to v of length l = |b−a| satisfying

l ≥ w(K) > 2|v|. Thus

[a+ v, b− v] ⊂ (K − v) ∩ (K + v).
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Without loss of generality we can assume that the origin is the midpoint of the chord

[a, b]. We consider the dilate K̃ =
(

1− 2|v|
l

)
K. Plainly,

w(K̃) =

(
1− 2|v|

l

)
w(K) ≥

(
1− 2|v|

w(K)

)
w(K) = w(K)− 2|v|.

Consequently, showing K̃ ⊂ (K − v) ∩ (K + v) will finish the proof. Observe that for

every x ∈ K, we have(
1− 2|v|

l

)
x± v =

(
1− 2|v|

l

)
x+

2|v|
l

(
± l

2

v

|v|

)
.

The left hand side is an arbitrary point of K̃ ± v. Since ± l
2
v
|v| is either a or b, which

are both in K, by convexity, we see that the right hand side is a point in K, hence

K̃ ± v ⊂ K, that is K̃ ⊂ (K − v) ∩ (K + v).

14.5 Lemma. If v1, . . . , vm are vectors in Rd such that 2|v1| + · · · + 2|vm| < w(K),

then

w

 ⋂
ε=(ε1,...,εm)∈{−1,1}m

K −
m∑
i=1

εivi

 > 0.

Proof. Considering

K1 = (K − v1) ∩ (K + v1),

K2 = (K1 − v2) ∩ (K1 + v2)

= (K − v1 − v2) ∩ (K + v1 − v2) ∩ (K − v1 + v2) ∩ (K + v1 + v2),

...

Km = (Km−1 − vm) ∩ (Km−1 + vm)

=
⋂

ε∈{−1,1}m

(
K −

m∑
i=1

εivi

)
,

and repetitively using Lemma 14.4 gives assertion. We leave the details as an exercise.

We are ready to prove the main theorem.

Proof of Theorem 14.1. Suppose we are given strips

Si = {x ∈ Rd, |〈x, vi〉− ci| ≤ |vi|2}, i = 1, . . . ,m

(vi ∈ Rd are normal vectors and ci ∈ R specify positions: civi
|vi|2 is a centre of symmetry

of Si). Note that the width of Si is 2|vi|. We show the contrapositive: suppose 2|v1|+
· · ·+ 2|vm| < w(K) and we shall argue that S1 ∪ · · · ∪ Sm 6⊃ K (the strips do not cover

K). By Lemma 14.5, the set
⋂
ε(K −

∑
εivi) has positive width, in particular, it has

nonempty interior. By translating if needed, suppose that 0 is in its interior. Then for
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every ε ∈ {−1, 1}m, we have that
∑
εivi is an interior point of K, so there is λ > 1 such

that for every ε ∈ {−1, 1}m, we have

λ

m∑
i=1

εivi ∈ K. (14.1)

We consider the function f : {−1, 1}m → R, defined by

f(ε) = λ

∣∣∣∣∣
m∑
i=1

εivi

∣∣∣∣∣
2

− 2

m∑
i=1

εici.

It achieves its maximal value as ε varies over {−1, 1}m at some point η ∈ {−1, 1}m. For

i = 1, . . . ,m denote

σiη = (η1, . . . , ηi−1, ηi, ηi+1, . . . , ηd)

(the vector η with i coordinate flipped). Fix 1 ≤ j ≤ d. Using |a|2− |b|2 =〈a− b, a+ b〉,
we have,

0 ≤ f(η)− f(σjη)

= λ

∣∣∣∣∣
m∑
i=1

ηivi

∣∣∣∣∣
2

−
∣∣∣∣∣
m∑
i=1

(σjη)ivi

∣∣∣∣∣
2
− 2

(
m∑
i=1

ηici −
m∑
i=1

(σjη)ici

)

= λ

〈
2ηjvj , 2

∑
i 6=j

ηivi

〉
− 4ηjcj

= −4λ|vj |2 + 4λ

〈
ηjvj ,

∑
i

ηivi

〉
− 4ηjcj .

If we let x = λ
∑
i ηivi, then the right hand side becomes 4ηj(〈x, vj〉−cj)−4λ|vj |2. Since

it is nonnegative, we get

ηj(〈x, vj〉− cj) ≥ λ|vj |2

which means that x /∈ Sj . This holds for every j, thus the point x, which is in K (recall

(14.1)), is not covered by the union of the Sj , as desired.

K

w
(S

i )
w
K
(v

i )

vi

Figure 14.5: Relative width.

Recall the definition of a width of K in a given direction v, denoted wK(v): it is the

minimal width of a strip with normal v containing K (Chapter 3.1). Bang in his paper
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posed the following question: suppose a convex set K in Rd is covered by a union of

strips S1, . . . , Sm with normals v1, . . . , vm; does this imply that

w(S1)

wK(v1)
+ . . .+

w(Sm)

wK(vm)
≥ 1?

The ratios w(Si)
wK(vi)

can be thought of as relative widths in directions vi. Since we have

wK(vi) ≥ w(K), the above immediately implies that w(S1) + · · · + w(Sm) ≥ w(K),

which is Bang’s theorem. Ball in [5] gave an affirmative answer to Bang’s question for

symmetric sets. The nonsymmetric case remains unsolved (even on the plane!).
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14.3 Exercises

1. Using Archimedes’ hat-box theorem argue that if a disk of width 1 is covered by

strips of widths w1, . . . , wl, then w1 + · · ·+ wl ≥ 1.

2. Fill out the details in the proof of Lemma 14.5.
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A Appendix: Euler’s formula

Using graphs, we shall prove the following useful relationship between the number of

vertices, edges and facets of polytopes in R3.

A.1 Theorem (Euler’s formula). Let P be a 3-dimensional polytope in R3 with v ver-

tices, e edges and f facets. Then

v − e+ f = 2. (A.1)

A standard and quick proof starts with constructing a graph of P which is planar:

take an interior point of P and radially project from it the skeleton of P (the union

of its edges) onto a large sphere S containing P . This gives a graph of P on S which

is simple and has nonintersecting edges. It remains to choose a point in the interior

of one of the faces of this graph as the north pole and do a stereographical projection

to obtain a simple connected planar graph of P with the number of vertices, edges

and faces (including the outer one corresponding to the face from which we projected)

being respectively v, e, f . Then (A.1) follows from a corresponding theorem for planar

graphs, which can be shown by induction. The faces of a planar graph are the connected

components of R2 \ (a drawing of G).

Figure A.1: The faces are the connected components of the plane with the graph re-

moved. This planar graph has 4 faces.

A.2 Theorem (Euler’s formula for graphs). Let G be a connected planar graph with v

vertices, e edges and f faces. Then

v − e+ f = 2. (A.2)

Proof. We proceed by induction on the number of faces f . If f = 1, then G has no cycles,

so G is a tree, so v = e + 1 and thus v − e + f = (e + 1) − e + 1 = 2. Suppose f ≥ 2.

Then G has a cycle C. The cycle C separates the plane into two connected components.

Choose an edge of the cycle C. By removing this edge from G, we decrease the number

of edges and faces by 1 without changing the number of vertices, that is the new graph

has v vertices, e−1 edges and f −1 faces. By induction, v− (e−1) + (f −1) = 2, which

gives v − e+ f = 2.

107



A.3 Corollary. Let G be a connected planar graph with v vertices, e edges and f facets.

Then

e ≤ 3v − 6,

f ≤ 4v − 2.
(A.3)

Consequently, if P is a 3-dimensional polytope in R3 with v vertices, e edges and f

facets, then the same inequalities hold.

Proof. Suppose the graph G has v vertices, e edges and f faces. By double-counting

the pairs (edge,face) in G (every edge belongs to 2 faces and every face contains at

least 3 edges), we get 2e ≥ 3f . Since, by Euler’s formula (A.2), f = 2 + e − v, we get

2e ≥ 6+3e−3v, that is e ≤ 3v−6. Similarly for the number of facets f . The statement

for polytopes follows by considering their graphs as before.
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[4] Bárány, I., Intrinsic volumes and f -vectors of random polytopes, Math. Ann. 285

(1989), no. 4, 671–699.

[5] Ball, K., The plank problem for symmetric bodies. Invent. Math. 104 (1991), no. 3,

535–543.
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