Convex and discrete geometry 21-366

Final take-home exam

Work on all question but submit your solutions to only 6 of them. Due the 6th of December.

- 1. Consider the unit disk $D = \{x \in \mathbb{R}^2, x_1^2 + x_2^2 \le 1\}$. Give an example of a set A different than $\frac{1}{2}D$ such that A A = D.
- 2. If sets K_1, \ldots, K_n in \mathbb{R}^d are convex, then so is their Minkowski sum $K_1 + \cdots + K_n$.
- 3. Let P be a symmetric convex polytope in \mathbb{R}^d . Show that for some n, there is a d-dimensional subspace F in \mathbb{R}^n and a linear injective map $T \colon \mathbb{R}^d \to \mathbb{R}^n$ such that $[-1,1]^n \cap F = T(P)$ (in words, every symmetric polytope is a central section of the cube in sufficiently high dimension).
- 4. Show that a permutohedron of order n has n! vertices.
- 5. (a) Let X be subset of \mathbb{R}^d . If every d + 1 points from X can be covered by a (closed) ball of radius r, then X can be covered by such a ball.

(b) Every set of d + 1 points in \mathbb{R}^d of diameter at most 2 can be covered by a closed ball of radius $r \leq \sqrt{\frac{2d}{d+1}}$ (which is sharp for a regular simplex).

(c) If X is a subset of \mathbb{R}^d with diameter at most 2, then X can be covered by a closed ball of radius at most $\sqrt{\frac{2d}{d+1}}$ (Jung's theorem).

(d)* If such X does not lie in any smaller ball, then the closure of X contains the vertices of a regular d-dimensional simplex of edge-length 2.

- 6. Let K be a compact convex set in \mathbb{R}^2 with support function h_K .
 - (a) If K is a polygon, then $|\partial K| = \int_0^{2\pi} h_P(\cos \theta, \sin \theta) d\theta$ ($|\partial K|$ is the perimeter of K). (b) If K_1 and K_2 are two convex polygons in \mathbb{R}^2 such that $K_1 \subset K_2$, then we have $|\partial K_1| \leq |\partial K_2|$, with equality if and only if $K_1 = K_2$.

(c)* By approximation arguments, show that (a) is valid for all compact convex planar sets K. Deduce Barbier's theorem: all plane convex sets of constant width b have the same perimeter πb .

7. Prove that for every nonnegative numbers $\alpha_1, \ldots, \alpha_d$ and β_1, \ldots, β_d , we have

$$\left(\prod_{i=1}^{d} (\alpha_i + \beta_i)\right)^{1/d} \ge \left(\prod_{i=1}^{d} \alpha_i\right)^{1/d} + \left(\prod_{i=1}^{d} \beta_i\right)^{1/d}.$$

 \mathbf{TT}

8. Show the following analogue of the Brunn-Minkowski inequality: for $d \times d$ positive semi-definite real matrices A and B, we have

$$\left[\det(A+B)\right]^{1/d} \ge \left[\det(A)\right]^{1/d} + \left[\det(B)\right]^{1/d}.$$

9. Show that all norms on \mathbb{R}^d are equivalent, that is if $\|\cdot\|$ and $\|\cdot\|'$ are two norms on \mathbb{R}^d , then there are positive finite constants α, β such that for every x in \mathbb{R}^d , we have

$$\alpha \|x\| \le \|x\|' \le \beta \|x\|.$$

- 10. Let $\|\cdot\|$ be a norm on \mathbb{R}^d and let $K = \{x \in \mathbb{R}^d, \|x\| \le 1\}$ be its unit ball. Show that *K* is symmetric, convex, compact, with nonempty interior (*K* is a symmetric convex body).
- 11. Let K be symmetric convex body in \mathbb{R}^d . Define for $x \in \mathbb{R}^d$, $p_K(x) = \inf\{t > 0, x \in tK\}$ (the so-called Minkowski's functional of K). Show that p_K is a norm on \mathbb{R}^d and its unit ball is K.
- 12. Let $p \in (1, \infty)$. Find an ℓ_p -equilateral set in \mathbb{R}^d of size d + 1.

13.* Show that n points on the plane determine at most

- (a) $O(n^{7/3})$ triangles with a given angle α ,
- (b) $O(n^{7/3})$ triangles with area 1,
- (c) $O(n^{7/3})$ isosceles triangles.