
Minkowski’s Theorem and Its Applications

Zichao Dong

This is a mini talk about Minkowski’s theorem in convex geometry and several interesting

applications of it. It is based on [1]. We first introduce two proofs of the main theorem.

Theorem. (Minkowski’s theorem)

Suppose C to be a symmetric, convex, bounded subset Rd. If vol(C) > 2d, then C contains at

least one lattice point other than 0.

Proof. Take C ′ =
1

2
C =

{
1

2
x : x ∈ C

}
, then vol(C ′) > 1. Then we claim that

There exists a nonzero integral vector v ∈ Zd\{0}, such that v ∈ C ′ − C ′.
Let’s first show that the claim implies the our theorem:

Suppose x ∈ C ′ and x+v ∈ C ′, then −x ∈ C ′ by symmetry, and hence
1

2
v =

1

2
(−x)+

1

2
(v+x) ∈

C ′ by convexity. Thus v ∈ C follows from C ′ =
1

2
C, we’re done.

Next, we introduce two proofs of the claim:

1) (Minkowski)

We show by contradiction. Suppose (C ′ − C ′) ∩ Zd = {0}, then C ′ + u and C ′ + v are always

disjoint for different u, v ∈ Zd. Suppose D is the diameter of C ′, then we have
⋃

[−N,N ]d

(C ′ + u) ⊂ [−(N +D), N +D].

Take the volume for both sides, we see that

(2N + 1)dvol(C ′) 6 2d(N +D)d,

and hence

1 < vol(C ′) 6
(

2(N +D)

2N + 1

)d
,

Take N →∞, we see the contradiction.

2) (Blichfeldt)

We prove some general result:

Suppose A ⊂ Rn be measurable with vol(A) > k, then we can find some x ∈ Rn, such that A+x

contains at least k + 1 points from Zn.

Denote f(x) =
∑
y∈Zn

1A+x(y) which is definitely measurable, and we may assume without loss of

generality that A is bounded, since the Lebesgue measure is inner regular. Then
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∫

[0,1]n
f(x)dx =

∑

y∈Zn

∫

[0,1]n
1A+x(y)dx

=
∑

y∈Zn

∫

[0,1]n
1A(y − x)dx

=
∑

y∈Zn

∫

y−[0,1]n
1A(t)dt

=

∫

Rn

1A(t)dt

= vol(A)

> k.

Thus, max
x∈[0,1]n

f(x) > k + 1, we’re done.

Now we introduce a quick application to take a glance on the power of Minkowski’s theorem.

Theorem. (Dirichlet’s approximation)

For any α ∈ (0, 1) and N ∈ N, there exists a pair of natural numbers m,n with m 6 N , such

that ∣∣∣α− n

m

∣∣∣ < 1

mN
.

Proof. Consider the parallelogram P =

{
(x, y) : |x| 6 N +

1

2
, |y − αx| 6 1

N

}
⊂ R2. We have P

is bounded and symmetric convex with |P | =
2(2N + 1)

N
> 22, hence by Minkowski’s theorem,

there exists some (m,n) ∈ P ∩ Z2. Then |αm − n| < 1

N
, hence

∣∣∣α− n

m

∣∣∣ < 1

mN
with m 6 N (by

symmetry of P , we can choose m > 0), we’re done.

Before showing some deeper applications of Minkowski’s theorem, we need to generalize the

concept of lattice at first.

Definition. (General lattice)

Let z1, z2, · · · , zd be d linearly independent vectors in Rd, we define

Λ = Λ(z1, z2, · · · , zd) := {i1z1 + i2z2 + · · ·+ idzd : (i1, i2, · · · , id) ∈ Zd}
as the lattice with basis {z1, z2, · · · , zd}. In particular, we denote det Λ = |detZ| where Z is the

matrix (z1, z2, · · · , zd) made up of column vectors.

We have the following remarks to state here.

Remark.

• The basis is not unique generally.

• We have det Λ = vol(P ) for P = {α1z1 + α2z2 + · · ·+ αdzd : α1, α2, · · · , αd ∈ [0, 1]}.
• In fact, det Λ does not depend on the choice of the basis.
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Now we can introduce the following generalized version of Minkowski’s theorem.

Theorem. (Minkowski’s theorem for general lattices)

Suppose Λ to be a lattice and C to be a bounded symmetric convex subset in Rd. If vol(C) >

2d det Λ, then C contains at least a point of Λ different from 0.

There is actually nothing new to prove since we can apply some affine mapping to reduct this

general case into the original theorem. Now we may apply the generalized Minkowski’s theorem to

solve some classical number theory problems.

Theorem. (Two-square theorem)

For prime p ≡ 1 (mod 4), we can always find some a, b ∈ Z, such that p = a2 + b2.

Proof. We first claim that

(−1

p

)
= 1 for p ≡ 1 (mod 4). If

(−1

p

)
= −1, then we have (p− 1)! ≡

(−1)
p−1
2 ≡ 1 (mod p) by pairing each element with their inverse respectively in Z/pZ, which

contradicts Wilson’s theorem. So the claim is true.

Now suppose q2 ≡ −1 (mod p), and take z1 = (1, q), z2 = (0, p), and Λ = Λ(z1, z2), then we

have det Λ = p.

Consider C = {(x, y) : x2 + y2 < 2p} in R2, then we have

vol(C) = 2πp > 4p = 22 det Λ.

According to Minkowski’s theorem, we see that C contains a point (a, b) ∈ Λ\{0}. Then

(a, b) = iz1 + jz2 = (i, iq + jp) ∈ R2, which implies

a2 + b2 = i2 + (iq + jp)2 ≡ (q2 + 1)i2 ≡ 0 (mod p).

Note that we also have 0 < a2 + b2 < 2p, hence it has to be a2 + b2 = p, we’re done.

Theorem. (Lagrange’s four-square theorem)

For n ∈ N, we can always find some a, b, c, d ∈ Z, such that n = a2 + b2 + c2 + d2.

Proof. Suppose the prime factorization of n is n = pα1
1 pα2

2 · · · pαk
k . It is easily seen that to prove

the theorem, we only need to deal with the case when α1, α2, · · · , αk ∈ {0, 1}.
We first claim that there exists some x, y ∈ Z such that x2 + y2 ≡ −1 (mod n). We show for

prime n = p (p = 2 is trivial hence suppose p to be odd): if

(−1

p

)
= 1, then we have a2 ≡ −1

(mod p) for some a, and by taking x = a, y = 0, we’re done; if

(−1

p

)
= −1, then consider the

residue pairs (0, p − 1), (1, p − 2), · · · , (p−12 , p−12 ) and since both 0 and p − 1 are not quadratic

residues, there must be a pair consisting of quadratic residues by pigeonhole principle, hence we’re

done. The general case follows by applying Chinese Remainder theorem to all of the prime factors

of n.

Now suppose A2 + B2 ≡ −1 (mod n), and take Λ = {(x, y, z, t) : z ≡ Ax + By (mod n), t ≡
Bx−Ay (mod n)} in R4, then we have det Λ = n2.
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Consider C = {(x, y, z, t) : x2 + y2 + z2 + t2 < 2n} in R4, then we have

vol(C) =

√
π
4

Γ(1 + 4
2)

(
√

2n)4 = 2n2π2 > 24n2 = 24 det Λ.

According to Minkowski’s theorem, we see that C contains a point (a, b, c, d) ∈ Λ\{0}. It is

easy to check that a2 + b2 + c2 + d2 ≡ 0 (mod n) while 0 < a2 + b2 + c2 + d2 < 2n, hence we’re

done.
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Steiner symmetrisation and Blaschke–Santaló inequality

Yihan Zhang

This presentation is based on [1].

Definition 1. Let K Ă Rn be a convex body and u P Sn´1. The Steiner symmetral Su pKq of K

along u is defined as the body such that for all x P uK,

|K X px` Ruq| “ |Su pKq X px` Ruq| .

In other words,

Su pKq –
"
px, tuq : x P projuK pKq , |t| ď

1

2
|K X px` Ruq|

*
.

Fact 2. For any K,L convex and u P Sn´1, the following properties hold.

1. Su pKq is convex.

2. |Su pKq| “ |K|.
3. Su pKq ` Su pLq Ă Su pK ` Lq.
4. If K Ă L, then Su pKq Ă Su pLq.

Proof. 1. Define function

f : projuK pKq Ñ R
x ÞÑ |`x| – |K X pRu` xq| .

It suffice to prove f is concave. For any x, y P projuK pKq and λ P r0, 1s, let z “ λx`p1´ λq y.

By convexity of K,

λ pK X px` Ruqq ` p1´ λq pK X py ` Ruqq Ă K X pz ` Ruq .

The fact follows by taking length on both sides and noting that the length of the Minkowski

sum of two segments is the sum of their lengths.

2. |K| “ ş
uK |K X px` Ruq| dx “ ş

uK |Su pKq X px` Ruq| dx “ |Su pKq|.
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3. For any x “ px1, suq P Su pKq , y “ py1, tuq P Su pLq, we want to show x` y P Su pK ` Lq. We

know x1 P projuK pKq , y1 P projuK pLq and by definition,

|s| ď 1

2
|K X pRu` xq| , |t| ď 1

2
|LX pRu` yq| .

x` y “ px1 ` y1, ps` tquq. It suffices to show

|s` t| ď 1

2
|pK ` Lq X pRu` x` yq| .

Indeed

|s` t| ď 1

2
|K X pRu` xq| ` 1

2
|LX pRu` yq| .

Also |K X pRu` xq| ` |LX pRu` yq| ď |pK ` Lq X pRu` x` yq|, since again by convexity

K X px` Ruq ` LX py ` Ruq Ă pK ` Lq X px` y ` Ruq .

4. Obviously, symmetrization preserves inclusion.

Proposition 3. For any K Ă Rn symmetric and convex, u P Sn´1, |K˝| ď |Su pKq˝|.
Proof. WLOG, let u “ en. The symmetral of K along u can be written as

Su pKq “
"ˆ

x,
s´ t

2

˙
: px, sq , px, tq P K

*
.

And the polar of it can be written as

Su pKq˝ “
#
py, rq : sup

px,sq,px,tqPK

Bˆ
x,
s´ t

2

˙
, py, rq

F
ď 1

+

“
"
py, rq : xx, yy ` s´ t

2
r ď 1,@ px, sq , px, tq P K

*
.

For a set A P Rn, define its section along en at r as A prq –
 
x P Rn´1 : px, rq P A(. Now let’s

compute

1

2
pK˝ prq `K˝ p´rqq “

"
y ` z

2
: @ px, sq , pw, tq P K, xx, yy ` sr ď 1, xw, zy ´ tr ď 1

*

Ă
"
y ` z

2
: @ px, sq , px, tq P K, xx, yy ` sr ď 1, xx, zy ´ tr ď 1

*

Ă
"
y ` z

2
: @ px, sq , px, tq P K,

B
x,
y ` z

2

F
` s´ t

2
r ď 1

*
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“
"
v : @ px, sq , px, tq P K, xx, vy ` s´ t

2
r ď 1

*

“Su pKq˝ prq .

Note that K˝ is symmetric since K is symmetric. Indeed, for any y P K˝, hK p´yq “ h´K pyq “
hK pyq ď 1, i.e., ´y P K˝. Hence

K˝ prq “  
x P Rn´1 : px,´rq P K˝(

“  
x P Rn´1 : p´x, rq P K˝(

“  ´x P Rn´1 : px, rq P K˝(

“´K˝ prq .

By Brunn–Minkowski,

|Su pKq˝ prq| ě
ˇ̌
ˇ̌1
2
pK˝ prq `K˝ p´rqq

ˇ̌
ˇ̌

ěa|K˝ prq|a|K˝ p´rq|
“ |K˝ prq| .

Finally the proposition follows by integrating the sections along r,

|Su pKq˝| “
ż

R
|Su pKq˝ prq| dr ě

ż

R
|K˝ prq| dr “ |K˝| .

Theorem 4. For any convex K such that |K| “ |Bn
2 |, there exists tuju Ă Sn´1, Kj “ Suj pKj´1q,

such that Kj Ñ Bn
2 in Hausdorff distance1.

We need the following lemma which is the geometric analog of the fact that every bounded

sequence has a convergent subsequence.

Lemma 5 (Blaschke’s selection theorem). Any sequence of convex bodies tKju such that Kj Ă RBn
2

for all j has a convergent (in Hausdorff distance) subsequence.

Proof of the theorem. If K Ă rBn
2 , then Kj Ă rBn

2 for all j since symmetrization preserves in-

clusion. Let R0 – infj inf tr : Kj Ă rBn
2 u be the infimum of the circumradii of the sequence of

convex bodies. Take a subsequence of tKju with circumradii converging to R0. By Blaschke’s

selection theorem, further take a subsequence of the subsequence such that Kij Ñ L for some

L. Note that R0 is the circumradius of L. It’s left to show that actually L “ R0B
n
2 . Suppose

not, then BL misses a cap C “ B pR0B
n
2 q X txx, uy ě R0 ´ εu for some u P Sn´1 and ε ą 0. We

can cover B pR0B
n
2 q using reflected images of C wrt a finite sequence of hyperplanes H1, ¨ ¨ ¨ , Hk.

1The hausdorff distance between two convex bodies K and L is defined as dH pK,Lq –
inf tδ ą 0: K Ă L` δBn

2 , L Ă K ` δBn
2 u.
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Indeed, to cover x P B pR0B
n
2 q, we can take Hx “ px´ x0qK, where x0 is the center of C. Then

by compactness, take a finite sub-covering. If L misses C, then SHKx pLq misses both C and its

relfected image wrt Hx. Then L0 – SHKk
˝ SHKk´1

˝ ¨ ¨ ¨ ˝ SHK1 pLq misses the whole B pR0B
n
2 q. Let’s

say L0 Ă pR0 ´ εqBn
2 for some ε ą 0. Suppose Bn

2 Ă tL0 for some t ą 0. Take L1 P  
Kij

(
such

that dH pL1, Lq ď ε1 “
´
R0´ε{2
R0´ε ´ 1

¯
1
t . Then

L1 ĂL0 ` ε1Bn
2

ĂL0 ` ε1tL0

“ `
1` ε1t˘L0

Ă `
1` ε1t˘ pR0 ´ εqBn

2

“pR0 ´ ε{2qBn
2 ,

which contradicts the definition of R0.

Theorem 6 (Blaschke–Santaló). For any symmetric convex body K, |K| |K˝| ď |Bn
2 |2.

Remark 7. The LHS of the inequality is GL pn,Rq-invariant, i.e., for any A P GL pn,Rq,

|AK| |pAKq˝| “ det pAq |K|
ˇ̌
ˇ
`
AT

˘´1
K˝

ˇ̌
ˇ “ det pAq |K|det pAq´1 |K˝| “ |K| |K˝| .

Proof. By Steiner symmetrization, for any L with |L| “ |Bn
2 |, there exists tuju Ă Sn´1, K0 “

L,Kj “ Suj pKj´1q, such that Kj Ñ Bn
2 . Take L “

ˆ |Bn
2 |

|K|

˙1{n
K. Note that |L| “ |Bn

2 |. By

proposition,

|L˝| “ |K0̋ | ď |K1̋ | ď ¨ ¨ ¨ ď |pBn
2 q˝| “ |Bn

2 | .

This finishes the proof by noting that

|L˝| “
ˇ̌
ˇ̌
ˇ

˜ˆ |Bn
2 |

|K|
˙1{n

K

¸˝ ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

ˆ |K|
|Bn

2 |
˙1{n

K˝
ˇ̌
ˇ̌
ˇ “

|K|
|Bn

2 |
|K˝| .

We finish this note with a conjecture.

Conjecture 8. For any symmetric convex body K, |K| |K˝| ě |Bn
1 | |Bn8|.
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Pinelis’ Inequality

Joshua Siktar

We would like to prove the following slight generalisation of Pinelis’ inequality from [1].

Theorem. Let ε1, ε2, . . . be i.i.d. symmetric ±1-valued random variables and let g be a standard
Gaussian random variable (mean zero, variance one). For every reals x, a1, . . . , an and positive
t we have

P (|x+ a1ε1 + . . .+ anεn| > t) ≤ 25P
(
|x+ (a21 + . . .+ a2n)1/2g| > t

)
.

For x = 0 the above reduces to Pinelis’ theorem from [1]. We shall repeat the inductive arguent
of Bobkov, Götze and Houdré from [2]. We shall need their lemma.

Lemma. Let g be a standard Gaussian random variable. For every u ≥
√

3 and α ∈ (0, π/2) we
have

P
(
g >

u− sinα

cosα

)
+ P

(
g >

u+ sinα

cosα

)
≤ 2P (g > u) .

Proof of the theorem. We proceed by induction on n. Suppose n = 1. We can assume that
a1 = 1. We need to check whether

P (|x+ ε1| > t) ≤ 25P (|x+ g| > t) .

This holds trivially for t > max{|x− 1|, |x+ 1|}. For t ≤ max{|x− 1|, |x+ 1|} we have

min{t− x, t+ x} = t− |x| ≤ max{|x− 1| − |x|, |x+ 1| − |x|} ≤ 1,

hence

P (|x+ g| > t) = P (g > t− x) + P (g > t+ x) ≥ P (g ≥ min{t− x, t+ x})
≥ P (g > 1) > 1/25.

Suppose n ≥ 2. Assume without loss of generality that x and the ai are positive and a21 + . . .+
a2n = 1. Since P

(
g >
√

3
)
> 1/25 and P (|x+ g| > t) = P (g > t− x)+P (g > t+ x), we can also

assume that t± x ≥
√

3. We have

P (|x+ a1ε1 + . . .+ anεn| > t) =
1

2
P (|(x+ a1) + a2ε2 + . . .+ anεn| > t)

+
1

2
P (|(x− a1) + a2ε2 + . . .+ anεn| > t) ,

so by the inductive assumption it is enough to show that

1

2
P
(
|x+ a1 + a′g| > t

)
+

1

2
P
(
|x− a1 + a′g| > t

)
≤ P (|x+ g| > t) ,
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where a′ = (a22 + . . . + a2n)1/2. Because a21 + a′2 = 1, we can set a1 = sinα and a′ = cosα for
some α ∈ (0, π/2). Then the above inequality becomes

P
(
g >

t− x− sinα

cosα

)
+ P

(
g >

t+ x+ sinα

cosα

)

+ P
(
g >

t− x+ sinα

cosα

)
+ P

(
g >

t+ x− sinα

cosα

)
≤ 2P (g > t− x) + 2P (g > t+ x) .

Putting u = t− x, v = t+ x, we have u, v ≥
√

3 and ask whether

P
(
g >

u− sinα

cosα

)
+ P

(
g >

u+ sinα

cosα

)

+ P
(
g >

v + sinα

cosα

)
+ P

(
g >

v − sinα

cosα

)
≤ 2P (g > u) + 2P (g > v) .

This follows from the lemma.
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Pinsker’s Inequality

Kai Wen Wang

The finite and coin flip examples are adapted from [2]. The general case is adapted from [1].

1 Finite Case

Let P and Q be distributions on a finite universe U with densities p and q respectively. Proba-
bility spaces are (U,F , P ), (U,F , Q).
The KL-divergence of P with Q is

D(P ||Q) =
∑

x∈U
p(x) lg(

p(x)

q(x)
)

Remark: D(P ||Q) ≥ 0 with equality iff P = Q.

The total-variation distance between P and Q is

||P −Q||TV =
1

2
||P −Q||1 =

1

2

∑

x∈U
|p(x)− q(x)|

1.1 U = {0,1}

Figure 1: Picture that shows p lg(p/q) + (1− p) lg((1− p)/(1− q)) ≥ 2
ln(2) |p− q|2.

Alternatively, set f(p, q) = p lg(p/q) + (1− p) lg((1− p)/(1− q))− 2
ln(2) |p− q|2 and show that

it is zero at p = q and concave up, with minimum at p = q.

δf

δq
=
p− q
ln(2)

[
4− 1

q(1− q)

]

1.2 Any finite universe

Idea is to reduce any case to the special U = {0, 1} case. Introduce a set A = {p ≥ q} and
PA = Ber(

∑
x∈A p(x)), QA = Ber(

∑
x∈A q(x)). Then, we actually have

||P −Q||1 = ||PA −QA||1

1



So,

D(P ||Q) = D(P (X, 1A)||Q(X, 1A))

= D(P (1A)||Q(1A)) +D(P (X|1A)||Q(X|1A))

≥ D(P (1A)||Q(1A))

= D(PA||QA)

≥ 1

2 ln(2)
||PA −QA||21

=
1

2 ln(2)
||P −Q||21

as desired.
The first equality, though intuitively true, can be shown; if Z = f(X) then D(P (X)||Q(X)) =
D(P (X,Z)||Q(X,Z)) since P (X = x, f(X) = y) = P (X = x, f(x) = y) = P (X = x)1f(x)=y.
Therefore, expanding this out gives the desired result.

2 General Case

Let µ and ν be two probability measures on a measurable space (X,F ). Then the total-variation
distance between µ and ν is defined to be

||µ− ν||TV = sup
A∈F
|µ(A)− ν(A)|

The relative entropy of ν w.r.t. µ is defined as

H(ν|µ) =

{ ∫
f ln fdµ, if f = dν

dµ exists

∞, otherwise

Pinsker’s inequality states that the total-variation distance is upper bounded by the relative
entropy:

||µ− ν||2TV ≤
1

2
H(ν|µ) (1)

2.1 Proof of Pinsker’s inequality

Assuming f exists, the total variation distance can be written as

||µ− ν||TV =
1

2

∫

X
|1− f |dµ

(≤) Split into positive and negative parts

1− f = (1− f)+ − (1− f)−
|1− f | = (1− f)+ + (1− f)−∫

X
1− f = 0

By integrating, we see that
∫
X(1− f)+dµ =

∫
X(1− f)−dµ = 1

2

∫
X |1− f |dµ.

For any A ∈ F ,

|µ(A)− ν(A)| = |
∫

A
(1− f)dµ| ≤ max{

∫

A
(1− f)+dµ,

∫

A
(1− f)−dµ} ≤

1

2

∫

X
|1− f |dµ
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Taking supremum on both sides over A yields the result.
(≥) We witness a single A for equality. Let A = {1 ≥ f}. Then,

|µ(A)− ν(A)| =
∫

A
(1− f)+dµ =

∫

X
(1− f)+dµ =

1

2

∫

X
|1− f |dµ

Now set u = f − 1 so that H(ν|µ) =
∫
f ln(f)dµ =

∫
(1 + u) ln(1 + u) − udµ. The −u makes

things easier, even though
∫
udµ = 0.

Define φ(x) = (1 + x) ln(1 + x)− x. We have φ′(x) = ln(1 + x), φ′′(x) = 1
1+x .

Thus,

φ(t) =

∫ t

0
φ′(x)dx

= −
∫ t

0
(t− x)′φ′(x)dx

=

∫ t

0
(t− x)φ′′(x)dx

=

∫ t

0

t− x
1 + x

dx

= t2
∫ 1

0

1− s
1 + ts

ds

with the last step from x = ts.
From this, we have H(ν|µ) =

∫
X×[0,1] u

2 1−s
1+usdµds.

Since

||µ− ν||TV =
1

2

∫

X
|u|dµ =

∫

X×[0,1]
|u|(1− s)dµds

By Cauchy-Swartz,

||µ− ν||2TV = (

∫

X×[0,1]
|u|(1− s)dµds)2

≤ (

∫

X×[0,1]
|u|2 1− s

1 + us
dµds) · (

∫

X×[0,1]
(1− s)(1 + us)dµds)

=
1

2
H(µ|ν)

as desired.
Remark: You may be wondering why the total-variation distance looks a bit different from

before, and why we used relative entropy instead of KL-divergence. But if we set P = µ,Q = ν
and assume that U = X is finite, then using probability densities we see they’re equivalent.

3



3 Example of coin flips

Lemma: Let P,Q be any distributions on U . Let f : U → [0, B]. Then

|EP [f ]− EQ[f ]| ≤ B||P −Q||TV

Suppose you have two coins:

Coin P =

{
H w.p. 1

2 − ε
T w.p. 1

2 + ε
Coin Q =

{
H w.p. 1

2

T w.p. 1
2

We want a classifier f : {0, 1}m → {0, 1} that takes an input of flips and returns 1 if it thinks
the coin is P and 0 otherwise. Let’s say we want f to predict correctly with probability 9

10 .
Equivalently,

Ex∼Pm [f(x)] = Pr
x∼Pm

[f(x) = 1] ≥ 9

10
and Ex∼Qm [f(x)] = 1− Pr

x∼Qm
[f(x) = 0] ≤ 1

10

So we derive a lower bound for ||Pm −Qm||1 ≥ 8
5 as

4

5
≤ |Ex∼Pm [f(x)]− Ex∼Qm [f(x)]| ≤ 1

2
||Pm −Qm||1

Now, we find an upper bound for ||Pm −Qm||1 using Pinsker’s inequality

m ·D(P ||Q) = D(Pm||Qm) ≥ 1

2 ln(2)
||Pm −Qm||21 ≥

64

25 ln(2)

We can calculate the KL-divergence explicitly and find an upper bound

D(P ||Q) =
1

2
lg((1− 2ε)(1 + 2ε)) + ε lg(

1 + 2ε

1− 2ε
)

≤ ε

ln(2)
ln(1 +

4ε

1− 2ε
)

≤ 8ε2

ln(2)

when ε ≤ 1
4 .

Simplifying, we get that m ≥ 4
25ε2

.
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