Probability 21-325

Revision

- 1. Find the mean, variance, probability generating function and characteristic function of a Bin(n, p) random variable. Find the limit of its probability generating function as well as characteristic function as $n \to \infty$ with $np \to \lambda$. What is the distribution of the sum of independent Poisson random variables?
- 2. Find the probability generating function of a Poisson random variable with parameter λ . Let X_1, \ldots, X_n be independent random variables with the Poisson distribution, each with parameter 1. Find the probability generating function of $S_n = X_1 + \ldots + X_n$. What is the distribution of S_n ? What is the mean and variance of S_n ? Prove that for positive t, $\mathbb{P}(S_n \ge (1+t)n) \le \frac{1}{t^2n}$. Show that $\lim_{n\to\infty} e^{-n} \sum_{k\ge 1.1n} \frac{n^k}{k!} = 0$.
- **3.** Fix $p \in (0,1)$. Let S_n be a random variable with the binomial distribution with parameters n and p. Show that for every positive ε , $\lim_{n\to\infty} \mathbb{P}(S_n > (p + \varepsilon)n) = 0$. Does the sequence $\frac{S_n}{n}$ converge i) a.s., ii) in probability, iii) in L_2 iv) in distribution?
- 4. Let X be a random variable with density $f(x) = \frac{1}{2}e^{-|x|}$. Find $\mathbb{E}X$ and $\mathbb{E}|X|$. Find its variance. Find the distribution function of |X|, εX and $\varepsilon + X$ and sketch their plots (ε is an independent of X random sign). Find the distribution function of X^2 .
- 5. Let X and Y be independent standard Gaussian random variables and let a, b, c, d be real numbers. What is the distribution of aX + bY? Find Cov(aX + bY, cX + dY). Show that aX + bY and cX + dY are independent if and only if the vectors (a, b) and (c, d) are orthogonal. Find the density of $\sqrt{X^2 + Y^2}$.
- 6. What is the density of a standard Gaussian random variable, that is a Gaussian random variable with mean zero and variance one? Let X and Y be independent standard Gaussian random variables. What is the distribution of $\frac{1}{2}X \frac{\sqrt{3}}{2}Y$? Are the variables X and X + Y independent? Are the variables $\frac{1}{2}X \frac{\sqrt{3}}{2}Y$ and $\frac{\sqrt{3}}{2}X + \frac{1}{2}Y$ independent?
- 7. Let S_n be the number of heads after throwing n times a biased coin showing heads with probability 1/3. What is the mean and variance of S_n ? Show that

$$\lim_{n \to \infty} \mathbb{P}\left(S_n > n/3 + \sqrt{n}\right) = \int_{\frac{3}{\sqrt{2}}}^{\infty} e^{-x^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}}$$

8. Let S_n be the number of ones when throwing a fair die *n* times. What is the limit of $\mathbb{P}(S_n > n/6 + \sqrt{n})$? Let *S* be the number of ones when throwing a fair die 18000 times. Find a good approximation to $\mathbb{P}(2950 < S < 3050)$. How can you bound the error you make?

- **9.** Let f be a continuous function on [0, 1]. Find $\lim_{n\to\infty} \int_0^1 \dots \int_0^1 f\left(\frac{x_1+\dots+x_n}{n}\right) dx_1 \dots dx_n$ (or show it does not exist).
- **10.** Let f be a continuous function on [0, 1]. Find $\lim_{n\to\infty} \int_0^1 \dots \int_0^1 f(\sqrt[n]{x_1 \dots x_n}) dx_1 \dots dx_n$ (or show it does not exist).
- 11. Let v_1, \ldots, v_m be unit vectors in \mathbb{R}^n . Show that there is a choice of signs $\varepsilon_1, \ldots, \varepsilon_m$ such that the vector $\varepsilon_1 v_1 + \ldots + \varepsilon_m v_m$ has length at least \sqrt{m} .
- 12. Let g be a standard Gaussian random variable. Find $\mathbb{E}g^{2n}$.
- 13.* Let $\varepsilon_1, \varepsilon_2, \ldots$ be independent random signs. Let $X_n = \frac{2}{n} \sum_{1 \le i < j \le n} \varepsilon_i \varepsilon_j$. Does the sequence X_n converge in distribution? If yes, find its limit.