1. Let X be a nonnegative random variable. Show that for p > 0, we have

$$\mathbb{E}X^p = \int_0^\infty p t^{p-1} \mathbb{P}\left(X > t\right) \mathrm{d}t.$$

- **2.** Let X be a random variable such that $\mathbb{E}|X|^p < \infty$ for some p > 0. Show that $\lim_{t\to\infty} t^p \mathbb{P}(|X| > t) = 0$.
- **3.** Show that the probability that in *n* throws of a fair die the number of sixes lies between $\frac{1}{6}n \sqrt{n}$ and $\frac{1}{6}n + \sqrt{n}$ is at least $\frac{31}{36}$.
- 4. Let X be a random variable with values in an interval [0, a]. Show that for every t in this interval, we have

$$\mathbb{P}\left(X \ge t\right) \ge \frac{\mathbb{E}X - t}{a - t}.$$

5. Prove the Payley-Zygmund inequality: for a nonnegative random variable X and every $\theta \in [0, 1]$, we have

$$\mathbb{P}(X > \theta \mathbb{E}X) \ge (1 - \theta)^2 \frac{(\mathbb{E}X)^2}{\mathbb{E}X^2}.$$

6. Let $\varepsilon_1, \ldots, \varepsilon_n$ be independent random signs. Prove that there is a positive constant c such that for every $n \ge 1$ and real numbers a_1, \ldots, a_n , we have

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} a_i \varepsilon_i\right| > \frac{1}{2} \sqrt{\sum_{i=1}^{n} a_i^2}\right) \ge c.$$

Hint. Use the Paley-Zygmund inequality and Q4 HW5.

7. Prove that for nonnegative random variables X and Y, we have

$$\mathbb{E}\frac{X}{Y} \ge \frac{(\mathbb{E}\sqrt{X})^2}{\mathbb{E}Y}.$$

8. Let X, X_1, X_2, \ldots be identically distributed random variables such that $\mathbb{P}(X > t) > 0$ for every t > 0. Suppose that for every $\eta > 1$, we have $\lim_{t\to\infty} \frac{\mathbb{P}(X > \eta t)}{\mathbb{P}(X > t)} = 0$. For $n \ge 1$, let a_n be the smallest number a such that $n\mathbb{P}(X > a) \le 1$. Show that for every $\varepsilon > 0$, we have $\max_{i \le n} X_i \le (1 + \varepsilon)a_n$ with high probability as $n \to \infty$, i.e. $\mathbb{P}(\max_{i \le n} X_i \le (1 + \varepsilon)a_n) \xrightarrow[n \to \infty]{} 1$.

- **9.** Let $n \ge 1$, $p \in (0, 1)$ and let $X_{i,j}$, $1 \le i < j \le n$ be i.i.d. Ber(p) random variables. Let G = (V, E) be an undirected simple graph with the vertex set $V = \{1, \ldots, n\}$ and the (random) edge set $E = \{\{i, j\}, X_{i,j} = 1, 1 \le i < j \le n\}$ (the so-called Erdös-Rényi, a.k.a. $G_{n,p}$ model). Show that for every $\varepsilon > 0$, if $p > (1+\varepsilon) \frac{\log n}{n}$, then G has no isolated vertices with high probability as $n \to \infty$, i.e. $\mathbb{P}(G$ has no isolated vertices) $\xrightarrow[n \to \infty]{}$ 1.
- **10.** Let X be an integrable random variable and define

$$X_n = \begin{cases} -n, & X < -n \\ X, & |X| \le n \\ n, & X > n. \end{cases}$$

Does the sequence X_n converge a.s., in L_1 , in probability?

11: Let $\varepsilon_1, \varepsilon_2, \ldots$ be i.i.d. symmetric random signs. Show that there is a constant c > 0 such that for every $n \ge 1$ and reals a_1, \ldots, a_n , we have

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} a_i \varepsilon_i\right| \le \sqrt{\sum_{i=1}^{n} a_i^2}\right) \ge c.$$