
Probability 21-325 Homework 8 (due 20th March) TT

1. Let X1, X2, X3 be i.i.d. standard Gaussian random variables. Find the mean and

variance of Y = 3X1 −X2 + 2X3. Find its density.

2. Show that a Gaussian random vector in Rn has independent components if and only

if they are uncorrelated.

3. Let (X,Y ) be a standard Gaussian random vector in R2. Let ρ ∈ (−1, 1) and define
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Find the density of (U, V ). Is this a Gaussian random vector? What is its covariance

matrix? What is the distribution of U and V ? Determine the values of ρ for which U

and V are independent.

4. Let ρ ∈ (−1, 1) and let (U, V ) be a random vector in R2 with density

f(u, v) =
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, (u, v) ∈ R2.

Is it a Gaussian random vector? Find the covariance matrix of (U, V ). Find the

distributions of the marginals U and V . Find the conditional density of V given

U = u and the conditional expectation E(V |U = u). Determine the values of ρ for

which U and V are independent.

5. Suppose (X,Y ) is a centred (i.e., EX = EY = 0) Gaussian random vector in R2 with

Cov(
[
X
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) = [ 2 1

1 1 ]. Find, a) the density of (X,Y ), b) the density of X + 3Y , c) all

α ∈ R for which X + Y and X + αY are independent.

6. Let G be a standard Gaussian vector in Rn and let U be an n× n orthogonal matrix.

Find the density of UG. Are the components of this vector independent?

7. Let g be a standard Gaussian random variable. Show that Eg2m = 1 · 3 · . . . · (2m− 1),

m = 1, 2, . . ..

8. Let X1, X2, . . . , Xn be independent random variables, each with mean zero and finite

fourth moment. Show that
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9.* Let 0 < p < q < 1. Let X1, . . . , Xn be i.i.d. Ber(p) random variables and let Y1, . . . , Yn

be i.i.d. Ber(q) random variables. Show that for any t ≤ n,

P (X1 + . . .+Xn ≥ t) ≤ P (Y1 + . . .+ Yn ≥ t)

(intuitively, probability of getting at least t heads when tossing a biased coin showing

heads with probability p does not decrease as we increase p).

2


