- **1.** Show that if $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ and $X_n \xrightarrow[n \to \infty]{\mathbb{P}} Y$, then $\mathbb{P}(X = Y) = 1$ (in other words, the limit in probability is unique).
- **2.** Let X be an integrable random variable and define

$$X_n = \begin{cases} -n, & X < -n \\ X, & |X| \le n \\ n, & X > n. \end{cases}$$

Does the sequence X_n converge a.s., in L_1 , in probability?

- **3.** Let X_1, X_2, \ldots be i.i.d. integrable random variables. Prove that $\frac{1}{n} \max_{k \le n} |X_k|$ converges to 0 in probability.
- **4.** Show that if $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ and $Y_n \xrightarrow[n \to \infty]{\mathbb{P}} Y$, then $X_n + Y_n \xrightarrow[n \to \infty]{\mathbb{P}} X + Y$.
- **5.** Show that if $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ and $Y_n \xrightarrow[n \to \infty]{\mathbb{P}} Y$, then $X_n Y_n \xrightarrow[n \to \infty]{\mathbb{P}} XY$.
- 6. Prove that a sequence of random variables X_n converges a.s. if and only if for every $\varepsilon > 0$, $\lim_{N \to \infty} \mathbb{P}\left(\bigcap_{n,m \ge N} |X_n X_m| < \varepsilon\right) = 1$ (the Cauchy condition).
- 7. Does a sequence of independent random signs $\varepsilon_1, \varepsilon_2, \ldots$ converge a.s.?
- Let X₁, X₂,... be independent random variables, X_n ~ Poiss(1/n). Does the sequence X_n converge a.s., in L₂, in probability?