- 2. Let X and Y be independent exponential random variables with parameters λ and μ . Show that min $\{X, Y\}$ has the exponential distribution with parameter $\lambda + \mu$.
- **3.** If X has the exponential distribution, show the *lack of memory* property: for every positive s and t,

$$\mathbb{P}\left(X > s + t | X > s\right) = \mathbb{P}\left(X > t\right).$$

- 4. Let X_1, \ldots, X_n be independent exponential random variables with parameter 1. Find the distribution function of $Y_n = \max\{X_1, \ldots, X_n\}$. What is the pointwise limit of the distribution function F_n of $Y_n - \log n$? Is the limiting function a distribution function?
- 5. Let X_1, X_2, \ldots be i.i.d. continuous random variables. Define N as the unique index such that

$$X_1 \ge X_2 \ge \ldots \ge X_{N-1}$$
 and $X_{N-1} < X_N$.

Prove that $\mathbb{P}(N=k) = (k-1)/k!$, $k = 1, 2, \dots$ and find $\mathbb{E}N$.

- 6. Find a constant C such that $f: \mathbb{R}^2 \to \mathbb{R}$ given as $f(x, y) = \frac{C}{(1+x^2+y^2)^{3/2}}$ is a density function. Show that both marginals have the Cauchy distribution.
- 7. Let X_1, X_2, \ldots be independent exponential random variables with parameter 1. Show that for every n, the distribution of $X_1 + \ldots + X_n$ is Gamma(n).
- 8. Let (X, Y) be a random vector in \mathbb{R}^2 with density $f(x, y) = cxy \mathbf{1}_{0 < x < y < 1}$. Find c and $\mathbb{P}(X + Y < 1)$. Are X and Y independent? Find the density of (X/Y, Y). Are X/Y and Y independent? What is the conditional density of X given Y = y?
- **9.** Let X and Y be independent standard Gaussian random variables. Show that X/Y has the Cauchy distribution. Find $\mathbb{P}(X^2 + Y^2 < a)$ for a > 0 and $\mathbb{E}\sqrt{X^2 + Y^2}$.
- 10^{*} Let X be a standard Gaussian random variable and Y be an exponential random variable with parameter 1. Show that $\sqrt{2Y}X$ has the symmetric (two-sided) exponential distribution with parameter 1.