- 1. Find the expected value and variance of the distributions: Ber(p), Bin(n, p), $Poiss(\lambda)$, Geom(p), for $p \in (0, 1)$, $\lambda \in (0, \infty)$, $n \in \{1, 2, ...\}$.
- 2. Let X be a Poisson random variable with parameter λ . Show that for any nonnegative integer k we have

$$\mathbb{E}X(X-1)\cdot\ldots\cdot(X-k) = \lambda^{k+1}.$$

 Let X be a discrete random variable taking values in the set of nonnegative integers. Show that

$$\mathbb{E} X = \sum_{k=0}^{\infty} \mathbb{P} \left(X > k \right).$$

Show the following generalisation: for an increasing function $f \colon \mathbb{R} \to \mathbb{R}$ with f(0) = 0,

$$\mathbb{E}f(X) = \sum_{k=0}^{\infty} [f(k+1) - f(k)] \cdot \mathbb{P}(X > k) \,.$$

- 4. We throw repeatedly a fair die which has two faces coloured red, two yellow and two green. Let X be the random variable which takes the value n if all three colours occur in the first n throws but only two of the colours occur in the first n 1 throws. Find the expected value of X. Hint: You may first want to compute the probability that not all colours occur in the first k throws and use the formula from Q3.
- 5. We toss repeatedly a biased coin showing heads with probability $p \in (0, 1)$. Let X be the number of tosses until n heads have occurred in a row. Find the expectation of X.
- 6. Let X and Y be discrete random variables, each taking two distinct values. Show that X and Y are independent if and only if $\mathbb{E}XY = \mathbb{E}X \cdot \mathbb{E}Y$.
- 7. Let X and Y be independent Poisson random variables with parameters λ and μ . Show that X + Y is a Poisson random variable with parameter $\lambda + \mu$.
- 8. Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ be independent random signs. Show that the vectors $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{n-1})$ and $(\varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3, \ldots, \varepsilon_{n-1} \varepsilon_n)$ have the same distribution. In particular, the variables $\varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3, \ldots, \varepsilon_{n-1} \varepsilon_n$ are independent. Are the variables $\varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3, \varepsilon_3 \varepsilon_1$ independent?
- **9.** Let X be a discrete random variable. Show that X is zero with probability one if and only if $\mathbb{E}X^2 = 0$. Suppose that the expectation of X exists. Show that X has variance zero if and only if $X = \mathbb{E}X$.
- 10. Show that the number of σ -fields on the *n*-element set equals $\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$.