- 1. Let $N = (N_t)_{t \ge 0}$ be a Poisson process with rate λ . Show that for s < t, $N_t N_s$ has the Poisson distribution with parameter $\lambda(t - s)$.
- 2. Suppose you get at some point $t = t_0$ to a bus stop where buses arrive at according to a Poisson process $N = (N_t)_{t\geq 0}$ with rate λ . Show that your waiting time X for the next bus is an exponential random variable with parameter λ , independent of N_{t_0} .
- **3.** Let X be a Poisson random variable with parameter $\lambda > 0$. Find $\sup_{k\geq 0} \mathbb{P}(X = k)$ and show that it goes to 0 as $\lambda \to \infty$.
- 4. Consider a simple random walk on $\{0, 1, ..., N\}$ with absorbing barriers at 0 and N. Find the probability u_k that the walk is absorbed at N if it begins at a point k, $0 \le k \le N$. Why is this called the Gambler's Ruin problem?
- 5. Show that for an asymmetric simple random walk on the integers, the number of revisits of the walk to its starting point is a geometric random variable.
- 6. Let $(S_n^{(1)})_{n\geq 0}, \ldots, (S_n^{(1)})_{n\geq 0}$ be independent symmetric random walks on the integers, each starting at 0. Consider the random walk $S_n = (S_n^{(1)}, \ldots, S_n^{(1)})$ on the lattice \mathbb{Z}^d . In which dimensions d is this walk recurrent and in which transient?
- 7. Show that a Gaussian random vector in \mathbb{R}^n has independent components if and only if they are uncorrelated.
- 8. Let X be an integrable random variable. Show that the function $a \mapsto \mathbb{E}|X-a|$ attains its minimum at a = Med(X).
- **9.** Show that for any random variable X we have $|\mathbb{E}X \text{Med}(X)| \leq \sqrt{\text{Var}(X)}$.
- 10. We flip a biased coin showing heads with probability 0 a random number $of times which is a Poisson random variable with parameter <math>\lambda$, independent of the coin tosses. Let X and Y be the number of times heads and tails show up. Find the distribution of X and Y. Prove that X and Y are independent. What is the conditional distribution of N given X = k?