Probability 21-325 Homework 10 (due 23rd April)

1. Show that for positive t, $\int_t^{\infty} e^{-x^2/2} dx \leq \frac{1}{t} e^{-t^2/2}$ and $\int_t^{\infty} e^{-x^2/2} dx \leq \sqrt{\frac{\pi}{2}} e^{-t^2/2}$. Conclude that for a standard Gaussian random variable Z and positive t,

$$\mathbb{P}\left(Z>t\right) \le \frac{1}{\sqrt{2\pi}} \min\left\{\frac{1}{t}, \sqrt{\frac{\pi}{2}}\right\} e^{-t^2/2}.$$

- Find the characteristic functions of random variables with distribution Ber(p), Bin(n, p), Poiss(λ), Unif([-1, 1]).
- **3.** Let X_1, X_2, \ldots be random variables such that $\mathbb{P}\left(X_n = \frac{k}{n}\right) = \frac{1}{n}, k = 1, \ldots, n, n = 1, 2, \ldots$ Does the sequence (X_n) converge in distribution? If yes, find the limiting distribution.
- 4. Let U_1, U_2, \ldots be i.i.d. random variables uniformly distributed on [0, 1]. Let $X_n = \min\{U_1, \ldots, U_n\}$. Show that $\mathbb{E}X_n = \frac{1}{n+1}$. Show that nX_n converges in distribution to an exponential random variable with parameter one.
- 5. Let S be the number of ones when throwing a fair die 18000 times. Find a good approximation to $\mathbb{P}(2950 < S < 3050)$. How can you bound the error you make?
- 6. Let G be a standard Gaussian random vector in \mathbb{R}^n . Let $||G|| = \sqrt{G_1^2 + \ldots + G_n^2}$ be its magnitude. Let $a_n = \mathbb{P}(\sqrt{n-1} \le ||G|| \le \sqrt{n}+1)$. Find $a = \lim_{n \to \infty} a_n$ and show that $|a_n - a| \le \frac{8}{\sqrt{n}}$ for all $n \ge 1$.
- 7. Show that $e^{-n} \sum_{k=1}^{n} \frac{n^k}{k!} \xrightarrow[n \to \infty]{} \frac{1}{2}$. Hint: Poiss(n) random variable is a sum of n i.i.d. Poiss(1) random variables.
- 8. Suppose that X, X_1, X_2, \ldots are nonnegative integer-valued random variables. Show that $X_n \xrightarrow[n \to \infty]{d} X$, if and only if $\mathbb{P}(X_n = k) \xrightarrow[n \to \infty]{d} \mathbb{P}(X = k)$, for every $k = 0, 1, 2, \ldots$
- **9.** Let X_1, X_2, \ldots be i.i.d. standard Cauchy random variables. Show that for any reals a_1, \ldots, a_n , the sum $a_1X_1 + \ldots + a_nX_n$ has the same distribution as $(|a_1| + \ldots + |a_n|)X_1$.
- **10.** Let $\varepsilon_1, \varepsilon_2, \ldots$ be i.i.d. random signs. Show that $X_n = \sum_{k=1}^n \frac{\varepsilon_k}{2^k}$ converges in distribution to a random variable uniformly distributed on (-1, 1).
- 11. Suppose that a random variable X with variance one has the following property: $\frac{X+X'}{\sqrt{2}}$ has the same distribution as X, where X' is an independent copy of X. Show that $X \sim N(0, 1)$.