Combinatorics, Revision lecture $_{\rm Term\ 3\ 2014/2015}$

Problems

1. Show that for a positive integer n we have

$$\sum_{k=0}^{n} \binom{n+k}{n} \frac{1}{2^k} = 2^n.$$

2. Prove that for a positive integer n we have

$$\sum_{k=1}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}.$$

- Determine the number of functions f: {1,...,m} → {1,...,n} which are a) strictly increasing, b) nondecreasing, c) surjective.
- 4. Show the following formula for the exponential generating function of the Stirling numbers of the second kind

$$\sum_{n=k}^{\infty} {n \\ k} \frac{x^n}{n!} = \frac{1}{k!} \left(e^x - 1\right)^k.$$

- 5. In how many ways u_n can one mount a staircase with n steps if every movement involves only one or two steps?
- 6. Let D_n be the number of sequences (x_1, \ldots, x_{2n}) such that x_1, \ldots, x_{2n} take values $\pm 1, x_1 + \ldots + x_k \ge 0$ for every $1 \le k \le 2n$ and $x_1 + \ldots + x_{2n} = 0$. Prove that

$$D_n = D_{n-1} + D_1 D_{n-2} + \ldots + D_{n-1}$$

and conclude $D_n = \frac{1}{n+1} {2n \choose n}$.

- 7. Let T_1, \ldots, T_k be subtrees of a tree T with the property that each two of them have at least one vertex in common. Show that all of them has at least one vertex in common.
- 8. Let d_1, \ldots, d_n be positive integers such that $d_1 \leq d_2 \leq \ldots \leq d_n$. Show that there exists a tree with n vertices of degrees d_1, \ldots, d_n if and only if

$$\mathbf{d}_1 + \ldots + \mathbf{d}_n = 2\mathbf{n} - 2.$$

- **9.** Suppose that the vertices of a maximal plane graph are coloured with 3 colours. Show that the number of faces whose vertices have all three colours is even.
- 10. Suppose that a plane graph on $n \ge 3$ vertices contains no triangle. Show that it has at most 2n 4 edges.
- 11. Recall that $R_k(3)$ is the smallest number n such no matter how K_n is k-coloured, it contains a monochromatic triangle. It was shown in Assignment 4 that

$$\mathsf{R}_{\mathsf{k}}(3) \leq \lfloor \mathsf{k}! \mathsf{e} \rfloor + 1.$$

Prove that

$$R_k(3) \ge 2^k + 1.$$

Solutions

We will prove the desired identity by making up a story. Let us count the number of 0 - 1 sequences of length 2n + 1 in a particular way. Notice that in every such sequence either 0 or 1 is repeated at least n + 1 times. Thus for k = 0,...,n let A_k be the set of all such sequences for which 1 is repeated the n + 1st time only at the n + 1 + kth place. We have

$$|\mathsf{A}_{k}| = \binom{n+k}{k} \cdot 2^{2n+1-(n+k+1)}$$

because every sequence in A_k looks like

$$\underbrace{\star \star \star \star \ldots \star \star}_{\substack{n+k \text{ terms} \\ \text{containing} \\ \text{exactly n l's}} 1 \underbrace{\star \star \star \star \ldots \star}_{2n+1-(n+k+1)}.$$

By symmetry we get

$$2^{2n+1} = 2\sum_{k=0}^{n} |A_k| = 2\sum_{k=0}^{n} {n+k \choose n} 2^{n-k}$$

which gives

$$2^{n} = \sum_{k=0}^{n} \binom{n+k}{n} 2^{-k}. \quad \Box$$

2. Suppose we have n men and n women and from these 2n people we want to select a team of n people with a female captain. We can do it in $n\binom{2n-1}{n-1}$ ways by first selecting the female captain and then choosing n-1 people among the remaining 2n-1. On the other hand, for k = 1, ..., n we can first choose k

women in $\binom{n}{k}$ ways, among them choose the captain in k ways and then choose n-k men in $\binom{n}{n-k} = \binom{n}{k}$ ways.

Another solution. We have

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k,$$
$$n(1+x)^{n-1} = \sum_{k=1}^n k\binom{n}{k} x^{k-1}.$$

Multiplying these identities and equating the coefficients at x^{n-1} yields the result.

3. a) We want to choose $f(1), \ldots, f(m)$ so that $1 \le f(1) < \ldots < f(m) \le n$. Therefore we want to choose m *distinct* numbers among $1, \ldots, n$. There are $\binom{n}{m}$ such choices.

b) Now we require $1 \le f(1) \le \ldots \le f(m) \le n$. In other words, we want to select m numbers among $1, \ldots, n$ allowing repetitions, or put m oranges into n boxes. Therefore, there are $\binom{n-1+m}{m}$ such choices.

c) For i = 1, ..., n, let A_i be the set of functions $f: \{1, ..., m\} \longrightarrow \{1, ..., n\}$ not taking value i. We have $|A_i| = (n - 1)^m$, $|A_i \cap A_j| = (n - 2)^m$, i < j, etc. The number of surjective functions is $n^m - |A_1 \cup ... \cup A_n|$ which by the exclusion-inclusion formula gives the answer

$$n^{m} - n(n-1)^{m} + {n \choose 2}(n-2)^{m} - \ldots + (-1)^{n-1}n.$$

4. Using the explicit formula for the Stirling number

$$\binom{n}{k} = \frac{1}{k!} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} j^{n}$$

we get (notice that the sums can be swapped because the series converges absolutely)

$$\begin{split} \sum_{n=k}^{\infty} \left\{ {n \atop k} \right\} & \frac{x^n}{n!} = \sum_{n=k}^{\infty} \sum_{j=0}^k \frac{1}{k!} \binom{k}{j} (-1)^{k-j} j^n \frac{x^n}{n!} \\ & = \sum_{j=0}^k \frac{1}{k!} \binom{k}{j} (-1)^{k-j} \left(\sum_{n=k}^{\infty} \frac{(jx)^n}{n!} \right). \end{split}$$

Notice that $\sum_{n=k}^{\infty} \frac{(jx)^n}{n!} = e^{jx} - \sum_{n=0}^{k-1} \frac{(jx)^n}{n!}$. Therefore,

$$\begin{split} \sum_{n=k}^{\infty} {n \\ k} \frac{x^{n}}{n!} &= \sum_{j=0}^{k} \frac{1}{k!} {k \choose j} (-1)^{k-j} \left(e^{jx} - \sum_{n=0}^{k-1} \frac{(jx)^{n}}{n!} \right) \\ &= \sum_{j=0}^{k} \frac{1}{k!} {k \choose j} (-1)^{k-j} e^{jx} - \sum_{n=0}^{k-1} \frac{1}{k!} (-1)^{k} \frac{x^{n}}{n!} \sum_{j=0}^{k} {k \choose j} (-j)^{n} \\ &= \frac{1}{k!} \left(e^{x} - 1 \right)^{k}, \end{split}$$

where in the last equality we used the orthogonality of the binomial coefficients $\binom{k}{j}$ to the sequence $((-j)^n)_{j=0,\dots,k}$ for $n \leq k-1$.

- 5. Clearly, $u_1 = 1$ and $u_2 = 1$ (we assume we start at the first step). We also have $u_n = u_{n-1} + u_{n-2}$ because if the first movement is by 1 step, then we still have to climb the remaining n 1 steps. If the first movement is by 2 steps, then we still have to climb the remaining n 2 steps. Therefore the u_n are the Fibonacci numbers.
- 6. The number D_n is in fact the number of zigzag paths in the plane going from (0,0) to (2n,0) and staying nonnegative (see the picture).

For k = 2, 4, ..., 2n consider the paths which hit the 0x axis for the first time at k. When k = 2 there are D_{n-1} such paths, when k = 4 there are D_1D_{n-2} such paths, when k = 6 there are D_2D_{n-3} such paths, and so on, when k = 2nthere are D_{n-1} such paths. Therefore

$$D_n = D_{n-1} + D_1 D_{n-2} + \ldots + D_{n-2} D_1 + D_{n-1}.$$

Since $D_1 = 1$, D_n is the Catalan number, hence $D_n = \frac{1}{n+1} \binom{2n}{n}$.

7. We proceed by induction on the number of vertices of T. If T is a single vertex, then the statement is clear. Suppose T has more than 1 vertex, choose its leaf, say x, connected to, say y and consider the tree $T \setminus \{x\}$. If for some i, $\begin{array}{l} T_i \text{ is the single vertex } x, \text{ then since } T_i \text{ shares a vertex with every other } T_j, \text{ all the subtrees have } x \text{ as a common vertex. Now consider the other case when } \\ T_i \setminus \{x\} \neq \varnothing \text{ for every } i. \text{ The subtrees } T_i \setminus \{x\} \text{ of the tree } T \setminus \{x\} \text{ also satisfy the property that every two of them share a vertex (If } T_i \text{ and } T_j \text{ share } x, \text{ they also share } y, \text{ so do } T_i \setminus \{x\}, T_j \setminus \{x\}). \text{ By induction, they all share a vertex, so the } T_i \text{ as well.} \end{array}$

 If there is such a tree, then the formula follows from the hand shaking lemma as T has n - 1 edges.

The other implication will be shown inductively on n. The case n = 1 is trivial. Suppose $d_1 + \ldots + d_n = 2n - 2$. Then $d_1 = 1$ (otherwise $d_1 + \ldots + d_n \ge 2n$) and $d_n \le n - 1$ (otherwise $d_1 + \ldots + d_{n-1} + d_n \ge n - 1 + n = 2n - 1$). So

$$\mathbf{d}_2 + \ldots + (\mathbf{d}_n - 1) = 2n - 4$$

and applying the inductive assumption to $d_1, \ldots, d_n - 1$ we get a tree on n - 1 vertices with degrees $d_1, \ldots, d_n - 1$. Add a leaf to it at the vertex with degree $d_n - 1$.

9. Suppose the colours are b, r, y (blue, red, yellow). If the vertices of a face are coloured with three different colours, then the number of edges at this face of type {b, r} equals 1. If not, then this number equals 0 or 2. Double-count the number of pairs (a face f, an edge of type {b, r} in f). On one hand, it is even because each edge belongs to two faces. On the other hand, it equals

$$\sum_{\text{f-face}} |\{\text{edges } \{b, r\} \text{ on the boundary of } f\}|$$
$$= \underbrace{(1+1+\ldots+1)}_{\text{faces with all colours}} + (0+0+\ldots+0) + (2+2+\ldots+2),$$

hence the number of faces with all 3 colours is even.

10. Suppose that the number of edges is e and the number of faces is f. Euler's formula gives n + f = e + 2. Let e' be the number of edges which are on the boundary between exactly two faces. If e' = 0, then our graph is a tree, hence $e = n - 1 \le 2n - 4$ as $n \ge 3$. If e' > 0, we can double-count

$$2e \ge 2e' + (e - e') \ge |\{(\gamma, F), \gamma \text{ is an edge on the boundary of a face F}\}|$$

 $\ge 4f = 4(e + 2 - n),$

so

$$e \leq 2(n-2)$$
. \Box

11. Let n_k be the largest n such that there is a colouring of K_n without a monochromatic triangle. We want to show that $n_k \ge 2^k$. Obviously, $n_1 = 2$. Now we show inductively on k that $n_k \ge 2n_{k-1}$, $k \ge 2$. We take two copies G and G' of $K_{n_{k-1}}$, colour each one with k-1 colours so that none contains a monochromatic triangles. Now we build $K_{2n_{k-1}}$ by adding all possible edges across G, G', that is we add the edges $\{v, v'\}$ for every $v \in V(G)$, $v \in V(G')$. We colour these edges with the kth colour obtaining a $K_{2n_{k-1}}$ which is k-coloured without a monochromatic triangle. Therefore, $n_k \ge 2n_{k-1}$.

References

T I. Tomescu, Problems in combinatorics and graph theory. Translated from the Romanian by R. A. Melter. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1985.