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Problems

1. Show that for a positive integer n we have

n∑
k=0

(
n+ k

n

)
1

2k
= 2n.

2. Prove that for a positive integer n we have

n∑
k=1

k

(
n

k

)2
= n

(
2n− 1

n− 1

)
.

3. Determine the number of functions f : {1, . . . ,m} −→ {1, . . . , n} which are a)

strictly increasing, b) nondecreasing, c) surjective.

4. Show the following formula for the exponential generating function of the Stir-

ling numbers of the second kind

∞∑
n=k

{
n

k

}
xn

n!
=
1

k!
(ex − 1)k .

5. In how many ways un can one mount a staircase with n steps if every movement

involves only one or two steps?

6. Let Dn be the number of sequences (x1, . . . , x2n) such that x1, . . . , x2n take

values ±1, x1+ . . .+ xk ≥ 0 for every 1 ≤ k ≤ 2n and x1+ . . .+ x2n = 0. Prove

that

Dn = Dn−1 +D1Dn−2 + . . .+Dn−1

and conclude Dn = 1
n+1

(
2n
n

)
.

7. Let T1, . . . , Tk be subtrees of a tree T with the property that each two of them

have at least one vertex in common. Show that all of them has at least one

vertex in common.

8. Let d1, . . . , dn be positive integers such that d1 ≤ d2 ≤ . . . ≤ dn. Show that

there exists a tree with n vertices of degrees d1, . . . , dn if and only if

d1 + . . .+ dn = 2n− 2.
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9. Suppose that the vertices of a maximal plane graph are coloured with 3 colours.

Show that the number of faces whose vertices have all three colours is even.

10. Suppose that a plane graph on n ≥ 3 vertices contains no triangle. Show that

it has at most 2n− 4 edges.

11. Recall that Rk(3) is the smallest number n such no matter how Kn is k-coloured,

it contains a monochromatic triangle. It was shown in Assignment 4 that

Rk(3) ≤ bk!ec+ 1.

Prove that

Rk(3) ≥ 2k + 1.

Solutions

1. We will prove the desired identity by making up a story. Let us count the

number of 0 − 1 sequences of length 2n + 1 in a particular way. Notice that

in every such sequence either 0 or 1 is repeated at least n+ 1 times. Thus for

k = 0, . . . , n let Ak be the set of all such sequences for which 1 is repeated the

n+ 1st time only at the n+ 1+ kth place. We have

|Ak| =

(
n+ k

k

)
· 22n+1−(n+k+1)

because every sequence in Ak looks like

? ? ? ? . . . . . . ?︸ ︷︷ ︸
n + k terms
containing

exactly n 1's

1 ? ? ? ? . . . . . . ?︸ ︷︷ ︸
2n+1−(n+k+1)

.

By symmetry we get

22n+1 = 2

n∑
k=0

|Ak| = 2

n∑
k=0

(
n+ k

n

)
2n−k

which gives

2n =

n∑
k=0

(
n+ k

n

)
2−k.

2. Suppose we have n men and n women and from these 2n people we want to

select a team of n people with a female captain. We can do it in n
(
2n−1
n−1

)
ways

by �rst selecting the female captain and then choosing n−1 people among the

remaining 2n − 1. On the other hand, for k = 1, . . . , n we can �rst choose k
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women in
(
n
k

)
ways, among them choose the captain in k ways and then choose

n− k men in
(
n
n−k

)
=
(
n
k

)
ways.

Another solution. We have

(1+ x)n =

n∑
k=0

(
n

k

)
xk,

n(1+ x)n−1 =

n∑
k=1

k

(
n

k

)
xk−1.

Multiplying these identities and equating the coe�cients at xn−1 yields the

result.

3. a) We want to choose f(1), . . . , f(m) so that 1 ≤ f(1) < . . . < f(m) ≤ n.

Therefore we want to choose m distinct numbers among 1, . . . , n. There are(
n
m

)
such choices.

b) Now we require 1 ≤ f(1) ≤ . . . ≤ f(m) ≤ n. In other words, we want to

select m numbers among 1, . . . , n allowing repetitions, or put m oranges into

n boxes. Therefore, there are
(
n−1+m
m

)
such choices.

c) For i = 1, . . . , n, let Ai be the set of functions f : {1, . . . ,m} −→ {1, . . . , n}

not taking value i. We have |Ai| = (n − 1)m, |Ai ∩ Aj| = (n − 2)m, i < j,

etc. The number of surjective functions is nm − |A1 ∪ . . . ∪ An| which by the

exclusion-inclusion formula gives the answer

nm − n(n− 1)m +

(
n

2

)
(n− 2)m − . . .+ (−1)n−1n.

4. Using the explicit formula for the Stirling number{
n

k

}
=
1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn

we get (notice that the sums can be swapped because the series converges

absolutely)

∞∑
n=k

{
n

k

}
xn

n!
=

∞∑
n=k

k∑
j=0

1

k!

(
k

j

)
(−1)k−jjn

xn

n!

=

k∑
j=0

1

k!

(
k

j

)
(−1)k−j

( ∞∑
n=k

(jx)n

n!

)
.
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Notice that
∑∞

n=k
(jx)n

n!
= ejx −

∑k−1
n=0

(jx)n

n!
. Therefore,

∞∑
n=k

{
n

k

}
xn

n!
=

k∑
j=0

1

k!

(
k

j

)
(−1)k−j

(
ejx −

k−1∑
n=0

(jx)n

n!

)

=

k∑
j=0

1

k!

(
k

j

)
(−1)k−jejx −

k−1∑
n=0

1

k!
(−1)k

xn

n!

k∑
j=0

(
k

j

)
(−j)n

=
1

k!
(ex − 1)k ,

where in the last equality we used the orthogonality of the binomial coe�cients(
k
j

)
to the sequence

(
(−j)n

)
j=0,...,k

for n ≤ k− 1.

5. Clearly, u1 = 1 and u2 = 1 (we assume we start at the �rst step). We also

have un = un−1+un−2 because if the �rst movement is by 1 step, then we still

have to climb the remaining n − 1 steps. If the �rst movement is by 2 steps,

then we still have to climb the remaining n−2 steps. Therefore the un are the

Fibonacci numbers.

6. The number Dn is in fact the number of zigzag paths in the plane going from

(0, 0) to (2n, 0) and staying nonnegative (see the picture).

For k = 2, 4, . . . , 2n consider the paths which hit the 0x axis for the �rst time

at k. When k = 2 there are Dn−1 such paths, when k = 4 there are D1Dn−2

such paths, when k = 6 there are D2Dn−3 such paths, and so on, when k = 2n

there are Dn−1 such paths. Therefore

Dn = Dn−1 +D1Dn−2 + . . .+Dn−2D1 +Dn−1.

Since D1 = 1, Dn is the Catalan number, hence Dn = 1
n+1

(
2n
n

)
.

7. We proceed by induction on the number of vertices of T . If T is a single vertex,

then the statement is clear. Suppose T has more than 1 vertex, choose its

leaf, say x, connected to, say y and consider the tree T \ {x}. If for some i,
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Ti is the single vertex x, then since Ti shares a vertex with every other Tj, all

the subtrees have x as a common vertex. Now consider the other case when

Ti \ {x} 6= ∅ for every i. The subtrees Ti \ {x} of the tree T \ {x} also satisfy the

property that every two of them share a vertex (If Ti and Tj share x, they also

share y, so do Ti \ {x}, Tj \ {x}). By induction, they all share a vertex, so the Ti

as well.

8. If there is such a tree, then the formula follows from the hand shaking lemma

as T has n− 1 edges.

The other implication will be shown inductively on n. The case n = 1 is trivial.

Suppose d1 + . . . + dn = 2n − 2. Then d1 = 1 (otherwise d1 + . . . + dn ≥ 2n)
and dn ≤ n− 1 (otherwise d1 + . . .+ dn−1 + dn ≥ n− 1+ n = 2n− 1). So

d2 + . . .+ (dn − 1) = 2n− 4

and applying the inductive assumption to d1, . . . , dn− 1 we get a tree on n− 1

vertices with degrees d1, . . . , dn − 1. Add a leaf to it at the vertex with degree

dn − 1.

9. Suppose the colours are b, r, y (blue, red, yellow). If the vertices of a face are

coloured with three di�erent colours, then the number of edges at this face of

type {b, r} equals 1. If not, then this number equals 0 or 2. Double-count the

number of pairs (a face f, an edge of type {b, r} in f). On one hand, it is even

because each edge belongs to two faces. On the other hand, it equals∑
f-face

|{edges {b, r} on the boundary of f}|

= (1+ 1+ . . .+ 1)︸ ︷︷ ︸
faces with all colours

+(0+ 0+ . . .+ 0) + (2+ 2+ . . .+ 2),

hence the number of faces with all 3 colours is even.

10. Suppose that the number of edges is e and the number of faces is f. Euler's

formula gives n + f = e + 2. Let e ′ be the number of edges which are on the

boundary between exactly two faces. If e ′ = 0, then our graph is a tree, hence

e = n− 1 ≤ 2n− 4 as n ≥ 3. If e ′ > 0, we can double-count

2e ≥ 2e ′ + (e− e ′) ≥ |{(γ, F), γ is an edge on the boundary of a face F}|

≥ 4f = 4(e+ 2− n),

so

e ≤ 2(n− 2).
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11. Let nk be the largest n such that there is a colouring of Kn without a monochro-

matic triangle. We want to show that nk ≥ 2k. Obviously, n1 = 2. Now we

show inductively on k that nk ≥ 2nk−1, k ≥ 2. We take two copies G and G ′

of Knk−1
, colour each one with k− 1 colours so that none contains a monochro-

matic triangles. Now we build K2nk−1
by adding all possible edges across G,

G ′, that is we add the edges {v, v ′} for every v ∈ V(G), v ∈ V(G ′). We colour

these edges with the kth colour obtaining a K2nk−1
which is k-coloured without

a monochromatic triangle. Therefore, nk ≥ 2nk−1.
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