COMBINATORICS, REVISION LECTURE

Term 3 2014/2015

Problems

1. Show that for a positive integer n we have
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k=0

. Prove that for a positive integer n we have
n 2
n 2n—1
k = .
k=1

. Determine the number of functions f: {1,...,m} — {1,...,n} which are a)

strictly increasing, b) nondecreasing, c) surjective.

. Show the following formula for the exponential generating function of the Stir-

ling numbers of the second kind
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. In how many ways u, can one mount a staircase with n steps if every movement

involves only one or two steps?

. Let D, be the number of sequences (xi,...,Xy,) such that x;,...,%xs, take
values +1, x;+...+xx > 0 forevery 1 <k <2n and x; +...+x, = 0. Prove
that

D,=D,1+DDps+...+Dpy

and conclude D, = %H(ZT?)

. Let Tq,..., Tx be subtrees of a tree T with the property that each two of them
have at least one vertex in common. Show that all of them has at least one

vertex in common.

. Let d;,...,d, be positive integers such that d; < d, < ... < d,,. Show that

there exists a tree with n vertices of degrees d;,..., d, if and only if

di+...+dy=2n—2.
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Suppose that the vertices of a maximal plane graph are coloured with 3 colours.

Show that the number of faces whose vertices have all three colours is even.

10. Suppose that a plane graph on n > 3 vertices contains no triangle. Show that
it has at most 2n — 4 edges.

11. Recall that Ry (3) is the smallest number n such no matter how K,, is k-coloured,
it contains a monochromatic triangle. It was shown in Assignment 4 that
Prove that

Re(3) > 2+ 1.
Solutions
1. We will prove the desired identity by making up a story. Let us count the
number of 0 — 1 sequences of length 2n 4+ 1 in a particular way. Notice that
in every such sequence either 0 or 1 is repeated at least n + 1 times. Thus for
k=0,...,n let Ay be the set of all such sequences for which 1 is repeated the
n + 1%t time only at the n + 1 + k'™ place. We have
k
A = (n—kk ) Q21— (k)
because every sequence in Ay looks like
* ok ok ok ... * 1 xxxx...... * .
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containing
exactly n 1’s
By symmetry we get
n n
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which gives
Z /n+k
"= 27k
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2. Suppose we have n men and n women and from these 2n people we want to

2n—1
n—1

select a team of n people with a female captain. We can do it in n(3"') ways
by first selecting the female captain and then choosing n —1 people among the

remaining 2n — 1. On the other hand, for k = 1,...,n we can first choose k
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women in (E) ways, among them choose the captain in k ways and then choose

n

") ways.

n—kmenin (") = (

Another solution. We have

~
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Multiplying these identities and equating the coefficients at x™' yields the
result. [

. a) We want to choose f(1),...,f(m) so that 1 < f(1) < ... < f(m) < n.
Therefore we want to choose m distinct numbers among 1,...,n. There are

() such choices.

b) Now we require 1 < f(1) < ... < f(m) < n. In other words, we want to
select m numbers among 1,...,n allowing repetitions, or put m oranges into

n-l ™) such choices.

n boxes. Therefore, there are (

c) For i = 1,...,n, let A; be the set of functions f: {1,...,m} — {1,...,n}
not taking value i. We have |[Ajff = (n—1)™, [AiNA)l = (m—2)™, i < j,
etc. The number of surjective functions is n™ — |A; U ... U A,| which by the

exclusion-inclusion formula gives the answer
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. Using the explicit formula for the Stirling number
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we get (notice that the sums can be swapped because the series converges

absolutely)
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Notice that 3 20, U" = eix — 57 %71 N7 Therefore,

n=
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where in the last equality we used the orthogonality of the binomial coefficients
(;‘) to the sequence ((—j)“)j:o’“_’k forn <k—1. O

. Clearly, wy = 1 and u; = 1 (we assume we start at the first step). We also
have w, = u, 1 +u,_, because if the first movement is by 1 step, then we still
have to climb the remaining n — 1 steps. If the first movement is by 2 steps,
then we still have to climb the remaining n — 2 steps. Therefore the u, are the

Fibonacci numbers. O]

. The number D,, is in fact the number of zigzag paths in the plane going from

(0,0) to (2n,0) and staying nonnegative (see the picture).

9+ T = +1
1+ T = —1
0ol 1 o 4 (2n.,0)

For k = 2,4,...,2n consider the paths which hit the Ox axis for the first time
at k. When k = 2 there are D,_; such paths, when k = 4 there are D1D,_,
such paths, when k = 6 there are D,D,,_3 such paths, and so on, when k =2n

there are D,,_; such paths. Therefore
Dn =Dy +DiDya+...+DnyDy+ Dy

Since Dy = 1, D,, is the Catalan number, hence D, = #1(2;‘) O

. We proceed by induction on the number of vertices of T. If T is a single vertex,
then the statement is clear. Suppose T has more than 1 vertex, choose its

leaf, say x, connected to, say y and consider the tree T \ {x}. If for some {i,
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10.

T; is the single vertex x, then since T; shares a vertex with every other Tj, all
the subtrees have x as a common vertex. Now consider the other case when
T\ {x} # @ for every i. The subtrees T; \ {x} of the tree T \ {x} also satisfy the
property that every two of them share a vertex (If T; and T; share x, they also
share y, so do T; \ {x}, T; \ {x}). By induction, they all share a vertex, so the T;

as well. ]

. If there is such a tree, then the formula follows from the hand shaking lemma

as T has n — 1 edges.

The other implication will be shown inductively on n. The case n = 1 is trivial.
Suppose d; + ...+ d, =2n— 2. Then d; = 1 (otherwise d; + ...+ d, > 2n)
and d, <n—1 (otherwise d; +...+dy1+dy >n—14+n=2n—-1). So

db+...+(d,—1)=2n—4

and applying the inductive assumption to d;,...,d,, —1 we get a tree on n —1
vertices with degrees d;,...,d, — 1. Add a leaf to it at the vertex with degree
d,—1. [

Suppose the colours are b, r,y (blue, red, yellow). If the vertices of a face are
coloured with three different colours, then the number of edges at this face of
type {b, r} equals 1. If not, then this number equals 0 or 2. Double-count the
number of pairs (a face f, an edge of type {b,r} in f). On one hand, it is even

because each edge belongs to two faces. On the other hand, it equals

Z {edges {b, 1} on the boundary of f}|

f-face

=(1+T4+...+1D)+04+0+...40)+(2+2+...4+2),

~
faces with all colours

hence the number of faces with all 3 colours is even. ]

Suppose that the number of edges is e and the number of faces is f. Euler’s
formula gives n +f = e + 2. Let e’ be the number of edges which are on the
boundary between exactly two faces. If e’ = 0, then our graph is a tree, hence

e=n—1<2n—4asn>3. If e’ >0, we can double-count

2e >2e'+(e—e’) > {(v,F), v is an edge on the boundary of a face F}|
> 4f =4(e+2—mn),

SO
e<2(n—2). O



11. Let ny be the largest n such that there is a colouring of K,, without a monochro-
matic triangle. We want to show that n, > 2*. Obviously, n; = 2. Now we
show inductively on k that ny, > 2n,_;, k > 2. We take two copies G and G’
of Ky, ,, colour each one with k — 1 colours so that none contains a monochro-
matic triangles. Now we build K,,, , by adding all possible edges across G,
G/, that is we add the edges {v, v’} for every v € V(G), v € V(G’). We colour
these edges with the k'™ colour obtaining a Ko, , which is k-coloured without

a monochromatic triangle. Therefore, ny, > 2n, ;. O
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