FUNCTIONAL ANALYSIS II, REVISION LECTURE

Term 3 2014/2015

Problems

1.

Let (X,] - ||) be a normed vector space. Prove that if ||x +y|| = ||x]| + [Jy]|

for some x,y € X, then for every nonnegative real numbers «,3 we have

lloox + Byll = ellx]| + Bllyll-

. Let f and fy,f;,...,f, be linear functionals defined on the same vector space.

Prove that N
[ker f; C ker

j=1
if and only if f is a linear combination of fy,...,f,.

. Let Y be a closed subspace of a normed vector space X. Prove that if Y and

X/Y are separable, then so is X.

. Is the quotient space {.,/c, separable?

. Let Y be a closed subspace of a normed vector space X. Prove that if Y and

X/Y are complete, then so is X.

Suppose X,Y are closed subspaces of a normed vector space. Need X + Y be

closed?

. Let 1 <p < q. Show that the set

1
A= {fe L,[0,1], J ]9 < 1}

0
is closed with empty interior in (L,[0,1],] - ||). Conclude that L4[0,1] is a
countable union of nowhere dense sets in (L,[0,1],| - ||,). Why does this not

contradict Baire’s theorem and L, spaces being Banach?

. Let f be a nonzero functional on a normed vector space. Prove that the fol-

lowing conditions are equivalent

f is continuous, (&)
ker f is closed, (®)
ker f is nowhere dense. (¥)
Given a vector space X, is it always possible to define a norm || - || on X such
that (X, || - ||) becomes a Banach space? (In other words, is every vector space

Banach-normable?)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Let X be a Banach space in which every subspace is closed. Show that X is

finite dimensional.

Give an example of a vector space X for which there are two norms || - || and
| - ||” such that (X, || -||) is separable but (X, | - ||’) is not.

Define the Rademacher functions
r(t) =sgn(sin(2"nt)), n=0,1,2,....
Show that {r,,n > 0} is an incomplete orthogonal system in L,[0, 1].
Show that every orthogonal subset of a separable Hilbert space is countable.

Let C be a nonempty closed and convex subset of a Hilbert space H. We know
that for every x € H there is a unique best approximation x* of x in C, that is

|Ix* —x|| = infuec ||a — x||. Show that for every x,y € H we have

I =yl < [lx =yll.

Let P, Q be orthogonal projections in Hilbert space. Prove that |[P — Q| < 1.

Let T be an n x n matrix with row vectors a;,...,a, € R™ and column vectors
by,y..., by € RY,
I |
T= = |br bz bn
. |
J— an J—

Show that T, as a linear operator acting on certain {, spaces, has the following

norms
[Tl = max oy,
ITl-t5 = maze b,
where p € [1,00] and 1/p+1/q=1.

Find all ¢ € R for which the linear map T: &3 — &, Tx = ("X, )n>1 is
bounded.

Give an example of a bounded linear map S: co — ¢ for which there is

no linear extension S: c — co preserving the norm, that is §|co = S and
ISI = [S]I.



19¥

20.

21.

22.

23.

24,

25.

26.

27.

281

29.

30*

Let (X,]|| - ||) be an n dimensional normed vector space. Show that there are
linearly independent unit vectors x;,...,%, € X and functionals ¢4,..., ¢, €

X* of norm one satisfying ¢;(x;) = d;; for every i,j < n. (Auerbach’s lemma.)

Let (X, || - ||) be an n dimensional normed vector space. Show that there is a
basis x1,...,x, of X such that for every scalars A,..., A, we have
n n
max ] < > Al <) IAL
j=1 j=1
Let (X, -]|) be a normed vector space which is reflexive. Prove that for every

bounded functional ¢ € X* there is a unit vector x € X such that ¢(x) = ||P||.
Prove that the spaces: ¢y, c, ¢, C[0, 1], L;[0, 1] are not reflexive.

Let X be a normed vector space. Show that every weakly convergent sequence

in X is bounded.

Let X be a Banach space. Show that every weakly* convergent sequence in X*

is bounded.

Let {v,, n > 1} be an orthogonal bounded set in a Hilbert space. Show that

the sequence (v,) converges weakly to 0.

Let T: X — Y be a linear map between Banach spaces X,Y. Show that T
is bounded if and only if for every weakly convergent sequence (x,) in X, the

sequence (Tx,) is weakly convergent in Y.

Let p € (1,00). Show that a sequence (x,,) is weakly convergent to x in {, if and
only if it is bounded and each coordinate of x,, converges to the corresponding

coordinate of x.

Show that if a sequence (x, ) converges weakly in ¢; to x then ||x, —x|; — 0.
n—oo

(Schur’s property.)

Let X be a normed vector space. Show that if the dual space X* is separable,

then so is X.

Let (X, F,u) and (Y,G,v) be measurable spaces. Let p € [1,00) and suppose
f:XxY — R is F ® G measurable. Then

%F%LH&UMMM

SJHUHH&MMWNMM
X

Lp(v)

(Minkowski’s integral inequality).



Solutions

1. Suppose that o > (3. By the triangle inequality,
loox + Byl = lc(x +y) — (= By || = erflx +yl| = (e — Byl
which combined with the assumption gives
lloox + Byl = exl[x]| + Bllyll-
By the triangle inequality, the opposite inequality holds as well. O

2. If f=o0qf +...4+ x,f, for some scalars «; then plainly

[)ker f; C kerf.

j=1
We show the converse inductively on n. Let n = 1. If f; = 0, then by
ker f; C kerf also f = 0, so there is nothing to prove. Take then a nonzero

vector v such that f;(v) # 0. For every vector x we have

f1(x)
— ker f ker f
f](v)\)e erty C kerrt,
hence )
f] X )
flx— v] =0
( f1(v)
which yields f = ~2Lf,. Suppose we have n + 1 functionals fi, ..., fu. and

f1(v)
ﬂ;‘jﬂ kerf; C kerf. Consider the subspace Z = kerf,.; and the restricted

functionals g; = fi|Z, i < n, g = f|Z on Z. By the inductive assumption,
g =091+ ...+ &gy (on Z) for some scalars «;. This particularly implies
that

kerf, 1 = Z C ker(f — oy fy — ... — anfr),

so by the case n =1 we get
f—oyfy —...—onfn = i fog
for some scalar «, 1, which completes the proof. O

3. Let {yn,n > 1} be a dense subset in Y and let {x, +Y,n > 1} be a dense subset
in X/Y. For any € > 0 and x € X we can find n such that

[(x —=x0) F Y| =[x +Y) = (xn + V)| < €.



By the definition of a quotient norm and the fact that the y, are dense in Y

we can find m such that
X —xn —ym]| < 2e.
This shows that the set {x, +ym, n,m > 1} is dense in X. H

. We know that the space ¢, is separable, whereas (., is not. If the quotient

space {.,/co was separable, then, by Problem 3, {,, would be separable. O

. Suppose (x,) is a Cauchy sequence in X. Then clearly (x, + Y) is a Cauchy

sequence in X/Y. By the assumption it converges, say to x + Y,

l(x —x.) +Y|| — O.

n—oo

This means that there are y, € Y such that
X = %0 —Yn|| < |[(x =%xa) + Y[+ 1/n — 0.

In particular, x,, +y, converges to x. It remains to show that y,, converges as
well. We have

Iy = Yumll < fyn + 30 = X[+ 1 = X = Y]l + % = a
< 16— %) + Y]+ (¢ = xXe) + Y|+ 1/n A 1/m+ [ — 0|

which shows that (y,) is a Cauchy sequence in Y. H

. The subspace X + Y need not be closed. Consider for instance

X = span{ez,, n > 1},

1
Y:Span eZn‘i‘ﬁeZnH»nZ] y

in €,. These are closed subspaces (why?). Moreover, span{e,, n > 1} C X+ Y.
Therefore, if X + Y was closed, we would have X + Y = {,. However,

o0

1
Y —ema €l =X+Y
n

n=1

would imply that
=
Z —eym € X
n=1 \/E
but this vector does not belong to £,. This contradiction shows that X + Y is

not closed. O



7. Suppose that f, € A and f, — f in L,[0, 1]. Convergence in L, implies conver-
gence in law, hence there is a subsequence ny such that f,, converges to f a.s.

By Fatou’s lemma we get

1 1 1
j ]9 zj lim [f, |9 < n_mj o 9 < 1,

0 0 k—oo k—oo JO

so f € A which shows that A is closed.
Suppose the interior of A in L, is not empty, that is A contains a ball. Since

p < q, L,[0,1] € L4[0, 1], such a ball contains functions with infinite L, norms.
This contradicts the fact that A is bounded in the L, norm.

Thus A is nowhere dense and so is any its dilation nA. We have
L0,1 = JnA
n>1

which shows that [4[0, 1] is a countable union of nowhere dense sets in L, [0, 1].
This does not contradict that (L4[0, 1], ||-||4) is a Banach space because the sets

nA are nowhere dense in the metric given by the norm || - ||, not || - [|4. O

8. (&%) = (&) Obvious.

(#) = () The only subspace with nonempty interior is the whole space;
since f is nonzero, its kernel is a proper subspace, so it has empty interior and

as being closed, it is nowhere dense.

(&) = (&) Suppose f is not bounded. Then there are unit vectors x, for

which |[f(x,)| > n. For any vector x and n we have

f
Yp =X — %xn € kerf
Moreover,
[f(x)]
lyn — x| < =,

so yn, — x. Therefore x € clkerf. Since x is arbitrary, clkerf is the whole

space, but this contradicts its interior being empty. ]



In the next several questions we will use the following nice consequence of Baire's

theorem proved in class:

If a Banach space 1s infinite dimensional, then its Hamel basis 1s )
*

uncountable.

Recall also the following fact concerning separability:

9.

10.

11.

12.

13.

14.

If a normed vector space contains an uncoutable set of points (55)
*%

any two of which are distance 1 apart, then it is not separable.
Consider the vector space coy of all sequences eventually zero. For instance the
set {e,, n > 1} is a Hamel basis for this space, which is countable. In view of

(%), the space c( is not Banach-normable. O

Suppose dim X = oo. Then there are countably many linearly independent
vectors xi,Xz,.... Consider the subspace Y = span{x,, n > 1}. As a closed

subspace of a Banach space, Y is a Banach space, but this contradicts (x). O

Take X = {, and set || - | to be the standard {, norm. Fix a Hamel basis

{by, t € T} in {, and define for every vector x = > ,_; B+b; (almost all 3, are

Il =D IBdl-

teT

Z€ro)

It is readily checked that this defines a norm on {,. For every pair of distinct
s,t € T the vectors b, b; are distance 2-apart, ||by — b¢||’ = 2, and T is

uncountable. By (x*) the space ({5, || - ||’) is not separable. O

Checking that (ry,r) = 0 for k # 1 is straightforward. The system {r,} is
incomplete as it is readily verified that (ri, 10,14 — Tp1/a3/4) + 133/40) = 0 for
every K. O

Any orthogonal set can be made orthonormal. If u,v are orthogonal unit
vectors in a Hilbert space, then ||[u—v|> = 2. If an orthonormal set was un-
countable, we would have uncountably many pairs of points which are distance

v/2-apart, which would contradict separability by (x«). O

Fix x € H. First we show that for every a € C C
we have X
Re(x —x*,a—x") <0.



15.

16.

Fix a € C and set ay = (1 —A)x* +Aq, A € [0,1]. By convexity, ay € C. In

view of the fact that x* is the best approximation of x in C we have

e =% < Jlx = anl* = 1x = %) + (x* = @)

= ||x —x*||* + 20Re(x — X", x* — @) + X" — aal)?,

hence

—2Re(x —x*, X" —ay) < [[x* — ap||%.

Note that x* — ay = A(x — a). Plugging this back, dividing by A and then
letting A — 0O yield the result.

Fix x,y € H. Using what we just showed gives

Re(x —x",y* —x") <

0
Re(y —y*,x" —y") <0.

Adding these we obtain
0> Re(y —y* —x+x,x" —y") = X' —y*[]* + Re(y —x,x" —y*).

To finish, move the inner product over and apply the Cauchy-Schwarz inequal-
ity,
I =y < Re(x —y,x" —y") < [Ix—yl| - [x* —y*[. O

Observe that for every vector x by orthogonality of x — Px and Px we have
[Ix = 2Px||* = [[(x = Px) — Px||* = [jx — Px]||* + || Px[|* = [|x||*.
The same holds for Q as well. Therefore

2[[Px = Qx| < [[2Px —x|[ + [x = 2Qx[| = 2[|x[|. [

By x-y =} -, X;y; we denote the standard inner product on R™. Fix a vector

x in R™ with [|x||, = 1. Then by Hélder’s inequality
Tl = macelas x| < max - [l = mase

and if ||aj, ||q = maxj<y ||ajl|q, in order to to get equality we choose x for which

laj, - x| = [|aj,||q- This establishes that

ITlegez, = max o s



17.

18.

19.

Now fix a vector x = (x1,...,%,) in R™ with ||x|; = 1. We get

> xb;

ji<n

”TXHP =

< J- bl < Al
< Dl [[bylly < macx] by,
p Jsn

If ||bj, ||, = maxj<n ||bj||p, then to get equality we choose simply x = e;,. This
establishes that

||T||e;1—>eg = njaga}lx ||bj||p- [

Using Holder’s inequality,

[ee] 00 2/3 00 1/3 o0 2/3
3 3
||Tx|\1=Z!n“xnIS(an“> (lenls) =<an°‘) il
n=1 n=1 n=1 n=1

so if o < —2/3, the series > n**/? converges and T is bounded.

Suppose now that T is bounded. Then for every x € {; the series ) n*x, is

absolutely convergent and bounded by ||T|| - ||x||3. This means that

<x — in“xn> e (3,

n=I1
so by the duality & ~ (3, we get (n*) € {3, which holds if and only if
o< —2/3. Il

Take simply S = Id: co — ¢y and suppose that it can be extended to S:c— e
without increasing the norm. Denote the constant sequence (1,1,...) by e. Let

y = Se. We have ||e — 2e,|lo = 1 and Se, = ey, 50
[yn — 2| < [ly — 2enloo = |Se — 25en]|o0 < [IS]] - [le — 2en/lo0 = 1.

Since y is in ¢, (as the image of e under §), the left-hand-side converges to 2,

which gives a contradiction. []

Take any basis in X of unit vectors (y;) and its dual (yj), meaning y;(yi) = &y
for all 1,j. The problem is that the y; may not have norm one. To fix it we

define the function

V(zi,...,zy) = det [y} (z)]

i,j=1,..,n

on X x...x X. It is continuous, hence it attains its supremum on the compact
set Sx X ... x Sx at, say (xi,...,%,) (the set Sx denotes the unit sphere in X).
For a fixed index j let us define the functional

V(Xh“wxj—hX)XjH)“-»Xn)

x € X.
V(X1y- -y %) ’

d>j (x) =

9



20.

21.

22.

23.

Then ¢;(x;) = 0, if i # j, as the determinant of a matrix with two identical
columns equals 0. Clearly ¢;(x;) = 1. Moreover, since V on the set Sx x...x Sx

attains its maximum at (xi,...,%n), we have sup,s, ¢j(x) = 1,50 ||| =1. O

Let x1,...,x, be a basis in X provided by Auerbach’s lemma and let ¢4,..., ¢,
be the corresponding functionals of norm one such that ¢;(x;) = &y for all i,j
(see Question 19). Since the vectors x; are unit the right inequality follows

simply by the triangle inequality. Notice that

Nl = | (Z )\ixi) < || s - ZNXi .
i=1 i=1
This shows the left inequality as ||¢;|| = 1. O

Application of the Hahn-Banach theorem to the vector ¢ € X* yields a unit
functional p € X** on X* for which p($) = ||¢|. By reflexivity, the canonical
isometric embedding X <5 X** is onto, hence there is x € X such that p = t(x)

and 1 = |[p|| = ||x||. Then
(¢l =p(d) = ux)(P) = d(x),

so x 18 the unit vector we want to find. ]

By Question 21, to show that the spaces cy, c, €1, C[0, 1], L1[0, 1] are not reflexive,
for each of them it is enough to find a bounded functional ¢ which does not

attain its norm. It can be readily checked that we can take

o H(x) =) 7, zlnxn on ¢y,

e $(x) =), &x,onc,

¢ ) =12 (1—7)xmont,

(f) = [ > = [}, fon CIO,1],

o O(f) = f(; xf(x)dx on L;[0, 1]. O

Suppose x, — x (weakly in X). The sequence x, is bounded if and only if
its image under the canonical embedding t of X into X** is bounded. Let
“* — ((xn). For a fixed ¢ € X* we have

Xn

sup [x;" ($)] = sup [ (xn)| < 00

n

as the sequence ¢(x,) is convergent. Therefore by the Banach-Steinhaus the-
orem, the family of functionals x* (acting on X* which is a Banach space) is

norm-bounded, that is

sup ||xn|| =sup||xy|| < co. O
n n

10



24,

25.

26.

27.

Follows directly by applying the Banach-Steinhaus theorem as in Question
23. [

Let u, = v,/|[va|| be the normalised sequence and set M = sup,, |[v,||>. Fix a
vector v. By Bessel’s inequality

[e o] [e o] [e o]

D vl =3 1wl vall < MY v, u)F < Mv?

n=1 n=1 n=1

2

so the series > [(v,v,)|* converges and particularly (v,v,) — 0. This shows

that the sequence (v,,) converges weakly to O. O

If T is bounded, then clearly every weakly convergent sequence gets mapped to
a weakly convergent sequence. Conversely, suppose a sequence (X, ) converges
(in norm) to 0. We want to show that Tx,, — O (continuity at 0 implies by
linearity the boundedness of T). Since x, — 0, also x, — 0, so Ax, converges
weakly. By Question 23, the sequence (Ax,) is bounded. Fix ¢ > 0. We
want to show that eventually ||Ax,| < e. If ||[Ax,| > e for infinitely many
n, then considering the sequence y,, = x,/ m which converges to 0 as
[ynll = +/I[xn|l, we get similarly that the sequence Ay, is bounded, but for
infinitely many n, ||Ay.| > m — o0o. This contradiction finishes the
proof. ]
Let e, be the standard unit vectors in {, and by e, € {; we denote their duals,
en(x) = xn. Since {; ~ {; and q = p/(p — 1) € (1,00), the sequence (e}) is

dense in £}.
If a sequence (x,) converges weakly in {, to x, then it is bounded by Question
23 and the convergence of coordinates follows by testing with e’. Conversely,

suppose a sequence (x,) is bounded by, say a > 0 in £, and for some sequence

x we have that for every n, e (x,,) — e} (x). Since
m—oo

N N
* P — Tim * P < 1im P < P

;ren(xn Tim ;|en(xm)| < Iim x| < o,

the sequence x is in {, and |x[|, < a. Fix ¢ € &;. We want to show that

d(xm) — P(x). Fix € > 0. By density, there is a finite linear combination 1

of the e such that ||[¢ — || < e¢/(4a). By the assumption, P(x,) — W(x),

m—oo
so there is M such that [P (x,) —WP(x)| < €/2 for all m > M. Then for those

11



28.

29.

30.

m we obtain

[P (xm) — d(xX)| < b (xm) =Y (X)[+ (%) — S|+ b (xm) — b ()]
< S+ = - (xly + xnlly) < 5+ 7 2a=e. O
Left for the dedicated student.

Let {&dn} C Sx- be a countable dense subset in the unit sphere of the dual space.
For every n choose a unit vector x, € X such that |pn(xn)| > 3[|bnl| = 3. We
want to show that Y = cl span{x,, n > 1} is X. Suppose that Y C X. Then
by the Hahn-Banach theorem there is a functional ¢ of norm one such that
¢|Y = 0. Choose k so that ||¢ — ¢y| < 1/3. We have

1

< ldrlxid)l = [dr(xi) — bl < [ — | - [Pl < 5. O

N —

Left for the dedicated student.
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