Functional analysis II, Revision lecture $_{\rm Term \ 3 \ 2014/2015}$

Problems

- 1. Let $(X, \|\cdot\|)$ be a normed vector space. Prove that if $\|x + y\| = \|x\| + \|y\|$ for some $x, y \in X$, then for every nonnegative real numbers α, β we have $\|\alpha x + \beta y\| = \alpha \|x\| + \beta \|y\|$.
- 2. Let f and f_1, f_2, \ldots, f_n be linear functionals defined on the same vector space. Prove that

$$\bigcap_{j=1}^n \ker f_j \subset \ker f$$

if and only if f is a linear combination of $f_1,\ldots,f_n.$

- Let Y be a closed subspace of a normed vector space X. Prove that if Y and X/Y are separable, then so is X.
- 4. Is the quotient space ℓ_{∞}/c_0 separable?
- 5. Let Y be a closed subspace of a normed vector space X. Prove that if Y and X/Y are complete, then so is X.
- 6. Suppose X, Y are closed subspaces of a normed vector space. Need X + Y be closed?
- 7. Let $1 \le p < q$. Show that the set

$$A=\left\{f\in L_p[0,1],\ \int_0^1|f|^q\leq 1\right\}$$

is closed with empty interior in $(L_p[0,1], \|\cdot\|_p)$. Conclude that $L_q[0,1]$ is a countable union of nowhere dense sets in $(L_p[0,1], \|\cdot\|_p)$. Why does this not contradict Baire's theorem and L_p spaces being Banach?

8. Let f be a nonzero functional on a normed vector space. Prove that the following conditions are equivalent

f is continuous,	(♣)
------------------	-----

ker f is closed, (\spadesuit)

ker f is nowhere dense.
$$(\diamondsuit)$$

9. Given a vector space X, is it always possible to define a norm || · || on X such that (X, || · ||) becomes a Banach space? (In other words, is every vector space Banach-normable?)

- **10.** Let X be a Banach space in which every subspace is closed. Show that X is finite dimensional.
- 11. Give an example of a vector space X for which there are two norms $\|\cdot\|$ and $\|\cdot\|'$ such that $(X, \|\cdot\|)$ is separable but $(X, \|\cdot\|')$ is not.
- 12. Define the Rademacher functions

$$r_n(t) = sgn(sin(2^n \pi t)), \quad n = 0, 1, 2, \dots$$

Show that $\{r_n, n \ge 0\}$ is an incomplete orthogonal system in $L_2[0, 1]$.

- 13. Show that every orthogonal subset of a separable Hilbert space is countable.
- 14. Let C be a nonempty closed and convex subset of a Hilbert space H. We know that for every x ∈ H there is a unique best approximation x* of x in C, that is ||x*-x|| = inf_{a∈C} ||a-x||. Show that for every x, y ∈ H we have

$$||x^* - y^*|| \le ||x - y||.$$

- 15. Let P, Q be orthogonal projections in Hilbert space. Prove that $||P Q|| \le 1$.
- 16. Let T be an $n \times n$ matrix with row vectors $a_1, \ldots, a_n \in \mathbb{R}^n$ and column vectors $b_1, \ldots, b_n \in \mathbb{R}^n$,

$$\mathsf{T} = \left[\begin{array}{ccc} - & a_1 & - \\ - & a_2 & - \\ & & \ddots & \\ - & a_n & - \end{array} \right] = \left[\begin{array}{ccc} | & | & & | \\ b_1 & b_2 & \dots & b_n \\ | & | & & | \end{array} \right].$$

Show that T, as a linear operator acting on certain $\ell_{\rm p}$ spaces, has the following norms

$$\begin{split} \|\mathsf{T}\|_{\ell_p^n \to \ell_\infty^n} &= \max_{j \le n} \|\mathfrak{a}_j\|_q, \\ \|\mathsf{T}\|_{\ell_1^n \to \ell_p^n} &= \max_{j \le n} \|b_j\|_p, \end{split}$$

where $p \in [1, \infty]$ and 1/p + 1/q = 1.

- 17. Find all $\alpha \in \mathbb{R}$ for which the linear map $T: \ell_3 \longrightarrow \ell_1$, $Tx = (n^{\alpha}x_n)_{n \geq 1}$ is bounded.
- 18. Give an example of a bounded linear map $S: c_0 \longrightarrow c_0$ for which there is no linear extension $\tilde{S}: c \longrightarrow c_0$ preserving the norm, that is $\tilde{S}|c_0 = S$ and $\|\tilde{S}\| = \|S\|$.

- 19* Let (X, || · ||) be an n dimensional normed vector space. Show that there are linearly independent unit vectors x₁,..., x_n ∈ X and functionals φ₁,..., φ_n ∈ X* of norm one satisfying φ_j(x_i) = δ_{ij} for every i, j ≤ n. (Auerbach's lemma.)
- 20. Let $(X, \|\cdot\|)$ be an n dimensional normed vector space. Show that there is a basis x_1, \ldots, x_n of X such that for every scalars $\lambda_1, \ldots, \lambda_n$ we have

$$\max_{j\leq n} |\lambda_j| \leq \left\| \sum_{j=1}^n \lambda_n x_n \right\| \leq \sum_{j=1}^n |\lambda_j|.$$

- 21. Let $(X, \|\cdot\|)$ be a normed vector space which is reflexive. Prove that for every bounded functional $\phi \in X^*$ there is a unit vector $x \in X$ such that $\phi(x) = \|\phi\|$.
- 22. Prove that the spaces: $c_0, c, \ell_1, C[0, 1], L_1[0, 1]$ are *not* reflexive.
- Let X be a normed vector space. Show that every weakly convergent sequence in X is bounded.
- Let X be a Banach space. Show that every weakly* convergent sequence in X* is bounded.
- 25. Let $\{v_n, n \ge 1\}$ be an orthogonal bounded set in a Hilbert space. Show that the sequence (v_n) converges weakly to 0.
- 26. Let T: X \longrightarrow Y be a linear map between Banach spaces X, Y. Show that T is bounded if and only if for every weakly convergent sequence (x_n) in X, the sequence (Tx_n) is weakly convergent in Y.
- 27. Let p ∈ (1,∞). Show that a sequence (x_n) is weakly convergent to x in l_p if and only if it is bounded and each coordinate of x_n converges to the corresponding coordinate of x.
- 28[†] Show that if a sequence (x_n) converges weakly in ℓ_1 to x then $||x_n x||_1 \xrightarrow[n \to \infty]{} 0$. (Schur's property.)
- **29.** Let X be a normed vector space. Show that if the dual space X^* is separable, then so is X.
- **30**^{*} Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be measurable spaces. Let $p \in [1, \infty)$ and suppose $f: X \times Y \longrightarrow \mathbb{R}$ is $\mathcal{F} \otimes \mathcal{G}$ measurable. Then

$$\left\| y \mapsto \int_X f(x,y) d\mu(x) \right\|_{L_p(\nu)} \le \int_X \| y \mapsto f(x,y) \|_{L_p(\nu)} d\mu(x)$$

(Minkowski's integral inequality).

Solutions

1. Suppose that $\alpha \geq \beta$. By the triangle inequality,

$$\|\alpha x + \beta y\| = \|\alpha(x + y) - (\alpha - \beta)y\| \ge \alpha \|x + y\| - (\alpha - \beta)\|y\|$$

which combined with the assumption gives

$$\|\alpha x + \beta y\| \ge \alpha \|x\| + \beta \|y\|.$$

By the triangle inequality, the opposite inequality holds as well.

2. If $f = \alpha_1 f_1 + \ldots + \alpha_n f_n$ for some scalars α_i then plainly

$$\bigcap_{j=1}^n \ker f_j \subset \ker f.$$

We show the converse inductively on n. Let n = 1. If $f_1 = 0$, then by $\ker f_1 \subset \ker f$ also f = 0, so there is nothing to prove. Take then a nonzero vector v such that $f_1(v) \neq 0$. For every vector x we have

$$x - rac{f_1(x)}{f_1(v)} v \in \ker f_1 \subset \ker f,$$

hence

$$f\left(x - \frac{f_1(x)}{f_1(v)}v\right) = 0$$

which yields $f = \frac{f(v)}{f_1(v)}f_1$. Suppose we have n + 1 functionals f_1, \ldots, f_{n+1} and $\bigcap_{j=1}^{n+1} \ker f_j \subset \ker f$. Consider the subspace $Z = \ker f_{n+1}$ and the restricted functionals $g_i = f_i | Z$, $i \leq n$, g = f | Z on Z. By the inductive assumption, $g = \alpha_1 g_1 + \ldots + \alpha_n g_n$ (on Z) for some scalars α_i . This particularly implies that

$$\ker f_{n+1} = Z \subset \ker(f - \alpha_1 f_1 - \ldots - \alpha_n f_n),$$

so by the case n = 1 we get

$$f - \alpha_1 f_1 - \ldots - \alpha_n f_n = \alpha_{n+1} f_{n+1}$$

for some scalar α_{n+1} , which completes the proof.

3. Let $\{y_n, n \ge 1\}$ be a dense subset in Y and let $\{x_n + Y, n \ge 1\}$ be a dense subset in X/Y. For any $\epsilon > 0$ and $x \in X$ we can find n such that

$$||(x - x_n) + Y|| = ||(x + Y) - (x_n + Y)|| < \epsilon.$$

By the definition of a quotient norm and the fact that the y_n are dense in Y we can find m such that

$$\|\mathbf{x}-\mathbf{x}_{n}-\mathbf{y}_{m}\|<2\epsilon.$$

This shows that the set $\{x_n + y_m, n, m \ge 1\}$ is dense in X.

- 4. We know that the space c_0 is separable, whereas ℓ_{∞} is not. If the quotient space ℓ_{∞}/c_0 was separable, then, by Problem 3, ℓ_{∞} would be separable. \Box
- 5. Suppose (x_n) is a Cauchy sequence in X. Then clearly $(x_n + Y)$ is a Cauchy sequence in X/Y. By the assumption it converges, say to x + Y,

$$\|(\mathbf{x} - \mathbf{x}_n) + \mathbf{Y}\| \xrightarrow[n \to \infty]{} \mathbf{0}$$

This means that there are $y_n \in Y$ such that

$$\|\mathbf{x} - \mathbf{x}_n - \mathbf{y}_n\| < \|(\mathbf{x} - \mathbf{x}_n) + \mathbf{Y}\| + 1/n \underset{n \to \infty}{\longrightarrow} \mathbf{0}.$$

In particular, $x_n + y_n$ converges to x. It remains to show that y_n converges as well. We have

$$\begin{split} \|y_n - y_m\| &\leq \|y_n + x_n - x\| + \|x - x_m - y_m\| + \|x_m - x_n\| \\ &\leq \|(x - x_n) + Y\| + \|(x - x_m) + Y\| + 1/n + 1/m + \|x_m - x_n\| \end{split}$$

which shows that (y_n) is a Cauchy sequence in Y.

6. The subspace X + Y need not be closed. Consider for instance

$$\begin{split} X &= \operatorname{span}\{e_{2n}, \ n \geq 1\}, \\ Y &= \operatorname{span}\left\{e_{2n} + \frac{1}{\sqrt{n}}e_{2n+1}, \ n \geq 1\right\}, \end{split}$$

in ℓ_2 . These are closed subspaces (why?). Moreover, span $\{e_n, n \ge 1\} \subset X + Y$. Therefore, if X + Y was closed, we would have $X + Y = \ell_2$. However,

$$\sum_{n=1}^{\infty} \frac{1}{n} e_{2n+1} \in \ell_2 = X + Y$$

would imply that

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} e_{2n} \in X$$

but this vector does not belong to ℓ_2 . This contradiction shows that X + Y is not closed.

7. Suppose that $f_n \in A$ and $f_n \to f$ in $L_p[0, 1]$. Convergence in L_p implies convergence in law, hence there is a subsequence n_k such that f_{n_k} converges to f a.s. By Fatou's lemma we get

$$\int_0^1 |f|^q = \int_0^1 \varliminf_{k \to \infty} |f_{n_k}|^q \leq \varliminf_{k \to \infty} \int_0^1 |f_{n_k}|^q \leq 1,$$

so $f \in A$ which shows that A is closed.

Suppose the interior of A in L_p is not empty, that is A contains a ball. Since p < q, $L_p[0, 1] \subsetneq L_q[0, 1]$, such a ball contains functions with infinite L_q norms. This contradicts the fact that A is bounded in the L_q norm.

Thus A is nowhere dense and so is any its dilation nA. We have

$$L_q[0,1] = \bigcup_{n \ge 1} nA$$

which shows that $L_q[0, 1]$ is a countable union of nowhere dense sets in $L_p[0, 1]$. This does not contradict that $(L_q[0, 1], \|\cdot\|_q)$ is a Banach space because the sets nA are nowhere dense in the metric given by the norm $\|\cdot\|_p$, not $\|\cdot\|_q$. \Box

8. $(\clubsuit) \Longrightarrow (\diamondsuit)$ Obvious.

 $(\spadesuit) \implies (\diamondsuit)$ The only subspace with nonempty interior is the whole space; since f is nonzero, its kernel is a proper subspace, so it has empty interior and as being closed, it is nowhere dense.

 $(\diamondsuit) \implies (\clubsuit)$ Suppose f is not bounded. Then there are unit vectors x_n for which $|f(x_n)| \ge n$. For any vector x and n we have

$$y_n = x - \frac{f(x)}{f(x_n)} x_n \in \ker f$$

Moreover,

$$\|y_n-x\|\leq \frac{|f(x)|}{n},$$

so $y_n \to x$. Therefore $x \in cl \ker f$. Since x is arbitrary, $cl \ker f$ is the whole space, but this contradicts its interior being empty.

In the next several questions we will use the following nice consequence of Baire's theorem proved in class:

If a Banach space is infinite dimensional, then its Hamel basis is (\star) uncountable.

Recall also the following fact concerning separability:

If a normed vector space contains an uncoutable set of points $(\star\star)$ any two of which are distance 1 apart, then it is not separable.

- 9. Consider the vector space c₀₀ of all sequences eventually zero. For instance the set {e_n, n ≥ 1} is a Hamel basis for this space, which is countable. In view of (*), the space c₀₀ is not Banach-normable.
- 10. Suppose dim X = ∞. Then there are countably many linearly independent vectors x₁, x₂,.... Consider the subspace Y = span{x_n, n ≥ 1}. As a closed subspace of a Banach space, Y is a Banach space, but this contradicts (*).
- 11. Take $X = \ell_2$ and set $\|\cdot\|$ to be the standard ℓ_2 norm. Fix a Hamel basis $\{b_t, t \in T\}$ in ℓ_2 and define for every vector $x = \sum_{t \in T} \beta_t b_t$ (almost all β_t are zero)

$$\|x\|' = \sum_{t \in T} |\beta_t|.$$

It is readily checked that this defines a norm on ℓ_2 . For every pair of distinct $s, t \in T$ the vectors b_s , b_t are distance 2-apart, $||b_s - b_t||' = 2$, and T is uncountable. By $(\star\star)$ the space $(\ell_2, \|\cdot\|')$ is not separable. \Box

- 12. Checking that $\langle r_k, r_l \rangle = 0$ for $k \neq l$ is straightforward. The system $\{r_n\}$ is incomplete as it is readily verified that $\langle r_k, \mathbf{1}_{[0,1/4]} \mathbf{1}_{[1/4,3/4]} + \mathbf{1}_{[3/4,1]} \rangle = 0$ for every k.
- 13. Any orthogonal set can be made orthonormal. If u, v are orthogonal unit vectors in a Hilbert space, then $||u v||^2 = 2$. If an orthonormal set was uncountable, we would have uncountably many pairs of points which are distance $\sqrt{2}$ -apart, which would contradict separability by $(\star\star)$.
- 14. Fix $x \in H$. First we show that for every $a \in C$ we have

 $\mathfrak{Re}\langle \mathbf{x}-\mathbf{x}^*, \mathfrak{a}-\mathbf{x}^*\rangle \leq \mathbf{0}.$

Fix $a \in C$ and set $a_{\lambda} = (1 - \lambda)x^* + \lambda a$, $\lambda \in [0, 1]$. By convexity, $a_{\lambda} \in C$. In view of the fact that x^* is the best approximation of x in C we have

$$\begin{split} \|x - x^*\|^2 &\leq \|x - a_{\lambda}\|^2 = \|(x - x^*) + (x^* - a_{\lambda})\|^2 \\ &= \|x - x^*\|^2 + 2\mathfrak{Re}\langle x - x^*, x^* - a_{\lambda} \rangle + \|x^* - a_{\lambda}\|^2, \end{split}$$

hence

$$-2\mathfrak{Re}\langle \mathbf{x}-\mathbf{x}^*,\mathbf{x}^*-\mathbf{a}_\lambda
angle\leq \|\mathbf{x}^*-\mathbf{a}_\lambda\|^2.$$

Note that $x^* - a_{\lambda} = \lambda(x - a)$. Plugging this back, dividing by λ and then letting $\lambda \to 0$ yield the result.

Fix $x, y \in H$. Using what we just showed gives

$$\mathfrak{Re}\langle \mathbf{x} - \mathbf{x}^*, \mathbf{y}^* - \mathbf{x}^* \rangle \leq \mathbf{0},$$

 $\mathfrak{Re}\langle \mathbf{y} - \mathbf{y}^*, \mathbf{x}^* - \mathbf{y}^* \rangle \leq \mathbf{0}.$

Adding these we obtain

$$0 \geq \mathfrak{Re}\langle \mathbf{y} - \mathbf{y}^* - \mathbf{x} + \mathbf{x}^*, \mathbf{x}^* - \mathbf{y}^* \rangle = \|\mathbf{x}^* - \mathbf{y}^*\|^2 + \mathfrak{Re}\langle \mathbf{y} - \mathbf{x}, \mathbf{x}^* - \mathbf{y}^* \rangle.$$

To finish, move the inner product over and apply the Cauchy-Schwarz inequality,

$$\|x^* - y^*\|^2 \le \Re e \langle x - y, x^* - y^* \rangle \le \|x - y\| \cdot \|x^* - y^*\|.$$

15. Observe that for every vector x by orthogonality of x - Px and Px we have

$$\|x - 2Px\|^2 = \|(x - Px) - Px\|^2 = \|x - Px\|^2 + \|Px\|^2 = \|x\|^2$$

The same holds for Q as well. Therefore

$$2\|Px - Qx\| \le \|2Px - x\| + \|x - 2Qx\| = 2\|x\|. \quad \Box$$

16. By $x \cdot y = \sum_{j \leq n} x_j y_j$ we denote the standard inner product on \mathbb{R}^n . Fix a vector x in \mathbb{R}^n with $\|x\|_p = 1$. Then by Hölder's inequality

$$\|\mathsf{T} x\|_{\infty} = \max_{j \leq n} |a_j \cdot x| \leq \max_{j \leq n} \|a_j\|_{\mathfrak{q}} \cdot \|x\|_{\mathfrak{p}} = \max_{j \leq n} \|a_j\|_{\mathfrak{q}}$$

and if $\|a_{j_0}\|_q = \max_{j \le n} \|a_j\|_q$, in order to to get equality we choose x for which $|a_{j_0} \cdot x| = \|a_{j_0}\|_q$. This establishes that

$$\|\mathsf{T}\|_{\ell_p^n \to \ell_\infty^n} = \max_{j \le n} \|a_j\|_q.$$

Now fix a vector $\mathbf{x} = (x_1, \dots, x_n)$ in \mathbb{R}^n with $\|\mathbf{x}\|_1 = 1$. We get

$$\|\mathsf{T}\mathbf{x}\|_{\mathfrak{p}} = \left\|\sum_{j\leq n} x_j \mathbf{b}_j\right\|_{\mathfrak{p}} \leq \sum_{j\leq n} |x_j| \cdot \|\mathbf{b}_j\|_{\mathfrak{p}} \leq \max_{j\leq n} \|\mathbf{b}_j\|_{\mathfrak{p}}.$$

If $\|b_{j_0}\|_p = \max_{j \le n} \|b_j\|_p$, then to get equality we choose simply $x = e_{j_0}$. This establishes that

$$\|\mathsf{T}\|_{\ell_1^n \to \ell_p^n} = \max_{j \le n} \|b_j\|_p. \quad \Box$$

17. Using Hölder's inequality,

$$\|Tx\|_{1} = \sum_{n=1}^{\infty} |n^{\alpha}x_{n}| \le \left(\sum_{n=1}^{\infty} n^{\frac{3}{2}\alpha}\right)^{2/3} \left(\sum_{n=1}^{\infty} |x_{n}|^{3}\right)^{1/3} = \left(\sum_{n=1}^{\infty} n^{\frac{3}{2}\alpha}\right)^{2/3} \cdot \|x\|_{3},$$

so if $\alpha < -2/3,$ the series $\sum n^{3\alpha/2}$ converges and T is bounded.

Suppose now that T is bounded. Then for every $x \in \ell_3$ the series $\sum n^{\alpha} x_n$ is absolutely convergent and bounded by $\|T\| \cdot \|x\|_3$. This means that

$$\left(x\mapsto\sum_{n=1}^{\infty}n^{\alpha}x_{n}
ight)\in\ell_{3}^{*},$$

so by the duality $\ell_3^* \simeq \ell_{3/2}$ we get $(n^{\alpha}) \in \ell_{3/2}$ which holds if and only if $\alpha < -2/3$.

18. Take simply S = Id: c₀ → c₀ and suppose that it can be extended to Š: c → c₀ without increasing the norm. Denote the constant sequence (1, 1, ...) by e. Let y = Še. We have ||e - 2e_n||_∞ = 1 and Še_n = e_n, so

$$|y_n - 2| \le ||y - 2e_n||_{\infty} = ||\tilde{S}e - 2\tilde{S}e_n||_{\infty} \le ||\tilde{S}|| \cdot ||e - 2e_n||_{\infty} = 1.$$

Since y is in c_0 (as the image of e under \tilde{S}), the left-hand-side converges to 2, which gives a contradiction.

19. Take any basis in X of unit vectors (y_j) and its dual (y_j^*) , meaning $y_j^*(y_i) = \delta_{ij}$ for all i, j. The problem is that the y_j^* may not have norm one. To fix it we define the function

$$V(z_1,\ldots,z_n) = \det \left[y_j^*(z_i) \right]_{i,j=1,\ldots,r}$$

on $X \times \ldots \times X$. It is continuous, hence it attains its supremum on the compact set $S_X \times \ldots \times S_X$ at, say (x_1, \ldots, x_n) (the set S_X denotes the unit sphere in X). For a fixed index j let us define the functional

$$\varphi_j(x) = \frac{V(x_1,\ldots,x_{j-1},x,x_{j+1},\ldots,x_n)}{V(x_1,\ldots,x_j)}, \qquad x \in X.$$

Then $\phi_j(x_i) = 0$, if $i \neq j$, as the determinant of a matrix with two identical columns equals 0. Clearly $\phi_i(x_i) = 1$. Moreover, since V on the set $S_X \times \ldots \times S_X$ attains its maximum at (x_1, \ldots, x_n) , we have $\sup_{x \in S_X} \varphi_j(x) = 1$, so $\|\varphi\| = 1$. \Box

20. Let x_1, \ldots, x_n be a basis in X provided by Auerbach's lemma and let ϕ_1, \ldots, ϕ_n be the corresponding functionals of norm one such that $\phi_j(x_i) = \delta_{ij}$ for all i, j(see Question 19). Since the vectors x_i are unit the right inequality follows simply by the triangle inequality. Notice that

$$\begin{aligned} |\lambda_j| &= \left| \Phi_j \left(\sum_{i=1}^n \lambda_i x_i \right) \right| \le \|\Phi_j\| \cdot \left\| \sum_{i=1}^n \lambda_i x_i \right\|. \end{aligned}$$

eff inequality as $\|\Phi_j\| = 1.$

This shows the le

21. Application of the Hahn-Banach theorem to the vector $\phi \in X^*$ yields a unit functional $p \in X^{**}$ on X^* for which $p(\phi) = \|\phi\|$. By reflexivity, the canonical isometric embedding $X \stackrel{\iota}{\hookrightarrow} X^{**}$ is onto, hence there is $x \in X$ such that $p = \iota(x)$ and 1 = ||p|| = ||x||. Then

$$\|\phi\| = p(\phi) = \iota(x)(\phi) = \phi(x),$$

so x is the unit vector we want to find.

- **22.** By Question 21, to show that the spaces $c_0, c, \ell_1, C[0, 1], L_1[0, 1]$ are not reflexive, for each of them it is enough to find a bounded functional ϕ which does not attain its norm. It can be readily checked that we can take
 - $\phi(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} x_n$ on c_0 ,
 - $\phi(\mathbf{x}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mathbf{x}_n$ on \mathbf{c} ,
 - $\phi(x) = \sum_{n=1}^{\infty} \left(1 \frac{1}{n}\right) x_n$ on ℓ_1 ,
 - $\phi(f) = \int_0^{1/2} f \int_{1/2}^1 f$ on C[0, 1],
 - $\phi(f) = \int_0^1 x f(x) dx$ on $L_1[0, 1]$.
- 23. Suppose $x_n \rightharpoonup x$ (weakly in X). The sequence x_n is bounded if and only if its image under the canonical embedding ι of X into X^{**} is bounded. Let $x_n^{**} = \iota(x_n).$ For a fixed $\varphi \in X^*$ we have

$$\sup_{n} |x_n^{**}(\varphi)| = \sup_{n} |\varphi(x_n)| < \infty$$

as the sequence $\phi(x_n)$ is convergent. Therefore by the Banach-Steinhaus theorem, the family of functionals x_n^{**} (acting on X^* which is a Banach space) is norm-bounded, that is

$$\sup_{n} \|x_{n}\| = \sup_{n} \|x_{n}^{**}\| < \infty. \quad \Box$$

- 24. Follows directly by applying the Banach-Steinhaus theorem as in Question23.
- 25. Let $u_n = v_n/||v_n||$ be the normalised sequence and set $M = \sup_n ||v_n||^2$. Fix a vector v. By Bessel's inequality

$$\sum_{n=1}^{\infty} |\langle \nu, \nu_n \rangle|^2 = \sum_{n=1}^{\infty} |\langle \nu, u_n \rangle|^2 \cdot \|\nu_n\|^2 \leq M \sum_{n=1}^{\infty} |\langle \nu, u_n \rangle|^2 \leq M \|\nu\|^2$$

so the series $\sum |\langle \nu, \nu_n \rangle|^2$ converges and particularly $\langle \nu, \nu_n \rangle \to 0$. This shows that the sequence (ν_n) converges weakly to 0.

- 26. If T is bounded, then clearly every weakly convergent sequence gets mapped to a weakly convergent sequence. Conversely, suppose a sequence (x_n) converges (in norm) to 0. We want to show that $Tx_n \to 0$ (continuity at 0 implies by linearity the boundedness of T). Since $x_n \to 0$, also $x_n \to 0$, so Ax_n converges weakly. By Question 23, the sequence (Ax_n) is bounded. Fix $\epsilon > 0$. We want to show that eventually $||Ax_n|| \leq \epsilon$. If $||Ax_n|| > \epsilon$ for infinitely many n, then considering the sequence $y_n = x_n/\sqrt{||x_n||}$ which converges to 0 as $||y_n|| = \sqrt{||x_n||}$, we get similarly that the sequence Ay_n is bounded, but for infinitely many n, $||Ay_n|| > \frac{\epsilon}{\sqrt{||x_n||}} \to \infty$. This contradiction finishes the proof.
- 27. Let e_n be the standard unit vectors in ℓ_p and by $e_n^* \in \ell_p^*$ we denote their duals, $e_n^*(x) = x_n$. Since $\ell_p^* \simeq \ell_q$ and $q = p/(p-1) \in (1,\infty)$, the sequence (e_n^*) is dense in ℓ_p^* .

If a sequence (x_n) converges weakly in ℓ_p to x, then it is bounded by Question 23 and the convergence of coordinates follows by testing with e_n^* . Conversely, suppose a sequence (x_n) is bounded by, say a > 0 in ℓ_p and for some sequence x we have that for every n, $e_n^*(x_m) \xrightarrow[m \to \infty]{} e_n^*(x)$. Since

$$\sum_{n=1}^{N} |e_n^*(x)|^p = \varlimsup_{m \to \infty} \sum_{n=1}^{N} |e_n^*(x_m)|^p \le \varlimsup_{m \to \infty} \|x_m\|_p^p \le a^p,$$

the sequence x is in ℓ_p and $||x||_p \leq a$. Fix $\varphi \in \ell_p^*$. We want to show that $\varphi(x_m) \xrightarrow[m \to \infty]{} \varphi(x)$. Fix $\varepsilon > 0$. By density, there is a finite linear combination ψ of the e_n^* such that $||\varphi - \psi|| < \varepsilon/(4a)$. By the assumption, $\psi(x_m) \xrightarrow[m \to \infty]{} \psi(x)$, so there is M such that $||\psi(x_m) - \psi(x)| < \varepsilon/2$ for all m > M. Then for those

m we obtain

$$\begin{aligned} |\varphi(x_m) - \varphi(x)| &\leq |\psi(x_m) - \psi(x)| + |\psi(x) - \varphi(x)| + |\psi(x_m) - \varphi(x_m)| \\ &\leq \frac{\varepsilon}{2} + \|\psi - \varphi\| \cdot (\|x\|_p + \|x_m\|_p) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{4a} \cdot 2a = \varepsilon. \quad \Box \end{aligned}$$

- 28. Left for the dedicated student.
- 29. Let $\{\phi_n\} \subset S_{X^*}$ be a countable dense subset in the unit sphere of the dual space. For every n choose a unit vector $x_n \in X$ such that $|\phi_n(x_n)| > \frac{1}{2} ||\phi_n|| = \frac{1}{2}$. We want to show that $Y = \text{cl span}\{x_n, n \ge 1\}$ is X. Suppose that $Y \subsetneq X$. Then by the Hahn-Banach theorem there is a functional ϕ of norm one such that $\phi|Y = 0$. Choose k so that $\|\phi - \phi_k\| < 1/3$. We have

$$\frac{1}{2} < |\varphi_k(x_k)| = |\varphi_k(x_k) - \varphi(x_k)| \le \|\varphi_k - \varphi\| \cdot \|x_k\| < \frac{1}{3}. \quad \Box$$

30. Left for the dedicated student.