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Functional analysis II, Revision lecture
Term 3 2014/2015

Problems

1. Let (X, ‖ · ‖) be a normed vector space. Prove that if ‖x + y‖ = ‖x‖ + ‖y‖
for some x, y ∈ X, then for every nonnegative real numbers α,β we have

‖αx+ βy‖ = α‖x‖+ β‖y‖.

2. Let f and f1, f2, . . . , fn be linear functionals de�ned on the same vector space.

Prove that
n⋂
j=1

ker fj ⊂ ker f

if and only if f is a linear combination of f1, . . . , fn.

3. Let Y be a closed subspace of a normed vector space X. Prove that if Y and

X/Y are separable, then so is X.

4. Is the quotient space `∞/c0 separable?
5. Let Y be a closed subspace of a normed vector space X. Prove that if Y and

X/Y are complete, then so is X.

6. Suppose X, Y are closed subspaces of a normed vector space. Need X + Y be

closed?

7. Let 1 ≤ p < q. Show that the set

A =

{
f ∈ Lp[0, 1],

∫ 1
0

|f|q ≤ 1
}

is closed with empty interior in (Lp[0, 1], ‖ · ‖p). Conclude that Lq[0, 1] is a

countable union of nowhere dense sets in (Lp[0, 1], ‖ · ‖p). Why does this not

contradict Baire's theorem and Lp spaces being Banach?

8. Let f be a nonzero functional on a normed vector space. Prove that the fol-

lowing conditions are equivalent

f is continuous, (♣)

ker f is closed, (♠)

ker f is nowhere dense. (♦)

9. Given a vector space X, is it always possible to de�ne a norm ‖ · ‖ on X such

that (X, ‖ · ‖) becomes a Banach space? (In other words, is every vector space

Banach-normable?)
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10. Let X be a Banach space in which every subspace is closed. Show that X is

�nite dimensional.

11. Give an example of a vector space X for which there are two norms ‖ · ‖ and
‖ · ‖ ′ such that (X, ‖ · ‖) is separable but (X, ‖ · ‖ ′) is not.

12. De�ne the Rademacher functions

rn(t) = sgn
(
sin(2nπt)

)
, n = 0, 1, 2, . . . .

Show that {rn, n ≥ 0} is an incomplete orthogonal system in L2[0, 1].

13. Show that every orthogonal subset of a separable Hilbert space is countable.

14. Let C be a nonempty closed and convex subset of a Hilbert space H. We know

that for every x ∈ H there is a unique best approximation x∗ of x in C, that is

‖x∗ − x‖ = infa∈C ‖a− x‖. Show that for every x, y ∈ H we have

‖x∗ − y∗‖ ≤ ‖x− y‖.

15. Let P,Q be orthogonal projections in Hilbert space. Prove that ‖P −Q‖ ≤ 1.

16. Let T be an n×n matrix with row vectors a1, . . . , an ∈ Rn and column vectors

b1, . . . , bn ∈ Rn,

T =


− a1 −

− a2 −

. . .

− an −

 =


| | |

b1 b2 . . . bn

| | |

 .
Show that T , as a linear operator acting on certain `p spaces, has the following

norms

‖T‖`np→`n∞ = max
j≤n
‖aj‖q,

‖T‖`n1→`np = max
j≤n
‖bj‖p,

where p ∈ [1,∞] and 1/p+ 1/q = 1.

17. Find all α ∈ R for which the linear map T : `3 −→ `1, Tx = (nαxn)n≥1 is

bounded.

18. Give an example of a bounded linear map S : c0 −→ c0 for which there is

no linear extension ~S : c −→ c0 preserving the norm, that is ~S|c0 = S and

‖~S‖ = ‖S‖.
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19.* Let (X, ‖ · ‖) be an n dimensional normed vector space. Show that there are

linearly independent unit vectors x1, . . . , xn ∈ X and functionals φ1, . . . , φn ∈
X∗ of norm one satisfying φj(xi) = δij for every i, j ≤ n. (Auerbach's lemma.)

20. Let (X, ‖ · ‖) be an n dimensional normed vector space. Show that there is a

basis x1, . . . , xn of X such that for every scalars λ1, . . . , λn we have

max
j≤n

|λj| ≤

∥∥∥∥∥
n∑
j=1

λnxn

∥∥∥∥∥ ≤
n∑
j=1

|λj|.

21. Let (X, ‖ · ‖) be a normed vector space which is re
exive. Prove that for every

bounded functional φ ∈ X∗ there is a unit vector x ∈ X such that φ(x) = ‖φ‖.

22. Prove that the spaces: c0, c, `1, C[0, 1], L1[0, 1] are not re
exive.

23. Let X be a normed vector space. Show that every weakly convergent sequence

in X is bounded.

24. Let X be a Banach space. Show that every weakly* convergent sequence in X∗

is bounded.

25. Let {vn, n ≥ 1} be an orthogonal bounded set in a Hilbert space. Show that

the sequence (vn) converges weakly to 0.

26. Let T : X −→ Y be a linear map between Banach spaces X, Y. Show that T

is bounded if and only if for every weakly convergent sequence (xn) in X, the

sequence (Txn) is weakly convergent in Y.

27. Let p ∈ (1,∞). Show that a sequence (xn) is weakly convergent to x in `p if and

only if it is bounded and each coordinate of xn converges to the corresponding

coordinate of x.

28.† Show that if a sequence (xn) converges weakly in `1 to x then ‖xn− x‖1 −→
n→∞ 0.

(Schur's property.)

29. Let X be a normed vector space. Show that if the dual space X∗ is separable,

then so is X.

30.* Let (X,F , µ) and (Y,G, ν) be measurable spaces. Let p ∈ [1,∞) and suppose

f : X× Y −→ R is F ⊗ G measurable. Then∥∥∥∥y 7→ ∫
X

f(x, y)dµ(x)

∥∥∥∥
Lp(ν)

≤
∫
X

‖y 7→ f(x, y)‖Lp(ν)dµ(x)

(Minkowski's integral inequality).
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Solutions

1. Suppose that α ≥ β. By the triangle inequality,

‖αx+ βy‖ = ‖α(x+ y) − (α− β)y‖ ≥ α‖x+ y‖− (α− β)‖y‖

which combined with the assumption gives

‖αx+ βy‖ ≥ α‖x‖+ β‖y‖.

By the triangle inequality, the opposite inequality holds as well.

2. If f = α1f1 + . . .+ αnfn for some scalars αi then plainly

n⋂
j=1

ker fj ⊂ ker f.

We show the converse inductively on n. Let n = 1. If f1 = 0, then by

ker f1 ⊂ ker f also f = 0, so there is nothing to prove. Take then a nonzero

vector v such that f1(v) 6= 0. For every vector x we have

x−
f1(x)

f1(v)
v ∈ ker f1 ⊂ ker f,

hence

f

(
x−

f1(x)

f1(v)
v

)
= 0

which yields f = f(v)
f1(v)

f1. Suppose we have n + 1 functionals f1, . . . , fn+1 and⋂n+1
j=1 ker fj ⊂ ker f. Consider the subspace Z = ker fn+1 and the restricted

functionals gi = fi|Z, i ≤ n, g = f|Z on Z. By the inductive assumption,

g = α1g1 + . . . + αngn (on Z) for some scalars αi. This particularly implies

that

ker fn+1 = Z ⊂ ker(f− α1f1 − . . .− αnfn),

so by the case n = 1 we get

f− α1f1 − . . .− αnfn = αn+1fn+1

for some scalar αn+1, which completes the proof.

3. Let {yn, n ≥ 1} be a dense subset in Y and let {xn+ Y, n ≥ 1} be a dense subset
in X/Y. For any ε > 0 and x ∈ X we can �nd n such that

‖(x− xn) + Y‖ = ‖(x+ Y) − (xn + Y)‖ < ε.
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By the de�nition of a quotient norm and the fact that the yn are dense in Y

we can �nd m such that

‖x− xn − ym‖ < 2ε.

This shows that the set {xn + ym, n,m ≥ 1} is dense in X.

4. We know that the space c0 is separable, whereas `∞ is not. If the quotient

space `∞/c0 was separable, then, by Problem 3, `∞ would be separable.

5. Suppose (xn) is a Cauchy sequence in X. Then clearly (xn + Y) is a Cauchy

sequence in X/Y. By the assumption it converges, say to x+ Y,

‖(x− xn) + Y‖ −→
n→∞ 0.

This means that there are yn ∈ Y such that

‖x− xn − yn‖ < ‖(x− xn) + Y‖+ 1/n −→
n→∞ 0.

In particular, xn + yn converges to x. It remains to show that yn converges as

well. We have

‖yn − ym‖ ≤ ‖yn + xn − x‖+ ‖x− xm − ym‖+ ‖xm − xn‖

≤ ‖(x− xn) + Y‖+ ‖(x− xm) + Y‖+ 1/n+ 1/m+ ‖xm − xn‖

which shows that (yn) is a Cauchy sequence in Y.

6. The subspace X+ Y need not be closed. Consider for instance

X = span{e2n, n ≥ 1},

Y = span

{
e2n +

1√
n
e2n+1, n ≥ 1

}
,

in `2. These are closed subspaces (why?). Moreover, span{en, n ≥ 1} ⊂ X+ Y.

Therefore, if X+ Y was closed, we would have X+ Y = `2. However,

∞∑
n=1

1

n
e2n+1 ∈ `2 = X+ Y

would imply that ∞∑
n=1

1√
n
e2n ∈ X

but this vector does not belong to `2. This contradiction shows that X + Y is

not closed.
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7. Suppose that fn ∈ A and fn → f in Lp[0, 1]. Convergence in Lp implies conver-

gence in law, hence there is a subsequence nk such that fnk
converges to f a.s.

By Fatou's lemma we get∫ 1
0

|f|q =

∫ 1
0

lim
k→∞ |fnk

|q ≤ lim
k→∞
∫ 1
0

|fnk
|q ≤ 1,

so f ∈ A which shows that A is closed.

Suppose the interior of A in Lp is not empty, that is A contains a ball. Since

p < q, Lp[0, 1] ( Lq[0, 1], such a ball contains functions with in�nite Lq norms.

This contradicts the fact that A is bounded in the Lq norm.

Thus A is nowhere dense and so is any its dilation nA. We have

Lq[0, 1] =
⋃
n≥1

nA

which shows that Lq[0, 1] is a countable union of nowhere dense sets in Lp[0, 1].

This does not contradict that (Lq[0, 1], ‖·‖q) is a Banach space because the sets

nA are nowhere dense in the metric given by the norm ‖ · ‖p, not ‖ · ‖q.

8. (♣) =⇒ (♠) Obvious.

(♠) =⇒ (♦) The only subspace with nonempty interior is the whole space;

since f is nonzero, its kernel is a proper subspace, so it has empty interior and

as being closed, it is nowhere dense.

(♦) =⇒ (♣) Suppose f is not bounded. Then there are unit vectors xn for

which |f(xn)| ≥ n. For any vector x and n we have

yn = x−
f(x)

f(xn)
xn ∈ ker f

Moreover,

‖yn − x‖ ≤
|f(x)|

n
,

so yn → x. Therefore x ∈ cl ker f. Since x is arbitrary, cl ker f is the whole

space, but this contradicts its interior being empty.
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In the next several questions we will use the following nice consequence of Baire's

theorem proved in class:

If a Banach space is in�nite dimensional, then its Hamel basis is

uncountable.
(?)

Recall also the following fact concerning separability:

If a normed vector space contains an uncoutable set of points

any two of which are distance 1 apart, then it is not separable.
(??)

9. Consider the vector space c00 of all sequences eventually zero. For instance the

set {en, n ≥ 1} is a Hamel basis for this space, which is countable. In view of

(?), the space c00 is not Banach-normable.

10. Suppose dimX = ∞. Then there are countably many linearly independent

vectors x1, x2, . . .. Consider the subspace Y = span{xn, n ≥ 1}. As a closed

subspace of a Banach space, Y is a Banach space, but this contradicts (?).

11. Take X = `2 and set ‖ · ‖ to be the standard `2 norm. Fix a Hamel basis

{bt, t ∈ T } in `2 and de�ne for every vector x =
∑

t∈T βtbt (almost all βt are

zero)

‖x‖ ′ =
∑
t∈T

|βt|.

It is readily checked that this de�nes a norm on `2. For every pair of distinct

s, t ∈ T the vectors bs, bt are distance 2-apart, ‖bs − bt‖ ′ = 2, and T is

uncountable. By (??) the space (`2, ‖ · ‖ ′) is not separable.

12. Checking that 〈rk, rl〉 = 0 for k 6= l is straightforward. The system {rn} is

incomplete as it is readily veri�ed that 〈rk, 1[0,1/4] − 1[1/4,3/4] + 1[3/4,1]〉 = 0 for

every k.

13. Any orthogonal set can be made orthonormal. If u, v are orthogonal unit

vectors in a Hilbert space, then ‖u − v‖2 = 2. If an orthonormal set was un-

countable, we would have uncountably many pairs of points which are distance
√
2-apart, which would contradict separability by (??).

14. Fix x ∈ H. First we show that for every a ∈ C
we have

Re〈x− x∗, a− x∗〉 ≤ 0.

C

x∗

xa
aλ
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Fix a ∈ C and set aλ = (1 − λ)x∗ + λa, λ ∈ [0, 1]. By convexity, aλ ∈ C. In

view of the fact that x∗ is the best approximation of x in C we have

‖x− x∗‖2 ≤ ‖x− aλ‖2 = ‖(x− x∗) + (x∗ − aλ)‖2

= ‖x− x∗‖2 + 2Re〈x− x∗, x∗ − aλ〉+ ‖x∗ − aλ‖2,

hence

−2Re〈x− x∗, x∗ − aλ〉 ≤ ‖x∗ − aλ‖2.

Note that x∗ − aλ = λ(x − a). Plugging this back, dividing by λ and then

letting λ→ 0 yield the result.

Fix x, y ∈ H. Using what we just showed gives

Re〈x− x∗, y∗ − x∗〉 ≤ 0,

Re〈y− y∗, x∗ − y∗〉 ≤ 0.

Adding these we obtain

0 ≥ Re〈y− y∗ − x+ x∗, x∗ − y∗〉 = ‖x∗ − y∗‖2 +Re〈y− x, x∗ − y∗〉.

To �nish, move the inner product over and apply the Cauchy-Schwarz inequal-

ity,

‖x∗ − y∗‖2 ≤ Re〈x− y, x∗ − y∗〉 ≤ ‖x− y‖ · ‖x∗ − y∗‖.

15. Observe that for every vector x by orthogonality of x− Px and Px we have

‖x− 2Px‖2 = ‖(x− Px) − Px‖2 = ‖x− Px‖2 + ‖Px‖2 = ‖x‖2.

The same holds for Q as well. Therefore

2‖Px−Qx‖ ≤ ‖2Px− x‖+ ‖x− 2Qx‖ = 2‖x‖.

16. By x ·y =
∑

j≤n xjyj we denote the standard inner product on Rn. Fix a vector

x in Rn with ‖x‖p = 1. Then by H�older's inequality

‖Tx‖∞ = max
j≤n

|aj · x| ≤ max
j≤n
‖aj‖q · ‖x‖p = max

j≤n
‖aj‖q

and if ‖aj0‖q = maxj≤n ‖aj‖q, in order to to get equality we choose x for which

|aj0 · x| = ‖aj0‖q. This establishes that

‖T‖`np→`n∞ = max
j≤n
‖aj‖q.
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Now �x a vector x = (x1, . . . , xn) in Rn with ‖x‖1 = 1. We get

‖Tx‖p =

∥∥∥∥∥∑
j≤n

xjbj

∥∥∥∥∥
p

≤
∑
j≤n

|xj| · ‖bj‖p ≤ max
j≤n
‖bj‖p.

If ‖bj0‖p = maxj≤n ‖bj‖p, then to get equality we choose simply x = ej0 . This

establishes that

‖T‖`n1→`np = max
j≤n
‖bj‖p.

17. Using H�older's inequality,

‖Tx‖1 =
∞∑
n=1

|nαxn| ≤

( ∞∑
n=1

n
3
2
α

)2/3( ∞∑
n=1

|xn|
3

)1/3
=

( ∞∑
n=1

n
3
2
α

)2/3
· ‖x‖3,

so if α < −2/3, the series
∑
n3α/2 converges and T is bounded.

Suppose now that T is bounded. Then for every x ∈ `3 the series
∑
nαxn is

absolutely convergent and bounded by ‖T‖ · ‖x‖3. This means that(
x 7→ ∞∑

n=1

nαxn

)
∈ `∗3,

so by the duality `∗3 ' `3/2 we get (nα) ∈ `3/2 which holds if and only if

α < −2/3.

18. Take simply S = Id : c0 → c0 and suppose that it can be extended to ~S : c→ c0

without increasing the norm. Denote the constant sequence (1, 1, . . .) by e. Let

y = ~Se. We have ‖e− 2en‖∞ = 1 and ~Sen = en, so

|yn − 2| ≤ ‖y− 2en‖∞ = ‖~Se− 2~Sen‖∞ ≤ ‖~S‖ · ‖e− 2en‖∞ = 1.

Since y is in c0 (as the image of e under ~S), the left-hand-side converges to 2,

which gives a contradiction.

19. Take any basis in X of unit vectors (yj) and its dual (y∗j ), meaning y∗j (yi) = δij

for all i, j. The problem is that the y∗j may not have norm one. To �x it we

de�ne the function

V(z1, . . . , zn) = det
[
y∗j (zi)

]
i,j=1,...,n

on X× . . .×X. It is continuous, hence it attains its supremum on the compact

set SX × . . .× SX at, say (x1, . . . , xn) (the set SX denotes the unit sphere in X).

For a �xed index j let us de�ne the functional

φj(x) =
V(x1, . . . , xj−1, x, xj+1, . . . , xn)

V(x1, . . . , xj)
, x ∈ X.
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Then φj(xi) = 0, if i 6= j, as the determinant of a matrix with two identical

columns equals 0. Clearly φj(xj) = 1. Moreover, since V on the set SX× . . .×SX
attains its maximum at (x1, . . . , xn), we have supx∈SX φj(x) = 1, so ‖φ‖ = 1.

20. Let x1, . . . , xn be a basis in X provided by Auerbach's lemma and let φ1, . . . , φn

be the corresponding functionals of norm one such that φj(xi) = δij for all i, j

(see Question 19). Since the vectors xj are unit the right inequality follows

simply by the triangle inequality. Notice that

|λj| =

∣∣∣∣∣φj
(

n∑
i=1

λixi

)∣∣∣∣∣ ≤ ‖φj‖ ·
∥∥∥∥∥

n∑
i=1

λixi

∥∥∥∥∥ .
This shows the left inequality as ‖φj‖ = 1.

21. Application of the Hahn-Banach theorem to the vector φ ∈ X∗ yields a unit

functional p ∈ X∗∗ on X∗ for which p(φ) = ‖φ‖. By re
exivity, the canonical

isometric embedding X
ι
↪→ X∗∗ is onto, hence there is x ∈ X such that p = ι(x)

and 1 = ‖p‖ = ‖x‖. Then

‖φ‖ = p(φ) = ι(x)(φ) = φ(x),

so x is the unit vector we want to �nd.

22. By Question 21, to show that the spaces c0, c, `1, C[0, 1], L1[0, 1] are not re
exive,

for each of them it is enough to �nd a bounded functional φ which does not

attain its norm. It can be readily checked that we can take

� φ(x) =
∑∞

n=1
1
2n
xn on c0,

� φ(x) =
∑∞

n=1
1
2n
xn on c,

� φ(x) =
∑∞

n=1

(
1− 1

n

)
xn on `1,

� φ(f) =
∫1/2
0
f−
∫1
1/2
f on C[0, 1],

� φ(f) =
∫1
0
xf(x)dx on L1[0, 1].

23. Suppose xn ⇀ x (weakly in X). The sequence xn is bounded if and only if

its image under the canonical embedding ι of X into X∗∗ is bounded. Let

x∗∗n = ι(xn). For a �xed φ ∈ X∗ we have

sup
n

|x∗∗n (φ)| = sup
n

|φ(xn)| <∞
as the sequence φ(xn) is convergent. Therefore by the Banach-Steinhaus the-

orem, the family of functionals x∗∗n (acting on X∗ which is a Banach space) is

norm-bounded, that is

sup
n
‖xn‖ = sup

n
‖x∗∗n ‖ <∞.

10



24. Follows directly by applying the Banach-Steinhaus theorem as in Question

23.

25. Let un = vn/‖vn‖ be the normalised sequence and set M = supn ‖vn‖2. Fix a

vector v. By Bessel's inequality

∞∑
n=1

|〈v, vn〉|2 =
∞∑
n=1

|〈v, un〉|2 · ‖vn‖2 ≤M
∞∑
n=1

|〈v, un〉|2 ≤M‖v‖2

so the series
∑

|〈v, vn〉|2 converges and particularly 〈v, vn〉 → 0. This shows

that the sequence (vn) converges weakly to 0.

26. If T is bounded, then clearly every weakly convergent sequence gets mapped to

a weakly convergent sequence. Conversely, suppose a sequence (xn) converges

(in norm) to 0. We want to show that Txn → 0 (continuity at 0 implies by

linearity the boundedness of T). Since xn → 0, also xn ⇀ 0, so Axn converges

weakly. By Question 23, the sequence (Axn) is bounded. Fix ε > 0. We

want to show that eventually ‖Axn‖ ≤ ε. If ‖Axn‖ > ε for in�nitely many

n, then considering the sequence yn = xn/
√
‖xn‖ which converges to 0 as

‖yn‖ =
√
‖xn‖, we get similarly that the sequence Ayn is bounded, but for

in�nitely many n, ‖Ayn‖ > ε√
‖xn‖

→ ∞. This contradiction �nishes the

proof.

27. Let en be the standard unit vectors in `p and by e∗n ∈ `∗p we denote their duals,
e∗n(x) = xn. Since `∗p ' `q and q = p/(p − 1) ∈ (1,∞), the sequence (e∗n) is

dense in `∗p.

If a sequence (xn) converges weakly in `p to x, then it is bounded by Question

23 and the convergence of coordinates follows by testing with e∗n. Conversely,

suppose a sequence (xn) is bounded by, say a > 0 in `p and for some sequence

x we have that for every n, e∗n(xm) −→
m→∞ e∗n(x). Since

N∑
n=1

|e∗n(x)|
p = lim

m→∞
N∑
n=1

|e∗n(xm)|
p ≤ lim

m→∞ ‖xm‖pp ≤ ap,

the sequence x is in `p and ‖x‖p ≤ a. Fix φ ∈ `∗p. We want to show that

φ(xm) −→
m→∞ φ(x). Fix ε > 0. By density, there is a �nite linear combination ψ

of the e∗n such that ‖φ − ψ‖ < ε/(4a). By the assumption, ψ(xm) −→
m→∞ ψ(x),

so there is M such that |ψ(xm) − ψ(x)| < ε/2 for all m > M. Then for those
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m we obtain

|φ(xm) − φ(x)| ≤ |ψ(xm) −ψ(x)|+ |ψ(x) − φ(x)|+ |ψ(xm) − φ(xm)|

≤ ε
2
+ ‖ψ− φ‖ · (‖x‖p + ‖xm‖p) ≤

ε

2
+
ε

4a
· 2a = ε.

28. Left for the dedicated student.

29. Let {φn} ⊂ SX∗ be a countable dense subset in the unit sphere of the dual space.

For every n choose a unit vector xn ∈ X such that |φn(xn)| >
1
2
‖φn‖ = 1

2
. We

want to show that Y = cl span{xn, n ≥ 1} is X. Suppose that Y ( X. Then

by the Hahn-Banach theorem there is a functional φ of norm one such that

φ|Y = 0. Choose k so that ‖φ− φk‖ < 1/3. We have

1

2
< |φk(xk)| = |φk(xk) − φ(xk)| ≤ ‖φk − φ‖ · ‖xk‖ <

1

3
.

30. Left for the dedicated student.
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