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3.| By Problem 2, any tree which is not a single vertex has at least 2 leaves, so we

can assume that A > 3. Let u be a vertex with the maximal degree A. Since the
summands in the formula from Problem 2 are nonnegative, the number of leaves is at
least 2 4+ deg(u) — 2 = deg(u) = A.

8. | Suppose there are two different optimum spanning trees T; and T,. Let e be the

edge of the smallest weight in E(T;)AE(T,), say e € E(T;). Adding e to T, creates a
circuit. Take an edge f on this circuit such that f is not in T;. Then it is easy to check
that (T, — f) + e is a spanning tree, but its total cost is smaller by c(f) —c(e) > 0 than
the cost of T,, which contradicts the optimality of Ts.

12.| Recall that in Dijkstra’s algorithm, once a vertex has been processed, the value

assigned to it is the length of a shortest path leading to it. It might not be true if
negative weights are allowed as the following example shows.

The order in which the algorithm will process the vertices is: s,x,y,t, returning the
lengths: {(s) =0,¢(x) = 1,£(y) = 2,£(t) =4, which are not correct.
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2. | Suppose we take all capacities one. Then we get

S t .
¢ ———— 1 max-flow, 1 min-cut

o SAC 1 max-flow, 2 min-cuts

many max-flows, 1T min-cut

° //\\ ¢ many max-flows, many min-cuts

)

6.| Let T be a maximum spanning tree in (K,,c). We want to show that for every

two vertices i and j, their local edge connectivity in T, Ay(T), is Ay = c({i,j}). Let
Vo—Vi—...—V, Vo =1, vy =], be the path in T from i to j. Since T is a tree, in order
to separate i and j, it is enough to cut through just a single edge, so the minimum cut
separating i and j in T has value

Ay(T) = minf{c({v, v+ 1)), 1=0,1,...,k— 1} = minfAyn,.,, 1=0,1,... . k—1)
< )\vovk :}\ij)

where the inequality follows from the application of the assumption on A’s, Ay >
min{Ay, Aj}, recursively. If it was strict, say A, < Ay, we would swap in T the edge
{v3,v4} for {i,j}, obtaining a tree with a bigger value than T, which contradicts the
choice of T.



10.| Add a vertex w and edges {vi,w} for 1 < 1i < k to G, where parallel edges are

added in the case of vertex multiplicity. Call the new graph G’. Then G’ is k-edge
connected by definition. So by Menger’s Theorem there are k edge-disjoint v-w-paths.
On the other hand since w is only connected by k distinct edges to vq, vo, ..., vy, this
gives k edge-disjoint paths connecting v and v; in G respectively.



1.
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Let G = (V,E) be the bipartite graph K,,,, the maximally connected graph

of two groups of vertices Vi = {vi,vs,...,vin} and V; = {wy,ws,...,w,} which are
independent sets but {vi,w;} € E for any 1i,j.

1.

The independent number «(G) is the number of the maximum independent set
of G. Since V; and V, are independent sets, «(G) > max{|Vi|, |V>2|} = max{m,n}.
On the other hand, any vertex set W of cardinality greater than max{m,n} has
v; and wj for some i and j as elements, but since {vi,w;} € E, W can not be an
independent set, thus «(G) < max{m,n}. Therefore x(G) = max{m,n}.

The minimum cover number T(G) is the number of the minimum vertex-cover set
of G. It is covered in (no pun intended) the lecture notes that the complement
of a maximum independent set is a minimum vertex-cover set. Hence T(G) =
V| — «(G) = min{m, n}.

The maximum matching number p(G) is the number of pairs of vertices in a
maximum matching. It is also covered in the lecture notes that for a bipartite
graph u(G) = 1(G) = min{m, n} by Konig’s theorem.

The edge connectivity y(G) is the minimum number of edges to be removed for
G to be disconnected. It is min{m,n}. This is because, on the one hand, suppose
m < n, then if we remove all the edges incident to w; then G is not connected
any more. There are m such edges, so Y(G) < m. On the other hand if we
remove k < m edges from G, then since every vertex has degree at least m, the
graph remains connected, which proves the other direction.

The vertex connectivity n(G) of G is also min{m,n}. We can remove V; or V;,
whichever has smaller cardinality, which proves n(G) < min{m,n}, the other
direction is similar to the arguments in y(G) and «(G).



6. | Suppose we have an r x n brilliant rectangle R and r < n. It is enough to show

how to append one row. To this end consider a bipartite graph G(A U B,E) with
A ={aj,...,an}, B={by,..., by} and {a;, b;} € E if and only if j does not appear in
the i'" column of the rectangle. If {ay, by, k =1,...,n} C E is a perfect matching in
G, then it means that it is possible to append the row (my,...,m,) to R.

Plainly, the degree of every vertex in A is n —r, as in each column of R there are
r distinct numbers. Now fix a vertex b; in B. If deg(b;) = k, it means that j does
not appear in exactly k columns of R, hence j appears in exactly n — k columns of
R. Since R is brilliant, this implies that j appears exactly n — k times in R. Notice
that every number 1,...,n appears in R exactly r times (exactly once in every row).
Therefore, n — k =, that is deg(b;) =n —.

We have shown that the bipartite graph G is n — r regular, hence it possesses
a perfect matching (see the lecture, or do a simple double counting to check Hall’s
condition: for X C A look at {(x,y), x € X,{x,y} € E}; on one hand the cardinality of
this set equals |X|(n — ), as every x € X has n — r neighbours, but on the other hand,
it is at most [N(X)|(n — 1), as every y has also n — r neighbours, but not all of them
might be in X, hence the bound).

10 It is readily checked that an Eulerian circuit

in G gives a Hamiltonian circuit in L(G).

To check that [(G) is also Eulerian notice that the degree of a vertex e = {v, w} € E(G)
in L(G) equals deg(v) + deg(w) — 2. Thus, if all vertices in G have even degrees, then
so do all the vertices in [(G). Euler’s theorem finishes the proof.

) = K; The converse does not hold. For instance, the
graph K; = L(K;3) is both Eulerian and Hamil-
tonian, but K; ; is not Eulerian (nor is it Hamil-
tonian).
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1.| (a) The output matching has to contain (M, W). Suppose not, say the output

contains (M, W’) and (M’,W). Since M ranks W higher than W’ and W ranks M
higher than M’, the matching is not stable.

(b) Yes, it is possible. Consider the situation in which man M;’s first choice is
woman W, and vice versa for i <n—1, man M, ’s last choice is woman W, and M,, is
second on every woman's list. Then after n — 1 steps the Gale-Shapley algorithm has
matched M; to W; and when it comes to M,, in the n'" step, he gets rejected by every
woman from his list but the last one — W,,, since every woman prefers her current
match M;, which is her first choice, to M,,, which is her second choice.

(c) Answer: N+ (N —1)+...+ 1 and it does not depend on women’s preferences.
Indeed, after the first N steps, W; has been asked N times, so she has been matched to
her best candidate. She will not be asked any more and in the next N — 1 subsequent
steps, W, will be asked N — 1 times, and so on.

4. | Since s,t are connected, F is nonempty. It is clear that if X belongs to F then

so does any subset of X. Particularly, @ € F. This shows that F is an independence
system.

To show that in general F is not a matroid, consider the

A graph in the picture. Plainly, 7 = {@,{e},{f},{g},{e, f}}.

Thus, if X = {e,f} and Y = {g}, there is no x € X\ Y for

s 9 t which Y U{x} € F. Therefore, F is not a matroid.
Notice however, that if the graph is a tree, then F is a (uniform) matroid.

7 First, suppose that B C F is the set of the bases of a matroid (E,F). We want

to show that

for every two bases B,B’ and every x € B\ B’ there exists y € B’ \ B such that
(B"\{y}) Uix} € B.



Solution I (J. W. Turner). Fix two bases B, B’ and x €
B\ B’. We know that |B| = |B’| because F is a matroid. If
IB N B’| = |B] — 1, then there is only one element in B’ \ B;
call it y. Plainly, (B’ \ {y}) U{x} = B, so we are done in
this case. If BN B'| < |B|—1, set X = (BN B’) U{x} and
Y = B’. Then X, Y are both independent, |X| < |Y|, so by the
matroid property proved in the lecture, there is a subset Z
of Y\ X of size [Y|—|X| such that XU Z is independent. Since
|IZ| =|B'|—|BNB/|—1and ZC B’\ (BNB’) =B’\ B, there
is a unique element y € B’ \ B such that Z = (B’ \ B) \ {y}.
B'\ B Therefore X U Z = (B’ \ {y}) U {x} and we know this set is
independent. Because this set has the same size as B/, it is
a basis.

Solution II (B. Madley). Let C be the unique circuit in B’ U {x} (B’ is a basis,
so this set is dependent). Now we can remove any other element of this circuit to
make the leftover set independent. At least one of these choices must be in B’ \ B as
otherwise B would contain the circuit and hence not be independent. So there is y in
B’ \ B such that (B’ \ {y}) U{x} is a basis.

Solution III. The set B’ U{x} is dependent. Let U be a maximal subset of B’ such
that UU{x} is independent. We claim that |U| = |B’|—1. Otherwise, |UU{y}| < |B’| and
by the augmentation property there exists an element z in B’ such that (UU{y}) U{y}
is still independent which contradicts the maximality of U. Denote B’ \ U = {y}. We
have that (B’ \ {y}) U{x} = U U{x} is independent and a basis as it is of size |B’|.

Solution IV. We use induction on k = [B’\ B| = |[B\ B’|. If k = 0, the statement is
trivial. The case k = 1 is dealt with as in Solution I. We assume k > 2. Then there is
x’ € B\ B’ with x’ # x. By the matroid property, there exists y’ € B’ \ B such that
B” = (B\ {x'}) U{y'} is a basis. We have x € B” \ B’. Since [B” \ B’ =k — 1, by the
inductive assumption we get that B’ \ {y} U {x} is a basis for some y € B’ \ B”. Since
y#x' (x’ € B\ B’ buty € B'), in fact y € B\ B.

Second, suppose that B C 2F satisfies (x). We would like to show that B is the set
of the bases of some matroid (E, 7). There is only one reasonable way to define F,
namely

B\ B

BN B’

F ={X C E,there is some B in B for which X C B}.

With this definition, it is clear that F is an independence set whose bases are B. To
show that F is a matroid, we first check that all B in B have the same cardinality.
Suppose not and among the pairs (B, B;) € B x B with |B;| # |B,| choose the one for
which |[B; N B,| is the largest possible. Say |B;| > |B;|. Then picking y € B, \ B, there
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is x € By \ B, such that B; = (B \ {x}) U{y} € B. But |B; N B,| is greater than |B; N B,|,
which is a contradiction.

Now suppose that there are two elements X and Y in F with |Y| > |X|, which violate
the matroid property and choose such a pair for which [X N Y| is maximal. Since
X,Y € F, we have some By, By € B which contain X and Y respectively. Choose them
so that |Bx N By| is maximal as well. We have that Bx N (Y \ X) = @ as otherwise we
could extend X by one element from Y to have a member of F (so the matroid property
would hold for X and Y). Therefore

IBx N Byl + [X\ Byl + [(Bx \ By) \ X| > [Bx| = |By| > [Bx N By| + [Y'\ X|.

Since Y \ X| > |X\ Y| > |X\ By|, we obtain that |(Bx \ By) \ X| > 0, so this set is
nonempty and choose an x in it. By the property of B, there is y € By \ Bx such that
By = (By \ {y}) U{x} € B. Notice that this y must be in Y as otherwise the sets By,
By, containing X, Y respectively, contradict the choice of Bx, By having the largest
intersection. Since y € Y and Y’ = (Y \ {y}) U {x} is contained in By, the pair X and Y’
contradict the choice for X and Y.

Remark. The matroid property of an independence system (F,E) (as shown in the
lecture) is equivalent to

for each X C E all the bases of X have the same size.

To show that F is a matroid, it is not enough to show that the bases have the same size.
To see this, consider the following example. Let E ={a, b,c,d} and

a F = {@,{a},{b},{c},{d},{a, d},{b,c},{b, d}} (the independent sets of

the graph shown in the picture). Clearly, this is an independent

b c system, but is not a matroid as X = {a} cannot be extended through
Y ={b, c}. However, the bases of F are {a, d},{b, c},{b, d}; they have

d the same size. (The point being that the bases of {a, b, c} are not of

the same size.)

Remark. (For the adventurous student) We can actually show slightly more for a
matroid, what is called the strong basis exchange property

for every two bases B,B’ and every x € B\ B’ there exists y € B’ \ B such that
(B’\ {y}) U{x} and (B \ {x}) U{y} are in B.

To this end we shall use two facts known from the lecture



1. rank axiom: r(X) +r(Y) > r(XUY) +r(XNY), for every X,Y C E
2. circuit axiom: a dependent set contains a unique circuit.

Since B’ is a basis, B’ U{x} is a dependent set, so by 2. it contains a unique circuit C.
Since C ¢ B’, necessarily x ¢ C. Since C is a circuit, C \ {x} is an independent set,
thus

r(C\{x}) =[C\{x}| =[C| =1 =1r(C).

By 1.,
r(C)+r((BUC)\{x}) = r(BUC)+7(C\{x}),

so 1(C) = 7r(C \ {x}) cancels and we have
r(BUC)\{x}) >r(BUC).

The opposite inequality holds trivially, so we have equality. Since r((BU C) \ {x}) =
r(BU C) = |B| (B is a basis, hence the last equality), by the definition of rank the set
(BUC) \ {x} contains a basis, say B”. By the matroid property applied to B \ {x} and
B” there is y € B” \ (B \ {x}) such that (B \ {x}) U{y} is a basis. We will show that in
addition, (B’ \ {y}) U{x} is a basis as well. Then we will be done as this, along with
x ¢ B’, comparing cardinality, gives that y € B’. We have

B"\(B\{x}) € (BUCI\{})\(B\{x}) C C\{x}

soy € C\ {x} Since C is the unique circuit in B’ U{x}, we get that (B’ \ {y}) U{x} is
a basis (it does not contain any circuit as it does not contain C and if it contained
another circuit C’, then C’ would be contained in B’ U{x}, so C’ = C; obviously, a set
is independent if and only if it does not contain a circuit).



