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1. Let A be a real 4× 2 matrix and B be a real 2× 4 matrix such
that

AB =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 .

Find BA.

Solution. Let

A =

[
A1

A2

]
, B =

[
B1 B2

]
,

where A1, A2, B1, B2 are 2× 2 matrices. Then

AB =

[
A1B1 A1B2

A2B1 A2B2

]
=

[
I −I
−I I

]
.

Thus, A1B1 = I = A2B2 and A1B2 = −I = A2B1.
As a result,

BA = B1A1 + B2A2 = 2I.

2. Let A, B be two matrices over a field K of size m × n, n ×m
respectively. Show that for every x ∈ K we have

xn det(xIm −AB) = xm det(xIn −BA).

Solution. Let us define block matrices

C =

[
xIm A
B In

]
, D =

[
Im 0
−B xIn

]
.

Then

det(CD) = det

[
xIm −AB xA

0 xIn

]
= xn det(xIm−AB)

and

det(DC) = det

[
xIm A

0 xIn −BA

]
= xm det(xIn−BA).

Since det(CD) = det(DC), the proof is complete.

3. Let 2 ≤ k ≤ n and v1, . . . , vk be unit vectors in Rn. Prove that
there are 1 ≤ i < j ≤ k such that 〈vi, vj〉 ≥ − 1

k−1
.

Solution. Notice that

0 ≤ |v1 + . . . + vk|2 =

k∑
i=1

|vi|2 +
∑
i 6=j

〈vi, vj〉

≤ k + k(k − 1) ·max
i 6=j
〈vi, vj〉 ,

hence

max
1≤i<j≤k

〈vi, vj〉 ≥ −
1

k − 1
.

4. Prove that

det


1
1

1
2

. . . 1
2014

1
2

1
3

. . . 1
2015

. . . . . . . . . . . . . . . . . . . . . . . .
1

2014
1

2015
. . . 1

4027

 >
1

223
3 .

Solution. The formula for a Cauchy determinant
yields (see Question 4, Set 3)

det

[
1

k + l − 1

]
1≤k,l≤n

=

∏
1≤k<l≤n(l − k)2∏

1≤k,l≤n(k + l − 1)

>
1

(2n− 1)n2 .

For n = 2014 we easily check that

402720142 <
(
212
)(211)

2

= 212·222 < 2226 < 223
3

.

5. Given m,n ≥ 1, count the number of m × n matrices with 0, 1
entries such that in every row and in every column there is an even
number of 1’s.

Solution. Answer: 2(m−1)(n−1).
Notice that for a matrix with an even number of

1’s in each row and in each column, the last row is
determined by the first m − 1 rows by putting a 1
into the columns containing an odd number of 1’s.
Moreover, having chosen m − 1 rows, each contain-
ing an even number of 1’s, the number of columns
containing an odd number of 1’s is even (otherwise
the total number of 1’s would be odd). So the num-
ber of matrices with m rows equals the number of
choices for the first m− 1 rows which is

(
2n−1

)m−1
.
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6. Given a matrix with 0, 1 entries, containing an even number of
1’s, is it always possible to find a submatrix (by crossing-out certain
rows and certain columns, not necessarily consecutive) containing
exactly a half of the 1’s?

Solution. (Prof. K. Ball) Answer: no!
Consider the 5× 9 matrix containing 44 ones and

one zero at the upper-left corner.

7. Suppose that G is a simple graph with n vertices and with more
than n2/4 edges. Prove that G contains a triangle.

Show that for an even number n there exists a graph G with n
vertices and n2/4 edges containing no triangle.

Here by a simple graph we mean an undirected graph with neither
loops nor multiple edges.

Solution. Let V be the set of vertices of G and
E be the set of its edges. The degree (the number
of neighbours) of a vertex v ∈ G is denoted by d(v).
Suppose that G contains no triangle. Then, for every
edge {u, v} ∈ E, we have d(u)+d(v) ≤ n. Therefore,

n ·#E ≥
∑
{u,v}∈E

(
d(u) + d(v)

)
=
∑
v∈V

d(v)2

≥ 1

#V

(∑
v∈V

d(v)

)2

=
1

n

(
2#E

)2
.

It follows that #E ≤ n2/4.
For the example part, consider the complete n

2 ×
n
2

bipartite graph.

8. Given positive numbers a1, b1, . . . , an, bn prove that the function
f : R −→ R, f(x) =

∑n
k=1 ak cos(bkx) has a zero.

Solution. We start with proving a simple lemma.

Lemma. If a function g : R −→ R satisfies for all
reals x, y

g

(
x + y

2

)
<

g(x) + g(y)

2
,

then g is not bounded above.

Proof. Suppose g is bounded above and let M :=
supR g. Because of the strict inequality in the as-
sumption, f is not constant, thus there is z with
g(z) < M . Then g(z)+M

2 < M . By the definition of

M , there is x with g(z)+M
2 < g(x). Then

g(z) + M

2
< g(x) <

g(z) + g(2x− z)

2
≤ g(z) + M

2
,

a contradiction.

Let g(x) =
∑n

k=1

(
−ak

b2k

)
cos(bkx). Then g′′ = f .

Since f(0) =
∑

k ak > 0, if f had no zeros, then by
continuity f would be positive everywhere implying
that g′′ > 0 on R, i.e. g would be strictly convex
which is not possible as g is bounded above.

9. Prove that

lim
n→∞

n∑
j=1

(
j

n

)n

=
e

e− 1
.

Solution. First notice that with the aid of the
inequality 1− x ≤ e−x, x ∈ R, trivially

n∑
j=1

(
j

n

)n

=
n−1∑
j=0

(
1− j

n

)n

<
∞∑
j=0

e−j =
e

e− 1
.

To get a lower bound, we shall use the inequality

1− x ≥ e−x−x
2
, x ∈ [0, 1/2]

which can be easily verified by taking the logarithm
and looking at the derivatives of both sides. We ob-
tain

n−1∑
j=0

(
1− j

n

)n

≥
blnnc∑
j=0

e−je−j
2/n

≥ e−blnnc2/n
blnnc∑
j=0

e−j

= e−blnnc2/n 1− e−blnnc

1− e−1

and the right hand side clearly tends to e
e−1 .

10. Let f : [0, 1] −→ R be a convex function of class C∞(0, 1).
Prove that∫ 1

0

(
f(x)

)2
dx−

(∫ 1

0
f(x)dx

)2

≤
∫ 1

0

(
f ′(x)

)2
dx.

Solution. Since both sides do not chance when we
add a constant to f , we can assume that

∫ 1
0 f = 0.

Notice that

2

(∫ 1

0
f(x)dx

)2

=

∫ 1

0

∫ 1

0

(
f(x)− f(y)

)2
dxdy

≤
∫ 1

0

∫ 1

0

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy

From convexity we get∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ max{|f ′(x)|, |f ′(y)|},

thus

2

(∫ 1

0
f(x)dx

)2

≤
∫ 1

0

∫ 1

0

(
|f ′(x)|2 + |f ′(y)|2

)
dxdy

= 2

∫ 1

0
|f ′(x)|2dx

which finishes the proof.
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