Problem solving seminar IMC Preparation, Set III — Solutions

Tomasz Tkocz, Rosemberg Toala

1. Complex numbers a, b, c satisfy a|bc| + b|ca| + c|ab| = 0. Prove that $|(a-b)(b-c)(c-a)| \ge 3\sqrt{3}|abc|$

Solution. Rewrite the hypothesis as

$$\frac{a}{|a|} + \frac{b}{|b|} + \frac{c}{|c|} = 0$$

so these unit vectors are the vertices of an equilateral triangles, and the angle between any two of them is 120° . Hence by the cosine rule

$$\begin{aligned} |a-b|^2 &= |a|^2 + |b|^2 + |ab| \\ &\geq 2|ab| + |ab| = 3|ab| \end{aligned}$$

Similarly, for |b-c| and |c-a|. The result follows by multiplying them and taking the square root. \Box

2. Determine whether the series $\sum_{n=0}^{\infty} \arctan\left(\frac{1}{1+n+n^2}\right)$ converges. If so, compute its value.

Solution. It converges.

One way to see it is by comparing with $\sum 1/n^2$, since $\arctan(x) < x$ for x positive.

To find the value we write it as a telescopic series, note that

$$\tan(a_n) = \frac{1}{1+n+n^2} = \frac{(n+1)-n}{1+n(n+1)}$$
$$= \frac{\tan\left(\arctan(n+1)\right) - \tan\left(\arctan(n)\right)}{1+\tan\left(\arctan(n)\right)\tan\left(\arctan(n+1)\right)}$$
$$= \tan\left(\arctan(n+1) - \arctan(n)\right)$$

hence, $a_n = \arctan(n+1) - \arctan(n)$ and $\sum a_n = \lim \arctan(n+1) = \pi/2 \square$

3. The edges of a complete graph are painted with two colours, in such a way that for any four vertices there is a monochromatic triangle. Prove that it is possible to split the vertices into two groups such that each group is a complete monochromatic graph.

Solution. We will use induction. For n = 4 is clear.

Assume it holds for n vertices and consider a new point P. The n points are divided into $A_1, ..., A_k$ and $B_1, ..., B_{n-k}$, say amber and blue, respectively. Consider two cases

- 1. The segments PA_i are all amber or the segments PB_j are all blue. Then we are done by including P into the corresponding group.
- 2. There exists a blue segment PA_1 and an amber segment PB_1 . We will prove that we can swap A_1 with B_1 and preserve the two monochromatic graphs. Indeed, take first an A_i and consider $\{P, A_1, B_1, A_i\}$, since PB_1 and A_1A_i are amber there cannot a blue triangle, moreover B_1A_i must be amber. This is for all $i \neq 1$.

An analogous argument shows that A_1B_j , $j \neq 1$, is blue. Therefore $B_1, A_2, ..., A_k$ and $A_1B_2, ...B_{n-k}$ are monochromatic and we have reduced the number of 'not matching edges' from P. This procedure can be applied finitely many times to reduce the configuration to the previous case.

4. Let complex numbers $z_1, \ldots, z_n, w_1, \ldots, w_n$ be such that $z_k - w_l \neq 0$ for every k, l. Prove that

$$\det\left[\frac{1}{z_k - w_l}\right]_{k,l=1,\dots,n} = \frac{\prod_{1 \le k < l \le n} (z_l - z_k)(w_k - w_l)}{\prod_{1 \le k, l \le n} (z_k - w_l)}$$

Solution. Take the first row, multiply it by $\frac{z_1-w_1}{z_k-w_1}$ and subtract from the k^{th} one, $k \ge 2$. We obtain the matrix

$\begin{bmatrix} \frac{1}{z_1 - w_1} \end{bmatrix}$	$\frac{1}{z_1-w_2}$ \cdots $\frac{1}{z_1-w_n}$
0	
	$\left[\frac{z_k - z_1}{z_k - w_1} \frac{w_1 - w_j}{z_1 - w_j} \frac{1}{z_k - w_j}\right]_{k,j \ge 2}$

Its determinant equals

$$\frac{1}{z_1-w_1}\prod_{k\geq 2}\frac{z_k-z_1}{z_k-w_1}\prod_{j\geq 2}\frac{w_1-w_j}{z_1-w_j}\cdot\det\left[\frac{1}{z_k-w_j}\right]_{k,j\geq 2}$$

Iterating yields

$$\prod_{j\geq 1} \frac{1}{z_j - w_j} \prod_{k>l\geq 1} \frac{z_k - z_l}{z_k - w_l} \prod_{j>k\geq 1} \frac{w_k - w_j}{z_k - w_j} = \frac{\prod_{1\leq k< l\leq n} (z_l - z_k)(w_k - w_l)}{\prod_{1\leq k, l\leq n} (z_k - w_l)}.$$

5. Let $d \geq 2$ and let A be a bounded open subset of \mathbb{R}^d . Prove that there exist a finite or countable family \mathcal{F} of pairwise disjoint closed balls such that $\bigcup_{B \in \mathcal{F}} B \subset A$ and $A \setminus \bigcup_{B \in \mathcal{F}} B$ is of measure zero.

A set $E \subset \mathbb{R}^d$ is of measure zero if for every $\epsilon > 0$ there are closed balls B_1, B_2, \ldots such that $\bigcup_{i=1}^{\infty} B_i \supset E$ and $\sum_{i=1}^{\infty} |B_i| < \epsilon$, where |B| denotes the volume of B.

Solution. Here by aB we mean the ball with the same centre as B and the radius multiplied by a.

Let \mathcal{F} be the family of all closed balls, intersecting A, centred at points from \mathbb{Q}^d and with rational radii less than 1. By Question 3 (ii) from Set II, there is a subfamily $\mathcal{G} \subset \mathcal{F}$ of pairwise disjoint balls for which

$$\forall B \in \mathcal{F} \exists C \in \mathcal{G} \ B \cap C \neq \varnothing, \ B \subset 5C. \quad (\star)$$

Let $Z = A \setminus \bigcup_{B \in \mathcal{G}} B$. Fix $\epsilon > 0$. We want to cover Z with balls of total volume less than ϵ . Let $\mathcal{G}_n \subset \mathcal{G}$ be the subfamily of balls with radii in $(2^{-n-1}, 2^{-n}]$, $n = 0, 1, \ldots$ Observe that

$$\sum_{n=0}^{\infty} \sum_{B \in \mathcal{G}_n} |B| = \sum_{B \in \mathcal{G}} |B| < \infty$$

as the balls from \mathcal{G} are disjoint and intersect A which is bounded. Therefore there is N such that

$$\sum_{n>N}\sum_{B\in\mathcal{G}_n}|B|<\epsilon.$$

Fix $z \in Z$. Since z does not belong to the closed set $K = \bigcup_{n \leq N} \bigcup_{B \in \mathcal{G}_n} B$, by the definition of \mathcal{F} , there is $B_0 \in \mathcal{F}$ such that $z \in B_0$ and $B_0 \cap K \neq \emptyset$. Then by (\star) there is $B_1 \in \mathcal{G}$ which intersects B_0 and $B_0 \subset 5B_1$. Moreover, $B_1 \in \bigcup_{n > N} \mathcal{G}_n$ as otherwise $\emptyset \neq B_0 \cap B_1 \subset B_0 \cap K$. Thus,

$$Z \subset \bigcup_{n > N} \bigcup_{B \in \mathcal{G}_n} 5B,$$

and

$$|Z| \le \sum_{n > N} \sum_{B \in \mathcal{G}_n} |5B| \le 5^d \cdot \epsilon.$$