Problem solving seminar Homework I - Solutions

1. Let $n \ge 2$ and let x_1, \ldots, x_n be vectors in \mathbb{R}^d . Prove that there exists a subset $I \subset \{1, \ldots, n\}$ such that

$$4\left(\sum_{i\in I} x_i\right) \cdot \left(\sum_{i\notin I} x_i\right) \ge \sum_{i\neq j} x_i \cdot x_j,$$

where \cdot denotes the standard scalar product. We adopt the convention that $\sum_{i \in \emptyset} x_i = 0$. Solution. Suppose that there is no such subset, i.e. for every $I \subset \{1, \ldots, n\}$,

$$\sum_{i \neq j} x_i \cdot x_j > 4\left(\sum_{i \in I} x_i\right) \cdot \left(\sum_{i \notin I} x_i\right) = 4\sum_{i \neq j} x_i \cdot x_j \mathbf{1}_{\{i \in I, j \notin I\}}.$$

Adding up all these inequalities we get

$$2^{n} \sum_{i \neq j} x_{i} \cdot x_{j} > \sum_{I} 4 \sum_{i \neq j} x_{i} \cdot x_{j} \mathbf{1}_{\{i \in I, j \notin I\}} = 4 \sum_{i \neq j} x_{i} \cdot x_{j} \sum_{I} \mathbf{1}_{\{i \in I, j \notin I\}}$$

For $i \neq j$, $\sum_{I} \mathbf{1}_{\{i \in I, j \notin I\}} = 2^{n-2}$, so we get a contradiction. \Box

2. Given positive numbers t_1, \ldots, t_n let $a_{ij} = \min\{t_i, t_j\}, i, j = 1, \ldots, n$. Prove that for every real numbers x_1, \ldots, x_n we have

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j \ge 0.$$

Solution. Notice that $a_{ij} = \int_0^{\min\{t_i, t_j\}} dx = \int_0^\infty \mathbf{1}_{[0, t_i]}(x) \mathbf{1}_{[0, t_j]}(x) dx$. As a result,

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j = \int_0^\infty \sum_{i,j=1}^{n} x_i \mathbf{1}_{[0,t_i]}(x) \cdot x_j \mathbf{1}_{[0,t_j]}(x) \mathrm{d}x = \int_0^\infty \left(\sum_{i=1}^{n} x_i \mathbf{1}_{[0,t_i]}(x)\right)^2 \mathrm{d}x \ge 0.$$

3. Let $r \in (0,1)$ and denote $C_r = (1+r)/(1-r)$. Prove that for any real numbers x_0, \ldots, x_n which are not all equal to zero

$$C_r^{-1} \sum_{k=0}^n x_k^2 < \sum_{0 \le k, l \le n} x_k x_l r^{|k-l|} < C_r \sum_{k=0}^n x_k^2.$$

Solution. Notice that for an integer k,

$$r^{|k|} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikx} \left(1 + \sum_{n=1}^{\infty} r^n \left(e^{int} + e^{-int} \right) \right) \mathrm{d}t.$$

Introduce the function

$$f(t) = 1 + \sum_{n=1}^{\infty} r^n \left(e^{int} + e^{-int} \right) = \frac{1 - r^2}{1 - 2r\cos t + r^2}.$$

We get

$$\sum_{0 \le k,l \le n} x_k x_l r^{|k-l|} = \sum_{0 \le k,l \le n} x_k x_l \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-l)t} f(t) dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \left| \sum_{k=0}^{n} x_k e^{ikt} \right|^2 dt.$$

Clearly,

$$\sum_{k=0}^{n} x_k^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sum_{k=0}^{n} x_k e^{ikt} \right|^2 \mathrm{d}t.$$

Therefore checking that $\inf_{[-\pi,\pi]} f = f(\pi) = C_r^{-1}$ and $\sup_{[-\pi,\pi]} f = f(0) = C_r$ finishes the proof of the inequality. \Box