Problem solving seminar
Homework I - Solutions

1. Let n > 2 and let 1, ..., z, be vectors in R%. Prove that there exists a subset I C {1,...

that
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where - denotes the standard scalar product. We adopt the convention that ), x; = 0.

Solution. Suppose that there is no such subset, i.e. for every I C {1,...,n},
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Adding up all these inequalities we get
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For i #j, > ; Yiierjory = 272 so we get a contradiction. OJ
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2. Given positive numbers ti,...,t, let a;; = min{t;,¢;}, i, = 1,...,n. Prove that for every real

numbers x1,...,x, we have
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Solution. Notice that a;; = Omm{t“t Mtz = I 1o, (%) Lo, (x)dz. As a result,
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3. Let r € (0,1) and denote C, = (1+r)/(1 — r). Prove that for any real numbers xy, . ..

are not all equal to zero
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Solution. Notice that for an 1nteger k,
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Introduce the function
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We get
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Clearly,

Therefore checking that infi_  f = f(7) = C;' and SUp[_r - f = f(0) = C; finishes the proof of
the inequality. [J



