Problem solving seminar Homework I

Instructions

- 1. Work independently.
- 2. There is no time limit, so do not rush.
- 3. Do not use any books, notes, nor calculators.
- 4. Bring your solutions to the class on 22nd January.

Good luck! Tomasz Tkocz

Problems

1. Let $n \ge 2$ and let x_1, \ldots, x_n be vectors in \mathbb{R}^d . Prove that there exists a subset $I \subset \{1, \ldots, n\}$ such that

$$4\left(\sum_{i\in I} x_i\right) \cdot \left(\sum_{i\notin I} x_i\right) \ge \sum_{i\neq j} x_i \cdot x_j,$$

where \cdot denotes the standard scalar product. We adopt the convention that $\sum_{i \in \emptyset} x_i = 0$.

2. Given positive numbers t_1, \ldots, t_n let $a_{ij} = \min\{t_i, t_j\}, i, j = 1, \ldots, n$. Prove that for every real numbers x_1, \ldots, x_n we have

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j \ge 0.$$

3. Let $r \in (0,1)$ and denote $C_r = (1+r)/(1-r)$. Prove that for any real numbers x_0, \ldots, x_n which are not all equal to zero

$$C_r^{-1} \sum_{k=0}^n x_k^2 < \sum_{0 \le k, l \le n} x_k x_l r^{|k-l|} < C_r \sum_{k=0}^n x_k^2.$$