Functional Analysis I, Support Classes, Term 12013/2014

Tomasz Tkocz

Week 3

Class	1, 2, 4
-------	---------

Week 4

Class	5, 7, 10, 11, 13(a)
	3, 6, 8, 9, 12, 13(b),(c)

Extra Question. Let $n \ge 1$ and $0 . Prove that for every vector x in <math>\mathbb{R}^n$ we have

$$1 \cdot \|x\|_q \le \|x\|_p \le n^{1/p - 1/q} \|x\|_q.$$

Moreover, show that the constants 1 and $n^{1/p-1/q}$ are the best possible.

Week 5

Class	14, 18, 19, 22, 23
	15, 16, 17, 20, 21

Extra Question. Let $(V, \|\cdot\|)$ be a real Banach space such that the norm $\|\cdot\|$ satisfies the parallelogram identity, i.e. for every $x, y \in V$

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Prove that there exists an inner product $\langle \cdot, \cdot \rangle$ on V for which the associated norm $\langle \cdot, \cdot \rangle^{1/2}$ is $\|\cdot\|$.

Remark. Together with Lemma 5.12 from the lecture, this proves the famous characterization of Hilbert spaces due to Jordan and von Neumann,

A Banach space is isometrically isomorphic to a Hilbert space if and only if its norm satisfies the parallelogram identity.

Week 6

Class	24(i),(iii), 26, 27
	24(ii), 25, 28

Extra Question. Let $p \in (1, 2]$ and $f, g \in L_p([0, 1])$. Prove that

$$\left\|\frac{f+g}{2}\right\|_{p}^{q} + \left\|\frac{f-g}{2}\right\|_{p}^{q} \le \left(\frac{\|f\|_{p}^{p} + \|g\|_{p}^{p}}{2}\right)^{q-1},$$

where 1/p + 1/q = 1.

Remark. This is one of the celebrated Clarkson inequalities which show that L_p spaces are *uniformly* convex.

Extra Question. Let $n \ge 1$ and $\Sigma_n = \{-1, 1\}^n$. Consider the linear space V (over \mathbb{R}) of \mathbb{R} -valued functions defined on Σ_n .

- (i) Find $\dim V$.
- (ii) Show that V equipped with the inner product $\langle \cdot, \cdot \rangle$ defined for every $f, g \in V$ as

$$\langle f,g\rangle = \frac{1}{2^n}\sum_{x\in\Sigma_n} f(x)g(x)$$

is a Hilbert space.

(iii) Show that $\{w_S, S \subset \{1, 2, ..., n\}\}$ is an orthonormal basis of $(V, \langle \cdot, \cdot \rangle)$,

$$w_{\emptyset}(x) = 1,$$

 $w_S(x) = \prod_{i \in S} x_i, \qquad x = (x_1, \dots, x_n) \in \Sigma_n.$

Remark. The set Σ_n is called the *n*-dimensional hypercube, or the discrete cube. The basis $\{w_S\}_S$ is called the Walsh-Fourier system. It plays a crucial role in the discrete Fourier analysis.

Week 7

Class	$29(i),(iv), 31(b), 33, 36, \frac{1}{2} \cdot 38$
台	29(ii),(iii), 30, 31(a), 32, 34, 36, 37

Extra Question. Prove that there exists a constant C such that for every polynomial p of degree less than or equal to 2013 we have $|p(17)| \leq C \sup_{x \in [0,1]} |p(x)|$.

Hints. What is the dimension of the space of polynomials of degree less than or equal to 2013? What can be said about continuity of functionals acting on a finite dimensional space?

Week 8

Class	$\frac{1}{2} \cdot 38, 39, \frac{1}{2} \cdot 42$
$\widehat{\Box}$	-

Extra Question. Fix $p \in (1,\infty)$ and consider the operator $T: L_p([0,\infty)) \longrightarrow L_p([0,\infty))$ (L_p is considered over \mathbb{R} here) defined for a real-valued function $f \in L_p([0,\infty))$ by

$$(Tf)(x) = \begin{cases} 0 & x = 0, \\ \frac{1}{x} \int_0^x f(t) dt & x > 0. \end{cases}$$

Prove that

$$||T|| \ge \frac{p}{p-1}.$$

Week 9

Class	42(b), 40, 44, (41, 48, 50)
	42(c), 43, 45, 46, 49

Extra Question. Prove that $\{x = (x_k)_{k=1}^{\infty}, \sum_{k=1}^{\infty} |x_k| \leq 1\}$ is a closed, convex subset of ℓ_2 with empty interior. Is it compact?

Week 10

Class	47, 51, 55
	52, 53, 54

Extra Question. Let $(\phi_n)_{n=1}^{\infty}$, $(\psi_n)_{n=1}^{\infty}$ be orthonormal bases of a Hilbert space H. Let $T: H \longrightarrow H$ be a bounded linear operator.

- 1. Rewriting $\sum_n |\langle T\phi_n, \psi_n \rangle|^2$ show that $\sum_n ||T\phi_n||^2 = \sum_n ||T^*\psi_n||^2$.
- 2. Conclude that the quantity $\sqrt{\sum_n \|T\psi_n\|^2} \in [0,\infty]$ is well-defined, i.e. it does not depend on the choice of the basis. It is denoted by $\|T\|_{HS}$ and called the Hilbert-Schmidt norm of T. Show that $\|T\|_{HS} = \|T^*\|_{HS}$.
- 3. Prove that $||T|| \le ||T||_{HS}$.
- 4. Suppose that $H = \mathbb{C}^n$ and let T be given by a matrix $T = [t_{ij}]_{i,j=1}^n$. Find $||T||_{HS}$ in terms of t_{ij} 's.

Rules

- 1. There will be one extra question each week.
- 2. You can submit your solution to any extra question at any time during the term (no deadlines ;)).
- 3. Please submit your work by email or into my pigeon hole which is located on the first floor (opposite B1.38).
- 4. The author of the first correct solution of each question will receive a small prize (e.g. a chocolate bar, subject to my limited resources).
- 5. The ranking with overall scores will created and updated. At the end of the term the winner will receive a grand prize.