14/01/2013

ANALYSIS II, TERM 2 2012/2013 Tomasz Trocz

SUPPORT CLASS 1

A FEW BABY INEQUALITIES

Question 1. Prove that for real numbers x_1, \ldots, x_n we have

$$|x_1 + \ldots + x_n| \le |x_1| + \ldots + |x_n|.$$

Question 2. Given a natural number $n \ge 1$ find minimum value of $\sum_{i=1}^{n} \sqrt{a_i^2 + (2i-1)^2}$ subject to positive numbers a_i satisfying $\sum_{i=1}^{n} a_i = n^2$.

Question 3. Prove that for $x \ge 1$ and h > 0 we have

$$\sqrt{x+h} - \sqrt{x} \le h/2.$$

Does this hold for all x > 0?

Question 4. Prove that for positive numbers x_1, \ldots, x_n the arithmetic mean is greater or equal that the geometric mean,

$$\sqrt[n]{x_1 \cdot \ldots \cdot x_n} \le \frac{x_1 + \ldots + x_n}{n}.$$

Question 5. Prove that for numbers $x_1, \ldots, x_n > -1$ that have the same sign we have

 $(1+x_1) \cdot \ldots \cdot (1+x_n) \ge 1+x_1 \ldots + x_n.$

Question 6 (Bernoulli's inequality). Prove that for a real number x > -1 and a natural number $n \ge 1$ we have

$$(1+x)^n \ge 1+nx.$$

Question 7 (The Cauchy-Schwarz inequality). Prove that for real numbers $x_1, \ldots, x_n, y_1, \ldots, y_n$ we have

$$\sum_{i=1}^n x_i y_i \le \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}.$$

Question 8 (Hölder's inequality). Prove that for real numbers $x_1, \ldots, x_n, y_1, \ldots, y_n$ and $p, q \ge 1$ which satisfy 1/p + 1/q = 1 we have

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}.$$

Question 9. Prove that for $x \in (0, \pi/2)$ we have

$$\sin x < x < \tan x.$$

Question 10. Prove that for $x \in \mathbb{R}$ we have

$$1 + x \le e^x.$$

Question 11. Prove that for x > 0 we have

$$\frac{x}{x+1} \le \ln(1+x) \le x.$$

A FEW ESTIMATES INVOLVING FACTORIALS

Question 12. Prove that

$$\left(\frac{n}{e}\right)^n \le n! \le 3\frac{n^{n+1}}{e^n}.$$

Conclude that $\sqrt[n]{n!}/n \longrightarrow 1/e$.

Question 13. Prove that

$$n^{n/2} \le n! \le \left(\frac{n+1}{2}\right)^n.$$

Question 14. Prove that

$$\binom{n}{k} \le \left(\frac{ne}{k}\right)^k.$$

Question 15. Prove that

$$\frac{4^n}{2\sqrt{n}} \le \binom{2n}{n} \le 4^n.$$

Question 16. Give a natural number $n \ge 1$ prove that the sequence $a_k = \binom{n}{k}$ is log-concave, i.e. $a_k^2 \ge a_{k-1}a_{k+1}$ for k = 2, ..., n-1.

Question 17 (†). Prove that for a natural number $n \ge 1$ we have

$$\frac{e}{2n+2} < e - \left(1 + \frac{1}{n}\right)^n < \frac{e}{2n+1}.$$

Conclude that

$$\left(\frac{(1+1/n)^n}{e}\right)^n \xrightarrow[n \to \infty]{} 1/\sqrt{e}.$$

21/01/2013

Analysis II, Term 2 2012/2013

Tomasz Tkocz

Support class 2

Question 1 (\heartsuit). Let $f(x) = \sum_{k=-2013}^{2013} |x-k|$. Given $c \in \mathbb{R}$ and $\epsilon > 0$ find $\delta > 0$ such that

 $\forall x \in \mathbb{R} \quad |x - c| < \delta \implies |f(x) - f(c)| < \epsilon.$

Hint: You may want to prove that for all $x, y \in \mathbb{R}$

$$|f(x) - f(y)| \le 4027|x - y|$$

Question 2 (\heartsuit). Find all $a \in \mathbb{R}$ such that the function $f_a \colon \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$f_a(x) = \begin{cases} \min\{1/|x|, a\}, & x \neq 0\\ a^2 - 1, & x = 0 \end{cases}.$$

is continuous.

Question 3 (\heartsuit). Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous functions. Prove that the functions $M(x) = \max\{f(x), g(x)\}, m(x) = \min\{f(x), g(x)\}$ are also continuous.

Question 4 (\heartsuit). Suppose that for some $c \in \mathbb{R}$ a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the following property

$$\forall (x_n)_{n=1}^{\infty} \quad x_n \to c \implies f(x_n) \to f(c).$$

Prove that f is continuous at c.

Remark. Cf. Exercise 6 from Assignment 1.

Question 5 (\blacklozenge). Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be bounded below, say $f(x), g(x) \ge 0$ for all $x \in \mathbb{R}$. Suppose that $|g(x) - g(y)| \le |x - y|$ for all $x, y \in \mathbb{R}$. Prove that the function $f \Box g$ defined by

$$(f\Box g)(x) = \inf_{t\in\mathbb{R}} \{f(x) + g(x-t)\}.$$

is continuous.

28/01/2013

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

Support class 3

Question 1 (\heartsuit). Let $f: [0, +\infty) \longrightarrow [0, +\infty)$ satisfy for all $x, y \ge 0$

 $|f(x) - f(y)| \le q|x - y|,$

with some constant $q \in (0,1)$. Fix $x_0 \ge 0$ and define recursively the sequence $(x_n)_{n\ge 0}$ by $x_{n+1} = f(x_n), n \ge 0$. Prove that it converges. What can be said about the limit?

Question 2 (\heartsuit). Let $f(x) = \sqrt{1+x}$ for $x \ge 0$. Prove that for any $x_0 \ge 0$ the sequence $(x_n)_{n\ge 0}$ defined recursively by $x_{n+1} = f(x_n)$ for $n \ge 0$ converges and compute the limit.

Question 3 (\heartsuit). Define the function

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ |\sin x| & \text{if } x \notin \mathbb{Q}. \end{cases}$$

At which points is f continuous?

Definition. We say that a function $f: (A, B) \longrightarrow \mathbb{R}$ possesses the Intermediate Value Property if for any a < b in the domain such that $f(a) \neq f(b)$, and any z between f(a) and f(b) there is some $c \in (a, b)$ between a and b with f(c) = z.

Question 4 (\blacklozenge). Give an example of a function which is *not* continuous, and yet has got the Intermediate Value Property.

Question 5 (\heartsuit). Prove that the equation $(1 - x) \cos x = \sin x$ has a solution in the interval (0, 1).

Question 6 (\heartsuit). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a T - periodic continuous function, i.e. f(x+T) = f(x) for all $x \in \mathbb{R}$, where T > 0 is the period. Prove that there exists x_0 such that

$$f(x_0 + T/2) = f(x_0).$$

Question 7 (\heartsuit/\clubsuit). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be additive, i.e. satisfy for all $x, y \in \mathbb{R}$ Cauchy's functional equation

$$f(x+y) = f(x) + f(y).$$

Prove that

- (a) f(0) = 0
- (b) f(-x) = f(x)
- (c) For any $x_1, \ldots, x_n \in \mathbb{R}$ we have $f(x_1 + \ldots + x_n) = f(x_1) + \ldots + f(x_n)$
- (d) For an integer k and a real number x we have f(kx) = kf(x)

- (e) For a rational number q we have f(q)=qf(1)
- (f) In addition, if f satisfies one of these assumptions:
 - (i) f is continuous
 - (ii) f is continuous at one point
 - (iii) f is monotone
 - (iv) f is bounded above/below

then f(x) = xf(1) for all $x \in \mathbb{R}$.

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

Support class 4

Question 1 (\heartsuit/\clubsuit). Compute the following limit (if it exists)

- (a) $\lim_{x\to 0} x \cos \frac{1}{x}$
- (b) $\lim_{x \to +\infty} x \left(\sqrt{x^2 + 1} \sqrt[3]{x^3 + 1} \right)$
- (c) $\lim_{x\to 0} \frac{\cos(\frac{\pi}{2}\cos x)}{\sin(\sin x)}$.

Question 2 (\heartsuit). Prove that for any $x \in \mathbb{R}$ we have $x - 1 < \lfloor x \rfloor \leq x$.

Question 3 (\heartsuit). Compute the following limit (if it exists)

- (a) $\lim_{x\to 0} x \lfloor \frac{1}{x} \rfloor$
- (b) $\lim_{x\to 0} \frac{\lfloor x \rfloor}{x}$.
- (c) $\lim_{x\to 0} x^2 \left(1 + 2 + \ldots + \left\lfloor \frac{1}{|x|} \right\rfloor \right)$.

Question 4 (\blacklozenge). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function such that $\lim_{x\to\infty} \frac{f(2x)}{f(x)} = 1$. Prove that $\lim_{x\to\infty} \frac{f(cx)}{f(x)} = 1$ for every c > 0.

Question 5 (\bigstar). Let $f: [0, \infty) \longrightarrow \mathbb{R}$ possess the property: for every $a \ge 0$ the limit $\lim_{n\to\infty} f(a+n)$ exists and equals 0. Does it imply that the limit $\lim_{x\to\infty} f(x)$ exists?

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

Support class 5

Question 1 (\heartsuit). Prove that

- (a) $\lim_{x\to\infty} \frac{e^x}{x^n} = \infty, n \ge 0$
- (b) $\lim_{x \to \infty} x^n e^{-x} = 0, \ n \ge 0$
- (c) $\lim_{x\to 0+} x^p \ln x = 0, p \in (0,1)$
- (d) $\lim_{x \to \infty} \frac{\ln^n x}{x} = 0, \ n \ge 0.$

Question 2 (\blacklozenge). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be given by the formula

$$f(x) = \begin{cases} e^{-1/x^2}, & x > 0\\ 0, & x \le 0 \end{cases}.$$

Is f differentiable? What can you say about the second derivative? About the higer order derivatives?

Question 3 (\heartsuit). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function with $\sup_{x \in \mathbb{R}} |f'(x)| = L < \infty$. Prove that f is *L*-Lipschitz, i.e.

$$|f(x) - f(y)| \le L|x - y|,$$
 for all reals x, y .

Question 4 (\bigstar). Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying for all reals $x \neq y$

$$\frac{f(y) - f(x)}{y - x} = f'\left(\frac{x + y}{2}\right).$$

What is the geometric interpretation of this equation?

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

SUPPORT CLASS 6

Question 1 (\blacklozenge). Let $f: (a, b) \longrightarrow \mathbb{R}$ be differentiable. Prove that f' possesses the intermediate value property.

Question 2 (\blacklozenge). Does there exist a differentiable function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$f'(x) = \begin{cases} -1, & x < 0\\ 0, & x = 0?\\ 1, & x > 0 \end{cases}$$

Question 3 (\heartsuit). Suppose that f(0) = 0 and that f'(0) exists. Given a positive integer k compute

$$\lim_{x \to 0} \frac{1}{x} \left(f(x) + f\left(\frac{x}{2}\right) + \ldots + f\left(\frac{x}{k}\right) \right).$$

Question 4 (\blacklozenge). Let $f(x) = a_1 \sin x + a_2 \sin(2x) + \ldots + a_n \sin(nx)$, where a_1, a_2, \ldots, a_n are reals. Prove that if $|f(x)| \leq |\sin x|$ for every $x \in \mathbb{R}$ then $|a_1 + 2a_2 + \ldots + na_n| \leq 1$.

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

SUPPORT CLASS 7

Question 1 (\heartsuit). Prove that if |x| < 1/2 then the approximate formula

$$\sqrt{1+x} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2$$

gives the value of $\sqrt{1+x}$ with the error at most $\frac{1}{2}|x|^3$.

Observe that $\sqrt{1+1/8} = \frac{3\sqrt{2}}{4}$ and find an approximate value of $\sqrt{2}$. What is the error?

Question 2 (Bernoulli's inequality in full glory \heartsuit). Let $x > -1, x \neq 0$. Prove that

- (a) $(1+x)^{\alpha} > 1 + \alpha x$, if $\alpha > 1$ or $\alpha < 0$
- (b) $(1+x)^{\alpha} < 1 + \alpha x$, if $0 < \alpha < 1$.

Question 3 (\heartsuit). Prove that if f''(x) exists then

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$

Question 4 (\blacklozenge). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be twice differentiable and

$$M_k = \sup\{|f^{(k)}(x)|; x \in \mathbb{R}\} < \infty, \qquad k = 0, 1, 2$$

Prove that

$$M_1 \le \sqrt{2M_0M_2}.$$

Question 5 (\heartsuit). Find

$$\lim_{x \to 0} \frac{e^{x^2/2} - 1}{\cosh x - 1}$$

Question 6 (\spadesuit) . Prove that

- (a) $\cosh x \le e^{x^2/2}$ for $x \in \mathbb{R}$
- (b) $\cos x \le e^{-x^2/2}$ for $x \in [0, \pi/2]$.

04/03/2013

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

SUPPORT CLASS 8

Question 1 (\heartsuit/\clubsuit). Evaluate

- (a) $\lim_{x\to 0} \frac{\ln(1+ex)}{x}$.
- (b) $\lim_{x \to 1} \frac{\arctan\left(\frac{x^2-1}{x^2+1}\right)}{x-1}$.
- (c) $\lim_{x\to\infty} x\left(\left(1+\frac{1}{x}\right)^x-e\right).$
- (d) $\lim_{x\to 0+} \left(\frac{\sin x}{x}\right)^{1/x}$.
- (e) $\lim_{x\to 0+} \left(\frac{\sin x}{x}\right)^{1/x^2}$.

Question 2 (\heartsuit) . Determine the interval of convergence for the series

- (a) $\sum_{n=1}^{\infty} 2^{n^2} x^{n!}$.
- (b) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{(-1)^n n^2} x^n.$

Question 3 (\heartsuit). Recall the definition of $\underline{\lim}_{n\to\infty} a_n$ and $\overline{\lim}_{n\to\infty} a_n$. Prove that

- (a) if $a_n \leq b_n$ eventually, then $\overline{\lim} a_n \leq \overline{\lim} b_n$.
- (b) $\overline{\lim}(a_n + b_n) \le \overline{\lim} a_n + \overline{\lim} b_n$.
- (c) $\overline{\lim} |a_n b_n| \leq \overline{\lim} |a_n| \cdot \overline{\lim} |b_n|$. Show that the inequality can be strict.
- (d) $\underline{\lim} \min\{a_n, b_n\} = \min\{\underline{\lim} a_n, \underline{\lim} b_n\}.$

Question 4 (\blacklozenge). Suppose that $f: (-1,1) \longrightarrow \mathbb{R}$ is a function of class C^2 such that f(0) = 0. Compute

$$\lim_{x \to 0+} \sum_{k=1}^{\lfloor 1/\sqrt{x} \rfloor} f(kx).$$

11/03/2013

ANALYSIS II, TERM 2 2012/2013 Tomasz Tkocz

Support class 9

Question 1 (\heartsuit). Evaluate

- (a) $\lim_{x\to 5} (6-x)^{1/(x-5)}$.
- (b) $\lim_{x\to\infty} \frac{x-\sin x}{2x+\sin x}$.

Question 2 (\heartsuit/\clubsuit) . Prove that for $x \in (0, \pi/2)$ and a positive integer n we have

(a)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + \frac{x^{4n-3}}{(4n-3)!} - \frac{x^{4n-1}}{(4n-1)!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + \frac{x^{4n-3}}{(4n-3)!} - \frac{x^{4n-1}}{(4n-1)!} + \frac{x^{4n+1}}{(4n+1)!}$$

(b) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + \frac{x^{4n-4}}{(4n-4)!} - \frac{x^{4n-2}}{(4n-2)!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + \frac{x^{4n-4}}{(4n-4)!} - \frac{x^{4n-2}}{(4n-2)!} + \frac{x^{4n}}{(4n)!}$

Do these inequalities hold for $x \ge \pi/2$ as well?

Question 3 (\heartsuit). Prove that $e^x \ge 1 + x$ for $x \in \mathbb{R}$ and then derive the inequality between means

$$\frac{x_1 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 \cdot \ldots \cdot x_n}.$$

Question 4 (\heartsuit). Prove the inequality

- (a) $1 1/x \le \ln x \le x/e$ for x > 0.
- (b) $2 \tan x > \sinh x$ for $x \in (0, \pi/2)$.

Remark. Combining the inequalities $\cosh x \leq e^{x^2/2}$ and $\cos x \leq e^{-x^2/2}$ (see Support class 7, Question 6), one can actually show $c \tan x > \sinh x$ with c = 1 which is sharp.