
How fast does the Gaussian measure of a convex
and symmetric set grow?

Tomasz Tkocz

College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences
and

Institute of Mathematics
University of Warsaw
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Main question

A
tA

Dilation of a Borel set A ⊂ Rn is

A tA, t > 0.

What happens with its measure?

I Lebesgue measure — it is trivial

|tA| = tn|A|.

I Gaussian measure?

γn(tA) =?

Reminder
The standard Gaussian measure γn it is a measure with the density

1√
2π

n e−|x |
2/2.
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Examples on the plane (n = 2)

1) A = (−1, 1)× R. Then

fA(t) = γ2(tA) = γ2((−t, t)× R) =
1√
2π

∫ t

−t
e−x

2/2dx .

2) B = {x ∈ R2 | |x | ≤ 1}. Then

fB(t) = γ2(tB) =
1

2π

∫ 2π

0

∫ t

0
e−r

2/2rdrdϕ = 1− e−t
2/2.

A B



Examples on the plane (n = 2)

Figure: Graphs of fA and fB



Main target

Problem
Give the optimal bounds from above and from below on the
function

t
fA7−→ γn(tA), t ≥ 1.
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Remark
We have to assume something on the set A as there are
inconvenient examples

A

Figure: The function fA is decreasing for t ≥ 1



Main target

Problem
Give the optimal bounds from above and from below on the
function

t
fA7−→ γn(tA), t ≥ 1.

Assumption

We restrict ourself to the sets which are

I convex,

I symmetric (A = −A).

That is, A is a ball with respect to some
norm on Rn.



Bounds

Bound from above = Homework
Let A ⊂ Rn be convex and symmetric and B = {|x | ≤ R} be an
euclidean ball such that γn(A) = γn(B). Then

γn(tA) ≤ γn(tB), t ≥ 1.

Bound from below = the deep result of Lata la and
Oleszkiewicz
Let A ⊂ Rn be convex and symmetric and P = {|x1| ≤ p} be a
strip such that γn(A) = γn(P). Then

γn(tA) ≥ γn(tP), t ≥ 1.
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Bounds in the picture
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Further Questions

Real caseComplex case



Complex case

Cn ≈ R2n =⇒ there is the Gaussian measure νn on Cn

Question
What can one say about the function

t
fA7−→ νn(tA), t ≥ 1

for the set A ⊂ Cn which is

I convex,

I rotationally symmetric, i.e.

A = λA, for any λ ∈ C such that |λ| = 1



Partial Results in Complex Case

Upper bound

Again balls are optimal — their measure grows the fastest.

Lower bound — conjecture

P

Cylinders (complex counterpart of strips) are
optimal. A cylinder with the radius p is the set of the form

P = {z ∈ Cn | |z1| ≤ p}.

Theorem (TT)

Let A ⊂ Cn be a convex and rotationally symmetric set and P be a
cylinder such that νn(A) = νn(P). Then

νn(tA) ≥ νn(tP), t ∈ [1, t0],

where t0 = t0(A) is such that νn(t0A) = c for some absolute
constant c ≈ 0.64.
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Wandering towards Proof

Theorem (Lata la & Oleszkiewicz)

Let A ⊂ Rn be convex and symmetric and P = {|x1| ≤ p} be a
strip such that γn(A) = γn(P). Then

γn(tA) ≥ γn(tP), t ≥ 1.
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Sketch of the Proof

Step I

Let us remind the notation fA(t) = γn(tA). An easy observation is
that

fA(t) ≥ fP(t) ⇐⇒ f ′A(1) ≥ f ′P(1).

Step II

A

w

Define a radius of the set A as

w = sup{r > 0 | rB ⊂ A}.

Then

convexity =⇒ f ′A(1) ≥ wγ+n (A),

P is a strip =⇒ f ′P(1) = pγ+n (P).
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Sketch of the Proof

Step III

We apply the Ehrhard symmetrization so as to reduce the
dimension

A Ae = {(x , t) ∈ R2 | t ≤ t0(x)

chosen so that γn−1(Ax) = γ1((−∞, t0))}.

Ax denotes a cut of the set A at the level x , i.e. the set
{(x2, . . . , xn) | (x , x2, . . . , xn) ∈ A}.

A Ae

Ax

x

t0



Sketch of the Proof

Ae
The key properties of the Ehrhard symmetrization

I it does not increase the measure of the
boundary

γ+n (A) ≥ γ+n (Ae),

γ+n (P) = γ+2 (Pe),

I Ae lies under the graph of concave
function (Ehrhard inequality)

Hence we are to prove the isoperimetric-like
inequality in R2

wγ+2 (Ae) ≥ pγ+2 (Pe),

which reduces to (only?) hard calculations.
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