How fast does the Gaussian measure of a convex and symmetric set grow?

Tomasz Tkocz

College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences and Institute of Mathematics University of Warsaw

Toruńska Letnia Szkoła Matematyki 2010

Outline

Introduction

Known results & Problems

Ideas for Proofs

Summary

Main question

Dilation of a Borel set $A \subset \mathbb{R}^n$ is

 $A \rightsquigarrow tA, \quad t > 0.$

What happens with its measure?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Main question

Dilation of a Borel set $A \subset \mathbb{R}^n$ is

$$A \rightsquigarrow tA, \quad t > 0.$$

What happens with its measure?

$$|tA|=t^n|A|.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Main question

Dilation of a Borel set $A \subset \mathbb{R}^n$ is

$$A \rightsquigarrow tA, \quad t > 0.$$

What happens with its measure?

$$|tA|=t^n|A|.$$

Gaussian measure?

$$\gamma_n(tA) = ?$$

Reminder

The standard Gaussian measure γ_n it is a measure with the density $\frac{1}{\sqrt{2\pi}^n}e^{-|x|^2/2}$.

Examples on the plane (n = 2)1) $A = (-1, 1) \times \mathbb{R}$. Then $f_{\mathcal{A}}(t) = \gamma_2(t\mathcal{A}) = \gamma_2((-t,t) \times \mathbb{R}) = \frac{1}{\sqrt{2\pi}} \int_{-t}^t e^{-x^2/2} \mathrm{d}x.$ 2) $B = \{x \in \mathbb{R}^2 \mid |x| \le 1\}$. Then $f_B(t) = \gamma_2(tB) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^t e^{-r^2/2} r \mathrm{d}r \mathrm{d}\varphi = 1 - e^{-t^2/2}.$

Examples on the plane (n = 2)

Figure: Graphs of f_A and f_B

Main target

Problem

Give the optimal bounds from above and from below on the function

$$t \stackrel{f_A}{\longmapsto} \gamma_n(tA), \qquad t \geq 1.$$

Main target

Problem

Give the optimal bounds from above and from below on the function

$$t \stackrel{f_A}{\longmapsto} \gamma_n(tA), \qquad t \geq 1.$$

Remark

We have to assume something on the set A as there are inconvenient examples

Figure: The function f_A is decreasing for $t \ge 1$

Main target

Problem

Give the optimal bounds from above and from below on the function

$$t \stackrel{f_A}{\longmapsto} \gamma_n(tA), \qquad t \geq 1.$$

Assumption

We restrict ourself to the sets which are

- convex,
- symmetric (A = -A).

That is, A is a ball with respect to some norm on \mathbb{R}^n .

Bounds

Bound from above = Homework

Let $A \subset \mathbb{R}^n$ be convex and symmetric and $B = \{|x| \leq R\}$ be an euclidean ball such that $\gamma_n(A) = \gamma_n(B)$. Then

 $\gamma_n(tA) \leq \gamma_n(tB), \qquad t \geq 1.$

Bounds

Bound from above = Homework

Let $A \subset \mathbb{R}^n$ be convex and symmetric and $B = \{|x| \leq R\}$ be an euclidean ball such that $\gamma_n(A) = \gamma_n(B)$. Then

$$\gamma_n(tA) \leq \gamma_n(tB), \qquad t \geq 1.$$

Bound from below = the deep result of Latała and Oleszkiewicz

Let $A \subset \mathbb{R}^n$ be convex and symmetric and $P = \{|x_1| \le p\}$ be a strip such that $\gamma_n(A) = \gamma_n(P)$. Then

$$\gamma_n(tA) \geq \gamma_n(tP), \qquad t \geq 1.$$

Bounds in the picture

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Further Questions

Complex case

 $\mathbb{C}^n \approx \mathbb{R}^{2n} \implies$ there is the Gaussian measure ν_n on \mathbb{C}^n

Question

What can one say about the function

$$t \stackrel{f_A}{\longmapsto} \nu_n(tA), \qquad t \geq 1$$

for the set $A \subset \mathbb{C}^n$ which is

- convex,
- rotationally symmetric, i.e.

$$A = \lambda A$$
, for any $\lambda \in \mathbb{C}$ such that $|\lambda| = 1$

Partial Results in Complex Case

Upper bound

Again balls are optimal — their measure grows the fastest.

Partial Results in Complex Case

Upper bound

Again balls are optimal — their measure grows the fastest.

Lower bound — conjecture

Cylinders (complex counterpart of strips) are optimal. A cylinder with the radius p is the set of the form

$$P = \{z \in \mathbb{C}^n \mid |z_1| \le p\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Partial Results in Complex Case

Upper bound

Again balls are optimal — their measure grows the fastest.

Lower bound — conjecture

Cylinders (complex counterpart of strips) are optimal. A cylinder with the radius p is the set of the form

$$P = \{z \in \mathbb{C}^n \mid |z_1| \le p\}.$$

Theorem (TT)

Let $A \subset \mathbb{C}^n$ be a convex and rotationally symmetric set and P be a cylinder such that $\nu_n(A) = \nu_n(P)$. Then

$$u_n(tA) \geq \nu_n(tP), \qquad t \in [1, t_0],$$

where $t_0 = t_0(A)$ is such that $\nu_n(t_0A) = c$ for some absolute constant $c \approx 0.64$.

Wandering towards Proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Wandering towards Proof

Theorem (Latała & Oleszkiewicz)

Let $A \subset \mathbb{R}^n$ be convex and symmetric and $P = \{|x_1| \le p\}$ be a strip such that $\gamma_n(A) = \gamma_n(P)$. Then

$$\gamma_n(tA) \geq \gamma_n(tP), \qquad t \geq 1.$$

Step I

Let us remind the notation $f_A(t) = \gamma_n(tA)$. An easy observation is that

$$f_{\mathcal{A}}(t) \geq f_{\mathcal{P}}(t) \quad \Longleftrightarrow \quad f'_{\mathcal{A}}(1) \geq f'_{\mathcal{P}}(1).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Step I

Let us remind the notation $f_A(t) = \gamma_n(tA)$. An easy observation is that

$$f_{\mathcal{A}}(t) \geq f_{\mathcal{P}}(t) \quad \Longleftrightarrow \quad f'_{\mathcal{A}}(1) \geq f'_{\mathcal{P}}(1).$$

Step II

Define a radius of the set A as

$$w = \sup\{r > 0 \mid rB \subset A\}.$$

Then

convexity
$$\implies f'_A(1) \ge w\gamma_n^+(A),$$

P is a strip $\implies f'_P(1) = p\gamma_n^+(P).$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Step III

We apply the Ehrhard symmetrization so as to reduce the dimension

$$\begin{array}{l} A \rightsquigarrow A^e = \{(x,t) \in \mathbb{R}^2 \mid t \leq t_0(x) \\ & \text{ chosen so that } \gamma_{n-1}(A_x) = \gamma_1((-\infty,t_0))\}. \end{array}$$

 A_x denotes a cut of the set A at the level x, i.e. the set $\{(x_2, \ldots, x_n) \mid (x, x_2, \ldots, x_n) \in A\}.$

The key properties of the Ehrhard symmetrization

 it does not increase the measure of the boundary

$$\gamma_n^+(A) \ge \gamma_n^+(A^e),$$

 $\gamma_n^+(P) = \gamma_2^+(P^e),$

 A^e lies under the graph of concave function (Ehrhard inequality)

Hence we are to prove the isoperimetric-like inequality in $\ensuremath{\mathbb{R}}^2$

$$w\gamma_2^+(A^e) \ge p\gamma_2^+(P^e),$$

which reduces to (only?) hard calculations.

References

- R. Latała and K. Oleszkiewicz, Gaussian measures of dilatations of convex symmetric sets, The Annals of Probability, 27 (1999), 1922–1938
- T. Tkocz, Gaussian measures of dilations of convex rotationally symmetric sets in Cⁿ, arXiv:1007.2907v1 [math.PR] (2010)

Thanks!

Questions?