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Abstract

Tensor products of M random unitary matrices of size N from the circular unitary

ensemble are investigated. We show that the spectral statistics of the tensor product of

random matrices becomes Poissonian if M = 2, N become large or M become large and

N = 2.
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1 Introduction

In quantum mechanics a system is described with a Hamiltonian H which is a hermitian
operator acting on a Hilbert space. Usually, in practical applications, this space is taken to be
of finite, yet very large dimension, and the Hamiltonian H turns out to be highly complicated.
Typically, we would like to find the spectrum of H (e.g. in nuclear physics it describes energy
levels of the nucleus). Commonly, this is not analytically tractable. A breakthrough was
achieved by E. Wigner who proposed treating H as a Gaussian random matrix, which applies
very well in nuclear physics. The effectiveness of random matrices reaches far beyond nuclear
physics, as for instance they are useful in analyzing generic properties of entangled states
[10, 6].

Once we are given the Hamiltonian H , time evolution of the quantum system is determined
by the unitary operator eitH . Again, we may replace this a priori complicated operator by
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a random unitary matrix, CUE matrix in other words, and hope that generic properties
of the system remain unchanged. If a physical system consists of, say two non-interacting
subsystems with Hamiltonians H1 and H2, then the Hamiltonian of the whole system is the
tensor product H1 ⊗ H2. In particular the dynamics is governed by the unitary operator
eitH1 ⊗ eitH2 . Therefore, it is natural to ask about statistical properties of spectra of tensor
products of random unitary matrices.

More generally, consider a quantum system consisting of M non-interacting subsystems.
For simplicity we shall assume that each of them is described in N dimensional Hilbert space,
so that any local unitary dynamics can be written as U = U1 ⊗ . . . ⊗ UM , where Uj ’s are
N ×N unitary matrices. If the unitary dynamics of each subsystem is generic, the matrices
Uj can be represented by random matrices from the CUE.

The main aim of the present work is to analyze properties of the tensor product of random
unitary matrices. We show that when either N = 2 in the limit of a large number M
of subsystems, or when M = 2 in the limit of large subsystem size N , the point process
obtained from the spectrum of U , properly rescaled, becomes Poissonian, in the sense that its
correlation functions converge to that of a Poisson process.

This paper is organized as follows. In section 2 we provide some definitions and introduce
our main results, Theorem 1 and 2, and their corollaries; we also provide numerical simulations
that confirm the results. Section 3 provides the proof of Theorem 1 and of Corollary 1, while
Section 4 is devoted to the proof of Theorem 2 and of Corollary 2.

2 Spectral statistics for tensor products of random uni-

tary matrices

The spectral statistics for two ensembles of unitary matrices will be the focal points of our
investigation. The first case involves two unitary N × N matrices, whereas in the second
we consider the tensor product of M two-dimensional unitary matrices. As usual, we are
interested in spectral properties in the asymptotic limits of large matrices, i.e., respectively,
N → ∞ and M → ∞.

2.1 Background and basic definitions

We recall some standard definitions and properties of some ensembles of random unitary
matrices. The simplest situation is a diagonal unitary matrix with eigenvalues being indepen-
dently drawn points on the unit circle. Such matrices form the circular Poisson ensemble,
CPE for short. The name reflects the fact that for large matrices the number n of eigenvalues
inside an interval of the length L << 2π is approximately Poisson-distributed

p(L, n) ∼ e−λL(λL)n

n!

with parameter λ = N/2π.
Our main interest will be in unitary matrices of size N ×N drawn according to the Haar

measure on the unitary group U(N); such a matrix is called a matrix from the CUEN, where
CUE stands for circular unitary ensemble.

2



Let AN be a CUEN matrix. Denote by (eiθ
N
j )Nj=1 its eigenvalues, where we assume that

the eigenphases θNj belong to the interval [0, 2π). The random vector (θN1 , . . . , θ
N
N ) possesses

a density PCUEN
with respect to the Lebesgue measure, which was given by Dyson in his

seminal paper [3],

PCUEN
(θN1 , . . . , θ

N
N ) = CN

∏

1≤k<l≤N

|eiθN
k − eiθ

N
l |2. (2.1)

This expression can be rewritten in the following form (see Paragraph 11.1 in [8])

PCUEN
(θN1 , . . . , θ

N
N ) = CN (2π)N det

[
SN(θNk − θNl )

]N
k,l=1

,

where

SN (x) =
1

2π

sin Nx
2

sin x
2

. (2.2)

In particular

SN (0) =
N

2π
.

The set of eigenphases of a random unitary matrix can be seen as an example of a point

process χN on the interval [0, 2π) related to these eigenphases, by which we mean a random
collection of points {θN1 , . . . , θNN } or, in other words, an integer-valued random measure

χN(D) =

N∑

k=1

1{θN
k
∈D}, D ⊂ [0, 2π),

where 1X denotes the indicator function of X .
A possible way to describe a point process is to give its so-called joint intensities or, as

physicists usually say, correlation functions ρNk : (R+)
k −→ R+, k = 1, 2, . . .. In our case

they might be defined simply as (see [1, Remark 4.2.4])

ρNk (x1, . . . , xk) = lim
ε→0

1

(2ε)k
P
(
∃j1, . . . , jk |θNjs − xs| < ε, s = 1, . . . , k

)
, xi distinct.

(2.3)
It is known [8] that the process χN is determinantal with joint intensities

ρNk (x1, . . . , xk) = det [SN (xs − xt)]
k
s,t=1 . (2.4)

(Recall that a point process is called determinantal with kernel K if its joint intensities
can be written as ρk(x1, . . . , xk) = det[K(xi, xj)]

k
i,j=1.) For CUEN matrices, due to the

translation invariance of the measures we have that KN (xi, xj) = KN(xi−xj), hence a kernel
is given by a function KN(x) of a single variable. We refer to [1] for more background on such
determinantal processes.

By definition, the joint intensity ρNk equals N !/(N − k)! times the k dimensional marginal
distribution of the vector (θN1 , . . . , θ

N
N ). Thus

(N − k)!

N !

∫

[0,2π)k
det [SN (xs − xt)]

k
s,t=1 dx1 . . .dxk = 1. (2.5)
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If we rescale properly the eigenphases of a CUEN matrix it turns out that they exhibit
nice asymptotic behavior. Namely, it is clear that the point process { N

2π θ
N
1 , . . . ,

N
2π θ

N
N } is

determinantal with the kernel 2π
N SN

(
x

N/2π

)
. Thanks to the fact that this function converges

when N → ∞, we can give a precise analytic description of the limit of the probability
P
(
N
2π θ

N
1 /∈ A, . . . , N

2π θ
N
N /∈ A

)
, where A ⊂ R+ is a compact set (see Theorem 3.1.1 in [1]).

In the case of CPE matrices the situation is even simpler. The point process related to the
rescaled (by the factor N

2π ) eigenphases of a CPEN matrix behaves for large N as a Poisson
point process with the parameter λ = 1.

For point processes, related to the correlation functions is the notion of level spacing

distribution, denoted by P (s), which is defined for a point process {αϑ1, . . . , αϑN} of the
properly rescaled eigenphases (ϑj)

N
j=1 of a random N -dimensional unitary matrix by

P (s) := lim
ε→0

1

2ε

1

N

N∑

j=1

P (sj ∈ (s− ε, s+ ε)) , (2.6)

where
s1 = α (ϑ′1 + 2π − ϑ′N ) , sj = α(ϑ′j − ϑ′j−1), 1 < j ≤ N, (2.7)

and (ϑ′j)
N
j=1 is the non-decreasing rearrangement of the sequence (ϑj)

N
j=1. The scaling factor

α is chosen so that the mean distance Esj between two consecutive rescaled eigenphases is 1.
In the cases of a CUEN or CPEN matrix, one has α = N

2π . We should bear in mind that the
level spacing distribution of the Poisson point process with the parameter λ = 1 is exponential
with the density

P (s) = e−s. (2.8)

Moreover, it is easy to check that

PCPEN
(s) −−−−→

N→∞
e−s.

Of course, the limit for the CUEN is different.

2.2 Statement of results

We now present our main results for the two cases under consideration.

2.2.1 M = 2, N large

We begin by considering two independent CUE matrices A and B of size N . We are interested
in the asymptotic behavior of the eigenphases of the tensor product A ⊗ B. Our first main
result is the following.

Theorem 1. Let (θj)
N
j=1 and (φj)

N
j=1 be the eigenphases of two independent CUEN matrices

A and B. Define the point process σN of rescaled eigenphases of the matrix A⊗B as

σN (D) :=

N∑

k,l=1

1{
N2

2π (θk+φl mod 2π)∈D
}, for any compact set D ⊂ R+. (2.9)
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Let ρNk , k = 1, 2, . . . be the intensities of the process σN . Then

ρNk −−−−→
N→∞

1, (2.10)

uniformly on any compact subset of (R+)
k.

Thus, Theorem 1 relates the statistical properties of a properly rescaled phase-spectrum
of a large CUEN ⊗CUEN matrix to those of a Poisson point process. A (not immediate)
corollary of the convergence of intensities is the following.

Corollary 1. For the point process σN defined in (2.9),

P (σN has no rescaled eigenphase in the interval [0, s])

= P (σN ([0, s]) = 0) −−−−→
N→∞

e−s, s > 0.
(2.11)

In particular
PCUEN ⊗CUEN

(s) −−−−→
N→∞

e−s, (2.12)

where the level spacing distribution PCUEN ⊗CUEN
(s) is defined by (2.6)

0 1 2 3 4
0

0.5

1

P

s

Figure 2.1: The level spacing distributions P (s) for the tensor products of random unitary
matrices CUEN ⊗ CUEN for N = 2 (▽), N = 3 (�), N = 20 (◦). The symbols denote the
numerical results respectively obtained for 217, 216, 213 independent matrices, while the solid
line represents the exponential distribution (2.8).

Our numerical results support (2.10), i.e. the level spacing distribution of the tensor
product of two random unitary matrices of size N is described asymptotically by the Poisson
ensemble. The numerical data presented in Figure 2.1 reveals that PCUEN ⊗CUEN

(s) and
PCPEN

(s) are close already for N = 20.
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2.2.2 N = 2, M large

We next considerM independent CUE2 matrices A1, . . . , AM and study the asymptotic prop-
erties of the phase-spectrum of a matrix A1 ⊗ . . .⊗AM . Our main result is as follows.

Theorem 2. Let θ1j , θ
2
j , j = 1, . . . ,M be the eigenphases of independent CUE2 matrices

A1, . . . , AM . Define the point process τM of the rescaled eigenphases of a matrix A1⊗ . . .⊗AM

as

τM (D) :=
∑

ǫ=(ǫ1,...,ǫM)∈{1,2}M

1{
2M

2π (θǫ1
1 +...+θ

ǫM
M

mod 2π)∈D
}, for any compact set D ⊂ R+.

(2.13)
Then, for each k there exists a continuous function δk : R+ → R+ with δk(0) = 0 so that for
any mutually disjoint intervals I1, . . . , Ik ⊂ R+

lim sup
M→∞

P (τM (I1) > 0, . . . , τM (Ik) > 0)

|I1| · . . . · |Ik|
≤ (1 + δk(max

j
|Ij |)) ,

lim inf
M→∞

P (τM (I1) > 0, . . . , τM (Ik) > 0)

|I1| · . . . · |Ik|
≥ (1− δk(max

j
|Ij |)) .

Note that the statement of Theorem 2 is weaker than that of Theorem 1. This is due to the
fact that stronger correlations exist in the point process τM , which prevent us from discussing
the convergence of its intensities to those of a Poisson process. The mode of convergence is
however strong enough to deduce interesting information, including the weak convergence of
the processes. We exhibit this by considering the behavior of the level spacings whenM tends
to infinity.

Corollary 2. For the point process τM defined in (2.13) we have

P (τM has no eigenphase in the interval [0, s])

= P (τM ([0, s]) = 0) −−−−→
M→∞

e−s, s > 0.
(2.14)

In particular
PCUE⊗M

2
(s) −−−−→

M→∞
e−s, (2.15)

where the level spacing distribution PCUE⊗M
2

(s) is defined by (2.6).

The relevant numerical results which confirm (2.15) are shown in Figure 2.2. Again we
may observe that it is enough to take relatively smallM in order to get a good approximation
of the spectrum of a matrix CUE⊗M

2 by the Poisson ensemble.

2.3 Discussion

The convergence exhibited in Theorems 1 and 2, and in their corollaries, is arguably not
surprising: taking the tensor product introduces so many eigenphases (N2 in the case of
Theorem 1, 2M in the case of Theorem 2) that, after appropriate scaling, the local correlations
between adjacent eigenphases are not influenced by the long range correlation that is present
due to the tensorization. One should however be careful in carrying this heuristic too far:
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0 1 2 3 4
0

0.5

1

s

P

Figure 2.2: Level spacing distributions P (s) for the tensor products of random unitary matri-
ces CUE⊗M

2 forM = 2 (▽),M = 3 (�),M = 8 (◦). The symbols denote the numerical results
respectively obtained for 217, 216, 214 independent matrices, while the solid line represents the
exponential distribution (2.8).

well known superposition and interpolation relations, see [4] and the discussion in [1, Section
2.5.5], show that the point process obtained by the union of eigenvalues of, say, a GOEN and
GOEN+1 independent matrices, is closely related to that obtained from of a GUEN matrix,
and thus definitely not Poissonian. This phenomenon had been also discussed in the physics
literature [9]. Compared to that, the tensorization operation appears to strongly decorrelate
eigenphases on the local level.

It is natural to try to generalize Theorems 1 and 2 to other situations, where either N
or M are finite but not necessarily equal to 2, or both N and M go to infinity. While we
expect similar methods to apply and yield similar decorrelation results, there are several
technical issues to control, and we do not discuss such extensions here. We pose the following
conjecture.

Conjecture. Let θ1j , . . . , θ
N
j , j = 1, . . . ,M be the eigenphases of independent CUEN matrices

A1, . . . , AM . Define the point process τM,N of the rescaled eigenphases of a matrix A1 ⊗ . . .⊗
AM as

τM,N (D) :=
∑

ǫ=(ǫ1,...,ǫM )∈{1,...,N}M

1{
NM

2π (θǫ1
1 +...+θ

ǫM
M mod 2π)∈D

},

for any compact set D ⊂ R+.

(2.16)

Then, for each k there exists a continuous function δk : R+ → R+ with δk(0) = 0 so that for
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any mutually disjoint intervals I1, . . . , Ik ⊂ R+

lim sup
P (τM,N (I1) > 0, . . . , τM,N (Ik) > 0)

|I1| · . . . · |Ik|
≤ (1 + δk(max

j
|Ij |)) ,

lim inf
P (τM,N (I1) > 0, . . . , τM,N (Ik) > 0)

|I1| · . . . · |Ik|
≥ (1− δk(max

j
|Ij |))

with fixed N > 2 and M → ∞, or N → ∞ and fixed M > 2.

0 1 2 3 4 5 6
0

0.5

1

s

P
(s

)

 

 

Figure 2.3: The symbols (♦) show the level spacing distribution P (s) obtained numerically
for the tensor products of random unitary matrices CUE⊗M

N drawn 103 times when M = 4
and N = 8. The solid line represents the exponential distribution (2.8).

We offer some numerical evidence to support the expected consequence of the conjecture
concerning spacings, see Figure 2.3. Moreover, we believe the conjecture holds true in the
real case as well, i.e. if we replace CUE matrices with COE matrices.

3 Tensor product of two N ×N unitary matrices

We prove in this section Theorem 1 and Corollary 1, that correspond to the case M = 2 and
N large. We start with an elementary observation. Recall the kernel SN , see (2.2).
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Lemma 1. For any N ≥ 1

sup
x∈R

|SN(x)| = N

2π
. (3.1)

Proof. Clearly there are many ways to see the lemma. We choose an elementary argument.
First, we show inductively that

| sin(nu)| ≤ n| sinu|, for u ∈ R, n ≥ 1.

Hence

|SN (x)| = 1

2π

∣∣∣∣∣
sin
(
N x

2

)

sin x
2

∣∣∣∣∣ ≤
N

2π
.

Then, for x = 0 we have equality, which completes the proof.

Proof of Theorem 1. We begin with setting x̃1, . . . , x̃k ≥ 0 and recalling that by definition

ρNk (x̃1, . . . , x̃k) = lim
ε̃→0

1

(2ε̃)k
P

(
∃ (i) = (i1, . . . , ik) ∈ {1, . . . , N}k
(j) = (j1, . . . , jk) ∈ {1, . . . , N}k ∀s = 1, . . . , k

N2

2π
(θis + φjs mod 2π) ∈ (x̃s − ε̃, x̃s + ε̃)

)
.

Let us first of all get rid of the addition modulo 2π noticing that the event, probability of
which we want to compute, is the sum of 2k mutually exclusive events occurring when θis+φjs
is in the interval [0, 2π) or [2π, 4π). Thus we can write the sought after probability as

∑

(η)=(η1,...,ηk)∈{0,1}k

P

(
∃(i)
(j)

∀s θis + φjs ∈ (ηs · 2π + xs − ε, ηs · 2π + xs + ε)

)
, (3.2)

where we denote xs = 2π
N2 x̃s and ε = 2π

N2 ε̃. Let us now concentrate solely on the first term
corresponding to the index (η) = (η1, . . . , ηk) = (0, . . . , 0) (the other terms can be dealt with
in the same manner). In order to take advantage of the independence we write explicitly (3.2)
in terms of a convolution and thus observe that the considered quantity equals

lim
K→∞

K∑

ℓ1,...,ℓk=1,
2πℓs/K<xs

P

(
∃(i)
(j)

∀s θis ∈ (2πℓs/K − π/K, 2πℓs/K + π/K)
φjs ∈ (xs − 2πℓs/K − ε, xs − 2πℓs/K + ε)

)
,

where the constrains 2πℓs/K < xs are the result of the fact that θis +φjs ∈ (0 ·2π+xs− ε, 0 ·
2π+ xs + ε), for (η) = 0, so, in particular, that θis < xs + ε. Exploiting the independence we
obtain that the last expression equals

K∑

ℓ1,...,ℓk=1
2πℓs/K<xs

P (∃(i)∀s θis ∈ (2πℓs/K − π/K, 2πℓs/K + π/K))

· P (∃(j)∀s φjs ∈ (xs − 2πℓs/K − ε, xs − 2πℓs/K + ε)) .

(3.3)

9



Now observe that for a determinantal point process {αj}Nj=1 with a kernelK and fixed numbers
u1, . . . , uk we have

P
(
∃(i) ∈ {1, . . . , N}k ∀s = 1, . . . , k αis ∈ (us − δ, us + δ)

)

=
k∑

p=1

∑

π∈S(k,p)

λπ(u1, . . . , uk)
(
(2δ)p det

[
K(uπ(s,1), uπ(t,1))

]p
s,t=1

+ o(δp)
)
,

(3.4)

where S(k, p) is the collection of all partitions into p non-empty pairwise disjoint subsets of
the set {1, . . . , k}. By this we mean that if π is such a partition then

π = {{π(1, 1), . . . , π(1, ♯π(1))}, . . . , {π(p, 1), . . . , π(p, ♯π(p))}},

where ♯π(q) is cardinality of the q-th block of the partition π. Moreover, to compactify the
notation, we attach to a partition π the function λπ : R

k −→ {0, 1}, defined as

λπ(u1, . . . , uk) = 1{uπ(1,1)=...=uπ(1,♯π(1)),...,uπ(p,1)=...=uπ(p,♯π(p))}(u1, . . . , uk).

Applying this to formula (3.3) we obtain

K∑

ℓ1,...,ℓk=1
2πℓs/K<xs

k∑

p1,p2=1

∑

π1∈S(k,p1)
π2∈S(k,p2)

λπ1

(
(2πℓs/K)ks=1

)
λπ2

(
(xs − 2πℓs/K)ks=1

)

·
((

2π

K

)p1

det
[
SN (2πℓπ1(s,1)/K − 2πℓπ1(t,1)/K)

]p1

s,t=1
+ o(1/Kp1)

)

·
(
(2ε)p2 det

[
SN

(
xπ2(s,1) − 2πℓπ2(s,1)/K − xπ2(t,1) + 2πℓπ2(t,1)/K

)]p2

s,t=1
+ o(εp2)

)
.

Performing the limit K → ∞ we notice that only the terms corresponding to p2 = k do not
vanish, for, otherwise, λπ2 would give nontrivial relations for (ℓ) which altogether with λπ1

make the sum over (ℓ) of at most O(Kp1−1) terms. Recall that ε/ǫ̃ = 2π/N2. Thus, taking
the limit ε̃→ 0, the extra factor (2π/N2)k is produced, so we finally find that the considered
term contributes

k∑

p=1

1

Nk−p

∑

π∈S(k,p)

1

(2π)p

∫

[0,2π)k

ys<xs

λπ(y1, . . . , yk) det

[
2π

N
SN (yπ(s,1) − yπ(t,1))

]p

s,t=1

· det
[
2π

N
SN (xs − ys − xt + yt)

]k

s,t=1

dHp(y1, . . . , yk)

to ρNk (x1, . . . , xk), where Hp denotes the p-dimensional Hausdorff measure in R
k. As already

mentioned the other terms in (3.2) can be calculated in a similar way, only the limits of the
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integration have to be changed. Summing up, we get

ρNk (x1, . . . , xk) =
∑

(η)∈{0,1}k

k∑

p=1

1

Nk−p

∑

π∈S(k,p)

1

(2π)p

∫

A(η)

(
λπ(y1, . . . , yk)

· det
[
2π

N
SN (yπ(s,1) − yπ(t,1))

]p

s,t=1

· det
[
2π

N
SN (2πηs + xs − ys − 2πηt − xt + yt)

]k

s,t=1

)
dHp(y1, . . . , yk),

(3.5)

where the subset A(η) of [0, 2π)
k is the set of all (y1, . . . , yk) such that either ys < xs if ηs = 0,

or ys ≥ xs if ηs = 1 for s = 1, . . . , k.
To proceed we have to investigate the asymptotic behavior of the integrand in (3.5). We

will do it again only for (η) = (0, . . . , 0), observing that an adaptation to other terms is
straightforward. We start with the term p = k. Then the integrand is a product of two
determinants of matrices of size k, so applying to each of them the permutation definition
and extracting the term referring to the trivial permutations, we find it equals

(
2π

N
SN(0)

)2k

+
∑

σ 6=id or τ 6=id

sgnσ sgn τ

k∏

i=1

2π

N
SN (yi− yσ(i))

k∏

j=1

2π

N
SN (xj − yj −xτ(j)+ yτ(j)),

(3.6)
where the summation involves all permutations σ and τ of k indices. The first term
(2πSN (0)/N)2k = 1, after substituting in (3.5), gives simply

1

(2π)k

∑

(η)∈{0,1}k

∫

A(η)

(
2π

N
SN (0)

)2k

= 1.

We will show that the second term in (3.6) after being put into (3.5) vanishes in the limit.
We consider here only the case k = 2 to explain the main idea. The terms involving more
factors can be treated along the same lines. The sum over σ and τ reduces to

−
(
2π

N
SN (0)

)2
((

2π

N
SN (y1 − y2)

)2

+

(
2π

N
SN (x1 − y1 − x2 + y2)

)2
)

+

(
2π

N
SN (y1 − y2)

)2(
2π

N
SN (x1 − y1 − x2 + y2)

)2

.

(3.7)

Let us for instance deal with the last term in equation (3.7). Putting it into (3.5) we arrive
at

1

(2π)2

∑

(η)

∫

A(η)

(
2π

N
SN (y1 − y2)

)2 (
2π

N
SN (x1 − y1 − x2 + y2)

)2

.

Taking a quick look at the integrand we see that the above expression goes to 0 when N → ∞
by Lebesgue’s dominated convergence theorem, for 1

N SN (u)
N→∞−−−−→ 0, when u 6= 0, and the

appropriate bound (3.1) follows from Lemma 1.
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For the terms corresponding to k < p, we easily notice that thanks to the factor 1
Nk−p

they converge to 0. The proof is now complete.

Remark 1. By virtue of formula (3.5) the joint intensities ρNk can be estimated as

sup
Rk

|ρNk | ≤ 1

Nk
sup

u1,...,uk∈R

det

[
2π

N
SN (us − ut)

]k

s,t=1

·
k∑

p=1

♯S(k, p)

∫

[0,2π)p
det [SN (ys − yt)]

p
s,t=1 dy1 . . . dyp,

where ♯X denotes cardinality of a set X . Using Hadamard’s inequality (see, e.g. (3.4.6) in
[1]) for the first term, the observation (2.5) for the second one, and finally (3.1) we obtain

sup
Rk

|ρNk | ≤ 1

Nk

(
sup

∣∣∣∣
2π

N
SN

∣∣∣∣
)k

kk/2
k∑

p=1

♯S(k, p)
N !

(N − k)!
= kk/2

1

Nk

k∑

p=1

♯S(k, p)
N !

(N − k)!
.

Due to the well-known combinatorial fact that

k∑

p=1

♯S(k, p)x(x − 1) · . . . (x− p+ 1) = xk,

(♯S(k, p) is the Stirling number of the second kind, consult e.g. [5]) we may conclude with a
useful bound

sup
Rk

|ρNk | ≤ kk/2. (3.8)

Proof of Corollary 1. For the proof of (2.11) we have to calculate the probability of the event
that there is no rescaled eigenphase in a given interval. This is done in the following lemma.

Lemma 2. Let χ be a point process related to the eigenphases, possibly rescaled, of a CUEN

matrix AN with the joint intensities ρk, k = 1, 2, . . . (so ρℓ ≡ 0, for ℓ > N). Then for any
compact set D

P (χ(D) = 0) = 1 +
∞∑

ℓ=1

(−1)ℓ

ℓ!

∫

Dℓ

ρℓ. (3.9)

Proof. Clearly, we have

P (χ(D) = 0) = 1−
N∑

k=1

P (χ(D) = k) .

One way to compute the probability P (χ(D) = k) is to use the notion of Jánossy densities
jD,k(x1, . . . , xk) (see Definition 4.2.7 in [1]). They can be expressed in terms of the joint
intensities as

jD,k(x1, . . . , xk) =
∞∑

r=0

1

r!
(−1)rρk+r(x1, . . . , xk, D, . . . , D︸ ︷︷ ︸

r

), (3.10)

12



where

ρk+r(x1, . . . , xk, D, . . . , D︸ ︷︷ ︸
r

) =

∫

Dr

ρk+r(x1, . . . , xk, y1, . . . , yr)dy1 · · · dyr. (3.11)

They exist whenever
∑

k

∫

Dk

krρk(x1, . . . , xk)

k!
dx1 · · · dxk <∞, (3.12)

which is clearly fulfilled in our case, as ρℓ ≡ 0 for ℓ > N . Moreover, the vanishing of ρℓ
for large enough ℓ makes every sum in the following finite so we will not have troubles with
interchanging the order of summations.

In terms of the Jánossy intensities, the probability P (χ(D) = k) reads as (see Equation
(4.2.7) of [1])

P (χ(D) = k) =
1

k!

∫

Dk

jD,k(x1, . . . , xk)dx1 · · · dxk, (3.13)

and, consequently,

P (χ(D) = 0) = 1−
N∑

k=1

1

k!

∫

Dk

jD,k

= 1−
n∑

k=1

1

k!

∫

Dk

∑

r≥0

(−1)r

r!
ρk+r(x1, . . . , xk, D, . . . , D︸ ︷︷ ︸

r

)dx1 . . .dxk

= 1−
∑

k≥1

∑

r≥0

1

k!

(−1)r

r!

∫

Dk+r

ρk+r = 1−
∑

k≥1

∑

ℓ≥k

1

k!

(−1)ℓ−k

(ℓ− k)!

∫

Dℓ

ρℓ

= 1−
∑

ℓ≥1

[
∑

k≥1

(
ℓ

k

)
(−1)k

]
(−1)ℓ

ℓ!

∫

Dℓ

ρℓ = 1 +
∑

ℓ≥1

(−1)ℓ

ℓ!

∫

Dℓ

ρℓ.

Lemma 2 applied to the process σN yields

P (σN ([0, s]) = 0) = 1 +
∑

ℓ≥1

(−1)ℓ

ℓ!

∫

[0,s]ℓ
ρNℓ .

To pass to the limit N → ∞ we need an appropriate bound on the intensities ρNℓ . In Remark
1 we showed that |ρNℓ | ≤ ℓℓ/2 (see (3.8)). Therefore, by Lebesgue’s dominated convergence
theorem, we get

lim
N→∞

P (σN ([0, s]) = 0) = 1 +
∑

ℓ≥1

(−1)ℓ

ℓ!

∫

[0,s]ℓ
lim

N→∞
ρNℓ = 1 +

∑

ℓ≥1

(−1)ℓ

ℓ!
sℓ = e−s.

This completes the proof of (2.11).
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The formula (2.12) follows now from a relation connecting the probability E(0, s) that a
randomly chosen interval of length s is free from eigenphases with the level spacing distribution
P (s), (2.6) (see equation (6.1.16a) in [8]),

P (s) =
d2

ds2
E(0; s). (3.14)

We have just showed that limN→∞ P (σN ([0, s]) = 0) = E(0; s) = e−s. Thus, indeed

lim
N→∞

PCUEN ⊗CUEN
(s) =

d2

ds2
e−s = e−s.

4 Tensor product of M unitary matrices of size 2× 2

Now we will prove Theorem 2. In the course of the proof we will need three lemmas. Let us
start with them.

Lemma 3. Fix a positive integer s and a number γ ∈ (0, 1/s). For each positive integer n
let us define the set Ln = {ℓ = (ℓ1, . . . , ℓs) | Z ∋ ℓj ≥ 0,

∑s
j=1 ℓj = n}. Then

∑

ℓ∈Ln,∃j ℓj/n≤γ

1

sn
n!

ℓ!
= 1−

∑

ℓ∈Ln,∀j ℓj/n>γ

1

sn
n!

ℓ!
−−−−→
n→∞

0. (4.1)

Here, we adopt the convention that ℓ! = ℓ1! · . . . · ℓs!.

Proof. First observe that

∑

ℓ,∃j ℓj/n≤γ

1

sn
n!

ℓ!
≤ s

∑

ℓ,ℓ1/n≤γ

1

sn
n!

ℓ!
= s

⌊γn⌋∑

ℓ1=0

1

sn
n!

ℓ1!(n− ℓ1)!

∑

ℓ2+...+ℓs≤n−ℓ1

(n− ℓ1)!

ℓ2! · . . . · ℓs!

= s

⌊γn⌋∑

ℓ1=0

1

sn

(
n

n− ℓ1

)
(s− 1)n−ℓ1 = s

n∑

k=n−⌊γn⌋

(
n

k

)(
1− 1

s

)k (
1

s

)n−k

.

Let X1, X2, . . . be i.i.d. Bernoulli random variables such that P (X1 = 0) = 1/s = 1 −
P (X1 = 1). Denote Sn = X1 + . . .+Xn. Then the last expression equals sP (Sn ≥ n− ⌊γn⌋)
and can be estimated from above as follows

sP (Sn ≥ n− γn) = sP

(
Sn − ESn

n
≥ 1

s
− γ

)
≤ s exp

(
− 2n(1/s− γ)2

)
−−−−→
n→∞

0,

where the last inequality follows for instance from Hoeffding’s inequality (see [7]).

Lemma 4. Let X be a random vector in R
n with a bounded density. Let A : Rn −→ R

k

be a linear mapping of rank r. Then there exists a constant C such that for any intervals
I1, . . . , Ik ⊂ R of finite length we have

P (AX ∈ I1 × . . . Ik) ≤ C|Ii1 | · . . . · |Iir |,
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where 1 ≤ i1 < . . . < ir ≤ k are indices of those rows of the matrix A which are linearly
independent.

Proof. Let a1, . . . , ak ∈ R
n be rows of the matrix A. We know there are r of them, say

a1, . . . , ar, which are linearly independent. Thus there exists an invertible r × r matrix U
such that

U



a1
...
ar


 =



e1
...
er


 =: E,

where ei ∈ R
n is the i-th vector of the standard basis of Rn. Notice that

P (AX ∈ I1 × . . .× Ik) ≤ P
(
U−1EX ∈ I1 × . . .× Ir

)
= P ((X1, . . . , Xr) ∈ U(I1 × . . . Ir))

≤ C|U(I1 × . . .× Ik)| = C| detU | · |I1| · . . . · |Ir |,

for the vector (X1, . . . , Xr) also has a bounded density on R
r. This finishes the proof.

Lemma 5. Let A be a matrix of dimension k × j, with entries in {0, 1}, and satisfying the
following conditions

(i) no two columns are equal.

(ii) no two rows are equal.

(iii) no zero row

Then, the rank of A is at least min(k, ⌊log2 j⌋+ 1).

Proof. (Due to Dima Gourevitch) Denote r = rankA. The assertion of the lemma is equivalent
to the statement that 2r ≥ j and if 2r = j then r = k.

We may assume without loss of generality that the first r rows ofA are linearly independent
and the others are their linear combinations. Under this assumption, if two columns are
identical in the first r coordinates then they are identical in all coordinates. By condition (i),
such columns do not exist. Therefore the r× j submatrix B which consists of the first r rows
has distinct columns. As a result j ≤ 2r.

Now suppose j = 2r. If k > r, consider the r + 1 row of A. It is a linear combination
of the first r rows. Since the columns of B include the column ei = (0, .., 0, 1, 0, .., 0) for all
i = 1, . . . , r, the coefficient of each row is either 0 or 1. B includes also a column of all 1s,
thus there is at most one nonzero coefficient (if there were more than one, a certain entry
would be greater than 1). Consequently, the coefficient of exactly one row is 1, and all other
coefficients vanish, because if all coefficients were zero, the r + 1 row would be zero which
contradicts (iii). Thus, the r+1-th row is identical to one of the first r rows - in contradiction
to condition (ii).

Proof of Theorem 2. Fix an integer k ≥ 1 and finite intervals I1, . . . , Ik ⊂ R+ which are
mutually disjoint. We need to compute the probability of the event {τM (Ij) > 0, j = 1, . . . , k}
which means that in each interval Ij there is a rescaled eigenphase. Such eigenphase is of the

form 2M

2π (θǫ11 + . . .+ θǫMM mod 2π) for some ǫ = (ǫ1, . . . , ǫM ) ∈ {1, 2}M . Therefore

{τM (Ij) > 0, j = 1, . . . , k} =
⋃

ǫ

Aǫ,
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where

Aǫ =

{ M∑

i=1

θ
ǫji
i mod 2π ∈ 2π

2M
Ij

︸ ︷︷ ︸
Jj

, j = 1, . . . , k

}
, (4.2)

and ǫ runs over the set

E =
{
[ǫji ]

j=1,...,k
i=1,...,M | ǫji ∈ {1, 2}, ǫu 6= ǫv, for u 6= v, u, v = 1, . . . , k

}
(4.3)

of all k ×M matrices with entries 1, 2 which have pairwise distinct rows ǫj = (ǫj1, . . . , ǫ
j
M ) ∈

{1, 2}M , j = 1, . . . , k (j-th row ǫj describes the j-th eigenphase and since intervals are disjoint
we assume the rows are distinct). Column vectors are denoted by ǫi = [ǫ1i , . . . , ǫ

k
i ]

T , i =
1, . . . ,M .

We say that ǫ is bad if the collection of its vector columns {ǫi, i = 1, . . . ,M} is less than
2k. Otherwise ǫ is called good.

Obviously,

P




⋃

good ǫ’s

Aǫ



 ≤ P

(
⋃

ǫ

Aǫ

)
≤ P




⋃

good ǫ’s

Aǫ



+ P

(
⋃

bad ǫ’s

Aǫ

)
.

The strategy is to show that the contribution of bad ǫ’s vanishes for large M while good ǫ’s
essentially provide the desired result

∏
j |Ij | when M goes to infinity. So the proof will be

divided into several parts.

Good ǫ’s. The goal here is to prove

lim
maxj |Ij |→0

lim
M→∞

1

|I1| · . . . · |Ik|
P




⋃

good ǫ’s

Aǫ


 = 1, (4.4)

with the required uniformity in the choice of the disjoint intervals Ij . By virtue of

∑

good ǫ’s

P (Aǫ)−
∑

good ǫ, ǫ̃
ǫ 6=ǫ̃

P (Aǫ ∩ Aǫ̃) ≤ P




⋃

good ǫ’s

Aǫ



 ≤
∑

good ǫ’s

P (Aǫ)

it suffices to prove that

lim
M→∞

∑

good ǫ’s

P (Aǫ) =
∏

|Ij | (4.5)

uniformly, and that the correlations between two different good ǫs does not matter

lim sup
maxj |Ij |→0

lim sup
M→∞

1∏ |Ij |
∑

good ǫ, ǫ̃
ǫ 6=ǫ̃

P (Aǫ ∩Aǫ̃) = 0. (4.6)

Let us now prove (4.5). The proof of (4.6) is deferred to the very end as we will need the
ideas developed here as well as in the part devoted to bad ǫ’s.
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Given ǫ ∈ E and a vector α = [α1 . . . αk]
T ∈ {1, 2}k we count how many column vectors

of ǫ equals α and call this number ℓα. Then
∑

α ℓα = M . Note that ǫ is good iff all ℓαs
are nonzero. The crucial observation is that the probability of the event Aǫ does depend
only on the vector ℓ = (ℓα)α∈{1,2}k associated with ǫ as described before. Indeed, the sum
∑M

i=1[θ
ǫ1i
i . . . θ

ǫki
i ]T mod 2π is identically distributed as the random vector

∑
α ψ(α, ℓα) mod 2π,

where

ψ(α, ℓα) =



ψ1(α, ℓα)

...
ψk(α, ℓα)


 =



θα1

i1
...
θαk

i1


+ . . .+



θα1

iℓα
...

θαk

iℓα


 mod 2π (4.7)

is a sum modulo 2π of i.i.d. vectors. Note that the distribution of ψ(α, ℓα) does not depend
on the choice of indices i1, . . . , iℓα but only on α and ℓα. Consequently, denoting by Eℓ the
set of all ǫ’s such that there are exactly ℓα indices 1 ≤ i1 < . . . < iℓα ≤ M for which
ǫi1 = . . . = ǫiℓα = α, we have that the value of P (Aǫ) is the same for all ǫ ∈ Eℓ. Clearly

♯Eℓ = M !
ℓ! , whence

∑

good ǫ’s

P (Aǫ) =
∑

good ℓ’s

M !

ℓ!
P




∑

α∈{1,2}k

ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk


 . (4.8)

The idea is to identify those terms which will sum up to
∏ |Ii| and the rest which will be

neglected in the limit of large M . To do this, set a positive parameter γ < 1/2k and let us
call a good ℓ very good (v.g. for short) if ℓα > γM for every α and quite good (q.g. for short)
otherwise. We claim that

P

(∑
ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk

)
≤ C

∏
|Jj |, for a good ℓ, (C1)

and

P

(∑
ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk

)
=

∏ |Jj |
(2π)k

(
1 +

rℓ√
M

)
, |rℓ| ≤ C,

for a very good ℓ,

(C2)

where C is a constant (from now on in this proof we adopt the convention that C is a constant
depending only on k which may differ from line to line).

Let us postpone the proofs and see how to conclude (4.5). Notice that
∏

|Jj |
(2π)k

= 1
2kM

∏ |Ij |.
Thus applying (C1) we obtain

∑

q.g. ℓ’s

P

(∑
ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk

)
≤
∏

|Ij | · C
∑

q.g. ℓ’s

1

2kM
M !

ℓ!
.

By Lemma 3 it vanishes when M → ∞. Now we deal with very good ℓ’s writing with the aid
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of (C2) that

∑

v.g. ℓ’s

P

(∑
ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk

)
=
∏

|Ij |
(
∑

v.g. ℓ’s

1

2kM
M !

ℓ!

+
∑

v.g. ℓ’s

1

2kM
M !

ℓ!

rℓ√
M

)
.

The first term in the bracket approaches 1 in the limit M → ∞ due to Lemma 3, while the
second one approaches 0 as it is bounded above by C 1√

M
.

Proof of (C1). Let us define the vectors

ej = (2, . . . , 2︸ ︷︷ ︸
j−1

, 1, 2, . . . , 2︸ ︷︷ ︸
k−j

) ∈ {1, 2}k, j = 1, . . . , k.

Since ℓ is good, in particular we have that ℓej > 0, so denoting the random vector ψ(ej , ℓej )
by Ψj we have

∑
α ψ(α, ℓα) = (Ψ1 + . . . + Ψk) +

∑
α/∈{e1,...,ek} ψ(α, ℓα). By independence it

is enough to show that the random vector Ψ = Ψ1 + . . .+Ψk mod 2π has a bounded density
on [0, 2π)k. Equation (4.7) yields that

Ψj = (Yj , . . . , Yj︸ ︷︷ ︸
j−1

, Xj, Yj , . . . , Yj︸ ︷︷ ︸
k−j

),

where (Xj , Yj) are independent random vectors on [0, 2π)2 with the same distributions as
the vectors (θ11 + . . .+ θ1ℓej

mod 2π, θ21 + . . .+ θ2ℓej
mod 2π) respectively. Clearly, the vector

(Xj , Yj) has a bounded density on [0, 2π)2 because the vector (θ11 , θ
2
1) has a bounded density.

Therefore the vector (X1, Y1, . . . , Xk, Yk) has a bounded density on [0, 2π)2k. A certain linear
transformation with determinant 1 maps this vector to (Ψ1 + . . . + Ψk, Y1, . . . , Yk) which
consequently also has a bounded density. One projects it to the first k coordinates and then
takes care of addition modulo 2π obtaining that Ψ has a bounded density, which finishes the
proof.

Proof of (C2). Given a vector α ∈ {1, 2}k let Θα denote the random vector in [0, 2π)k iden-
tically distributed as the vector (θα1

1 , . . . , θαk

1 ). Take its independent copies Θα
1 ,Θ

α
2 , . . . such

that the family {Θα
1 ,Θ

α
2 , . . .}α∈{1,2}k also consists of independent random vectors. Then

EΘα = [π, . . . , π]T , and

pℓ,M = P

(
∑

α

ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk

)
= P

(
∑

α

ℓα∑

l=1

Θα
l mod 2π ∈ J1 × . . .× Jk

)

=

M−1∑

i1,...,ik=0

P

(
∑

α

ℓα∑

l=1

Θα
l ∈ (J1 + 2πi1)× . . .× (Jk + 2πik)

)

=
∑

i

P

(
∑

α

ℓα∑

l=1

Θα
l − EΘα

l√
M

∈ 1√
M

(J1 + 2π(i1 −M/2))× . . .× 1√
M

(Jk + 2π(ik −M/2))

)
.
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To ease the notation we introduce new indices

j =

(
i1 −

M

2
, . . . , ik −

M

2

)
∈
{
−M

2
,−M

2
+ 1, . . . ,

M

2
− 1

}k

,

sets

Kj,M =
1√
M

(J1 + 2πj1)× . . .× 1√
M

(Jk + 2πjk),

and the vector

SM =
∑

α

ℓα∑

l=1

Θα
l − EΘα

l√
M

.

Now we intend to use the local Central Limit Theorem of [2]. Indeed, due to independence
such a theorem should hopefully yield that SM has a normal distribution for large M . To be
more precise, let us consider the matrix CovSM =

∑
α

ℓα
M CovΘα and its eigenvalues. Since

for any x ∈ R
k

xT (CovSM )x =
∑

α

ℓα
M
xT (CovΘα)x ≤ max

α
‖CovΘα‖1/2

︸ ︷︷ ︸
C

|x|2,

it is clear that the largest eigenvalues are uniformly (i.e. with respect to M) bounded by C,
which depends only on k. To provide an uniform bound for the smallest eigenvalues let us
observe that (recall that ei is the vector (2, . . . , 2, 1, 2, . . . , 2))

xT (CovSM )x ≥
k∑

j=1

ℓej
M
xT (CovΘej )x > γxT

( k∑

j=1

CovΘej
)
x ≥ γ · π

2

3
|x|2,

where the second inequality is because ℓ is very good.
It is a matter of a direct computation to see the last inequality as for k ≥ 2 we have∑k

j=1 CovΘ
ej =

(
(k − 2)π2/3 − 2

)
[1 . . . 1]T [1 . . . 1] + diag(2 + 2π2/3, . . . , 2 + 2π2/3) and for

k = 1 the sum equals π2/3. Therefore, with the matrix BM given by

B2
M = (CovSM )−1

it holds that
1

C
|x| ≤ |BMx| ≤ C|x|.

Therefore the assumptions of [2, Corollary 19.4] are satisfied (for the family of independent
random vectors {Θα

1 ,Θ
α
2 , . . .}α∈{1,2}k), so the vector BMSM possesses a density qM and

sup
x∈Rk

(
1 + |x|k+2

)(
qM (x)− φ(x) − 1√

M
PM (x)φ(x)

)
= O(M−k/2),

where φ(x) = 1√
2π

k e
−|x|2/2 is the density of the standard normal distribution in R

k and PM

is a polynomial of degree k − 1 whose coefficients depends on the cumulants of the vectors
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BMΘα. We may put it differently, i.e.

qM (x) = φ(x) +
1√
M

(
PM (x)φ(x) +

fM (x)

1 + |x|k+2

︸ ︷︷ ︸
hM (x)

)
,

for some functions fM uniformly bounded supM supx∈Rk |fM (x)| = C < ∞. Therefore, de-
noting Lj,M = BMKj,M ,

pℓ,M =
∑

j

P (SM ∈ Kj,M ) =
∑

j

P (BMSM ∈ BMKj,M ) =
∑

j

∫

Lj,M

qM

=
∑

j

∫

Lj,n

φ+
1√
M

∑

j

∫

Lj,n

hM = aM +
1√
M
bM .

(4.9)

Let us firstly deal with the error term bM . Denoting

κ =
|J1| · . . . · |Jk|

(2π)k

we are to show that
|bM | ≤ Cκ. (4.10)

To do this we estimate the integrated function

|hM (x)| ≤ |PM (x)|φ(x) + C

1 + |x|k+2
=: h(x).

Then |bM | ≤∑j

∫
Lj,M

h. Introduce full boxes

Fj,M = BM

(
1√
M

([0, 2π) + 2πj1)× . . .× 1√
M

([0, 2π) + 2πjk)

)

and observe that
∫

Lj,M

h =
|Lj,M |
|Fj,M | |Fj,M | 1

|Lj,n|

∫

Lj,M

h ≤ κ|Fj,M | sup
Lj,M

h ≤ κ|Fj,M | sup
Fj,M

h.

Since diamFj,M ≤ C 2π
√
k√

M
−−−−−→
M−→∞

0, the sets Fj,M are pairwise disjoint and sum up to

BM [−π
√
M,π

√
M)k, we can infer that the sum

∑
j |Fj,M | supFj,M

h converges to
∫
Rk h =

C <∞. Hence, this sum is bounded by C and we get (4.10).
Now we handle the main term aM . We prove it equals κ up to another error κ C√

M
. Let

Aj,M : Rk −→ R
k be the linear isomorphism mapping Fj,M onto Lj,M . It equals BM Ãj,MB

−1
M ,

where Ãj,M is the linear mapping transforming the box B−1
M Fj,M onto the box B−1

M Lj,M ,
whence | detAj,M | = κ. Thus, changing the variable we obtain

∫

Lj,M

φ(x)dx = κ

∫

Fj,M

φ(Aj,Mx)dx.
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Notice that Aj,Mx is close to x, whenever x ∈ Fj,M , for

|Aj,nx− x| ≤ diamFj,M , x ∈ Fj,M .

Consequently, on Fj,M , φ(Aj,Mx) is close to φ(x). Strictly, we use the mean value theorem
and get ∫

Lj,M

φ(x)dx = κ

∫

Fj,M

φ(x)dx + κ

∫

Fj,M

∇φV (ηx) · (Aj,Mx− x)dx,

for some mean points ηx ∈ [x,Aj,Mx]. This results in

aM =
∑

j

∫

Lj,M

φ(x)dx = κ
∑

j

∫

Fj,M

φ+ κ

∫
⋃

j Fj,M

∇φ(ηx) · (Aj,Mx− x)dx

= κ

(
1−

∫

Rk\BM [−π
√
M,π

√
M)k

φ

︸ ︷︷ ︸
cM

+
∑

j

∫

Fj,M

∇φV (ηx) · (Aj,Mx− x)dx

︸ ︷︷ ︸
dM

)
.

We are almost done. Clearly cM converges to 0 faster that 1/
√
M , so |cM | ≤ C/

√
M . For

dM we use the Schwarz inequality and integrability of |∇φ(ηx)|

|dM | ≤
∑

j

∫

Fj,M

|∇φ(ηx)||Aj,Mx− x|dx ≤ diamFj,M

∫
⋃

Fj,M

|∇φ(ηx)|dx ≤ C√
M
.

This completes the proof of (C2).

We have proved claims (C1) and (C2), so the proof of the part concerning good ǫ’s is now
complete. Let us proceed to tackle bad ǫ’s.

Bad ǫ’s. The goal here is to show that

lim
M→∞

P

(
⋃

bad ǫ’s

Aǫ

)
= 0, (4.11)

again, with the required uniformity. Obviously it suffices to show that
∑

bad ǫ’s P (Aǫ) −−−−→
M→∞

0. Let Fj be the set of those bad ǫ’s for which the cardinality of the set {ǫi, i = 1, . . . ,M}
equals j. Observe that ♯Fj ≤ jM . With the aid of Lemma 5 we will show that

∀ǫ ∈ Fj P (Aǫ) ≤ C · 2−M(1+⌊log2 j⌋) · O
(
(max

j
|Ij |)1+⌊log2 j⌋), when max

j
|Ij | −→ 0. (4.12)

This will finish the proof, for

∑

bad ǫ’s

P (Aǫ) ≤ C · O(max
j

|Ij |)
2k−1∑

j=1

jM · 2−M(1+⌊log2 j⌋)

= C · O(max
j

|Ij |)
2k−1∑

j=1

2−M(1+⌊log2 j⌋−log2 j) −−−−→
M→∞

0.

(4.13)
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For the proof of (4.12) fix ǫ ∈ Fj. We have seen that

P (Aǫ) = P

(∑
ψ(α, ℓα) mod 2π ∈ J1 × . . .× Jk

)

and we know that there are exactly j numbers ℓα which are nonzero, say those which corre-
spond to vectors α1, . . . , αj ∈ {1, 2}k. Denote Ψj = ψ(αi, ℓαi), i = 1, . . . , j and consider the
random vector Sj = Ψ1 + . . . + Ψj in R

k. As in the proof of Claim (C1) we observe that
Sj is a linear image of the vector (X1, Y1, . . . , Xj , Yj). This mapping is given by the matrix
A = [auv] where

a2i−1,v =

{
1, αi

v = 1

0, αi
v = 2

, a2i,v =

{
0, αi

v = 1

1, αi
v = 2

.

By Lemma 4 we obtain

P (Sj mod 2π ∈ J1 × . . .× Jk) ≤ Cmax
(
|Ji1 | · . . . · |Jir |

)
= C · O(max

j
|Ij |) · 2−Mr, (4.14)

where r = rankA. The number r does not change if we replace the 2i-th column of A with
the vector e with 1 at each its entry, as the sum of 2i− 1-th and 2i-th columns is just e. Now
taking only the columns 1, 2, 3, 5, . . . , 2j − 1 we get the matrix B which has the same rank as
A. It has j + 1 columns and fulfills the assumptions of Lemma 5 (it has no zero row as the
second column consists of all 1s). Thus r ≥ min(1+ ⌊log2(1+ j)⌋, k) and when j < 2k− 1 this
minimum equals 1+ ⌊log2(1 + j)⌋ ≥ 1+ ⌊log2 j⌋. If j = 2k − 1 in the matrix A there must be
two identical columns, one with even, say 2u, and one with odd, say 2v−1 index, which means
that the u-th and the v-th column of B add up to e, so the v-th column may be erased and
the rank of B does not change. Therefore we apply the lemma to the matrix B with erased
the v-th column which is of size k × j and get again r ≥ min(1 + ⌊log2 j⌋, k) = 1 + ⌊log2 j⌋.
This completes the proof of (4.12).

Pairs of good ǫ’s, i.e. the proof of (4.6). We denote by Θi(ǫ) the random vector

(θ
ǫ1i
i , . . . , θ

ǫki
i ). By the definition of Aǫ we may write

Aǫ ∩Aǫ̃ =

{
M∑

i=1

[
Θi(ǫ)
Θi(ǫ̃)

]
mod 2π ∈ J1 × . . .× Jk

J1 × . . .× Jk

}
. (4.15)

Since the intervals Ju and Jv are disjoint for u 6= v, we may restrict ourselves to those ǫ and ǫ̃
for which ǫu 6= ǫ̃v whenever u 6= v, u, v = 1, . . . , k as otherwise the event Aǫ∩Aǫ̃ is impossible.
However it might happen that ǫu = ǫ̃u. Let us count for how many u’s it takes place, i.e.
given s ∈ {1, . . . , k} let Ps be the set of all considered unordered pairs {ǫ, ǫ̃} for which there
are exactly k − s indices 1 ≤ u1 < . . . < uk−s ≤ k such that ǫuj = ǫ̃uj , j = 1, . . . , k − s. The
value s = 0 is excluded as ǫ 6= ǫ̃. We have

∑

ǫ 6=ǫ̃

P (Aǫ ∩Aǫ̃) =

k∑

s=1

∑

{ǫ,ǫ̃}∈Ps

P (Aǫ ∩ Aǫ̃) .

Thus we fix s and prove that lim supmaxj |Ij |→0 lim supM→∞
1∏
|Ij |
∑

{ǫ,ǫ̃}∈Ps
P (Aǫ ∩ Aǫ̃) = 0.

There are two cases. A pair {ǫ, ǫ̃} ∈ Ps can be good which means ♯
{[ ǫi

ǫ̃i

]
, i = 1, . . . ,M

}
≥
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2k+s, or, otherwise we call it bad. We obtain a decomposition Ps = Pgood
s ∪ Pbad

s . Now for
a good pair, applying the reasoning already used for bad ǫ’s, i.e. combining lemmas 4 and 5,
we get the estimate

P (Aǫ ∩ Aǫ̃) ≤ C|J1| · . . . · |Jk|
(

max
j=1,...,k

|Jj |
)s

=
C

2(k+s)M

(∏
|Ij |
)(

max
j

|Ij |
)s
.

But ♯Pgood
s ≤ ♯Ps ≤

(
k
s

)
· 2(k+s)M , so

lim sup
maxj |Ij |→0

lim sup
M→∞

1∏ |Ij |
∑

{ǫ,ǫ̃}∈Pgood
s

P (Aǫ ∩ Aǫ̃) = 0.

For a bad pair {ǫ, ǫ̃} we know that there are k + s different rows and at most 2k+s − 1
different columns in the matrix [ ǫǫ̃ ]. Hence we repeat the argument of the part concerning
bad ǫ’s. Namely, first exactly in the same manner as in that part we use Lemma 5 in order
to establish an appropriate inequality in the spirit of (4.12). Then we follow the estimate of
(4.13) and conclude that

lim
M→∞

∑

{ǫ,ǫ̃}∈Pbad
s

P (Aǫ ∩ Aǫ̃) = 0.

This finishes the proof of Theorem 2.

Proof of Corollary 2. Fix ∆ small so that s/∆ is an integer and divide the interval [0, s] into
consecutive intervals of length ∆, denoted Ii. Let Zi = τM (Ii) and Z̄i = 1{Zi>0}. Of course,

τM ([0, s]) =
∑s/∆

i=1 Zi. Our goal is to show that τM ([0, s]) becomes Poissonian in the limit of
large M , from which the statement of the corollary follows immediately.

The proof of Theorem 2 yields the following facts. There exist a sequence δM,∆,k with

lim sup
∆→0

lim sup
M→∞

δM,∆,k = 0 ,

and a universal constant C such that the following hold.

P
(
Zi 6= Z̄i

)
≤ C∆2 , (4.16)

E

(
∏

i∈Jk

Z̄i

)
= ∆k(1 +O(δM,∆,k)) (4.17)

where Jk denotes an arbitrary subset of k distinct integers in {1, . . . , s/∆}.
Indeed, to justify (4.16) notice that

P
(
Zi 6= Z̄i

)
= P (τM (Ii) ≥ 2) ≤ P




⋃

ǫ 6=ǫ̃

Aǫ ∩ Aǫ̃



 ,

where ǫ, ǫ̃ ∈ {1, 2}M and Aǫ is the event that there is an eigenphase described by ǫ in the
interval Ii (see (4.2)). The probability of the event Aǫ ∩ Aǫ̃ can be estimated by C · 2−2M ·
|Ii|2 = 2−2M · C∆2. To see this, recall (4.15) and follow the same argument which led to
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estimate (4.14) (in this case the relevant matrix has the rank no less than 2). It suffices, as

P

(⋃
ǫ 6=ǫ̃Aǫ ∩ Aǫ̃

)
≤
(
2M

2

)
· 2−2M · C∆2 ≤ C∆2. For (4.17), observe that

E

∏

i∈Jk

Z̄i = E1{Zi>0,i∈Jk} = P (τM (Ii) > 0, i ∈ Jk) ,

and apply Theorem 2 (with its uniformity statement).
Let Yi be i.i.d. Bernoulli random variables with P (Y1 = 1) = 1 − P (Y1 = 0) = ∆. By

(4.17) we have that for any integer ℓ,

lim sup
∆→0

lim sup
M→∞

∣∣∣∣∣∣∣
E




s/∆∑

i=1

Z̄i




ℓ

− E




s/∆∑

i=1

Yi




ℓ
∣∣∣∣∣∣∣
= 0 .

Since
∑s/∆

i=1 Yi converges to a Poisson random variable of parameter s as ∆ → 0, it follows that∑s/∆
i=1 Z̄i converges in distribution to a Poisson variable of parameter s, when first M → ∞

and then ∆ → 0. On the other hand, using (4.16) we have that

P




s/∆∑

i=1

Z̄i 6=
s/∆∑

i=1

Zi



 ≤ Cs∆ ,

and therefore, one concludes that also
∑s/∆

i=1 Zi converges in distribution to a Poisson variable
of parameter s, when first M → ∞ and then ∆ → 0. This yields the corollary.
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