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Abstract

We derive two-sided bounds for expected values of suprema of canonical pro-
cesses based on random variables with moments growing regularly. We also discuss
a Sudakov-type minoration principle for canonical processes.

1 Introduction

In many problems arising in probability theory and its applications one needs to estimate
the supremum of a stochastic process. In particular it is very useful to be able to find
two-sided bounds for the mean of the supremum. The modern approach to this challenge
is based on the chaining methods, see monograph [16].

In this note we study the class of canonical processes (Xt) of the form

Xt =
∞∑
i=1

tiXi,

where Xi are independent random variables. If Xi are standardized, i.e. have mean zero
and variance one, then this series converges a.s. for t ∈ `2 and we may try to estimate
E supt∈T Xt for T ⊂ `2. To avoid measurability questions we either assume that the
index set T is countable or define in a general situation

E sup
t∈T

Xt = sup

{
E sup

t∈F
Xt : F ⊂ T finite

}
.

It is also more convenient to work with the quantity E sups,t∈T (Xt − Xs) rather than
E supt∈T Xt. Observe however that if the set T or the variables Xi are symmetric then

E sup
s,t∈T

(Xs −Xt) = E sup
s∈T

Xs + E sup
t∈T

(−Xt) = 2E sup
t∈T

Xt.
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For instance, in the case when Xi are i.i.d. N (0, 1) r.v.s, Xt is the canonical Gaussian
process. Moreover, any centred separable Gaussian process has the Karhunen-Loève
representation of such form (see e.g. Corollary 5.3.4 in [10]). In the Gaussian case the
behaviour of the supremum of the process is related to the geometry of the metric space
(T, d2), where d2 is the `2-metric d(s, t) = (E|Xs − Xt|2)1/2. The celebrated Fernique-
Talagrand majorizing measure bound (cf. [2, 14]) can be expressed in the form

1

C
γ2(T ) ≤ E sup

t∈T
Xt ≤ Cγ2(T ),

where here and in the sequel C denotes a universal constant,

γ2(T ) := inf sup
t∈T

∞∑
n=0

2n/2∆2(An(t)),

the infimum runs over all admissible sequences of partitions (An)n≥0 of the set T , An(t)
is the unique set in An which contains t, and ∆2 denotes the `2-diameter. An increasing
sequence of partitions (An)n≥0 of T is called admissible ifA0 = {T} and |An| ≤ Nn := 22n

for n ≥ 1.
Let us emphasise that Talagrand’s γ2 functional is tailored to govern the behaviour of

suprema of specifically Gaussian processes. Since we want to study canonical processes
for a wide class of random variables, we shall discuss now some general ideas developed
to obtain bounds on suprema of stochastic processes.

To motivate our first definition, let us look at the following easy estimate based on
the union bound; for p ≥ 1 and a finite set T we have

E sup
s,t∈T

(Xs −Xt) ≤
(
E sup
s,t∈T
|Xs −Xt|p

)1/p

≤

(
E
∑
s,t∈T

|Xs −Xt|p
)1/p

≤ |T |2/p sup
s,t∈T
‖Xs −Xt‖p.

(1)

If |T | ≤ ep, we get that the expectation of the supremum is controlled above up to a
constant by the diameter ∆p(T ) of the metric space (T, dp), where dp(s, t) = ‖Xs−Xt‖p.
Can this be reversed? Following [8] (see also [11]) we say that:

a process (Xt)t∈S satisfies the Sudakov minoration principle

with constant κ > 0 if for any p ≥ 1, T ⊂ S with |T | ≥ ep

such that ‖Xs −Xt‖p ≥ u for all s, t ∈ T , s 6= t,

we have E sup
s,t∈T

(Xs −Xt) ≥ κu.

(2)

Establishing the Sudakov minoration principle is usually a crucial step in deriving lower
bounds for suprema of stochastic processes.
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Let us try to soup up the previous bound employing this time a chaining argument.
We will follow closely Talagrand’s construction of the γ2 functional mentioned earlier (see
Section 2.2 in [16]). Let (Xt)t∈T be a general process with T finite (for simplicity). The
main idea of the chaining technique is to build finer and finer levels of approximations
An in order to gather together those t’s for which Xt are close. Then we apply union
bounds along chains, built across the levels An which comprise at each step variables
that are rather close and crucially, there are not too many of them. We fix an increasing
sequence of admissible partitions (An)n≥0. For each n we construct a set Tn by picking
exactly one point from every set A of the partition An. Hence, |Tn| ≤ 22n . At level n
we use the metric d2n to measure the order of magnitude of variables as this will let us
capture properly probabilities via moment estimates. This is the key subtle distinction
we have to make between a general case and the Gaussian case where we precisely know
all the moments, so a good scaling of the d2 metric suffices. We pick πn(t) ∈ Tn in such
a way that t and πn(t) belong to the same set in the partition An. The chain we build
is this:

Xt −Xπ1(t) =
∑
n≥1

(
Xπn+1(t) −Xπn(t)

)
.

Let An,t,u be the event {|Xπn+1(t) − Xπn(t)| ≤ u · d2n(πn+1(t), πn(t))}. By Chebyshev’s
inequality, P(Acn,t,u) ≤ u−2

n
, so if we set Ωu =

⋂
n≥1
⋂
tAn,t,u, by the union bound we

easily find that

P(Ωc
u) ≤

∑
n≥1

|Tn+1||Tn|u−2
n ≤

∑
n≥1

(
8

u

)2n

≤ 128

u2
, u ≥ 16.

Since on Ωu we have
sup
t∈T
|Xt −Xπ1(t)| ≤ u · S,

where
S = sup

t∈T

∑
n≥1

d2n(πn+1(t), πn(t)),

we obtain

P
(

1

S
sup
t∈T
|Xt −Xπ1(t)| > u

)
≤ 128

u2
, u ≥ 16.

This readily yields that the expectation of

sup
t,s∈T

(Xt −Xs) ≤ sup
t∈T
|Xt −Xπ1(t)|+ sup

s,t∈T
|Xπ1(t) −Xπ1(s)|+ sup

s∈T
|Xs −Xπ1(s)|

can be bounded by

C · S + E sup
s,t∈T
|Xπ1(t) −Xπ1(s)| ≤ C · S + |T1|2 ·∆1(T ).
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By the triangle inequality d2n(πn+1(t), πn(t)) ≤ d2n+1(t, πn+1(t))+d2n(t, πn(t)), so we can
control S as follows

S ≤ 2 sup
t∈T

∑
n≥1

d2n(t, πn(t)) ≤ 2 sup
t∈T

∑
n≥1

∆2n(An(t)),

where ∆2n(An(t)) is the diameter of the unique set An(t) from An containing t.
This argument motivates the following definition

γX(T ) = inf sup
t∈T

∞∑
n=0

∆2n(An(t)), (3)

where the infimum runs over all admissible sequences of partitions (An) of the set T .
The reasoning above shows that for any process (Xt)t∈T ,

E sup
s,t∈T

(Xs −Xt) ≤ CγX(T ). (4)

This was noted independently by Mendelson and the first named author (see, e.g. [16,
Exercise 2.2.25]). Similar chaining ideas have also been used in [12].

Plainly, the bound (4) is less crude that (1). Therefore, we expect that a bound
reverse to (4) should imply the Sudakov minoration principle. We make two remarks.

Remark 1. Suppose that for any finite T ⊂ `2 we have E sups,t∈T (Xs −Xt) ≥ κγX(T ).
Assume moreover that for any p ≥ 1 and t ∈ `2, ‖Xt‖2p ≤ γ‖Xt‖p. Then X satisfies the
Sudakov minoration principle with constant κ/γ.

Proof. Let p ≥ 1 and T ⊂ `2 of cardinality at least ep be such that ‖Xs −Xt‖p ≥ u for
any s, t ∈ T , s 6= t. Let 2k ≤ p < 2k+1 and (An) be an admissible sequence of partitions
of the set T . Then there is A ∈ Ak which contains at least two points of T . Hence

E sup
s,t∈T

(Xs −Xt) ≥ κγX(T ) ≥ κ∆2k(A) ≥ κ∆max{p/2,1}(A) ≥ κu/γ.

In fact, in the i.i.d. case we do not need the regularity assumption ‖Xt‖2p ≤ γ‖Xt‖p.

Remark 2. Let Xt =
∑∞

i=1 tiXi, t ∈ `2, where Xi are i.i.d. standardized r.v.s. Suppose
that E supt,s∈T Xt ≥ κγX(T ) for all finite T ⊂ `2. Then (Xt)t∈`2 satisfies the Sudakov
minoration principle with constant κ/2.

Proof. Fix p ≥ 1 and T ⊂ `2 such that |T | ≥ ep and ‖Xs −Xt‖p ≥ u for distinct points
s, t ∈ T . For t1, t2 ∈ T define a new point in `2 by t(t1, t2) := (t11, t

2
1, t

1
2, t

2
2, . . .). Put also

T̃ := {t(t1, t2) : t1, t2 ∈ T}. It is not hard to see that ‖Xs −Xt‖p ≥ u for t, s ∈ T̃ , t 6= s.
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Choose an integer k such that 2k ≤ p < 2k+1 and let (An) be an admissible sequence

of partitions of the set T̃ . Since |T̃ | = |T |2 ≥ e2p > 22k+1
, there is A ∈ Ak which contains

at least two points of T̃ . Hence

u ≤ ∆2k(A) ≤ γX(T̃ ) ≤ 1

κ
E sup
s,t∈T̃

(Xs −Xt) ≤
2

κ
E sup
s,t∈T

(Xs −Xt).

There are two goals of this note. First, we would like to find fairly general assumptions
that will allow us to reverse inequality (1), that is we want to obtain the Sudakov
minoration principle for a large class of canonical processes based on i.i.d. variables.
Second, possibly assuming more, we want to derive lower bounds for suprema of canonical
processes in terms of the γX functional, that is we want to reverse inequality (4). Let us
collect known results in these directions.

In [15] Talagrand derived two-sided bounds for suprema of the canonical processes
based on i.i.d. symmetric r.v.s Xi such that P(|Xi| > t) = exp(−|t|p), 1 ≤ p <∞. This
result was later extended in [7] to the case of variables with (not too rapidly decreasing)
log-concave tails, i.e. to the case when Xi are symmetric, independent, P(|Xi| ≥ t) =
exp(−Ni(t)), Ni : [0,∞) → [0,∞) are convex and Ni(2t) ≤ γNi(t) for t > 0 and some
constant γ. The relevant results can be restated as follows (see Theorems 1 and 3 in [7]).

Theorem 1 ([7]). Let Xt =
∑∞

i=1 tiXi, t ∈ `2 be the canonical process based on inde-
pendent symmetric r.v.s Xi with log-concave tails. Then (Xt)t∈`2 satisfies the Sudakov
minoration principle with a universal constant κlct > 0.

Remark 3. Since we may normalize Xi we need not assume that they have variance
one. It suffices to have supi Var(Xi) <∞ in order for Xt to be well defined for t ∈ `2.

Theorem 3 in [7] (see also Theorem 10.2.7 and Exercise 10.2.14 in [16]) implies the
following result.

Theorem 2 ([7]). Let Xt =
∑∞

i=1 tiXi, t ∈ `2 be the canonical process based on inde-
pendent symmetric r.v.s Xi with log-concave tails. Assume moreover that there exists γ
such that Ni(2t) ≤ γNi(t) for all i and t > 0, where Ni(t) = − lnP(|Xi| > t). Then there
exists a constant Clct(γ), which depends only on γ such that for any T ⊂ `2,

E sup
s,t∈T

(Xs −Xt) = 2E sup
t∈T

Xt ≥
1

Clct(γ)
γX(T ).

Remark 4. Theorem 3 in [7] and Theorem 10.2.7 in [16] were formulated in a slightly
different language. It is rather technical to see how they imply the formulation presented
here. The dedicated reader who is not afraid of technical subtleties is encouraged to check
the details. One way to do it is to see that the latter theorem states that there exist
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r > 2, an admissible sequence of partitions (An) and numbers jn(A) for A ∈ An such
that ϕjn(A)(s, s

′) ≤ 2n+1 for all s, s′ ∈ A and

sup
t∈T

∞∑
n=0

2nr−jn(An(t)) ≤ C(γ)E sup
t∈T

Xt.

(For the definition of ϕ see [16] — it precedes the statement of Theorem 10.2.7.) However,
the condition ϕjn(A)(s, s

′) ≤ 2n+1 yields that ‖Xs −Xs′‖2n ≤ C2nr−jn(A) (see [3] for the
i.i.d. case and Example 3 in [6] for the general situation), so ∆2n(An(t)) ≤ C2nr−jn(An(t))

and

γX(T ) ≤ C sup
t∈T

∞∑
n=0

2nr−jn(An(t)) ≤ Clct(γ)E sup
t∈T

Xt.

This paper is organized as follows. In the next section we present our results. Then we
gather some general facts. The last section is devoted to the proofs. We will frequently
use various constants. By a letter C we denote universal constants. Value of a constant
C may differ at each occurrence. Whenever we want to fix the value of an absolute
constant we use letters C1, C2, . . .. We write C(α) (resp. C(α, β), etc.) for constants
depending only on parameters α (resp. α, β etc.). We will also frequently work with a
Bernoulli sequence εi of i.i.d. symmetric r.v.s taking values ±1. We assume that variables
εi are independent of other r.v.s.

2 Results

2.1 The Sudakov minoration principle

Our first main result concerns the Sudakov minoration principle (2). Recall that it has
been established for canonical processes based on indpendent random variables with log-
concave tails (Theorem 1). It is easy to check that for a symmetric variable Y with a
log-concave tail exp(−N(t)), we have ‖Y ‖p ≤ C p

q
‖Y ‖q for p ≥ q ≥ 2. This motives

the following definition. For α ≥ 1 we say that moments of a random variable X grow
α-regularly if

‖X‖p ≤ α
p

q
‖X‖q for p ≥ q ≥ 2.

The class of all standardized random variables with the α-regular growth of moments
will be denoted by Rα. It turns out that this condition suffices to obtain the Sudakov
minoration principle for canonical processes.

Theorem 3. Suppose that X1, X2, . . . are independent standardized r.v.s and moments
of Xi grow α-regularly for some α ≥ 1. Then the canonical process Xt =

∑∞
i=1 tiXi,

t ∈ `2 satisfies the Sudakov minoration principle with constant κ(α), which depends only
on α.
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In fact the assumption on regular growth of moments is necessary for the Sudakov
minoration principle in the i.i.d. case.

Proposition 4. Suppose that a canonical process Xt =
∑∞

i=1 tiXi, t ∈ `2 based on i.i.d.
standardized random variables Xi satisfies the Sudakov minoration with constant κ > 0.
Then moments of Xi grow C/κ-regularly.

Methods developed to prove Theorem 3 also enable us to establish the following
comparison of weak and strong moments of the canonical processes based on variables
with regular growth of moments.

Theorem 5. Let Xt be as in Theorem 3. Then for any nonempty T ⊂ `2 and p ≥ 1,(
E sup

t∈T
|Xt|p

)1/p

≤ C(α)

(
E sup

t∈T
|Xt|+ sup

t∈T
(E|Xt|p)1/p

)
.

2.2 Lower bounds

Our next main result concerns reversing the bound (4). As we indicated in the intro-
duction (Remarks 1 and 2), such an inequality will be a refinement to the Sudakov
minoration principle. We shall need more regularity. Recall that in the case of indepen-
dent random variables Xi with log-concave tails exp(−Ni(t)) (Theorem 2), the additional
condition Ni(2t) ≤ γNi(t) was relevant. It is readily checked that this condition yields
‖Y ‖βp ≥ 2‖Y ‖p for p ≥ 2 and a constant β which depends only on γ. This motivates
our next definition. For β <∞ we say that moments of a random variable X grow with
speed β if

‖X‖βp ≥ 2‖X‖p for p ≥ 2.

The class of all standardized random variables with the moments growing with speed β
will be denoted by Sβ.

Theorem 6. Let Xt =
∑∞

i=1 tiXi, t ∈ `2 be the canonical process based on independent
standardized r.v.s Xi with moments growing α-regularly with speed β for some α ≥ 1 and
β > 1. Then for any T ⊂ `2,

1

C(α, β)
γX(T ) ≤ E sup

s,t∈T
(Xs −Xt) ≤ CγX(T ).

The above result easily yields the following comparison result for suprema of pro-
cesses.

Corollary 7. Let Xt be as in Theorem 6. Then for any nonempty T ⊂ `2 and any
process (Yt)t∈T such that ‖Ys − Yt‖p ≤ ‖Xs −Xt‖p for p ≥ 1 and s, t ∈ T we have

E sup
s,t∈T

(Ys − Yt) ≤ C(α, β)E sup
s,t∈T

(Xs −Xt).
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Proof. The assumption implies γY (T ) ≤ γX(T ) and the result immediately follows by
the lower bound in Theorem 6 and estimate (4) used for the process Y .

In fact one may show a stronger result.

Corollary 8. Let Xt and Yt be as in Corollary 7. Then for u ≥ 0,

P
(

sup
s,t∈T

(Ys − Yt) ≥ u

)
≤ C(α, β)P

(
sup
s,t∈T

(Xs −Xt) ≥
1

C(α, β)
u

)
.

Another consequence of Theorem 6 is the following striking bound for suprema of
some canonical processes.

Corollary 9. Let Xt be as in Theorem 6 and T ⊂ `2 be such that E sups,t∈T (Xs −
Xt) < ∞. Then there exist t1, t2, . . . ∈ `2 such that T − T ⊂ conv{±tn : n ≥ 1} and
‖Xtn‖log(n+2) ≤ C(α, β)E sups,t∈T (Xs −Xt).

Remark 5. The reverse statement easily follows by the union bound and Chebyshev’s
inequality. Namely, for any canonical process (Xt)t∈`2 and any nonempty set T ⊂ `2 such
that T − T ⊂ conv{±tn : n ≥ 1} and ‖Xtn‖log(n+2) ≤M one has E sups,t∈T (Xs −Xt) ≤
CM . For details see the argument after Corollary 1.2 in [1].

Remark 6. Let (εi)i≥1 be i.i.d. symmetric ±1-valued r.v.s, Xt =
∑∞

i=1 tiεi, t ∈ `2 and
T = {en : n ≥ 1}, where (en) is the canonical basis of `2. Then obviously E sups,t∈T (Xs−
Xt) = 2, moreover for any A ⊂ T with cardinality at least 2, we have ∆2k(T ) ≥ ∆2(T ) =√

2, hence γX(T ) =∞. Therefore one cannot reverse bound (4) for Bernoulli processes,
so some assumptions on the nontrivial speed of growth of moments are necessary in
Theorem 6. However, Corollary 9 holds for Bernoulli processes (cf. [1]) and we believe
that in that statement the assumption of the β-speed of the moments growth is not
needed.

3 Preliminaries

In this section we gather basic facts used in the sequel. We start with the contraction
principle for Bernoulli processes (see e.g. [9, Theorem 4.4]).

Theorem 10 (Contraction principle). Let (ai)
n
i=1, (bi)

n
i=1 be two sequences of real num-

bers such that |ai| ≤ |bi|, i = 1, . . . , n. Then

EF

(∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
)
≤ EF

(∣∣∣∣∣
n∑
i=1

biεi

∣∣∣∣∣
)
, (5)
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where F : R+ → R+ is a convex function. In particular,∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

biεi

∥∥∥∥∥
p

. (6)

Moreover, for a nonempty subset T of Rn,

E sup
t∈T

n∑
i=1

tiaiεi ≤ E sup
t∈T

n∑
i=1

tibiεi. (7)

The next Lemma is a standard symmetrization argument (see e.g. [9, Lemma 6.3]).

Lemma 11 (Symmetrization). Let Xi be independent standardized r.v.s and (εi) be a
Bernoulli sequence independent of (Xi). Define two canonical processes Xt =

∑∞
i=1 tiXi

and its symmetrized version X̃t =
∑∞

i=1 tiεiXi. Then

1

2
‖Xs −Xt‖p ≤ ‖X̃s − X̃t‖p ≤ 2‖Xs −Xt‖p for s, t ∈ `2

and for any T ⊂ `2,

1

2
E sup
s,t∈T

(Xs −Xt) ≤ E sup
s,t∈T

(X̃s − X̃t) = 2E sup
t∈T

X̃t ≤ 2E sup
s,t∈T

(Xs −Xt).

Let us also recall the Paley-Zygmund inequality (cf. [4, Lemma 0.2.1]) which goes
back to work [13] on trigonometric series.

Lemma 12 (Paley-Zygmund inequality). For any nonnegative random variable S and
λ ∈ (0, 1),

P(S ≥ λES) ≥ (1− λ)2
(ES)2

ES2
. (8)

The next lemma shows that convolution preserves (up to a universal constant) the
property of the α-regular growth of moments.

Lemma 13. Let S =
∑n

i=1Xi, where Xi are independent mean zero r.v.s with moments
growing α-regularly. Then moments of S grow Cα-regularly. In particular, if (Xt) is a
canonical process based on r.v.s from Rα, then ‖Xt‖4p ≤ Cα‖Xt‖p for p ≥ 2.

Proof. We are to show that ‖S‖p ≤ Cαp
q
‖S‖q for p ≥ q ≥ 2. By Lemma 11 we may

assume that the r.v.s Xi are symmetric. Moreover, by monotonicity of moments, it is
enough to consider only the case when p and q are even integers and p ≥ 2q. In [6] it
was shown that for r ≥ 2,

e− 1

2e2
|||(Xi)|||r ≤ ‖S‖r ≤ e|||(Xi)|||r,
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where

|||(Xi)|||r := inf

{
u > 0:

∏
i

E
∣∣∣∣1 +

Xi

u

∣∣∣∣r ≤ er

}
.

Therefore it is enough to prove that |||(Xi)|||p ≤ 4eαp
q
|||(Xi)|||q, which follows by the

following claim.

Claim. Suppose that Y is a symmetric r.v. with moments growing α-regularly. Let p, q
be positive even integers such that p ≥ 2q and E|1 + Y |q ≤ eA for some A ≤ q. Then
E|1 + q

4eαp
Y |p ≤ epA/q.

To show the claim first notice that

E|1 + Y |q = 1 +

q/2∑
k=1

(
q

2k

)
E|Y |2k ≥ 1 +

q/2∑
k=1

( q
2k

)2k
E|Y |2k ≥ 1 + E|Y |q.

In particular, ‖Y ‖q ≤ (eA − 1)1/q ≤ e. On the other hand,

E
∣∣∣∣1 +

q

4eαp
Y

∣∣∣∣p = 1 +

p/2∑
k=1

(
p

2k

)
E
∣∣∣∣ q

4eαp
Y

∣∣∣∣2k ≤ 1 +

p/2∑
k=1

( q

8αk

)2k
E|Y |2k.

Since α ≥ 1 we obviously have

1 +

q/2∑
k=1

( q

8αk

)2k
E|Y |2k ≤ E|1 + Y |q ≤ eA.

The α-regularity of moments of Y yields

p/2∑
k=q/2+1

( q

8αk

)2k
E|Y |2k ≤

p/2∑
k=q/2+1

(
1

4
‖Y ‖q

)2k

≤
(

1

4
‖Y ‖q

)q ∞∑
l=1

(e
4

)2l
≤ ‖Y ‖qq.

Thus

E
∣∣∣∣1 +

q

4eαp
Y

∣∣∣∣p ≤ eA + ‖Y ‖qq ≤ 2eA − 1 ≤ e2A ≤ epA/q,

which completes the proof of the claim and of the lemma.

We finish this section with the observation that will allow us to compare regular r.v.s
with variables with log-concave tails.

Lemma 14. Let a nondecreasing function f : R+ → R+ satisfy

f(cλt) ≥ λf(t), for λ ≥ 1, t ≥ t0,

where t0 ≥ 0, c ≥ 2 are some constants. Then there is a convex function g : R+ → R+

such that
g(t) ≤ f(t) ≤ g(c2t), for t ≥ ct0,

and g(t) = 0 for t ∈ [0, ct0].
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Proof. We set g(t) = 0 for t ∈ [0, ct0] and

g(t) :=

∫ t

ct0

sup
ct0≤y≤x

f(y/c)

y
dx for t ≥ ct0.

Then g is convex as an integral of a nondecreasing function. For t ≥ x ≥ ct0 we have
supct0≤y≤x f(y/c)/y ≤ f(t)/t, as f(λy)/(λy) ≥ f(y/c)/y for y ≥ ct0 and λ ≥ 1. Thus

g(t) ≤ (t− ct0)
f(t)

t
≤ f(t), for t ≥ ct0.

Moreover, for t ≥ ct0

g(ct) =

∫ ct

ct0

sup
ct0≤y≤x

f(y/c)

y
dx ≥

∫ ct

t

sup
ct0≤y≤x

f(y/c)

y
dx

≥ (ct− t)f(t/c)

t
= (c− 1)f(t/c) ≥ f(t/c),

hence g(c2t) ≥ f(t) for t ≥ ct0.

4 Proofs

4.1 Sudakov minoration principle

The main goal of this section is to prove Theorem 3. The strategy of the proof is to reduce
the problem involving random variables with moments growing regularly to the case of
random variables with log-concave tails, for which the minoration is known (Theorem 1).
This reduction hinges on the idea that the tail functions of random variables with regular
growth of moments ought to be close to log-concave functions as, conversely, log-concave
random variables are regular.

Proposition 15. Let α ≥ 1. There exist constants Tα, Lα such that for any X ∈ Rα

there is a nondecreasing function M : [0,∞)→ [0,∞] which is convex, M(Tα) = 0, and
satisfies

M(t) ≤ N(t) ≤M(Lαt), for t ≥ Tα, (9)

where N(t) = − lnP(|X| > t).

Proof. Fix α ≥ 1. We begin with showing that there is a constant κα such that for any
X ∈ Rα,

N(καλt) ≥ λN(t), λ ≥ 1, t ≥ 1− 1/e. (10)

When ‖X‖∞ <∞ it is enough to prove this assertion for t < (1−1/e)‖X‖∞ as, providing
that κα ≥ (1− 1/e)−1, for t ≥ (1− 1/e)‖X‖∞ we have N(καλt) ≥ N (‖X‖∞) =∞.

11



So, fix λ ≥ 1 and 1 − 1/e ≤ t < (1 − 1/e)‖X‖∞. There exists q ≥ 2 such that
t = (1− 1/e)‖X‖q. Pick also p ≥ q so that λ = p/q. By the Paley-Zygmund inequality
(8) and by the assumption that X ∈ Rα we obtain

N(t) = N ((1− 1/e)‖X‖q) ≤ N
(
(1− 1/e)1/q‖X‖q

)
= − lnP(|X|q > (1− 1/e)E|X|q) ≤ − ln

(
1

e2

(
‖X‖q
‖X‖2q

)2q
)

≤ 2 + q ln
[
(2α)2

]
≤ q ln

(
e(2α)2

)
=: qbα. (11)

On the other hand, setting κα = ebα(1 − 1/e)−1α, with the aid of the assumption that
X ∈ Rα and Chebyshev’s inequality, we get

N(καλt) = N

(
ebαα

p

q
‖X‖q

)
≥ N

(
ebα‖X‖p

)
= − lnP(|X|p > epbαE|X|p) ≥ pbα = λqbα. (12)

Joining inequalities (11) and (12) we get (10) with κα = 4e2

e−1α
3.

By virtue of this sublinear property (10), Lemma 14 applied to f = N , c = κα, and
t0 = 1− 1/e finishes the proof, providing the constants

Lα = κ2α =

(
4e2

e− 1
α3

)2

, Tα = καt0 = 4eα3.

Proof of Theorem 3. We fix p ≥ 2, T ⊂ `2 such that |T | ≥ ep and ‖Xs − Xt‖p ≥ u for
all distinct s, t ∈ T . We are to show that E sups,t∈T (Xs −Xt) ≥ καu for a constant κα
which depends only on α. By Lemma 11 we may assume that r.v.s Xi are symmetric.

Proposition 15 yields that the tail functions Ni(t) := − lnP(|Xi| > t) of the variables
Xi are controlled by the convex functions Mi(t), apart from t ≤ Tα, i.e. we have Mi(t) ≤
Ni(t) ≤ Mi(Lαt) only for t ≥ Tα. To gain control also for t ≤ Tα, define the symmetric
random variables

X̃i = (sgnXi) max{|Xi|, Tα},

so that their tail functions Ñi(t) = − lnP(|X̃i| > t),

Ñi(t) =

{
0, t < Tα

Ni(t), t ≥ Tα
,

satisfy
Mi(t) ≤ Ñi(t) ≤Mi(Lαt) for all t ≥ 0. (13)

12



This allows us to construct a sequence Y1, Y2, . . . of independent symmetric r.v.s with
log-concave tails given by P(|Yi| > t) = e−Mi(t) such that

|Yi| ≥ |X̃i| ≥
1

Lα
|Yi|. (14)

Define the canonical processes X̃t :=
∑∞

i=1 tiX̃i and Yt :=
∑∞

i=1 tiYi, t ∈ `2.
Since |Yi| ≥ |Xi| and variables Yi and Xi are symmetric we get for s, t ∈ T , s 6= t,

‖Ys − Yt‖p =

∥∥∥∥∥
∞∑
i=1

(si − ti)|Yi|εi

∥∥∥∥∥
p

≥

∥∥∥∥∥
∞∑
i=1

(si − ti)|Xi|εi

∥∥∥∥∥
p

= ‖Xs −Xt‖p ≥ u,

where the first inequality follows by contraction principle (6) as |Yi| ≥ |X̃i| ≥ |Xi|. Hence
we can apply Theorem 1 to the canonical process (Yt) and obtain

2E sup
t∈T

Yt = E sup
s,t∈T

(Ys − Yt) ≥ κlctu. (15)

To finish the proof it suffices to show that E supt∈T Xt majorizes E supt∈T Yt. Clearly,

E sup
t∈T

Xt ≥ E sup
t∈T

X̃t − E sup
t∈T

(X̃t −Xt). (16)

Recall that by the definition of X̃i, |X̃i−Xi| = |Tα−Xi|1{|Xi|≤Tα} ≤ Tα. As a consequence,

the supremum of the canonical process E supt∈T (X̃t−Xt) is bounded by the supremum of
the Bernoulli process E supt∈T

∑
tiTαεi. Indeed, using the symmetry of the distribution

of the variables X̃i −Xi and contraction principle (7),

E sup
t∈T

(X̃t −Xt) = EXEε sup
t∈T

∞∑
i=1

ti|X̃i −Xi|εi ≤ Eε sup
t∈T

∞∑
i=1

tiTαεi.

Since Xi ∈ Rα we get by Hölder’s inequality,

1 = EX2
i = EX4/3

i X
2/3
i ≤ ‖Xi‖4/34 ‖Xi‖2/31 ≤ (2α‖Xi‖2)4/3‖Xi‖2/31 = (2α)4/3(E|Xi|)2/3

and thus E|Xi| ≥ (2α)−2. Hence by Jensen’s inequality

E sup
t∈T

Xt = EεEX sup
t∈T

∞∑
i=1

ti|Xi|εi ≥ Eε sup
t∈T

∞∑
i=1

tiEX |Xi|εi ≥
1

(2α)2
E sup

t∈T

∞∑
i=1

tiεi.

As a result,
E sup

t∈T
(X̃t −Xt) ≤ (2α)2TαE sup

t∈T
Xt,
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and by (16),

E sup
t∈T

Xt ≥
1

1 + (2α)2Tα
E sup

t∈T
X̃t. (17)

Finally, notice that, by virtue of contraction principle (7), the second inequality of (14)
implies that

E sup
t∈T

X̃t ≥
1

Lα
E sup

t∈T
Yt. (18)

Estimates (15), (17) and (18) yield

E sup
s,t∈T

(Xs −Xt) = 2E sup
t∈T

Xt ≥
2

Lα(1 + (2α)2Tα)
E sup

t∈T
Yt ≥

κlct
Lα(1 + (2α)2Tα)

u.

Proof of Theorem 5. Using a symmetrization argument we may assume that the vari-
ables Xi are symmetric. Let variables X̃i, Yi and the related canonical processes be as in
the proof of Theorem 3. Since the variables Yi have log-concave tails we get by [5](

E sup
t∈T
|Yt|p

)1/p

≤ C

(
E sup

t∈T
|Yt|+ sup

t∈T
(E|Yt|p)1/p

)
.

Estimate |Yi| ≥ |Xi| and the contraction principle yield

E sup
t∈T
|Xt|p ≤ E sup

t∈T
|Yt|p.

We showed above that

E sup
t∈T
|Yt| ≤ Lα(1 + (2α)2Tα)E sup

t∈T
|Xt|.

Finally, the contraction principle together with the bounds |Yi| ≤ Lα|X̃i|, |Xi− X̃i| ≤ Tα
and E|Xi| ≥ (2α)−2 imply

‖Yt‖p ≤ Lα‖X̃t‖p ≤ Lα‖Xt‖p + LαTα

∥∥∥∥∥
∞∑
i=1

tiεi

∥∥∥∥∥
p

≤ Lα(1 + Tα(2α)2)‖Xt‖p.

We conclude this section with the proof of Proposition 4 showing that in the i.i.d. case
the Sudakov minoration principle and the α-regular growth of moments are equivalent.
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Proof of Proposition 4. Let us fix p ≥ q ≥ 2 and for 1 ≤ m ≤ n consider the following
subset of `2

T = T (m,n) =

{
t ∈ {0, 1}N :

n∑
i=1

ti = m, ti = 0, i > n

}
.

Then |T | =
(
n
m

)
≥ (n/m)m ≥ ep if n ≥ mep/m. Moreover, for any s, t ∈ T , s 6= t, say

with sj 6= tj we have ‖Xs−Xt‖p ≥ ‖Xj‖p. Thus the Sudakov minoration principle yields
for any n ≥ mep/m,

κ‖Xi‖p ≤ E sup
s,t∈T

(Xs −Xt) ≤ 2E sup
I⊂[n]
|I|=m

∑
i∈I

|Xi| = 2E
m∑
k=1

X∗k , (19)

where (X∗1 , X
∗
2 , . . . , X

∗
n) is the nonincreasing rearrangement of (|X1|, |X2|, . . . , |Xn|).

We have

P(X∗k ≥ t) = P

(
n∑
i=1

1{|Xi|≥t} ≥ k

)
≤ 1

k

n∑
i=1

E1{|Xi|≥t} =
n

k
P(|Xi| ≥ t) ≤ n

k

‖Xi‖qq
tq

.

Integration by parts shows that

EX∗k =

∫ ∞
0

P(X∗k ≥ t) ≤
∫ ∞
0

min

{
1,
n

k

‖Xi‖qq
tq

}
≤ C

(n
k

)1/q
‖Xi‖q.

Combining this with (19) we get (recall that q ≥ 2 and constant C may differ at each
occurrence)

κ‖Xi‖p ≤ C
m∑
k=1

(n
k

)1/q
‖Xi‖q ≤ Cn1/qm1−1/q‖Xi‖q.

Taking m = dp/qe and n = dmep/me we find that n1/qm1−1/q ≤ 4ep/q. Hence

‖Xi‖p ≤
C

κ

p

q
‖Xi‖q

which finishes the proof.

4.2 Lower bounds

As in the case of the Sudakov minoration principle the proof of the lower bound in
Theorem 6 is based on the corresponding result for the canonical processes built on
variables with log-concave tails, that is Theorem 2.
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Proposition 16. Let α ≥ 1, β > 1. For any r > 1 there exists a constant C(α, β, r)
such that for X ∈ Rα ∩ Sβ we have

N(rt) ≤ C(α, β, r)N(t), t ≥ 2, (20)

where N(t) := − lnP(|X| > t).

Proof. Fix t ≥ 2 and define

q := inf{p ≥ 2: ‖X‖βp ≥ t}.

Since X ∈ Rα∩Sβ, the function p 7−→ ‖X‖p is finite and continuous on [2,∞), moreover
‖X‖2 = 1 and ‖X‖∞ =∞. Hence, if t ≥ ‖X‖2β, we have t = ‖X‖βq and by Chebyshev’s
inequality,

N(t) = N(‖X‖βq) ≥ N(2‖X‖q) = − lnP(|X|q > 2qE|X|q) ≥ q ln 2.

If 2 ≤ t < ‖X‖2β, then q = 2 and

N(t) ≥ N(2) = − lnP(|X|2 > 4E|X|2) ≥ ln 4 = q ln 2.

Set an integer k such that r ≤ 2k−2. Then, using consecutively the definition of q,
the assumption that X ∈ Sβ, the Paley-Zygmund inequality, and the assumption that
X ∈ Rα, we get the estimates

N(rt) ≤ N
(
2k−2‖X‖βq

)
≤ N

(
1

2
‖X‖βkq

)
= − lnP

(
|X|βkq > 2−β

kqE|X|βkq
)

≤ − ln

(
1

4

(
‖X‖βkq
‖X‖2βkq

)2βkq
)
≤ ln 4 + 2βkq ln(2α) ≤ q(ln 2 + 2βk ln(2α)). (21)

Combining the above estimates we obtain the assertion with C(α, β, r) = (ln 2 +
2βk ln(2α))/ ln 2 and k = k(r) being an integer such that 2k−2 ≥ r.

Remark 7. Taking in (21) t = 2 which corresponds to q = 2 we find that

N(s) ≤ 2(ln 2 + 2βk ln(2α)), for s < 2k−1,

which means that the tail distribution function of a variable X ∈ Rα ∩ Sβ at a certain
value s is bounded with a constant not depending on the distribution of X but only on
the parameters α, β and of course the value of s.

Proof of Theorem 6. In view of (4) we are to address only the lower bound on E supt∈T Xt.
A symmetrization argument shows that we may assume that variables Xi are symmetric.

Let Lα, Tα be the constants as in Proposition 15. Given symmetric Xi let Yi be
random variables defined as in the proof of Theorem 3, i.e. Yi’s are independent symmetric
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r.v.s having log-concave tails P(|Yi| > t) = e−Mi(t). Due to Proposition 16 for r = 2Lα
we know that the functions Ni(t) := −P(|Xi| > t) satisfy

Ni(2Lαt) ≤ γN(t), t ≥ 2,

where γ = γ(α, β) := C(α, β, 2Lα).
What then can be said about Mi? Using (9) we find that for t ≥ T̃α := max{2, Tα}

Mi(2Lαt) ≤ Ni(2Lαt) ≤ γNi(t) ≤ γMi(Lαt),

which means that Mi are almost of moderate growth, namely for tα := LαT̃α we have

Mi(2t) ≤ γMi(t), t ≥ tα.

Therefore, we improve the function Mi putting on the interval [0, tα] an artificial lin-
ear piece t 7→ λ(i, α)t, where λ(i, α) := Mi(tα)/tα. In other words, take the numbers
p(i, α) := P(|Yi| > tα) = e−Mi(tα) and let Ui be a sequence of independent random
variables with the following symmetric truncated exponential distribution,

P(|Ui| > t) =

{
e−λ(i,α)t−p(i,α)

1−p(i,α) , t ≤ tα

0, t > tα
,

which are in addition independent of the sequences (Xi) and (Yi). Define

Zi := Yi1{|Yi|>tα} + Ui1{|Yi|≤tα}.

Let

M̃i(t) := − lnP(|Zi| > t) =

{
λ(i, α)t, t ≤ tα,

Mi(t), t > tα.

Then M̃i are convex functions of moderate growth

M̃i(2t) ≤ 2γM̃i(t), t ≥ 0.

Thus Theorem 2 can be applied to the canonical process Zt :=
∑

i tiZi and we get

E sup
t∈T

Zt ≥
1

C1(α, β)
γZ(T ),

where C1(α, β) = Clct(2γ).
What is left is to compare both the suprema and the functionals γ’s of the processes

(Xt) and (Zt). The former is easy, because we have Mi(t) ≤ M̃i(t), t ≥ 0, which allows
to take samples such that |Yi| ≥ |Zi|, and consequently, thanks to contraction principle
(7), E supt∈T Zt ≤ E supt∈T Yt. Joining this with estimates (18) and (17) we derive

E sup
t∈T

Zt ≤ Lα(1 + (2α)2Tα)E sup
t∈T

Xt.
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For the latter, we would like to show C(α, β)γZ ≥ γX . It is enough to compare the
metrics, i.e. to prove that C(α, β)‖Zs − Zt‖p ≥ ‖Xs −Xt‖p for p ≥ 1. We proceed as in
the proof of Theorem 3. We have

‖Zs − Zt‖p ≥ ‖Ys − Yt‖p − ‖(Ys − Zs)− (Yt − Zt)‖p. (22)

In the proof of Theorem 3 it was established that ‖Ys − Yt‖p ≥ ‖Xs − Xt‖p. For the
second term we use the symmetry of the variables Yi−Zi, contraction principle (6), and
the fact that |Yi − Zi| ≤ 2tα, obtaining

‖(Ys − Zs)− (Yt − Zt)‖p =

∥∥∥∥∥∑
i

(si − ti)|Yi − Zi|εi

∥∥∥∥∥
p

≤ 2tα

∥∥∥∥∥∑
i

(si − ti)εi

∥∥∥∥∥
p

. (23)

Now we compare ‖Zs − Zt‖p with moments of increments of the Bernoulli process. By
Jensen’s inequality we get

‖Zs − Zt‖p =

∥∥∥∥∥∑
i

(si − ti)|Zi|εi

∥∥∥∥∥
p

≥ min
i

E|Zi|

∥∥∥∥∥∑
i

(si − ti)εi

∥∥∥∥∥
p

. (24)

Combining (22), (23), and (24) yields

‖Zs − Zt‖p ≥
(

1 +
2tα

mini E|Zi|

)−1
‖Xs −Xt‖p.

To finish it suffices to prove that E|Zi| ≥ cα,β for some positive constant cα,β, which
depends only on α and β. This is a cumbersome yet simple calculation. Recall the
distributions of the variables Yi and Ui, the fact that they are independent, and observe
that

E|Zi| = E|Yi|1{|Yi|>tα} + E|Ui|1{|Yi|≤tα}
≥ tαP(|Yi| > tα) + (E|Ui|)P(|Yi| ≤ tα)

= tαp(i, α) + (1− p(i, α))

∫ tα

0

e−λ(i,α)t − p(i, α)

1− p(i, α)
dt

=
1

λ(i, α)

(
1− e−λ(i,α)tα

)
=

tα
Mi(tα)

(
1− e−Mi(tα)

)
.

The last expression is nonincreasing with respect to Mi(tα). Since Mi(tα) ≤ Ni(tα) (see
(9)), we are done provided that we can bound Ni(tα) above. Thus, Remark 7 completes
the proof.
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Proof of Corollary 8. Proposition 6.1 in [8] yields for p ≥ 1,(
E sup
s,t∈T
|Yt − Ys|p

)1/p

≤ C(γY (T ) + sup
s,t∈T
‖Ys − Yt‖p) ≤ C(γX(T ) + sup

s,t∈T
‖Xs −Xt‖p)

≤ C(α, β)

(
E sup
s,t∈T
|Xs −Xt|+ sup

s,t∈T
‖Xs −Xt‖p

)
≤ (C(α, β) + 1)

∥∥∥∥ sup
s,t∈T
|Xs −Xt|

∥∥∥∥
p

,

where the third inequality follows by Theorem 6. Hence by Chebyshev’s inequality we
obtain

P

(
sup
s,t∈T
|Yt − Ys| ≥ C1(α, β)

∥∥∥∥ sup
s,t∈T
|Xs −Xt|

∥∥∥∥
p

)
≤ e−p for p ≥ 1. (25)

Theorem 5 (used for the set T − T ) and Lemma 13 yield for p ≥ q ≥ 1,∥∥∥∥ sup
s,t∈T
|Xs −Xt|

∥∥∥∥
p

≤ C2(α)
p

q

∥∥∥∥ sup
s,t∈T
|Xs −Xt|

∥∥∥∥
q

.

Hence, by the Paley-Zygmund inequality we get for q ≥ 1,

P

(
sup
s,t∈T
|Xt −Xs| ≥

1

2

∥∥∥∥ sup
s,t∈T
|Xs −Xt|

∥∥∥∥
q

)
≥ 1

4

(
1

2C2(α)

)2q

.

Applying the above estimate with q = p/(2 ln(2C2(α))) we get

P

(
sup
t,s∈T
|Xt −Xs| ≥

1

2C2(α) ln(2C2α)

∥∥∥∥ sup
s,t∈T
|Xs −Xt|

∥∥∥∥
p

)
≥ 1

4
e−p for p ≥ 2 ln(2C2(α)).

(26)
The assertion easily follows by (25) and (26).

Proof of Corollary 9. By Theorem 6 we may find an admissible sequence of partitions
(An) such that

sup
t∈T

∞∑
n=0

∆2n(An(t)) ≤ C(α, β)E sup
s,t∈T

(Xs −Xt). (27)

For any A ∈ An let us choose a point πn(A) ∈ A and set πn(t) := πn(An(t)).
Let Mn :=

∑n
j=0Nj for n = 0, 1, . . . (recall that we denote Nj = 22j for j ≥ 1 and

N0 = 1). Then log(Mn + 2) ≤ 2n+1. Notice that there are |An| ≤ Nn points of the
form πn(t) − πn−1(t), t ∈ T . So we may set s1 := 0 and for n = 1, 2, . . . define sk,
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Mn−1 < k ≤ Mn as some rearrangement (with repetition if |An| < Nn) of points of the
form (πn(t)− πn−1(t))/d2n+1(πn(t), πn−1(t)), t ∈ T . Then ‖Xsk‖log(k+2) ≤ 1 for all k.

Observe that

‖t− πn(t)‖2 = ‖Xt −Xπn(t)‖2 ≤ ∆2(An(t)) ≤ ∆2n(An(t))→ 0 for n→∞.

For any s, t ∈ T we have π0(s) = π0(t) and thus

s− t = lim
n→∞

(πn(s)− πn(t)) = lim
n→∞

(
n∑
k=1

(πk(s)− πk−1(s))−
n∑
k=1

(πk(t)− πk−1(t))

)
.

This shows that
T − T ⊂ R conv{±sk : k ≥ 1},

where

R := 2 sup
t∈T

∞∑
n=1

d2n+1(πn(t), πn−1(t)) ≤ 2 sup
t∈T

∞∑
n=1

∆2n+1(An−1(t))

≤ C(α) sup
t∈T

∞∑
n=1

∆2n−1(An−1(t)) ≤ C(α, β)E sup
s,t∈T

(Xs −Xt),

where the second inequality follows by Lemma 13 and the last one by (27). Thus it is
enough to define tk := Rsk, k ≥ 1.
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