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Abstract. We obtain Rosenthal-type inequalities with sharp constants for moments of sums

of independent random variables which are mixtures of a fixed distribution. We also identify

extremisers in log-concave settings when the moments of summands are individually constrained.
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1. Introduction

Rosenthal’s inequality, discovered in [35] in connection with questions in the geometry of Banach

spaces, provides matching lower and upper bounds for p-norms of sums of independent symmetric

random variables in terms of norms of the individual summands, at the expense of a multiplicative

constant depending only on p. Recall that a random variable X is symmetric if it has the same

distribution as −X (or, equivalently, if it has the same distribution as εX, where ε is a Rademacher

variable independent of X). Fix p > 2 and let X1, X2, . . . be independent symmetric random

variables in Lp. Plainly, for any n ∈ N we have∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

≥

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
2

=

 n∑
j=1

‖Xj‖22

1/2

,

where here and throughout ‖Y ‖p = (E|Y |p)1/p is the p-norm of a random variable Y . Moreover,

for independent Rademacher random variables ε1, ε2, . . . independent of X1, X2, . . ., we have∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

p

= EXEε

∣∣∣∣∣∣
n∑
j=1

εjXj

∣∣∣∣∣∣
p

≥ EX

Eε

∣∣∣∣∣∣
n∑
j=1

εjXj

∣∣∣∣∣∣
2

p/2

= EX

 n∑
j=1

|Xj |2
p/2

≥
n∑
j=1

E|Xj |p,

thus

(1)

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

≥ max


 n∑
j=1

‖Xj‖22

1/2

,

 n∑
j=1

‖Xj‖pp

1/p


and the multiplicative constant 1 in front of the maximum in this inequality is clearly optimal

(simply consider n = 1). Rosenthal in his influential paper [35] established a reversal of (1): for

every 2 < p <∞, there is a constant Cp which depends only on p such that for every n ∈ N and
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every independent symmetric random variables X1, . . . , Xn in Lp, we have

(2)

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

≤ Cp max


 n∑
j=1

‖Xj‖22

1/2

,

 n∑
j=1

‖Xj‖pp

1/p
 .

Rosenthal’s original motivation in [35] was to construct new subspaces of Lp(µ) spaces, answer-

ing important questions raised in [25] and [26]. His fundamental inequality (2), which substantially

generalises Khinchin’s inequality, has also received significant attention in probabilistic literature,

prompting several fruitful lines of research. To mention only some in passing, there are gen-

eralisations to dependent settings of martingale differences, multilinear forms, and the like (see

[4, 13, 17, 6, 30, 32]), random vectors in Banach spaces (see [38, 32]), noncommutative settings

(see [20, 19, 21, 22]), as well as many works devoted to optimal inequalities with sharp constants

in various setups (see, e.g. [34, 5, 33, 18, 39, 9, 15, 37, 28, 14, 36, 29, 31]).

To describe the last direction in more detail, let Cp denote the best constant in Rosenthal’s

inequality, namely the least Cp such that (2) holds for every n and every sequence of independent

symmetric random variables X1, X2, . . . in Lp. Rosenthal’s proof gives Cp = O(pp). The sharp

behaviour Cp = Θ(p/ log p) as p→∞ was established by Johnson, Schechtman and Zinn in [18].

This can also be deduced from Lata la’s precise formula for moments of sums in terms of marginal

distributions (see [23, Corollary 3]). The exact value of Cp is known to be

(3) Cp =

(1 + ‖Z‖pp)1/p, 2 < p ≤ 4,∥∥∥∑ξ
j=1 εj

∥∥∥
p
, p ≥ 4,

where Z is a standard Gaussian random variable and ξ is a Poisson random variable with parameter

1, independent of the Rademacher sequence ε1, ε2, . . .. For p ≥ 4, the value of Cp was found by

Utev in [39] (continuing investigations of Prokhorov from [34] and Pinelis and Utev from [33]).

When 2 < p < 4, (3) was proven by Ibragimov and Sharakhmetov in [15] (building on Utev’s

approach), and, independently, by Figiel, Hitczenko, Johnson, Schechtman and Zinn in [9] (with

different methods treating a more general case of Orlicz functionals in place of moments).

The question of identifying the value of Cp can be restated as an extremal problem, since

(4) Cp = sup


∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

: n ∈ N and max
{ n∑
j=1

‖Xj‖22 ,
n∑
j=1

‖Xj‖pp
}
≤ 1

 .

This reformulation has led to the study of many Rosenthal-type extremal problems, in which

the supremal value of the p-norm of a sum of independent variables is sought for under more

refined assumptions, including constraints of the form max
{∑n

j=1 ‖Xj‖22 , λ
∑n
j=1 ‖Xj‖pp

}
≤ 1

for suitable parameters λ > 0, or max{‖Xj‖2, λj‖Xj‖p} ≤ µj , where λj , µj > 0. As we shall see

in the next section, (asymptotic) maximisers of such multi-constraint problems can frequently be

identified which, in turn, often leads to optimal constants in various Rosenthal-type inequalities.

The present paper is concerned with the following question: what is the nature of maximisers of

Rosenthal-type extremal problems if we a priori assume that the independent variables X1, X2, . . .

have additional properties beyond symmetry, such as unimodality or log-concavity? Can one

identify the optimal value of the corresponding optimal constant Cp under these assumptions?

Building on Utev’s approach from [39], we fully answer these questions in the case of general mix-

tures and we also characterize the extremising sequences in the log-concave case, using an effective

refinement of the one-dimensional localisation principle (see [27, 10, 11]) developed in [8].
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2. Results

2.1. General mixtures. Let V be a symmetric random variable. We say that a random variable

X is a V -mixture if it has the same distribution as RV for some nonnegative random variable

R, independent of V . In particular, when V is a Rademacher random variable, V -mixtures are

exactly symmetric random variables and when V is uniform, V -mixtures are exactly symmetric

unimodal random variables (see, e.g., [24, Lemma 1]). When V is standard Gaussian random

variable, we refer to a V -mixture as a (symmetric) Gaussian mixture (see [2, 7]).

Following Utev [39], for p > 2, an integer n ≥ 1, sequences a = (a1, . . . , an), b = (b1, . . . , bn) of

positive numbers and positive parameters A,B, we define the classes of n-tuples X = (X1, . . . , Xn)

of independent V -mixtures with constrained moments as follows:

(5) MV (n, p, a, b) =
{
X : each Xj is a V -mixture with ‖Xj‖2 ≤ aj and ‖Xj‖p ≤ bj

}
,

and

(6) UV (n, p,A,B) =

X : each Xj is a V -mixture and

n∑
j=1

‖Xj‖22 ≤ A2,

n∑
j=1

‖Xj‖pp ≤ Bp
 ,

where we have implicitly assumed that aj ≤ bj for every j (for feasibility). We shall simply writeM
and U to denoteMV and UV with V being a Rademacher random variable, that is for the classes

of independent symmetric random variables satisfying the constraints. Moreover,M′V and U ′V will

denote the subclasses of MV and UV respectively, consisting of all the tuples X = (X1, . . . , Xn)

of identically distributed V -mixtures satisfying the imposed moment constraints.

Our first theorem is the solution of the following Rosenthal-type extremal problem for mixtures.

Theorem 1. Fix A,B > 0 and let V be a symmetric random variable. For 2 < p < 4, we have

(7) sup

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

: n ∈ N and X ∈ UV (n, p,A,B)

 = Bp + ‖Z‖ppAp,

where Z is a standard Gaussian, provided that V is in Lp+δ for some δ > 0. For p ≥ 4, we have

(8) sup

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

: n ∈ N and X ∈ UV (n, p,A,B)

 =

(
Bp

A2

‖V ‖22
‖V ‖pp

) p
p−2

E

∣∣∣∣∣∣
ξ∑
j=1

Vj

∣∣∣∣∣∣
p

,

provided that V is in Lp, where V1, V2, . . . are i.i.d. copies of V and ξ is an independent Poisson

random variable with parameter
(
A
B
‖V ‖p
‖V ‖2

) 2p
p−2

(1− P (V = 0)).

Observe that when 2 < p < 4, the solution (7) of the extremal problem is independent of the

law of V . Theorem 1 readily implies the following optimal Rosenthal inequality for mixtures.

Corollary 2. The best constant Cp,V such that for any sequence X1, X2, . . . of independent V -

mixtures and any n ≥ 1, we have the inequality∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

≤ Cp,V max


 n∑
j=1

‖Xj‖22

1/2

,

 n∑
j=1

‖Xj‖pp

1/p


is

(9) Cp,V =


(1 + ‖Z‖pp)1/p, 2 < p ≤ 4,(
‖V ‖22
‖V ‖pp

) 1
p−2

∥∥∥∑ξ
j=1 Vj

∥∥∥
p
, p ≥ 4,
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where Z is a standard Gaussian random variable, V1, V2, . . . are i.i.d. copies of V and ξ is an

independent Poisson random variable with parameter
(
‖V ‖p
‖V ‖2

) 2p
p−2

(1− P (V = 0)).

Proof. By its definition and homogeneity, Cp,V satisfies

Cp
p,V = sup

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

: n ∈ N and X ∈ UV (n, p, 1, 1)

 ,

and thus (9) follows immediately from (7) and (8) with A = B = 1. �

Theorem 1 specialised to Gaussian mixtures gives the sharp constants in Rosenthal’s inequality

for sums of nonnegative random variables. This recovers and provides a new proof of the main

results obtained independently in [16] by Ibragimov and Sharakhmetov and in [37] by Schechtman

which use different approaches: the former adapts Utev’s arguments, whereas the latter reduces

the problem to sums of independent Poisson random variables using convexity and then optimises

over their parameters (in an ingenious way).

Corollary 3 ([16, 37]). Let A,B > 0. We have

(10) sup E

 n∑
j=1

Xj

p

=

Ap +Bp, 1 < p < 2,(
Bp

A

) p
p−1 Eξp, p ≥ 2,

where ξ is a Poisson random variable with parameter
(
A
B

) p
p−1 and the supremum is taken over all

n ≥ 1 and all sequences (X1, . . . , Xn) of independent, nonnegative random variables with

n∑
j=1

EXj ≤ A and

n∑
j=1

EXp
j ≤ B

p.

Proof. For a fixed sequence of independent positive random variables (X1, . . . , Xn), we consider

the sequence (
√
X1Z1, . . . ,

√
XnZn) of independent Gaussian mixtures and apply Theorem 1 (we

note that
∑ξ
j=1 Zj has the same distribution as

√
ξZ1). �

2.2. Log-concave random variables. An important step in Utev’s approach leading to the

optimal Rosenthal constant (3) for p > 4 is a reduction to 3-point distributions: given n and

positive sequences a, b, it turns out that supX∈M(n,p,a,b) E
∣∣∣∑n

j=1Xj

∣∣∣p is attained at the (uniquely

determined) 3-point distribution which attains the moment constraints as equalities (for details,

see Theorem 8 in the next section). Our main result here, put informally, is a log-concave analogue

of this. Recall that a random variable X is log-concave if it has a density of the form e−φ for a

convex function φ : R→ (−∞,+∞]. Log-concave distributions arise naturally in convex geometry

and geometric functional analysis (see e.g. [1, 3]). To state our theorem rigorously, we first need

to describe the relevant extremal log-concave distributions (whose convex potentials φ turn out

to be piecewise linear with at most two pieces on the positive semiaxis).

For two parameters α ∈ [0,+∞) and γ ∈ (0,+∞], we define the log-concave density

(11) fα,γ(x) =
1

2(α+ 1/γ)
exp {−γ(|x| − α)+}

with the convention that γ = +∞, α > 0 gives the uniform density on [−α, α] and that α = 0,

γ < +∞ gives the two-sided exponential density γ
2 e
−γ|x|. For α ∈ (0,+∞] and γ ∈ [0,+∞), let

(12) gα,γ(x) =
γ

2(1− e−αγ)
exp {−γ|x|}1{|x|≤α}
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with the convention that γ = 0, α > 0 gives the uniform density on [−α, α] and that α = +∞,

γ > 0 gives the two-sided exponential density γ
2 e
−γ|x|. We set

(13) F− =
{
fα,γ : α ∈ [0,+∞), γ ∈ (0,+∞]

}
and

(14) F+ =
{
gα,γ : α ∈ (0,+∞], γ ∈ [0,+∞)

}
to be the two-parameter family of such densities. The following lemma describes the set of feasible

moment parameters. We defer its simple but technical proof to the next section.

Lemma 4. Let p > 2. For every a, b > 0 such that

(15) 31/2(p+ 1)−1/p ≤ b

a
≤ 2−1/2Γ(p+ 1)1/p,

there exist unique f− ∈ F− and f+ ∈ F+ with

(16)

∫
R
x2f±(x)dx = a2 and

∫
R
|x|pf±(x)dx = bp.

Conversely, the second and p-th moment of any symmetric log-concave variable satisfy (15).

With notation set up, the main theorem of this section is the solution of a Rosenthal-type

extremal problem for symmetric log-concave random variables with all moments prescribed.

Theorem 5. Fix p > 4, n ≥ 1 and let a1, . . . , an, b1, . . . , bn > 0 be such that each ratio bj/aj

satisfies (15). Then, we have

(17) inf E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
n∑
j=1

X−j

∣∣∣∣∣∣
p

and sup E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
n∑
j=1

X+
j

∣∣∣∣∣∣
p

,

where the infimum (respectively supremum) is taken over all sequences X = (X1, . . . , Xn) of inde-

pendent symmetric log-concave random variables X1, . . . , Xn with EX2
j = a2j and E|Xj |p = bpj and

the X−j (resp. X+
j ) have the unique densities from F− (resp. F+) that satisfy the same constraints.

2.3. Random variables with log-concave tails. A symmetric random variable X is said to

have log-concave tails if TX(t) = P(|X| > t) is log-concave on [0,∞). Every log-concave random

variable has log-concave tails but the converse is not true, e.g. for Rademacher variables. A

modification of the proof of Theorem 5 allows us to also resolve the corresponding Rosenthal-type

extremal problems for variables with log-concave tails. Consider the classes of distributions

(18) G− =
{
X : TX(t) = e−a(t−b)+ for some a, b ≥ 0

}
and

(19) G+ =
{
X : TX(t) = e−at1[0,b](t) for some a, b ≥ 0

}
.

Theorem 6. Fix p > 4, n ≥ 1 and let a1, . . . , an, b1, . . . , bn > 0 be feasible sequences of second

and p-th moments of symmetric random variables with log-concave tails. Then, we have

(20) inf E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
n∑
j=1

X−j

∣∣∣∣∣∣
p

and sup E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
n∑
j=1

X+
j

∣∣∣∣∣∣
p

,

where the infimum and supremum are taken over all sequences X = (X1, . . . , Xn) of independent

symmetric random variables X1, . . . , Xn with log-concave tails, EX2
j = a2j and E|Xj |p = bpj and

the X−j (resp. X+
j ) are the unique laws in G− (resp. G+) that satisfy the same constraints.
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3. Proof of Theorem 1

We first quickly show the identity (7) for 2 < p < 4 as it follows from the case of symmetric

random variables (Rademacher mixtures) proven by Utev in [39].

Proof of (7). Since MV ⊆M and UV ⊆ U , thanks to the result for symmetric random variables

(see [9, Proposition 8.1] or equation (3) in [15]), we immediately obtain that (7) holds with “≤”

in place of “=”. To argue that “≥” holds as well, it suffices to modify the example from the proof

of [9, Proposition 8.1] by replacing the Rademacher random variables with i.i.d. copies of V . For

completeness, we now sketch this construction. Fix 0 < α < A/ ‖V ‖2 and set

(21) Xj =

 α√
n
Vj , 1 ≤ j ≤ n,

γθjVj , n < j ≤ 2n,

where V1, . . . , V2n are i.i.d. copies of V , θn+1, . . . , θ2n are i.i.d. Bernoulli random variables with

parameter λ/n, independent of the Vj , and γ, λ > 0 are parameters to be chosen soon. For r > 0,

2n∑
j=1

‖Xj‖rr = ‖V ‖rr(αrn1−r/2 + γrλ).

Thus, to ensure that X ∈ UV (n, p,A,B), it suffices to choose γ and λ such that

γ2λ =
A2

‖V ‖22
− α2 and γpλ =

Bp

‖V ‖pp
− αpn1−p/2

which is clearly possible as long as n is large enough. Using that for arbitrary independent

symmetric random variables S, T , we have E|S + T |p ≥ E|S|p +E|T |p, p > 2 (see (1), say), we get

E

∣∣∣∣∣∣
2n∑
j=1

Xj

∣∣∣∣∣∣
p

≥ E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

+

2n∑
j=n+1

E|Xj |p = αpE

∣∣∣∣∣
∑n
j=1 Vj√
n

∣∣∣∣∣
p

+ γpλ‖V ‖pp.

The family
{∣∣∣∑n

j=1 Vj√
n

∣∣∣p}
n≥1

is uniformly integrable (since it is bounded in L1+δ/p, by (2), say),

so by the central limit theorem, E
∣∣∣∑n

j=1 Vj√
n

∣∣∣p → ‖Z‖pp‖V ‖p2 as n → ∞. Moreover, γpλ‖V ‖pp =

Bp − αpn1−p/2‖V ‖pp → Bp as n→∞ and letting α→ A/‖V ‖2 finishes the argument. �

The proof of (8) requires some preparation. We first recall some of Utev’s results. Central to

his approach is the following Poissonisation estimate. For a finite nonnegative Borel measure ν

on R, we denote by Tν a random variable with characteristic function

(22) EeitTν = exp

{∫
R

(eitx − 1)dν(x)

}
, t ∈ R.

(Tν can be explicitly constructed as
∑ξ
j=1Xj , where X1, X2, . . . are i.i.d. copies of a random

variable with law 1
ν(R)ν and ξ is an independent Poisson random variable with parameter ν(R).)

As customary, B(R) denotes the σ-algebra of all Borel sets in R.

Theorem 7 (Utev, Theorem 4 in [39]). Let Φ: R → R be an even C2 function with Φ′′ convex.

For every n ∈ N and independent symmetric random variables X1, . . . , Xn, we have

(23) EΦ

 n∑
j=1

Xj

 ≤ EΦ(Tν)

6



with ν is defined by setting

(24) ν(Γ) =

n∑
j=1

P (Xj ∈ Γ \ {0}) , Γ ∈ B(R).

We will also need to use the fact that 3-point distributions are extremal among all symmetric

distributions with fixed moments.

Theorem 8 (Utev, Theorem 5 in [39]). For p ≥ 4, we have

(25) sup
X∈M(n,p,a,b)

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
n∑
j=1

(
bpj
a2j

) 1
p−2

θj,µjεj

∣∣∣∣∣∣
p

,

where the θj,µj denote i.i.d. Bernoulli random variables with parameter µj = (aj/bj)
2p
p−2 .

We are ready to prove (8). We begin with a lemma showing that i.i.d. sequences are extremal.

Lemma 9. Let p ≥ 3, A,B > 0 and let V be a symmetric random variable in Lp. We have,

(26) sup
n≥1, X∈UV (n,p,A,B)

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= sup
n≥1, X∈U ′V (n,p,A,B)

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

.

Proof. A finite nonnegative Borel measure ν on R is a V -mixture if it is of the form

ν(Γ) =

∫ ∞
0

P (rV ∈ Γ \ {0}) dη(r), Γ ∈ B(R)

for some finite nonnegative Borel measure η on (0,∞). We shall argue that both suprema in (26)

are equal to the proxy

(27) Q = sup
ν∈WV (p,A,B)

E|Tν |p,

where

WV (p,A,B) =

{
ν : ν is a V -mixture with ν({0}) = 0,

∫
R
x2dν(x) ≤ A2,

∫
R
|x|pdν(x) ≤ Bp

}
.

Step I. We have,

sup
n≥1,X∈U ′V (n,p,A,B)

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

≤ sup
n≥1,X∈UV (n,p,A,B)

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

≤ Q,

where the first inequality is clear and the second one follows from (23) for Φ(x) = |x|p.
Step II. We now have to show that

Q ≤ sup
n≥1,X∈U ′V (n,p,A,B)

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

.

To this end, fix ν ∈ WV (p,A,B). Take an integer n ≥ ν(R) and i.i.d. random variables X1, . . . , Xn

with the law specified by

P (X1 ∈ Γ) =
1

n
ν(Γ), Γ ∈ B(R) with 0 /∈ Γ

and P (X1 = 0) = 1 − 1
nν(R). Since ν is a V -mixture, the random variables Xj are also i.i.d. V -

mixtures. Moreover, X = (X1, . . . , Xn) ∈ U ′V (n, p,A,B), as ν ∈ WV (p,A,B). Note that the
7



characteristic function of
∑n
j=1Xj equals(

1− 1

n
ν(R) +

1

n

∫
R
eitxdν(x)

)n
=

(
1 +

1

n

∫
R
(eitx − 1)dν(x)

)n
,

and thus
∑n
j=1Xj converges in distribution to Tν as n→∞. By Fatou’s lemma, we get

E|Tν |p ≤ lim inf
n→∞

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

which finishes the proof of (26). �

Proof of (8). By virtue of Lemma 9, we will equivalently show (8) with U ′V in place of UV . First

we argue that “≤” holds. To this end, take an n-tuple X = (X1, . . . , Xn) of i.i.d. V -mixtures in

UV (n, p,A,B), say Xj = Rj |Vj |εj for some i.i.d. nonnegative random variables Rj and such that

the Rj , Vj , εj are all independent. Plainly,

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

= EV ER,ε

∣∣∣∣∣∣
n∑
j=1

|Vj |Rjεj

∣∣∣∣∣∣
p

,

so conditioning on the values of the Vj and applying (25) yields

EV ER,ε

∣∣∣∣∣∣
n∑
j=1

|Vj |Rjεj

∣∣∣∣∣∣
p

≤ EV Eθ,ε

∣∣∣∣∣∣
n∑
j=1

(
(Bn−1/p)p

(An−1/2)2
‖V ‖22
‖V ‖pp

) 1
p−2

|Vj |θjεj

∣∣∣∣∣∣
p

=

(
Bp

A2

‖V ‖22
‖V ‖pp

) p
p−2

E

∣∣∣∣∣∣
n∑
j=1

θjVj

∣∣∣∣∣∣
p

,

where the θj are i.i.d. Bernoulli random variables with parameter

µ =

(
An−1/2

Bn−1/p
‖V ‖p
‖V ‖2

) 2p
p−2

= n−1
(
A

B

‖V ‖p
‖V ‖2

) 2p
p−2

.

Let ν be a Borel measure specified by

(28) ν(Γ) =

(
A

B

‖V ‖p
‖V ‖2

) 2p
p−2

P (V ∈ Γ \ {0}) = nP (θ1V1 ∈ Γ \ {0}) , Γ ∈ B(R).

Then Theorem 7 yields

E

∣∣∣∣∣∣
n∑
j=1

θjVj

∣∣∣∣∣∣
p

≤ E|Tν |p.

Note that Tν has the same distribution as
∑ξ
j=1 Vj , where ξ is a Poisson random variable with

parameter ν(R), as in the statement of the theorem. This finishes the proof of the inequality “≤”

in (8). The reverse inequality follows by repeating the construction from Step II of the proof of

Lemma 9. Alternatively, recalling from the proof of Lemma 9 the notation of the classWV as well

as the proxy quantity Q, we take the measure ν defined in (28) above and rescale

ν̃(Γ) = ν

(
Γ
/(Bp

A2

‖V ‖22
‖V ‖pp

) 1
p−2

)
, Γ ∈ B(R)

to have, ν̃ ∈ WV (p,A,B), thus by the definition of Q,(
Bp

A2

‖V ‖22
‖V ‖pp

) p
p−2

E|Tν |p = E|Tν̃ |p ≤ Q,

8



which finishes the proof in view of two facts, that Tν has the same distribution as
∑ξ
j=1 Vj and

that Q equals the supremum from (8) (as shown in the proof of Lemma 9). �

4. Proof of Theorems 5 and 6

4.1. Log-concave random variables. We only consider the case of the infimum and class F−,

with the obvious modifications left out to address the case of the supremum and F+.

Proof of Lemma 4. Let f0, f1 ∈ F− be the uniform and two-sided exponential densities chosen

such that
∫
R x

2fj(x)dx = a2, j = 0, 1. Then∫
R
|x|pf0(x)dx = 3p/2(p+ 1)−1ap,

∫
R
|x|pf1(x)dx = 2−p/2Γ(p+ 1)ap

For ρ ∈ [0,+∞], let

γ = γ(ρ) = a−1

√
2 +

ρ3 + 3ρ2

3(ρ+ 1)

which is chosen such that the density gρ(x) = f ρ
γ ,γ

satisfies∫
R
x2gρ(x)dx = a2.

Since g0 = f1 and g∞ = f0, the intermediate value property gives the existence of ρ such that∫
R |x|

pgρ(x)dx = bp, as desired. The uniqueness follows from the fact that two arbitrary distinct

densities from F− intersect each other at most twice on (0,∞). The converse implication is

classical, see for instance [8, Remark 14] and [12, Proposition 5.5]. �

We need several more ancillary results.

Lemma 10. Let g be an even log-concave density on R and let f ∈ F−. Then g− f changes sign

at most 3 times on (0,+∞).

Proof. Say f = fα,γ . Examining log g − log f on (0,+∞), this difference clearly changes sign at

most once on (0, α] (by monotonicity of log g, since log f is constant there) and at most twice on

[α,+∞) (by concavity of log g, since log f is linear there). �

Lemma 11. Let p > 4. The following function

(29) ψp(x) = |
√
x+ 1|p + |

√
x− 1|p − 2xp/2, x ≥ 0

is strictly convex on (0,+∞).

Proof. Let g(x) = |x+ 1|p + |x− 1|p − 2xp, x ≥ 0. We have ψp(x) = g(
√
x) and ψ′p(x) = g′(

√
x)

2
√
x

.

Since g′(0) = 0, it suffices to show that g′ is convex, because then ψ′p is increasing. For x > 1, we

have
1

p(p− 1)(p− 2)
g′′′(x) = (x+ 1)p−3 + (x− 1)p−3 − 2xp−3 > 0,

by convexity. For 0 < x < 1, we have

1

p(p− 1)(p− 2)(p− 3)
g′′′(x) =

(x+ 1)p−3 − (1− x)p−3 − 2xp−3

p− 3

=

∫ 1+x

1−x
tp−4dt− 2

∫ x

0

tp−4dt > 0,

by the monotonicity of the integrand. �
9



Lemma 12. For 0 < x1 < x2 < x3 and a convex function φ : (0,+∞)→ R, we have

(30) det

1 x1 φ(x1)

1 x2 φ(x2)

1 x3 φ(x3)

 ≥ 0.

Moreover, the inequality is strict if φ is strictly convex.

Proof. The desired inequality is equivalent to

x3 − x2
x3 − x1

φ(x1) +
x2 − x1
x3 − x1

φ(x3) ≥ φ(x2)

which clearly follows from convexity. �

Lemma 13. Let p > 4, let α, β, γ be real numbers. The function

h(x) = |x+ 1|p + |x− 1|p − α− βx2 − γxp

has at most 3 sign changes on (0,+∞). Moreover, if it has exactly 3, then its signature is

+,−,+,−.

Proof. It suffices to consider the case when h has 3 distinct sign changes, say at 0 < x1 < x2 <

x3 <∞ and show that it does not have any more. First note that then, under the notation used

in Lemma 11,

γ − 2 =

det

[
1 x2

1 |x1+1|p+|x1−1|p

1 x2
2 |x2+1|p+|x2−1|p

1 x2
3 |x3+1|p+|x3−1|p

]

det

[
1 x2

1 x
p
1

1 x2
2 x

p
2

1 x2
3 x

p
3

] − 2 =

det

[
1 x2

1 ψp(x
2
1)

1 x2
2 ψp(x

2
2)

1 x2
3 ψp(x

2
3)

]

det

[
1 x2

1 x
p
1

1 x2
2 x

p
2

1 x2
3 x

p
3

] ,

where we used the linearity of the determinant with respect to the last column. It follows from

Lemmas 11 and 12 that both the numerator and the denominator are positive and thus γ > 2. In

particular, this gives that h(k)(+∞) = −∞, for k = 0, 1, 2, 3. Furthermore,

h′′′(x) = p(p− 1)(p− 2)xp−3
(
|1 + x−1|p−3 + |1− x−1|p−3 sgn(1− x−1)− γ

)
and we verify that the function in the brackets changes sign exactly once on (0,+∞) from + to

−. As h′′(+∞) = −∞, we gather that h′′ changes sign either only once on (0,+∞), in which

case the conclusion follows, or exactly twice, with the signature −,+,−. In the latter case, since

h′(0) = 0 and h′(+∞) = −∞, we get at most two sign changes of h′ on (0,+∞), hence h has at

most 3 sign changes on (0,+∞). Since h(+∞) = −∞, the signature of h is +,−,+,−. �

Proof of Theorem 5. Fix a sequence X = (X1, . . . , Xn) as in the statement, an index 1 ≤ j ≤ n

and a parameter z ∈ R. Thanks to independence, it suffices to show that

(31) E|Xj + z|p ≥ E|X−j + z|p.

Indeed, if (31) holds, then swapping one variable at a time, we get

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

≥ E

∣∣∣∣∣∣X−1 +

n∑
j=2

Xj

∣∣∣∣∣∣
p

≥ · · · ≥ E

∣∣∣∣∣∣
n∑
j=1

X−j

∣∣∣∣∣∣
p

,

which is exactly (17). To prove (31), let fj be the density of Xj and f−j be the density of X−j .

Using symmetry, the inequality in question is equivalent to∫ ∞
0

(
fj(x)− f−j (x)

)
· φ(x) dx ≥ 0,

10



where φ(x) = |x+ z|p + |x− z|p. To prove it, we employ the technique of “interlacing densities”.

Since the integrals of fj and f−j against 1, x2 and xp are the same, for every α, β, γ ∈ R, the

inequality above is equivalent to∫ ∞
0

(
fj(x)− f−j (x)

)
·
(
φ(x)− α− βx2 − γxp

)
dx ≥ 0.

For the same reason, fj − f−j need change sign at least 3 times on (0,+∞). In view of Lemma

10, there are exactly 3 sign changes, say at x1 < x2 < x3 and the signature must necessarily

be +,−,+,− (because the first sign change will occur on the interval where f−j is constant and

fj decreases on (0,+∞)). We choose α, β, γ such that f(x) = φ(x) − α − βx2 − γxp vanishes

at x1, x2, x3. By Lemma 13, h in fact changes sign on (0,+∞) exactly at those roots and has

signature +,−,+,−. Thus the integrand is pointwise nonnegative and (31) follows. �

4.2. Log-concave tails. The proof of Theorem 5 with minor modifications also gives Theorem

6. Skipping most of the details, the main point is that now we write

E|Xj + z|p − E|X−j + z|p =

∫ ∞
0

φ′(t)
(
TXj (t)− TX−j (t)

)
dt

=

∫ ∞
0

(
φ′(t)− βt− γtp−1

)
·
(
TXj (t)− TX−j (t)

)
dt,

where the second equality uses the constraints on the second and pth moments. Since X−j ∈ G−

(see also the definition of the classes L±2 in [8]), the difference TXj − TX−j changes sign exactly

2 times on (0,+∞) with signature −,+,−. On the other hand, choosing β and γ such that

φ′(t) − βt − γtp−1 vanishes at those sign change points, the proof of Lemma 13 yields that this

bracket has exactly these sign changes with signature −,+,− and we arrive at the conclusion

of Theorem 6. To get the reverse inequality (the supremum instead of the infimum), we choose

X+
j ∈ G+ and repeat the argument while noting the different sign patterns. �

5. Further remarks and directions

5.1. More constraints. With the aid of results from [8], the arguments of the previous section

for log-concave tails can be extended to handle more than two moment constraints, that is given

n and say ` constraints and feasible aj,k > 0, j = 1, . . . , n, k = 1, . . . , `, the infimum (respec-

tively supremum) is taken over all sequences (X1, . . . , Xn) of length n consisting of independent

symmetric random variables with log-concave tails satisfying E|Xj |p1 = aj,1, . . . ,E|Xj |p` = aj,`,

j = 1, . . . , n. The set of feasible parameters aj,k is described in precisely [8, Theorem 7]. We

believe that with some extra work, the same extension is possible in the setting of Theorem 5,

that is for symmetric log-concave random variables.

5.2. Sharp constants. It has been elusive to us how to obtain an analogue of Theorem 1 for

symmetric log-concave random variables. We find it an interesting and challenging problem. The

natural approach, via Theorem 5, leaves us with an optimisation problem over the aj and bj ,

unclear how to tackle.
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