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Abstract. We provide a generalisation of Pinelis’ Rademacher-Gaussian tail

comparison to complex coefficients. We also establish uniform bounds on the

probability that the magnitude of weighted sums of independent random vec-
tors uniform on Euclidean spheres with matrix coefficients exceeds its second

moment.
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1. Introduction

Let ε1, ε2, . . . be independent Rademacher random variables (symmetric random
signs, each εj takes the values ±1 with probability 1

2 ). Significant amount of work
has been devoted to moment and tail bounds for weighted sums S =

∑
j ajεj in

a variety of settings, with motivations and applications in areas such as statistics,
or functional analysis (see, e.g. [12]). We shall be interested in tail probabilities of
the magnitude of S and its higher-dimensional counterparts.

Pinelis in [17] (see also [3, 19]) proved the following precise deviation inequality:
for every n ≥ 1, real numbers a1, . . . , an and positive t,

(1) P (|S| ≥ tσ) ≤ C
∫ ∞
t

e−u
2/2 du√

2π
,

where S =
∑n
j=1 ajεj , σ = (ES2)1/2 = (

∑n
j=1 a

2
j )

1/2 and C = 2e3

9 , the value of

which was subsequently improved, see [1, 20] and the optimal value established in

[2] (attained when n = 2, a1 = a2 = 1, t =
√

2). An asymptotically tight bound
is also known: the constant C can be replaced with 1 +O(1/t), see [21]. Our first
result provides an analogue of (1) for complex-valued coefficients aj .

Another interesting regime concerns “typical values” of S. There are universal
constants c1, C1 ∈ (0, 1) such that for every n ≥ 1 and real numbers a1, . . . , an,

(2) c1 ≤ P (|S| ≥ σ) and P (|S| > σ) ≤ C1.
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The lower bound was first established in [4], without any explicit value of c1, later
with c1 = 1

4e4 in [8], with c1 = 1
10 in [15] and with c1 = 3

16 in [5]. The upper

bound with C1 = 5
8 was obtained in [9]. The conjecture that it holds with the

sharp value C1 = 1
2 (attained again when n = 2, a1 = a2 = 1) was attributed

to Tomaszewski. Having received a lot of attention, the conjecture has recently
been proved in [10] (see further references therein). Our second result provides a
multidimensional extension of (2), where the random signs εj are replaced with
uniform random vectors on the unit sphere, the coefficients aj are matrix-valued
and the magnitude is measured by the Euclidean norm.

We detail our results in the next section which is followed by the section devoted
to their proofs. We finish with several remarks.

Acknowledgments. We are indebted to an anonymous referee for many valu-
able comments which helped significantly improve the manuscript; particularly for
sharing and letting us use their slick and elegant proof of Claim 2.

2. Results

2.1. Rademacher-Gaussian tail comparison. Here and throughout, 〈x, y〉 =∑d
j=1 xjyj is the standard scalar product on Rd and |x| =

√
〈x, x〉 the Euclidean

norm. Let g1, g2, . . . be independent standard Gaussian random variables. Consider
the following Rademacher-Gaussian tail comparison inequality

(3) P (|ε1v1 + · · ·+ εnvn| ≥ t) ≤ C P (|g1v1 + · · ·+ gnvn| ≥ t) ,
where v1, . . . , vn are vectors in Rd. Note that when d = 1, since sums of independent
Gaussians are Gaussian, (3) and (1) are equivalent. Pinelis in [17] first shows that
for every even convex function f on R whose second derivative f ′′ is finite and
convex, every n ≥ 1 and vectors v1, . . . , vn in Rd, we have

(4) Ef(|ε1v1 + · · ·+ εnvn|) ≤ Ef(|g1v1 + · · ·+ gnvn|).
Then he deduces that (3) holds with C = 2e3/9 for every d, n and vectors v1, . . . , vn
in Rd as long as the Gram matrix A = [〈vk, vl〉]k,l≤n is an orthogonal projection
(equivalently its eigenvalues are 0 and 1). In this case |g1v1 + · · · + gnvn|2 has
the chi-square distribution with rank(A) degrees of freedom (g1v1 + · · ·+ gnvn is a
standard Gaussian vector on the subspace spanned by the vj), whose log-concavity
properties were crucial in the technical parts of Pinelis’ proof. We show that the
same holds for arbitrary Gram matrices of rank at most 2.

Theorem 1. Inequality (3) holds with C = 3824 for every d, n and vectors
v1, . . . , vn in Rd if the subspace they span is 2-dimensional.

Our proof also crucially relies on (4). For simplicity of ensuing arguments, but
sacrificing values of the constants, to extract a tail bound from (4), we adapt ideas
from a simpler approach developed in [18], rather than the original ones from [17].
Additionally, it becomes transparent what is needed to remove the restrictions on
the matrix A (see remarks in the last section).
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2.2. Stein’s property for spherically symmetric random vectors. Fix an
integer d ≥ 1 and let ξ1, ξ2, . . . be independent random vectors in Rd uniform on
the unit sphere Sd−1. We are interested in weighted sums of the ξj . A fairly general
and natural setup is perhaps to let the weights be matrices. We set

cd = inf P

(∣∣∣∑n
j=1Ajξj

∣∣∣ ≥√E
∣∣∣∑n

j=1Ajξj

∣∣∣2) ,
where the infimum is over all n ≥ 1 and d × d real matrices A1, . . . , An. Let
c′d be this infimum restricted to the matrices which are scalar multiples of the
identity matrix. Plainly, c′1 = c1 and c′d ≥ cd. As mentioned in the introduction,
Oleszkiewicz showed in [15] that c1 ≥ 1

10 , very recently improved to c1 ≥ 3
16 by

Dvořák and Klein in [5]. König and Rudelson have recently showed in [11] that

in general c′d ≥ 2
√
3−3

3+4/d , d ≥ 2, along with better bounds in small dimensions,

c′3 ≥ 0.1268 and c′4 ≥ 0.1407 (see Proposition 5.1 therein). We extend their result
to arbitrary matrix valued coefficients, viz. we provide a lower bound on cd.

Theorem 2. For every d ≥ 1, cd ≥ 7−4
√
3

75 .

Moreover, if we consider the sibling quantity,

Cd = supP

(∣∣∣∑n
j=1Ajξj

∣∣∣ >√E
∣∣∣∑n

j=1Ajξj

∣∣∣2) ,
where the supremum is taken again over all n ≥ 1 and d×d real matrices A1, . . . , An,
the proof of Theorem 2 will immediately give a uniform bound on Cd as well.

Corollary 3. For every d ≥ 1, Cd ≤ 1− 7−4
√
3

75 .

3. Proofs

3.1. Auxiliary results. Both of our results will require at some point to lower
bound the probability that a mean zero random variable is positive. This can be
done thanks to the following standard Paley-Zygmund type inequality. We include
its simple proof for completeness (see also, e.g. [7] or [16]). For results of this type
with sharp constants, we refer to [23].

Lemma 4. Let Y be a mean 0 random variable such that EY 4 <∞. Then

P (Y ≥ 0) ≥ 2−4/3
(EY 2)2

EY 4
.

Proof. We can assume that P (Y = 0) < 1. Since Y has mean 0,

E|Y | = 2EY 1Y≥0 ≤ 2(EY 4)1/4P (Y ≥ 0)
3/4

.

Moreover, by Hölder’s inequality, E|Y | ≥ (EY 2)3/2

(EY 4)1/2
, so

P (Y ≥ 0) ≥ 2−4/3
(EY 2)2

EY 4
.

�
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Remark 5. The sharp bound for a non-zero random variable Y with r = EY 4

(EY 2)2

reads

P (Y > 0) ≥

{
1
2

(
1−

√
r−1
r+3

)
, r ∈ 1 ≤ r < 3

2 (
√

3− 1),

2
√
3−3
r , r ≥ 3

2 (
√

3− 1),

see Proposition 2.3 in [23].

Since we will need to apply this lemma to sums of independent random variables,
it will be convenient to record the following standard computation.

Lemma 6. Let Y1, . . . , Yn be independent mean 0 random variables such that
EY 4

i ≤ L(EY 2
i )2 for all 1 ≤ i ≤ n for some constant L ≥ 1. Then for Y =

Y1 + · · ·+ Yn,

EY 4 ≤ max{L, 3}(EY 2)2.

Proof. Using independence, EYi = 0 and the assumption EY 4
i ≤ L(EY 2

i )2, we have

EY 4 =

n∑
i=1

EY 4
i + 6

∑
i<j

EY 2
i EY 2

j ≤ max{L, 3}

 n∑
i=1

(EY 2
i )2 + 2

∑
i<j

EY 2
i EY 2

j


= max{L, 3}(EY 2)2.

�

In particular, we will also need the following moment comparison involving coor-
dinates of spherically symmetric vectors (which are mildly dependent, nevertheless
Lemma 6 will be of use here).

Lemma 7. Let θ = (θ1, . . . , θd) be a random vector in Rd uniform on the unit

sphere Sd−1 and let a1, . . . , ad be nonnegative. For X =
∑d
j=1 ajθ

2
j , we have

E(X − EX)4 ≤ 15
(
E|X − EX|2

)2
.

Proof. By homogeneity, we can assume that EX = 1
d

∑d
j=1 aj = 1. Then, using∑d

j=1 θ
2
j = 1,

X − EX =

d∑
j=1

ajθ
2
j − 1 =

d∑
j=1

(aj − 1)θ2j =

d∑
j=1

bjθ
2
j .

where we put bj = aj − 1. Note that
∑d
j=1 bj = 0. Let g = (g1, . . . , gd) be a

standard Gaussian random vector in Rd. Then g
|g| has the same distribution as θ

and g
|g| and |g| are independent. Thanks to this independence, for every p > 0,

E

∣∣∣∣∣∣
d∑
j=1

bjθ
2
j

∣∣∣∣∣∣
p

· E|g|2p = E

∣∣∣∣∣∣
d∑
j=1

bj
g2j
|g|2

∣∣∣∣∣∣
p

· E|g|2p = E

∣∣∣∣∣∣
d∑
j=1

bjg
2
j

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
d∑
j=1

bj(g
2
j − 1)

∣∣∣∣∣∣
p

,
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where in the last equality we use that
∑d
j=1 bj = 0. As a result,

E|X − EX|p =
1

E|g|2p
E

∣∣∣∣∣∣
d∑
j=1

bj(g
2
j − 1)

∣∣∣∣∣∣
p

.

Since
E(g2j−1)

4

(E(g2j−1)2)2
= 15, from Lemma 6,

E

∣∣∣∣∣∣
d∑
j=1

bj(g
2
j − 1)

∣∣∣∣∣∣
4

≤ 15

E

∣∣∣∣∣∣
d∑
j=1

bj(g
2
j − 1)

∣∣∣∣∣∣
2


2

which together with the obvious bound E|g|8 ≥ (E|g|4)2 yields

E|X − EX|4 ≤ 15
(
E|X − EX|2

)2
.

�

3.2. Proof of Theorem 1. The Gram matrix A = [〈vk, vl〉]k,l≤n diagonalises, say
A = U>ΛU for an orthogonal matrix U and a diagonal matrix Λ = diag(λ1, . . . , λn)
of nonnegative eigenvalues λ1, . . . , λn. Then

|g1v1 + · · ·+ gnvn| =
√
g>Ag =

√
g>U>ΛUg,

where g = (g1, . . . , gn). Thanks to the rotational invariance of Gaussian measure,
Ug has the same distribution as g and as a result, |g1v1 + · · ·+ gnvn| has the same
distribution as

∑n
k=1 λkg

2
k.

Case 1: t ≤
∑n
k=1 λk. When t is small, there is nothing to do because the right

hand side is at least 1 if we choose C large enough. More precisely, we have

(5) P

(
n∑
k=1

λkg
2
k >

n∑
k=1

λk

)
≥ 1

15 · 24/3
.

This follows from Lemmas 4 and 6 applied to Yk = λk(g2k − 1) for which we have
EY 4

k

(EY 2
k )2

= 15 (the constant 1
15·24/3 can be improved to 2

√
3−3
15 , see Proposition 3.5 in

[23]).

Case 2: t ≥
∑n
k=1 λk. If A has rank at most 2, then at most two of the λk are

nonzero. If only one is nonzero (A has rank 1), the theorem reduces to Pinelis’
result. Suppose that A has rank 2. By homogeneity, we can assume that the
eigenvalues λk are 1, λ−1, 0, . . . , 0 for some λ ≥ 1. By Markov’s inequality combined
with Pinelis’ result (4), we obtain

P (|ε1v1 + · · ·+ εnvn| > t) = P
(√

ε>Aε > t
)
≤ Ef(

√
ε>Aε)

f(t)
≤ Ef(

√
g>Ag)

f(t)

for every t > 0 and every function f(x) of the form f(x) = (x−u)3+ with 0 < u < t.

The proof is finished with the following lemma applied to X =
√
g>Ag.
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Lemma 8. Let X =
√
g21 + λ−1g22 with λ ≥ 1 and g1, g2 independent standard

Gaussian random variables. For every t > 1 there is 0 < u < t such that

E(X − u)3+
(t− u)3+

≤ C0P (X > t)

with a universal constant C0 > 0. Moreover, we can take C0 = 3824.

Proof. Let fλ(t) be the density of X,

fλ(t) = λ1/2t exp

(
−λ+ 1

4
t2
)
I0

(
λ− 1

4
t2
)
1t>0,

where I0(s) = 1
π

∫ π
0

exp(s cos θ)dθ stands for the modified Bessel function of the
first kind. We need two technical claims about fλ (we defer their proofs).

Claim 1. For every λ ≥ 1, fλ is log-concave on ( 3
4 ,∞).

Claim 2. For every λ ≥ 1, fλ(1) >
√

2
πe .

By Claim 1 and the Prékopa-Leindler inequality, the tail function h(t) = P (X > t)
is also log-concave on (t0,∞), t0 = 3

4 (see, e.g. Proposition 5.4 in [6]). Fix 0 < u < t
and write

E(X − u)3+ =

∫ ∞
u

3(x− u)2h(x)dx.

If we choose u > t0, using the supporting tangent line of the convex function − log h
at x = t, we have

(6) h(x) ≤ h(t)e−a(x−t), x > u,

where a = (− log h)′(t) = −h
′(t)
h(t) > 0 (as h is strictly decreasing). Thus

E(X − u)3+ ≤ 3h(t)

∫ ∞
u

(x− u)2e−a(x−t)dx = 6h(t)
ea(t−u)

a3
.

Setting u = t− c
a with c = (1− t0)

√
2
πe yields

E(X − u)3+ ≤ 6h(t)
ea(t−u)

a3
=

6ec

c3
(t− u)3h(t).

It remains to check that for this choice of u, we indeed have u > t0, as required
earlier. Since a, as a function of t, is nondecreasing (as h is log-concave), for every
t > 1, we have

t− c

a
> 1− c

−h
′(1)
h(1)

= 1− c h(1)

fλ(1)
> 1− c 1√

2/(πe)
= t0,

where in the last inequality we use that trivially h(1) < 1 and fλ(1) >
√

2
πe , by

Claim 2. Thus the lemma holds with C0 = 6ec

c3 < 3824. �

Proof of Claim 1. Letting a = λ+1
2 and b = λ−1

2 , we write

fλ(t) = λ1/2te−at
2/2I0(bt2/2),
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differentiate (using I ′0(x) = I1(x) and I ′1(x) = I0(x)− 1
xI1(x)), to obtain

λ−1eat
2
(

(f ′λ)2(t)− f ′′λ (t)fλ(t)
)

= (1 + at2 − (bt2)2)I20 + bt2I0I1 + (bt2)2I21

= I20

((
2uR(u) +

1

2

)2

−
(

2u− 1

2

)2

+ 1 + t2

)

whereR = I1
I0

and all the functions on the right hand side are evaluated at u = bt2/2.

Thus to show that (f ′λ)2(t) − f ′′λ (t)fλ(t) > 0 for every λ ≥ 1 and t > 3
4 , it suffices

to show that for every u > 0, we have

(7)

(
2uR(u) +

1

2

)2

−
(

2u− 1

2

)2

+ 1 +

(
3

4

)2

> 0.

By results of N̊asell (see Theorem 3 in [13]),

R(u) ≥ L0,5,1(u), u > 0,

with

L0,5,1(u) =
u(120960 + 60480u+ 25200u2 + 7140u3 + 1455u4 + 204u5 + 16u6)

241920 + 120960u+ 80640u2 + 29400u3 + 7950u4 + 1563u5 + 212u6 + 16u7
.

Thus to show (7), it suffices to show the same inequality with R(u) replaced by

L0,5,1(u). The left hand side then becomes P (u)
Q(u) with

P (u) =1 463 132 160 000 + 3 335 941 324 800u+ 404 799 897 600u2

− 249 138 892 800u3 − 239 747 558 400u4 − 55 539 993 600u5

+ 1 473 272 640u6 + 4 994 831 520u7 + 1 686 522 420u8 + 309 775 380u9

+ 28 100 385u10 − 1 681 032u11 + 768 112u12 + 57 984u13 + 2 304u14

and

Q(u) = 16(241920 + 120960u+ 80640u2 + 29400u3 + 7950u4 + 1563u5 + 212u6 + 16u7)2.

It suffices to show that the polynomial P (u) is positive for u > 0. Write it as

P (u) =
∑14
k=0 aku

k. For u ∈ (0, 2), plainly

a0 + (a5 + 1010)u5 > a0 + (a5 + 1010) · 25 > 0,

a2u
2 − 1010u5 > u2(a2 − 1010 · 23) > 0,

a1u+ a3u
3 + a4u

4 > u(a1 + a3 · 22 + a4 · 23) > 0,

a10u
10 + a11u

11 > u10(a10 + 2a11) > 0,

aku
k > 0, k = 6, 7, 8, 9, 12, 13, 14.

Adding these together shows that P (u) > 0, u ∈ (0, 2). Finally, writing P (u+ 2) =∑14
k=0 bku

k, we get that bk > 0 for all k ≥ 5, so
∑14
k=5 bku

k > 0 for all u > 0 and

using standard formulae for the discriminant of the quartic part
∑4
k=0 bku

4, we
check that it has no real roots, so it is positive everywhere (as being positive at
u = 0), hence P (u) > 0 also for all u > 2. �
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Proof of Claim 2. We have fλ(1) =
√
λe−

λ+1
4 I0(λ−14 ), so letting u = λ−1

4 , we want
to show that for every u > 0,

√
4u+ 1e−u−1/2I0(u) >

√
2

πe
.

Equivalently, ∫ π

0

eu(cos θ−1)dθ >

√
2π

4u+ 1
, u > 0.

Using cos θ ≥ 1− θ2/2 and changing the variables s = θ
√
u, it suffices to show that

∫ π
√
u

0

e−s
2/2ds−

√
2πu

4u+ 1
> 0, u > 0.

Call the left hand side ψ(u). We have, ψ(0) = 0 and ψ(∞) = 0, so it is enough to
show that ψ′ is first positive and then negative. We have,

ψ′(u) =

√
π

2u

(√
π

2
e−π

2u/2 − (4u+ 1)−3/2
)
.

The sign of ψ′ is thus the same as of log
√

π
2 −

π2

2 u+ 3
2 log(4u+ 1) which is plainly

strictly concave, is positive at u = 0 and tends to −∞ as u→∞, therefore is first
positive and then negative. �

3.3. Proof of Theorem 2. Our goal is to show that for every n ≥ 1 and d × d
real matrices A1, . . . , An, we have

(8) P


∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2

≥ E

∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2
 ≥ 7− 4

√
3

75
.

A natural approach would be to use Lemma 4, however comparing the second

and fourth moments of Y =
∣∣∣∑n

j=1Ajξj

∣∣∣2 − E
∣∣∣∑n

j=1Ajξj

∣∣∣2 does not seem to be

approachable through a direct computation (in the case when each Aj is a scalar
multiple of the identity matrix, Y becomes a quadratic form in 〈ξj , ξk〉 which is
managable, as done in [11]). Instead, we shall first exploit the symmetry of the
ξj . Let ε1, ε2, . . . be independent Rademacher random variables, also independent
of the sequence ξ1, ξ2, . . . . Note that the sequences (ξj) and (εjξj) have the same
distribution. Set

µ = E

∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2

=

n∑
j=1

E|Ajξj |2.

8



We have,

P


∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2

≥ µ

 = Pε,ξ


∣∣∣∣∣∣
n∑
j=1

εjAjξj

∣∣∣∣∣∣
2

≥ µ


≥ Pε,ξ


∣∣∣∣∣∣
n∑
j=1

εjAjξj

∣∣∣∣∣∣
2

≥
n∑
j=1

|Ajξj |2,
n∑
j=1

|Ajξj |2 ≥ µ


= Eξ

Pε

∣∣∣∣∣∣
n∑
j=1

εjAjξj

∣∣∣∣∣∣
2

≥
n∑
j=1

|Ajξj |2

1{∑n
j=1 |Ajξj |2≥µ}

 .
We know from (3.8) in Corollary 3.4 from [23] that for arbitrary vectors v1, . . . , vn
in Rd, we have

(9) Pε


∣∣∣∣∣∣
n∑
j=1

εjvj

∣∣∣∣∣∣
2

≥
n∑
j=1

|vj |2

 ≥ 2
√

3− 3

15
.

Thus

P


∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2

≥ µ

 ≥ 2
√

3− 3

15
P

 n∑
j=1

|Ajξj |2 ≥ µ

 .

Finally, to lower bound the probability on the right hand side, we first remark that
here, without loss of generality, we can assume that the matrices Aj are diagonal.
This is because invoking the singular value decomposition, Aj = VjΛjUj with Uj , Vj
orthogonal and Λj diagonal d × d matrices. Since |Ajξj | = |UjΛjVjξj | = |ΛjVjξj |,
by rotational symmetry, |Ajξj | has the same distribution as |Λjξj |. In the case
when the Aj are diagonal, from Lemma 7,

E(|Ajξj |2 − E|Ajξj |2)4 ≤ 15
(
E(|Ajξj |2 − E|Ajξj |2

)2
,

so Lemma 6 combined with Remark 5 yields

P

 n∑
j=1

|Ajξj |2 ≥ µ

 ≥ 2
√

3− 3

15
,

which inserted into the previous bound finishes the proof. �

3.4. Proof of Corollary 3. We repeat verbatim the proof of Theorem 2 with
each “≥” replaced by “≤” in all of the events considered: for inequality (9) this is
justified again by Corollary 3.4 from [23] (with (3.7) used instead of (3.8)) and in
the very last step Remark 5 is applied to −Y instead of Y . This way we obtain
that

P


∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2

≤ E

∣∣∣∣∣∣
n∑
j=1

Ajξj

∣∣∣∣∣∣
2
 ≥ 7− 4

√
3

75
,

equivalently, Cd ≤ 1− 7−4
√
3

75 . �
9



4. Further remarks

4.1. Constant in Theorem 1. Instead of the simple convexity argument (6) of
Lemma 8, adapting the proof of Theorem 2.4 from [17], after somewhat lengthy

and nontrivial computations, Lemma 8 can be established with C0 = 3e2

4 . As a

result, the value of the constant C in Theorem 1 can be improved to 3e2

4 .

4.2. Extensions of (3). We known that (3) holds with a universal constant when
the Gram matrix of the vectors vj has eigenvalues in the set {0, 1} (see [17]), or
when the vectors vj all lie in a 2-dimensional subspace (Theorem 1). We conjecture
that (3) continues to hold with a universal constant for every d and every n vectors
in Rd. To establish that, it would be enough to have analogues of Claims 1 and
2, essentially to the effect that fλ is log-concave on (s,∞) and fλ(s) > c0 for

a universal constant c0, where now fλ is the density of (
∑k
j=1 λjg

2
j )1/2 and s =

(
∑k
j=1 λj)

1/2, given a positive sequence λ = (λj)
k
j=1.

We also know that a multidimensional analogue of (3) in the spirit of Section 2.2
holds for scalar coefficients (see [14] and [22] for two different approaches). It would
perhaps be interesting to investigate a generalisation to matricial coefficients.

Finally, the Euclidean norm | · | in (3) cannot be replaced with an arbitrary norm.

For instance, for the `1 norm ‖·‖1 and the standard basis, we have ‖
∑d
j=1 εjej‖1 =

d, whereas ‖
∑d
j=1 εjgj‖1 =

∑d
j=1 |gj | which concentrates around its expectation

which is
√

2
πd and in fact P

(
‖
∑d
j=1 εjgj‖1 ≥ d

)
≤ exp(−cd) for a universal con-

stant c.

4.3. Typical probabilities in high dimensions. For the constant c′d and cd
defined in Section 2.2, in high-dimensions, that is as d → ∞, we conjecture that

c′d = 1
2 − o(1) and cd =

(√
2
π

∫∞
1
e−u

2/2du
)
− o(1) (furnished by the examples of

A1 = · · · = An = 1√
n

Id and A1 = · · · = An = 1√
n

diag(1, 0, . . . , 0), respectively, see

also Remark 5.2(b) in [11]).
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