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Abstract

We study the component structure of the random graph G = G, 1,,q4. Here
d = O(1) and G is sampled uniformly from G, , 4, the set of graphs with
vertex set [n], m edges and maximum degree at most d. If m = un/2 then we
establish a threshold value p, such that if p < p, then w.h.p. the maximum
component size is O(logn). If u > uy then w.h.p. there is a unique giant
component of order n and the remaining components have size O(logn).
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1 Introduction

We study the evolution of the component structure of the random graph G, ,, 4.
Here d = O(1) and G is sampled uniformly from G, ,, 4, the set of graphs with
vertex set [n], m edges and maximum degree at most d. In the past the first author
has studied properties of sparse random graphs with a lower bound on minimum
degree, see for example [6]. In this paper we study sparse random graphs with a
bound on the maximum degree. The model we study is close to, but distinct from
that studied by Alon, Benjamini and Stacey [1] and Nachmias and Peres [12]. They
studied the following model: begin with a random d-regular graph and then delete
edges with probability 1 — p. They show in [1] that for d > 3 there is a critical
probability p. = ﬁ such that w.h.p. there is a “double jump” from components
of maximum size O(logn) for p < p., a unique giant for p > p. and a mximum
component size of order n?/3 for p = p.. The paper [12] does a detailed analysis of
the scaling window around p = p..
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Naively, one might think that this analysis covers G, p, 4. We shall see however
that G, ¢ and random subgraphs of random regular graphs have distinct degree se-
quence distributions. In the latter the number of vertices of degree i =0,1,2,...,d
will be n times a binomial random variable, whereas in G, ;, 4 this number will be
asymptotic to n times a Poisson random variable, truncated from above.

We will write that A, ~ B, if A4, = (1 + o(1))B, and A, < B, if A4, <
(1+0(1))B, as n — oo.

For d > 1 and A\ > 0 define

N sd-1(A)
=2 % and  fah) = A=ERE

(1)

Theorem 1. Letd > 2 and p € (0,d). Let m = [5]. Let G = Gy q be a random
graph chosen uniformly at random from the graphs with n vertices, m edges and
mazimum degree at most d. Let

pe(d) = fa(f4,(1), functional inverse being used here,

where the functions fy are defined in (1) and let \ satisfy

fa(\) = p. (2)

The following hold w.h.p.
(a) The number vi,i =0,1,...,d of vertices of degree i in G satisfies

v; = \n where \; = mj (3)

(b) If u < pi(d), then G has all components of size O(logn).

(¢) If p > pi(d), then G has a unique giant component of linear size On, where ©
is defined as follows: let D = ZZ»L:I iA\; and

9(x) =D—2x—iz’)\i <1— i;”)iﬂ, (4)

i=1
Let 1) be the smallest positive solution to g(x) = 0. Then

L

%) i/2
@_1—2&-(1—) .
=1 D

All the other components are of size O(logn).

Remark 2. Numerical values of the threshold point p,(d) for the average degree for
small values of d are gathered in Table 1. Note that we have an exact expression

for the case d = 3. We use fa(\) = #—% to see that f, (1) = v/2. And then

A1H+A+FN2/2
1e(3) = o = 3(V2 - 1),



Moreover, if we consider large d, then we have, as a function of d,

1 1 1

Comparing to the percolation model considered in [1] and [12], where u,(d) =
1+ ﬁ, we see that in our model a giant occurs significantly earlier for large d.
Approximation (5) can be justified as follows. We have

Csaa(1) 11 1
) ==y = e = et (dﬂ)

and

= 1 _
s4(1)2 edl ©

Sd— Sd— S — Sq— 2
£1) = (8a-1(1) + sa—2(1))sa(1) — s4-1(1) 1 (d1!2>’

(Express here sg—1 and sg_s in terms of sg and use s4(1) = e — O(1/d!)).
If f,,(1) =1+e¢, then

1= fe1(1+¢e) = far (1) + fi_1(De + O(e?),

which gives

oo 1= foa(n)y 1 1
=0 ==y T = T\ oa)-
Consequently,
1— f41(1
pld) = fa(1+2) = fal) + py) 222210 L o)
faa(1)
and (5) follows.
d 11+ (d)
2 00
313(vV2-1)=1.23264...
4 1.05783
5 1.01309
6 1.00259
7 1.00044
8 1.00006

Table 1: Numerical values of pu,(d) for small d.

2 Proof of Theorem 1

The main idea is to estimate the degree distribution of G, ;,, 4 and then apply the
results of Molloy and Reed [10], [11].



2.1 Technical Lemmas

The following lemmas will be needed for the proof of part (a).

Lemma 3. Let A >0, d > 1. Let Z1,Zs,... be i.i.d. random variables with

)\k
P(Zi:k):ckﬁ, k=0,1,...,d, (6)
where !
c\ = . 7
Sy (7)
(a truncated Poisson distribution). Let (x1,...,xy,) be a random vector of occupan-

cies of bores when m distinguishable balls are placed uniformly at random into n
labelled boxes, each with capacity d. Then the vector (Z1,...,Z,) conditioned on
>_i—1Zj=m has the same distribution as (z1,...,Tn).

Proof. Let A be the set of vectors z = (z1, ..., z,) of non-negative integers z; such
that 2?21 zj = m and z; < d for every j. Fix z € A. We have
S P((Z4,...,2Z,) = 2)
j=1 P <Z?: Z = m)

n \%i 1
| RO
Jj=1 Zj z5! z1lzp!

_ _ ! '
ZzeA H] 1 CA % . EzeA ozl

On the other hand, there are %'Zn, ways to place m balls into n labelled boxes
in such a way that the jth box gets z; balls. Therefore,

n
P((xl,...,xn):z):%:P (Ziyo ) Z) = 2 ‘ S Zi=m
2€EA 2zl zp) =

O

Remark 4. The same argument can be adapted to different constraints for the
occupancies of the boxes. In general, we can replace k € {0,1,...,d} by k € I for
some set of non-negative integers I. For example, instead of restricting the maximal
occupancy, we can require a minimal occupancy (which has appeared in Lemma 4
in [2]), or that the occupancy is even, etc.

A straightforward consequence of a standard i.i.d. case of the local central limit
theorem (see, e.g. Theorem 3.5.2 in [5]) is the following lemma which will help us
get rid of the conditioning from Lemma 3.

Lemma 5. Let A > 0, d > 1. Let Zy,Z5,... be i.i.d. truncated Poisson random
variables defined by (6) and (7). Then

1 (m — pm)?
P(Zi+...+Zp=m) — —— _ 0, (8
5, VAp@ st mm) - e {-EEEE Y e

where j = EZ; and 0% = Var(Z).



We shall also need two lemmas concerning the function sg from (1). A function
f is log-concave if log f is concave.

Lemma 6. For every A > 0, the sequence (sq(\)), defined by (1) is log-concave,
that is sq_1(\)sar1(\) < sq(A)?%, d > 1.

Proof. First note that the product of log-concave functions is log-concave. Integra-
tion by parts yields

ootd
eAsa(A) = / Dot ()
A .

Given this integral representation, the log-concavity of (sq(\))32, follows from a
more general result saying that if f : (0,00) — [0,00) is log-concave, then the
function (0,400) > p — [;° ﬁil)f(t)dt is also log-concave (apply to f(t) =
€ "1 0)(t)). This result goes back to Borell’s work [4] (for this exact formulation

see, e.g. Corollary 5.13 in [8] or Theorem 5 in [13] containing a direct proof). [

Remark 7. The above theorem and proof uses two related notions of log-concavity.
They are reconciled by the fact that if f : (0,00) — [0,00) is log-concave then the
sequence f(i),i=0,1,... is also log-concave.

Lemma 8. For every k > 1, the function fy is strictly increasing on (0,00) and onto
(0,k). In particular, the functional inverse, f; ' : (0,k) — (0,00) is well-defined,
also strictly increasing.

Proof. Fix k > 1 and consider fi: rewriting (9) in terms of the upper incomplete
gamma function I'(s,z) = f;o ts~le~tdt, we have

. al(k,x)
Ji(@) = km
Differentiating,
I'(k+1,2)% d
B L (@) = (k) — 2% )k + 1) + 25Tk, )

Using I'(k + 1,2) = kI'(k,z) + 2Fe~® we can express the condition & fiiq(z) > 0
as a quadratic inequality for T'(k, z):

kT (k,z)* 4 2Fe ™ (x — k + 1)T(k, ) — 22727 > 0,

or
ke (xz —k +1) 7 g2ke2e ke (xz —k +1) 2
T
< (k,z) + o ) > +< 5% )
or
zke=®
Lk, z) > = (V(z—k+1)24+4k — (z — k+1)). (10)

Let h(x) be the left hand side minus the right hand side of (10). Clearly, h(0) =
(k — 1)! > 0. Moreover, using a standard asymptotic expansion

F(k,.’L‘) %(L‘kileix (1+ k-1 + (k_ 1)(k_2)

5 +...], a8z — o0,
x T



we can check that h(x) ~ xk_le_“”(g%2 +...), 80 h(z) = 0 as x — oco. Thus to see

that h(z) > 0 for = > 0, it suffices to check that h'(z) < 0 for z > 0. We have,

xkflefx

r—k+1
A <\/(x—k+1)2+4k_1>

k1=
:_%\/(x_kJr1)2+4k(2k\/($—k:+1)2+4k:+(k;_$)((x_k+1)

W(z) = —zkle™®

- \/(x—k+1)2+4k)>
xk—le—x

= o (k OVE R IF TG+ (k- )@ =k + D)

so W' (x) < 0 is equivalent to

(k+x)/(x—k+1)24+4k > (x —k)(z — k+1).

When k£ — 1 < =z < k, the right hand side is negative, so the inequality is clearly
true. Otherwise, squaring it, we equivalently get

(k4 2)2((x — k+1)* +4k) > (z — k)*(z — k + 1)*
which is clearly true because (k + x)% > (z — k)? for x > 0.
It is clear from (7) and (1) that f; is a ratio of two polynomials, each of de-

gree k and fi(z) = “52-" so fi(®) = k as © — oo. This combined with the

k!

monotonicity and f;(0) = 0 justifies that f is a bijection onto (0, k). O

2.2 Main elements of the proof

Let D be the set of all sequences of nonnegative integers x1,...,x, < d such that
> x; = 2m (possible degrees). For z € D, let G, , be the set of all simple graphs on
vertex set [n] such that vertex i has degree z;, i = 1,2,...,n. We study graphs in
Gn,» via the Configuration Model of Bollobas [3]. We do this as follows: let Z, be the
multi-set consisting of x; copies of i, fori = 1,2,...,nandlet z = 21,29, ..., 201 bea
random permutation of Z,. We then define I', to be the (configuration) multigraph
with vertex set [n] and edges {z2i—1,22;} for i = 1,2,...,m. It is a classical fact
that conditional on being simple, I', is distributed as a uniform random member of
Gn,z, see for example Section 11.1 of [7].
Let o, = M Note that 0 < o, < d. It is known that

2m

(aat1) (2m)!

[1; !
as n — oo with the o(1) term being uniform in z (in fact, depending only on
A = max; ;). Here the term e~ (@2+1) ig the asymptotic probability that I, is
simple. Therefore, for any z € D, we have

|Gno| = e

|Gn.al < da+1)_ 1L @

P(Gnm,d € Gne) = S Gyl e W




which by Lemma 3 gives

P (G € Gn) S 0P (Z o] > 2m> ,

where Z1,...,Z, are i.i.d. truncated Poisson random variables defined in (6).

For any graph property P, we thus have

P (Gn,m,d € 73) = Z P (Gn,m,d eP | Gn,m,d € gn,m) P (Gn,m,d € gn,:v)

zeD
=Y P(Gnz € P)P(Grimd € Gn.z)
z€D
d—‘rl)ZP nze’]) < _x‘ZZ—QT}’L), (11)
z€D

where G, , denotes a random graph selected uniformly at random from G, ,.

To handle the conditioning, we have chosen A so that p = [EZ;, that is the value
of A given by (2).

From Lemma 5 we get that for arbitrary ¢ > 0, for sufficiently large n,

0 1 (2m — un)?
P(Zi+...+Z,=2m) > —— —_— 5.
(Z1+ ...+ Z, =2m) \F T P { 5702
Since 2m — pn = 2[&*] — pn < 2 and 62 = Var(Z;) depends only on A and d, hence
only on p and d, for sufficiently large n, the exponential factor is greater than, say
1/2. Adjusting § appropriately and using that o2 < y, in fact,

Var(Zl) = EZI(ZI — 1) — (EZI)Q + EZl _ )\2 Sde(A)SUK)‘) - Sdfl()\)2

+EZh

sa(A)
which by Lemma 6 is bounded by EZ; = u, we get for sufficiently large n,
1
P(Zi+...+Z,=2m) > .

Thus, for every = € D,

( —x’ 22—2 )_P(;(ZZ:_”:; < 0VERE (Z=2). (13

The next step is to break the sum in (11) into likely and unlikely degree se-
quences. Note that E Z?:l 1(z,—yy = nP(Z1 = i) = nA;. By Hoeffding’s inequality,

n
P Z 1{Zj:i} —nX| >en) | < 26752n>\i/3, e>0.
j=1

—1/3__1

Pute=n A

The union bound yields

. - 2/3 1/3 mini )\Z
]:1 (] (2



This proves (a). It also shows that w.h.p. n);,i = 0,1,...,d asymptotically de-
fines the degree distribution of Gy, 4. Also, given that z is chosen uniformly at
random from D, we see that the distribution of G, ; in this case is the same as the
distribution of the configuration model for the given degree sequence.

To prove (b) and (c), we will use the Molloy-Reed criterion (see [10],[11] and
Theorem 11.11 in [7] for the exact formulation we shall use). First define

A=Rz=(21,...,2,) €D, i <d Zl{xj:i}—n)\i > n?/?
j=1

Then, using (13) and (14),

ZP(Gn,xeP)P<Z:x( ZZi:2m> <10yjm Y P (Z = x)

reA €A

= 10/unP (Z € A)
< 2Odw/unexp{—n1/3g(mm}.

max; \; )2

It remains to handle the typical terms z € D\ A in (11). For such z, we now
estimate p, =P (G € P) in two cases: for P being the complement of (i) “there
are only small components”, and (ii) “there is a giant” depending on the behaviour
of the degree sequences.

Let Q = Z?:o i(i — 2)\;. Note that by the definition of A, for every x € D\ A,
the number of vertices in Gy, ; is nA; + O(n2/3), so it is justified to use the Molloy-
Reed criterion and we obtain that: if @ < 0, then max, p, — 0 in the case (i), and
the same if @ > 0 in the case (ii). Finally note that

—2(X) Sq—1(A)

PCLIE G = faN)(far (V) — 1
Oy T sy IR
and Lemma 8 together with the definition of A, that is (2), finishes the proof. The

expression for © is in [11]. (One can also find a simplified proof of the Molloy-Reed
results in [7], Theorem 11.11.)

3 Conclusions

We have found tight expressions for the degree sequence of G, .4 and we have
used the Molloy-Reed results to exploit them. In future work, we plan to study the
scaling window around @ close to zero. Hatami and Molloy [9] consider this case
and their results show that we can expect a maximum component size close to n2/3
in this case. They deal with a general degree sequence and perhaps we can prove
tighter results for our specific case.
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