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Abstract. We establish a sharp comparison inequality between the negative
moments and the second moment of the magnitude of sums of independent

random vectors uniform on three-dimensional Euclidean spheres. This provides
a probabilistic extension of the Oleszkiewicz-Pe lczyński polydisc slicing result.

The Haagerup-type phase transition occurs exactly when the p-norm recovers

volume, in contrast to the real case. We also obtain partial results in higher
dimensions.
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1. Introduction

Khinchin-type inequalities concern estimates on Lp norms of (weighted) sums of
independent random variables, typically involving a norm which is easily under-
stood (or explicit in given parameters) such as the L2 norm. They can be traced
back to Khinchin’s work [25] on the law of the iterated logarithm, where he es-
tablished such bounds for Rademacher random variables (random signs). Beyond
their original use, most notably, such inequalities have played an important role
in Banach space theory (in connection with topics such as unconditional conver-
gence or type and cotype), see [13, 22, 34, 50]. Considerable work has been devoted
to the pursuit of sharp constants in Khinichin-type inequalities, see for instance
[3, 6, 15, 16, 19, 21, 31, 32, 33, 37, 38, 39, 40, 41, 42, 44, 46, 49, 51], in particular
for sums of random vectors uniform on Euclidean spheres [4, 9, 10, 26, 29] (as a
natural generalisation of Rademacher and Steinhaus random variables, intimately
related to uniform convergence in real and complex Banach spaces, respectively).
This paper continues that line of research.

Throughout, | · | denotes the standard Euclidean norm on Rd, inherited from the
standard inner product 〈·, ·〉. For a random vector X in Rd and a real parameter
p, we write ‖X‖p = (E|X|p)1/p for the Lp-norm (p-th moment) of the magnitude

Date: June 2, 2022.
TT’s research supported in part by NSF grant DMS-1955175.

1



of X (whenever the expectation exists, with p = 0 understood as usual as ‖X‖0 =
eE log |X|, arising from taking the limit as p→ 0).

Let ξ1, ξ2, . . . be independent random vectors, each uniform on the unit Euclidean
sphere Sd−1 in Rd. In particular, when d = 1, these are Rademacher random
variables, that is symmetric random signs in R, whereas when d = 2, they are often
referred to as Steinhaus random variables (especially when R2 is treated as C).
For q > −(d − 1), let cd(q) be the best positive constant such that the following
Khinchin-type inequality holds: for every n > 1 and real scalars a1, . . . , an, we have

(1)

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
q

> cd(q)

∥∥∥∥∥
n∑
k=1

akξk

∥∥∥∥∥
2

.

In other words, thanks to homogeneity, c(q) is the infimal value of ‖
∑n
k=1 akξk‖q

over all n > 1 and a1, . . . , an ∈ R with
∑
a2
k = 1. We stress that this Lq norm

exists only when q > −(d− 1).

Plainly, cd(q) = 1 for q > 2 (by the monotonicity of p 7→ ‖ · ‖p). When q > 2, the
reverse inequality to (1) is nontrivial and interesting, but we do not discuss it here
at all, referring instead to, for instance [4, 20, 38] for a comprehensive account of
known as well as recent results.

From now on we consider −(d − 1) < q < 2. We define two constants arising
from two particular choices of weights in (1): a1 = a2 = 1√

2
with n = 2 and

a1 = · · · = an = 1√
n

with n→∞,

cd,2(q) =

∥∥∥∥ξ1 + ξ2√
2

∥∥∥∥
q

=
1√
2

 Γ
(
d
2

)
Γ(d+ q − 1)

Γ
(
d+q

2

)
Γ
(
d+ q

2 − 1
)
1/q

,(2)

cd,∞(q) = lim
n→∞

∥∥∥∥ξ1 + · · ·+ ξn√
n

∥∥∥∥
q

=

∥∥∥∥ Z√d
∥∥∥∥
q

=

√
2

d

Γ
(
d+q

2

)
Γ
(
d
2

)
1/q

,(3)

where Z is a standard Gaussian random vector in Rd (emerging by the central
limit theorem). The expression for cd,2(q) will be justified later (see Corollary
14), whereas the expression for cd,∞(q) follows by a simple integration in polar
coordinates. Note that

(4) cd(q) > min{cd,2(q), cd,∞(q)}.

It can be checked that in fact

(5) min{cd,2(q), cd,∞(q)} =

{
cd,2(q), −(d− 1) < q 6 q∗d,

cd,∞(q), q∗d 6 q 6 2,

where q∗d is the unique solution of the equation cd,2(q) = cd,∞(q) in (−(d − 1), 2).
We have included a sketch of the proof of this fact in the appendix. In Table 1
below we list some numerical values of q∗d. We are grateful to Hermann König for
sharing his notes on these topics, [27].
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1.1. Known results. The pursuit of the value of cd(q) has a rich history which can
be summarised in one simple statement that in all known cases, the trivial lower
bound (4) is tight, in that there is equality. Of course, the history begins with the
one dimensional case of Rademacher random variables. In his study [35] on bilinear
forms, Littlewood conjectured that c1(1) = c1,2(1) = 1√

2
, which was confirmed by

Szarek in [46] (see also [32] and [47]). Haagerup’s pivotal work [19] addressed the
entire range 0 < q < 2, showing the following phase transition in the behaviour of
c1(q):

c1(q) =

{
c1,2(q), 0 < q 6 q∗1 ,

c1,∞(q), q∗1 6 q < 2,

where q∗1 = 1.84.. is the unique solution of the equation c1,2(q) = c1,∞(q) in (0, 2);
in particular, when d = 1, we have equality in (4). We also refer to Nazarov and
Podkorytov’s paper [39] which offered great simplifications. Haagerup devised a
very efficient argument, crucially relying on Fourier-analytic formulae for Lp-norms,
which together with [39] paved the path for many further results.

That a similar behaviour occurs in the case d = 2 (Steinhaus variables) was con-
jectured by Haagerup, later confirmed by König in [26]: when d = 2, 0 6 q < 2,
we have equality in (4) and the phase transition occurs now at q∗2 = 0.47... The
range 1 6 q < 2 was in fact earlier dealt with by König and Kwapień in [29] (with
q = 1 handled even earlier by Sawa in [45]), whereas −1 < q < 0 (to the best of our
knowledge) appears to be left open, with a natural conjecture that c(q) = c2,2(q).

For the case d = 3: Lata la and Oleszkiewicz showed in [33] that c3(q) = c3,∞(q) for
1 6 q < 2 which was extended to 0 < q < 1 in our joint work [9] with Gurushankar
(see Proposition 3 below for a connection to uniform distribution on intervals). The
phase transition occurs in the range −1 < q < 0 at q∗3 = −0.79.., as established
in our joint work [10] with König, so when d = 3 and −1 < q < 2, (4) holds with
equality. Again, −2 < q < −1 appears to be open with a natural conjecture that
c(q) = c3,2(q).

In higher dimensions d > 4, there are precise Schur-convexity results available for
positive moments due to Baerstein II and Culverhouse from [4] and, independently
König and Kwapień from [29]: when 0 6 q < 2, it follows in particular that
cd(q) = cd,∞(q). However, nothing seems to be known about the value of cd(q) for
negative q, except it being (nontrivially) finite, as shown by Gorin and Favorov in
[18] (in a much more general setting). This paper partially fills out this gap.

1.2. Our contribution. Our first result concerns the best constant cd(q) in the
inequality (1) when q > −(d − 4). It turns out that this is a consequence of a
Schur-concavity type statement that follows directly from the main result of [4]
(see Theorem 6 below).

Theorem 1. For every d > 5 and −(d− 4) 6 q < 0, we have cd(q) = cd,∞(q).

This is only meaningful for dimensions d > 5. Our second result covers the entire
range −3 < q < 0 for dimension d = 4, which exhibits Haagerup’s phase transition
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at exactly q∗4 = −2 (see also Table 1 for other values of q∗d and a summary of known
results and open questions).

Theorem 2. For −3 < q < 0, we have

c4(q) =

{
c4,2(q), −3 < q 6 −2,

c4,∞(q), −2 6 q < 0.

Table 1. Numerical values of q∗d (see (35) for its asymptotics),
known results and open questions about the best constant in
Khinchin inequality (1).

d q∗d Range where c(q) known Phase
transition

Left open

1 1.82.. 0 < q < 2 ([19]) [19] −
2 0.47.. 0 < q < 2 ([4, 26, 29]) [26] −1 < q < 0
3 −0.79.. −1 < q < 2 ([9, 10, 33]) [10] −2 < q < −1
4 −2 −3 < q < 2 (Thm. 2) Thm. 2 −
5 −3.16.. −1 < q < 2 ([4, 29], Thm. 1) ? −4 < q < −1
...
d −(d− 1) + o(1) −(d− 4) < q < 2 ([4, 29], Thm. 1) ? −(d− 1) < q < −(d− 4)

1.3. Relation to volume. It can perhaps be traced back to Kalton and Koldob-
sky’s paper [24] that the volume of hyperplane sections of convex bodies can be
expressed in terms of negative moments (of linear forms in vectors uniform on the
body). Brzezinski’s work [8] makes the same connection for sections of products of
Euclidean balls by block subspaces and our recent work with Nayar [11] explores
this further. In particular, as [10] extends Ball’s cube slicing result from [5] (in the
form of sharp Khinchin inequality (1) when d = 3), Theorem 2 can be viewed as a
probabilistic extension of Oleszkiewicz and Pe lczyński’s polydisc slicing from [43].
In fact, this connection was the main motivation of this work. It is very intriguing
that the phase transition occurs exactly at q = −2 which is when (1) recovers the
result for volume from [43].

More specifically, let D = {z ∈ C, |z| < 1} be the unit disc in the complex plane.
Oleszkiewicz and Pe lczyński in [43] proved the following sharp inequality about
extremal-volume (complex) hyperplane sections of the polydics Dn in Cn: for every
(complex) codimension 1 subspace H in Cn, we have

vol2n−2(Dn ∩H) 6 vol2n−2(Dn ∩ (1, 1, 0, . . . , 0)⊥),(6)

vol2n−2(Dn ∩H) > vol2n−2(Dn ∩ (1, 0, . . . , 0)⊥).(7)

Here a⊥ = {z ∈ Cn, 〈a, z〉 = 0} is the (codimension 1) hyperplane orthogonal to a
vector a in Cn and 〈·, ·〉 is the standard inner product in Cn. If we let U1, . . . , Un
be independent random vectors, each uniform on D and let a = (a1, . . . , an) be a
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unit vector in Cn, then

vol2n−2(Dn ∩ a⊥) =
πn−1

2
lim
p→2−

(2− p)E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−p

(such formulae hold for arbitrary origin-symmetric convex sets, and this one follows
immediately from Corollary 11 in [11]). Moreover, the moments of sums of vectors
uniform on balls are proportional to sums of vectors uniform on spheres (in a slightly
higher dimension).

Proposition 3 ([4], [29]). Let d > 3 and let ξ1, ξ2, . . . be independent random
vectors uniform on the unit Euclidean sphere Sd−1 in Rd and let U1, U2, . . . be
independent random vectors uniform on the unit Euclidean ball Bd−2 in Rd−2. For
every q > −(d− 2), n > 1 and scalars a1, . . . , an, we have

E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
q

=
d− 2

d− 2 + q
E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
q

This identity can be seen in a number of ways, but essentially it follows from the
folklore result that if a random vector ξ = (ξ1, . . . , ξd) is uniform on Sd−1, then its
projection (ξ1, . . . , ξd−2) onto Rd−2 is uniform on Bd−2. Specialised to d = 4 and
combined with the previous formula, it yields

vol2n−2(Dn ∩ a⊥) = πn−1E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−2

(see also [28] and [30] for generalisations to noncentral sections). Thus, the upper
bound (6) is Theorem 2 at q = −2, that is c2(2) = c4,2(2). Incidentally, the lower
bound (7) follows immediately from Jensen’s inequality (see, e.g. [8], or [28], as
well as [11] for a stability result).

The sequel is devoted to proofs. First we provide some background and give a brief
summary. Then we move to the proof of Theorem 1 (which is very short) and the
rest is occupied with the proof of Theorem 2.

Acknowledgements. We should very much like to thank Hermann König for the
encouraging and helpful correspondence.

2. Proofs of the main results

2.1. Some background and outline. Theorem 1 will follow easily from the main
result of [4]. As for positive moments, the point is that the range −(d− 4) < q < 0
still warrants enough convexity of the underlying moment functional, specifically
the function |x|q (in fact, its C∞ regularisation/approximation) is bisubharmonic.

When d = 4, as in Theorem 2, this range is empty, Schur convexity/concavity does
not hold, and more subtle arguments are needed. We will employ a Fourier-analytic
approach (pioneered by Haagerup for random signs in [19]). On its own however,
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this does not dispense of all cases. We extend an inductive argument of Nazarov
and Podkorytov from [39] to our multidimensional setting and all negative moments
(building on [10] with new ideas needed to go beyond the −1st moment). The
Fourier-analytic approach relies on the following integral representation of Gorin
and Favorov for negative moments.

Lemma 4 (Lemma 3 in [18]). For a random vector X in Rd and 0 < p < d, we
have

(8) E|X|−p = Kp,d

∫
Rd

(
Eei〈t,X〉

)
|t|p−ddt,

provided that the right hand side integral exists, where

Kp,d = 2−pπ−d/2
Γ
(
d−p

2

)
Γ
(
p
2

) .

Of course, the Fourier transform (the characteristic function) goes hand in hand
with independence. The trade-off is that when applied to sums of independent
random vectors uniform on spheres, highly-oscillating integrands appear, more pre-
cisely, the Bessel functions. To recall, for integral k > 0 and real x, we use the
notation

(x)k =
Γ(x+ k)

Γ(x)
= x(x+ 1) . . . (x+ k − 1)

for the rising factorial (Pochhammer symbol). Throughout,

Jν(t) =

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(
t

2

)2k+ν

is the Bessel function of the first kind with parameter ν > 0. We also introduce the
function

jν(t) = 2νΓ(ν + 1)t−νJν(t) =

∞∑
k=0

(−1)k

k!(ν + 1)k

(
t

2

)2k

.

Its importance stems from the fact that for a random vector ξ uniform on the unit
Euclidean sphere Sd−1 in Rd and a vector v in Rd, we have

(9) Eei〈v,ξ〉 = jd/2−1(|v|)

(see, e.g. the proof of Proposition 10 in [29]). This combined with Lemma 4 gives
the following corollary.

Corollary 5. For independent, rotationally invariant random vectors X1, . . . , Xn

in Rd and 0 < p < d, we have

(10) E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
−p

= κp,d

∫ ∞
0

n∏
k=1

(
E jd/2−1(t|Xk|)

)
tp−1dt,

provided that the right hand side integral exists, where

κp,d = 21−p
Γ
(
d−p

2

)
Γ
(
d
2

)
Γ
(
p
2

) .
6



Proof. Let ξ1, . . . , ξn be independent random vectors, each uniform on the unit
Euclidean sphere Sd−1, chosen independently of the Xk. Then Xk has the same
distribution as |Xk|ξk and (8) together with (9) and integration in polar coordinates
give

E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
−p

= Kp,d

∫
Rd

(
n∏
k=1

Eei〈t,|Xk|ξk〉

)
|t|p−ddt

= Kp,d

∫
Rd

(
n∏
k=1

E jd/2−1(|t||Xk|)

)
|t|p−ddt

= Kp,d|Sd−1|
∫ ∞

0

(
n∏
k=1

E jd/2−1(t|Xk|)

)
tp−1dt,

where |Sd−1| = 2πd/2

Γ( d
2 )

is the (d−1)-dimensional volume of the unit sphere in Rd. �

2.2. Proof of Theorem 1. Theorem 1 is a straightforward corollary of the fol-
lowing stronger Schur-concavity result. For background on Schur-majorisation, we
refer for example to [7].

Theorem 6. Let d > 5 and let ξ1, ξ2, . . . be independent random vectors uniform
on the unit Euclidean sphere Sd−1 in Rd. For every n > 1 and 0 < p 6 d− 4, the
function

(x1, . . . , xn) 7→ E

∣∣∣∣∣
n∑
k=1

√
xkξk

∣∣∣∣∣
−p

is Schur-concave on Rn+.

Proof. Thanks to Lebesgue’s monotone convergence theorem, it suffices to show
that for every δ > 0, the theorem holds with | · |−p replaced by the function Ψδ(x) =
(|x|2 +δ)−p/2. The gain is that Ψδ is C∞ on Rd. In view of the result of Baernstein
II and Culverhouse from [4], it suffices to show that Ψδ is bisubharmonic, that is
∆∆Ψδ > 0 on Rd. We approach this directly. We have,

∆∆Ψδ(x) = p(p+ 2)
(
|x|2 + δ

)− p
2−4

(A|x|4 +B|x|2 + C),

where A = (p− d+ 2)(p− d+ 4), B = 2δ(d+ 2)(−p+ d− 4) and C = δ2d(d+ 2).
For p < d − 4, plainly A > 0 and B2 − 4AC = 8δ2(d + 2)(p + 4)(p − d + 4) < 0.
This shows that Ψδ is bisubharmonic on Rd for every δ > 0. �

Remark 7. The crux of Baernstein II and Culverhouse’s work is the observation
that the bisubharmonicity of a continuous function Ψ on Rd on one hand is sufficient
for the Schur-convexity of the corresponding moment functional from Theorem 6,
EΨ

(∑n
k=1

√
xkξk

)
(and necessary when Ψ is radial), and on the other hand, it is

equivalent to the convexity of the function

t 7→ EΨ(v +
√
tξ)

on R+ for every v ∈ Rd. In the sequel, we will need to examine the behaviour of
this function on (0, 1) for unit vectors v when Ψ(x) = |x|−p (see Section 3.1 below).
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2.3. Outline of the proof of Theorem 2. Recall that here d = 4 and ξ1, ξ2, . . .
are independent random vectors uniform on the unit Euclidean sphere S3 in R4.
For notational convenience, we put q = −p, 0 < p < 3 and set

C2(p) = c4,2(q)q = E
∣∣∣∣ξ1 + ξ2√

2

∣∣∣∣−p = 2p/2
Γ(3− p)

Γ
(
2− p

2

)
Γ
(
3− p

2

) ,(11)

C∞(p) = c4,∞(q)q = E
∣∣∣∣Z2
∣∣∣∣−p = 2p/2Γ

(
2− p

2

)
,(12)

where Z is a standard Gaussian random vector in R4 (consult (2) and (3) to justify
the explicit expressions on the right hand sides). Moreover, let C(p) be the best
constant such that the following equivalent form of (1),

(13) E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−p

6 C(p)

(
n∑
k=1

a2
k

)−p/2
holds for every n > 1 and every real scalars a1, . . . , an.

Theorem 2 is a consequence of the next two results, where we break it up into two
regimes.

Theorem 8. For 0 < p 6 2, we have C(p) = C∞(p).

Theorem 9. For 2 < p < 3, we have C(p) = C2(p).

As optimality is clear, for the proofs of these theorems, we need to show that (13)
holds with the specified values of C(p).

2.3.1. Outline of the proof of Theorem 8. Thanks to homogeneity, we can assume
that the ak are positive with

∑
a2
k = 1. Using the Fourier-analytic formula for

negative moments (10) and Hölder’s inequality, we obtain

E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−p

= κp,4

∫ ∞
0

(
n∏
k=1

j1(akt)

)
tp−1dt(14)

6 κp,4

n∏
k=1

(∫ ∞
0

|j1(akt)|a
−2
k tp−1dt

)a2k
= κp,4

n∏
k=1

(
a−pk F

(
p, a−2

k

))a2k .
where the following function has emerged (after a change of variables in the last
line)

(15) F (p, s) =

∫ ∞
0

|j1(t)|stp−1dt, p, s > 0.

This integral is finite as long as p < 3s
2 because j1(t) = O(t−3/2) (see (21) below).

The next step is to maximise, individually, the terms in the product on the right
hand side of (14), that is to look into sups>1 s

p/2F (p, s). Heuristically, if we aim
8



at proving that the worst case is Gaussian, that is when a1 = · · · = an = 1√
n

with

n → ∞, a natural candidate for this supremum is then given by s → ∞, which
would correspond to the inequality

sp/2F (p, s) 6 lim
s→∞

sp/2
∫ ∞

0

|j1(t)|stp−1dt = lim
s→∞

∫ ∞
0

|j1(t/
√
s)|stp−1dt

=

∫ ∞
0

e−t
2/8tp−1dt

(16)

(the last line can be justified using j1(t) = 1− t2

8 + o(t2) = e−t
2/8 + o(t2)). Were it

true for all values of p and s, we would get

E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−p

6 κp,4

∫ ∞
0

e−t
2/8tp−1dt = C∞(p),

finishing the proof. Unfortunately, the integral inequality (16) fails in certain ranges
of p and s, where additional arguments and ideas are needed. This is how we will
proceed.

Step 1: Inequality (16) holds for all 0 < p 6 2 and s > 2.

As above, this gives the following partial case of the theorem when all coefficients
ak are small.

Corollary 10. When 0 < p 6 2, inequality (13) holds with C(p) = C∞(p) for

every n > 1 and all real numbers a1, . . . , an with maxk6n |ak| 6 1√
2

(∑n
k=1 a

2
k

)1/2
.

Step 2: For 1
4 6 p 6 2, we employ induction on n to cover the case maxk6n |ak| >

1√
2

(∑n
k=1 a

2
k

)1/2
.

This will give the theorem when p > 1
4 . For the induction to work, (13) is strength-

ened, but the base of the induction fails for small p (roughly p < 0.2), hence the
next two steps. Fortunately, when p is small, the integral inequality holds for a
wider range of s.

Step 3: Inequality (16) holds for all 0 < p 6 1
4 and s > 1.3.

Corollary 11. When 0 < p 6 1
4 , inequality (13) holds with C(p) = C∞(p) for every

n > 1 and all real numbers a1, . . . , an such that maxk6n |ak| 6
√

10
13

(∑n
k=1 a

2
k

)1/2
.

Finally, when one of the coefficients ak is large, the inequality holds for a different
reason (we will use a sort of projection-type argument).

Step 4: When 0 < p 6 1
4 , inequality (13) holds with C(p) = C∞(p) for every n > 1

and all real numbers a1, . . . , an with maxk6n |ak| >
√

10
13

(∑n
k=1 a

2
k

)1/2
.
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2.3.2. Outline of the proof of Theorem 9. If we want to prove that the worst case is
now n = 2 with a1 = a2 = 1√

2
, it is only natural to expect that sups>1 s

p/2F (p, s)

is attained at s = 2, corresponding to the integral inequality

(17) sp/2F (p, s) 6 2p/2F (p, 2).

We will proceed similarly, with only the first two steps sufficing, as the inductive
base now holds in the entire range.

Step 1: Inequality (17) holds for all 2 < p < 3 and s > 2.

Taking this statement for granted for now, we derive the following corollary.

Corollary 12. When 2 < p < 3, inequality (13) holds with C(p) = C2(p) for every

n > 1 and all real numbers a1, . . . , an with maxk6n |ak| 6 1√
2

(∑n
k=1 a

2
k

)1/2
.

Proof. Assuming
∑
a2
k = 1 and applying (17) to the right hand side of (14) yields

E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−p

6 κp,4 · 2p/2F (p, 2) = 2p/2κp,4

∫ ∞
0

j1(t)2tp−1dt

= 2p/2E |ξ1 + ξ2|−p = C2(p)

(for the penultimate step, recall Corollary 5). �

Step 2: For 2 < p < 3, we employ induction on n to cover the case maxk6n |ak| >
1√
2

(∑n
k=1 a

2
k

)1/2
.

To carry out these steps, we first establish a variety of indispensable technical
estimates. After this has been done in the next section, we will conclude the proof
in Sections 4 and 5.

3. Ancillary results

3.1. Two-coefficient function. By rotational invariance,

E|a1ξ1 + a2

√
tξ2|−p = E|a1e1 + a2ξ2|−p.

We begin with some properties of the function t 7→ E|a1e1 + a2ξ2|−p, particularly
important in the inductive part of our proof. Recall the definition of the (Gaussian)
hypergeometric function which shows up very naturally, as explained in the next
lemma. For real parameters a, b, c, it is defined for |z| < 1 by the power series,

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
.

10



Lemma 13. Let d > 1 and let ξ be a random vector uniform on the unit Euclidean
sphere Sd−1 in Rd. Let p < d− 1. Then

E|e1 +
√
tξ|−p = 2F1

(
p

2
,
p− d+ 2

2
;
d

2
; t

)

=

∞∑
k=0

(
p
2

)
k

(
p−d+2

2

)
k(

d
2

)
k

tk

k!
, 0 < t < 1.

Proof. Fix 0 < t < 1. Let θ = 〈e1, ξ〉 be the first coordinate of ξ. Thus

E|e1 +
√
tξ|−p = E(1 + 2

√
tθ + t)−p/2

= (1 + t)−p/2E
(

1 +
2
√
t

1 + t
θ

)−p/2
= (1 + t)−p/2

∞∑
k=0

(
−p/2

2k

)
(Eθ2k)

(
2
√
t

1 + t

)2k

.

From (9),

Eθ2k =
(2k)!

22k · k!(d/2)k
,

hence

E|e1 +
√
tξ|−p = (1 + t)−p/2

∞∑
k=0

(p/2)2k

22k(d/2)k

1

k!

(
4t

(1 + t)2

)k
.

Since (p/2)2k 2−2k =
(
p
4

)
k

(
p+2

4

)
k
, we get

E|e1 +
√
tξ|−p = (1 + t)−p/22F1

(
p

4
,
p+ 2

4
;
d

2
;

4t

(1 + t)2

)
= 2F1

(
p

2
,
p− d+ 2

2
;
d

2
; t

)
,

where the last identity follows from Kummer’s quadratic transformations for the
hypergeometric function 2F1 (see, e.g. 15.3.26 in [1]). The desired power series
expansion now follows from the definition of 2F1. �

This in particular yields the explicit expression for cd,2(q) from (2).

Corollary 14. For d > 1 and p < d− 1, we have

E|ξ1 + ξ2|−p = 2F1

(
p

2
,
p− d+ 2

2
;
d

2
; 1

)
=

Γ
(
d
2

)
Γ(d− p− 1)

Γ
(
d−p

2

)
Γ
(
d− p

2 − 1
) .

Proof. The expression on the right hand side follows from Gauss’ summation iden-
tity (see, e.g. 15.1.20 in [1]). �

Remark 15. In addition to the proof of Lemma 13 presented above we would like
to sketch a different argument, in the spirit of Lemma 1 from [4], which bypasses
the explicit use of the hypergeometric function. Let Ψ(x) = |x|−p. Since on the

11



unit sphere ξ ∈ Sd−1 is the outer-normal, by the divergence theorem (for the usual
Lebesgue nonnormalised surface integral),

d

dt

∫
Sd−1

|e1 +
√
tξ|−pdξ =

1

2
√
t

∫
Sd−1

〈
(∇Ψ)(e1 +

√
tξ), ξ

〉
dξ

=
1

2
√
t

∫
Bd

divx

(
(∇Ψ)(e1 +

√
tx)
)

dx

=
1

2

∫
Bd

(∆Ψ)(e1 +
√
tx)dx

for every 0 < t < 1 (note that e1 +
√
tx on Bd2 is away from the origin where Ψ is

singular). Computing the Laplacian yields the identity

d

dt

∫
Sd−1

|e1 +
√
tξ|−pdξ =

p(p− d+ 2)

2

∫
Bd

2

|e1 +
√
tx|−p−2dx.

Writing the last integral using polar coordinates allows to compute the higher
derivatives by simply iterating this identity. Thus

d

dt
E|e1 +

√
tξ|−p =

p(p− d+ 2)

2

1

|Sd−1|

∫
Bd

2

|e1 +
√
tx|−p−2dx(18)

=
p(p− d+ 2)

2

1

|Sd−1|

∫ 1

0

∫
Sd−1

rd−1|e1 +
√
tr2ξ|−p−2dξ

and

d2

dt2
E|e1 +

√
tξ|−p =

p(p− d+ 2)

2

(p+ 2)(p− d+ 4)

2

· 1

|Sd−1|

∫ 1

0

rd+1

∫
Bd

|e1 +
√
trx|−p−4dxdr,

etc. It then remains to evaluate these derivatives at t = 0 to get the power-series
expansion coefficients.

Corollary 16. Let ξ be a random vector uniform on the unit Euclidean sphere S3

in R4. Let 0 < p 6 2. Then

E|e1 +
√
tξ|−p 6 1− p(2− p)

8
t− p2(4− p2)

192
t2, 0 < t < 1.

Proof. When d = 4 and 0 < p < 2, all the terms in the power series from Lemma 13
but the first one (which equals 1) are negative. Dropping all but the first three thus
gives the desired bound. �

Corollary 17. Let d > 1. Let ξ be a random vector uniform on the unit Euclidean
sphere Sd−1 in Rd. Let 0 < p 6 d − 2. Then for every vector v in Rd and a > 0,
we have

E|v + aξ|−p 6 min{|v|−p, a−p}.

Proof. By homogeneity and rotational invariance, we can assume without loss of
generality that v = e1 and 0 < a < 1. From (18) we see that the function a 7→
E|e1 + aξ|−p is nonincreasing, in particular E|e1 + aξ|−p 6 1. �

12



3.2. Bounds for the inductive base. We remark that in several places we need
to use numerical values of some special functions such as j1, Γ, ψ = (log Γ)′ and
will implicitly do so (to the required precision).

Based on tables left by Gauss, Deming and Colcord in [12] found the value of
minx>0 Γ(x) correct up to the 19th decimal which we record here (although we will
not require such precision).

Lemma 18 ([12]). We have,

min
x>0

Γ(x) = 0.8856031944108886887..,

uniquely occurring at x0 = 1.46163214496836226...

To check the base of the induction from Step 2 in Section 2.3.1, we will need the
following two-point inequality.

Lemma 19. For every 1
8 6 q 6 1 and 0 6 t 6 1, we have

1− q(1− q)
2

t− q2(1− q2)

12
t2 6 Γ(2− q)

(
2−

(
3− t

2

)−q)
.

Proof. We let Qq(t), Rq(t) denote the left hand side and the right hand side respec-
tively and set hq(t) = Rq(t)−Qq(t). We examine its second derivative,

h′′q (t) = −2qΓ(2− q)q(q + 1)(3− t)−q−2 +
q2(1− q2)

6

which is clearly decreasing in t. Therefore, for all 0 6 t 6 1, h′′q (t) 6 h′′q (0) and for
0 < q < 1, with the aid of Lemma 18,

− 3q+2

2q · q(1 + q)
h′′q (0) = Γ(2− q)− (3/2)q+1q(1− q)

> 0.88− (3/2)2 · 1

4
= 0.3175.

As a result, hq(t) is concave on [0, 1]. To show that hq(t) > 0 on [0, 1], it thus
suffices to verify that (A) hq(0) > 0 and (B) hq(1) > 0, for all 1

8 6 q 6 1.

(A): hq(0) > 0 is equivalent to Γ(2−q) (2− (2/3)q) > 1, or after taking logarithms,
g(q) > f(q) with g(q) = log Γ(2− q), f(q) = − log 2− log(1− 1

2 ( 2
3 )q). Both f and

g are clearly convex (note f(q) = − log 2 +
∑∞
k=1[ 1

2 ( 2
3 )q]k/k). For 1

8 6 q 6 0.35, we

lower-bound g by its supporting tangent at q = 1
8 , g(q) > `(q) = g( 1

8 )+g′( 1
8 )(q− 1

8 ).

Since `( 1
8 )− f( 1

8 ) > 0.0005 and `(0.35)− f(0.35) > 0.0003, thanks to the convexity

of f , we conclude that indeed g(q) > f(q) for 1
8 6 q 6 0.35. For the remaining

range 0.35 6 q 6 1, we crudely have, using the monotonicity of f and Lemma 18,

f(q) 6 f(0.35) < −0.124 < log(0.885) < log Γ(2− q) = g(q).
13



(B): hq(1) > 0 is equivalent to Γ(2−q) > 1− q(1−q)
2 − q2(1−q2)

12 . Taking the logarithms
and using log(1− x) 6 −x, x < 1, it suffices to show that

f(q) = log Γ(2− q) +
q(1− q)

2
+
q2(1− q2)

12

is nonnegative. This in fact holds for all 0 6 q 6 1. Indeed, f(0) = f(1) = 0 and
for 0 6 q 6 1,

f ′′(q) =

∞∑
k=0

1

(2− q + k)2
− q2 − 5

6
6
∞∑
k=0

1

(1 + k)2
− 1− 5

6
=
π2

6
− 11

6
< −0.1,

so the concavity of f finishes the argument. �

We emphasise that in part (B) of this proof, we have shown that when t = 1, the
inequality in Lemma 19 holds for all 0 6 q 6 1. This combined with Corollary
16 leads to the following result, important in the sequel in the proof of integral
inequality (16).

Corollary 20. Let ξ be a random vector uniform on the unit Euclidean sphere S3

in R4. Let 0 < p 6 2. Then

E|e1 + ξ|−p 6 Γ
(

2− p

2

)
,

equivalently

(19)

∫ ∞
0

|j1(t)|2tp−1dt 6 2p−1Γ(p/2).

Proof. To explain the equivalent form involving j1, note that, E|e1 + ξ|−p = E|ξ +
ξ′|−p, for an independent copy ξ′ of ξ, thanks to rotational invariance. It remains
to use (10) which gives E|ξ1 + ξ2|−p = κp,4

∫∞
0
|j1(t)|2tp−1dt and plug in the value

of κp,4. �

3.3. The integral inequality: 0 < p 6 2. We record for future use the following
bounds

|j1(t)| 6 exp

(
− t

2

8
− t4

3 · 27

)
, 0 6 t 6 4,(20)

|j1(t)| 6 (8/π)1/2t−1(t2 − 1)−1/4, t > 1,(21)

where the first one appears as Lemma 3.1 in [43] (see also [8, Lemma 3.6] for the
proof of a more general statement) and the second one can be found in Watson’s
treatise (see [48, p.447] as well as [14, Lemma 4.4]), which in particular gives

(22) |j1(t)| 6 (8/π)1/2

(
t20

t20 − 1

)1/4

t−3/2, t > t0 > 1.

We define

(23) H(p, s) =

∫ ∞
0

(
e−st

2/8 − |j1(t)|s
)
tp−1dt, 0 < p < 2, s > 1

14



and immediately observe that after a change of variables one integral can be ex-
pressed in terms of the gamma function,

(24) G(p, s) =

∫ ∞
0

e−st
2/8tp−1dt = s−p/223p/2−1Γ(p/2).

Recall (15), F (p, s) =
∫∞

0
|j1(t)|stp−1dt, so

(25) H(p, s) = G(p, s)− F (p, s).

Then the crucial integral inequality (16) is equivalent to H(p, s) > 0.

Our main goal and result here is that the integral inequality H(p, s) > 0 holds in
rather wide ranges of parameters (p, s) (however, it does not all for 0 < p < 2 and
s > 1 which, as already noted, would have been enough to deduce Theorem 8).

Lemma 21. The inequality H(p, s) > 0 holds in the following cases

(a) 0 < p 6 2 and s > 2,

(b) 0 < p 6 1
4 and s > 1.3.

For the proof, we will need several rather intricate estimates on various integrals.
The general idea we employ here follows [43] and is to first use the explicit bounds
on j1 from (20) and (22) to get H > 0 in certain but not all cases and then extend
them by interpolating in s (exploiting the simple dependence of G on s). This
is in contrast to several works, e.g. [8, 9, 10, 14, 26, 37] which heavily rely on
the approach developed by Nazarov and Podkorytov in [39] to integral inequalities
with oscillatory integrands. We also refer to recent papers [2] as well as [36] for
connections between such integral inequalities and majorisation.

We begin by setting

U(p, s) =
4p(2π · 151/2)−s/2

3s/2− p

+ 23p/2−1s−p/2
(

Γ (p/2)− Γ(p/2 + 2)

6s
+

Γ(p/2 + 4)

72s2

)(26)

which emerges in the next lemma (following Lemma 3.2 from [43]).

Lemma 22. For p < 3s/2, we have

F (p, s) < U(p, s).

Proof. Using (20) and (22) with t0 = 4, we get

F (p, s) =

∫ ∞
0

|j1(t)|stp−1dt <

∫ ∞
0

exp

(
−st

2

8
− s t4

3 · 27

)
tp−1dt

+

(
8

151/4(2π)1/2

)s
4p−3s/2

3s/2− p
,
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valid for p < 3s
2 . After the change of variables u = st2/8, the first integral becomes

23p/2−1s−p/2
∫ ∞

0

e−
u2

6s e−uup/2−1du.

We estimate the first exponential using e−x 6 1 − x + x2

2 , x > 0, which gives the
bound∫ ∞

0

(
1− u2

6s
+

u4

72s2

)
e−uup/2−1du = Γ (p/2)− Γ(p/2 + 2)

6s
+

Γ(p/2 + 4)

72s2
.

�

Lemma 23. The inequality
U(p, s) < G(p, s)

holds in the following cases

(i) 0 < p 6 1
4 and s > 17

10 ,

(ii) 0 < p 6 4
5 and s > 2,

(iii) 0 6 p 6 2 and s > 8
3 .

Proof. Note that U < G is equivalent to the following inequality (after canceling
Γ(p/2) on both sides, factoring out Γ(p/2 + 2) and moving terms across using that
3s/2− p > 0),

(27) (2π · 151/2)s/22−p/2
(

3s

2
− p
)

12s−
(
p
2 + 2

) (
p
2 + 3

)
144

>
sp/2+2

Γ(p/2 + 2)
.

To shorten the notation, let a = (2π)1/2 · 151/4 and

A(p, s) = 2−p/2
(

3s

2
− p
)

12s−
(
p
2 + 2

) (
p
2 + 3

)
144

which is decreasing in p and increasing in s. In each of the cases we will simply
replace A with its smallest possible value given the range of p and s, so we let
p1 = 1

4 , s1 = 17
10 , p2 = 4

5 , s2 = 2 and p3 = 2, s3 = 8
3 and have A(p, s) > Ak, where

Ak = A(pk, sk) for k = 1, 2, 3 in cases (i), (ii), (iii), respectively. Then it suffices to
prove that

Aka
s >

sp/2+2

Γ(p/2)
.

We take the logarithm and consider

f(p, s) = s log a+ logAk −
(p

2
+ 2
)

log s+ log Γ
(p

2
+ 2
)
.

Our goal is to show that f(p, s) > 0. We observe that

∂

∂p
f(p, s) = −1

2
log s+ ψ

(p
2

+ 2
)
6 −1

2
log sk + ψ

(pk
2

+ 2
)

in each case respectively and the resulting numerical values on the right bounded
above by −0.03, −0.04 and −0.05, k = 1, 2, 3. Similarly,

∂

∂s
f(p, s) = log a− p/2 + 2

s
> log a− pk/2 + 2

sk
16



with the right hand side bounded this time below by 0.34, 0.39 and 0.47, k = 1, 2, 3.
Thus f(p, s) is decreasing in p and increasing in s, so

f(p, s) > f(pk, sk)

and after plugging in the explicit numerical values, the right hand side is bounded
below by 0.041, 0.049 and 0.032, k = 1, 2, 3, thus proving (i), (ii) and (iii). �

The next two lemmas are vital for the interpolation argument.

Lemma 24. For 4
5 6 p 6 2, we have

F (p, 8/3) < e−p/6G(p, 2).

Proof. Using (22) with t0 = 5, we get

(28)

∫ ∞
5

|j1(t)|8/3tp−1dt 6 (8/π)4/3(25/24)2/3 5p−4

4− p
which for p 6 2 gives∫ ∞

5

|j1(t)|8/3tp−1dt 6 (8/π)4/3(25/24)2/3 5p−4

2
=

2

32/3 · 58/3π4/3
5p.

We divide the interval [0, 5] into consecutive subintervals of the form [ km ,
k+1
m ], for

k = 0, 1, . . . , 5m− 1 with m = 100 and crudely bound∫ 5

0

|j1(t)|8/3tp−1dt

<

∫ 1/m

0

tp−1dt+
1

m

5m−1∑
k=1

max

{∣∣∣∣j1( k

m

)∣∣∣∣8/3 , ∣∣∣∣j1(k + 1

m

)∣∣∣∣8/3
}

·max

{(
k

m

)p−1

,

(
k + 1

m

)p−1
}(29)

(we have used that |j1| < 1 and that j1 is monotone on [0, 5]; the latter is justified

e.g. in [43], p. 290, in the proof of Proposition 1.1). Now,
∫ 1/m

0
tp−1dt = 1

pmp <
1

0.8mp . A resulting bound on ep/621−p ∫∞
0
|j1(t)|8/3tp−1dt is of the form

h(p) =
∑
k

λka
p
k

with explicit positive numbers λk, ak. We check that L(p) = log h(p) < log Γ(p/2) =
R(p) for 0.8 6 p 6 2 relying on the fact that both sides are clearly convex (recall
that summation preserves log-convexity). Specifically, we divide the interval [0.8, 2]
into 12 consecutive subintervals [ui, ui+1], ui = 0.8 + 0.1i, i = 0, 1, . . . , 11 and on

each interval we lower-bound R(p) by its tangent put at the middle vi = ui+ui+1

2 ,
`i(p) = R′(vi)(p − vi) + R(vi) and then check that `i(p) > L(p) by checking the
values at the end-points p = ui, ui+1, which are gathered in Table 2. �

Lemma 25. For 0 < p 6 1
4 , we have

F (p, 1.3) < e2p/17G(p, 1.7).
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Proof. Fix 0 < p 6 1
4 . We break the integral on the left hand side into the sum of

4 integrals A1 + · · · + A4 over (0, 1), (1, 5), (5, 10) and (10,∞). For the first one,
we use (21),

|j1(t)|1.3 < exp

{
−13

10

(
t2

8
+

t4

3 · 27

)}
< 1− 13

80
t2 +

377

38400
t4, 0 < t < 1

(the last inequality obtained by taking the first terms in the power series expan-
sion of the penultimate expression, which gives an upper bound as can be checked
directly by differentiation). Integrating against tp−1 yields

A1 6
1

p
− 13

80(p+ 2)
+

377

38400(p+ 4)
<

1

p
− 13

80(p+ 2)
+

377

38400 · 4
.

For the last one, we use (22) with t0 = 10,

A4 6
∫ ∞

10

(
(8/π)1/2(100/99)1/4t−3/2

)1.3

tp−1dt =
253/20

1113/40 · 53/10(3π)13/20

10p

39− 20p

6
253/20

1113/40 · 53/10(3π)13/20

10p

34
.

For A2 and A3, we use Riemann sums. First, without any error term thanks to the
monotonicity of j1 on (1, 5),

A2 6
4m−1∑
k=0

max

{∣∣∣∣j1(1 +
k

m

)∣∣∣∣1.3 , ∣∣∣∣j1(1 +
k + 1

m

)∣∣∣∣1.3
}∫ 1+ k+1

m

1+ k
m

tp−1dt

<

4m−1∑
k=0

max

{∣∣∣∣j1(1 +
k

m

)∣∣∣∣1.3 , ∣∣∣∣j1(1 +
k + 1

m

)∣∣∣∣1.3
}

(1 + k/m)p−1

m
.

Second, on (5, 10), we choose the midpoints and bound the error simply using the
supremum of the derivative via the crude (numerical) bound

sup
t∈[5,10]

∣∣∣∣ d

dt
|j1(t)|1.3

∣∣∣∣ < 0.06

(since
∣∣ d

dt |j1(t)|1.3
∣∣ = 1.3|j1(t)|0.3|j′1(t)| and j′1(t) = −2J2(t)

t = 2J0(t)
t − 4J1(t)

t2 , the
function under the supremum can be expressed in terms of J0 and J1 and the supre-
mum can be estimated by employing the precise polynomial-type approximations
to J0 and J1 from [1], 9.4.3 and 9.4.6, pp.369–370). This leads to

A3 6
5m−1∑
k=0

∣∣∣∣j1(5 +
k + 1/2

m

)∣∣∣∣1.3 ∫ 5+ k+1
m

5+ k
m

tp−1dt+ 0.06
1

2m

∫ 10

5

tp−1dt

<

5m−1∑
k=0

∣∣∣∣j1(5 +
k + 1/2

m

)∣∣∣∣1.3 (5 + k/m)p−1

m
+

3 · 5p

100m
.

Table 2. Proof of Lemma 24: lower bounds on the differences at
the end-points of the linear approximations `i to R(p).

i 0 1 2 3 4 5 6 7 8 9 10 11
103 · (`i(ui)− L(ui)) 1 5 8 9 10 12 13 14 14 15 15 15

103 · (`i(ui+1)− L(ui+1)) 4 8 9 10 11 13 14 14 15 15 15 14
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With hindsight, we choose m = 200. Adding these 4 estimates together (call the
right-most hand sides of these bounds B1, . . . , B4) and multiplying through p, it
suffices to show that L(p) < R(p) for 0 < p 6 1

4 , where

L(p) = p · (B1 + · · ·+B4), R(p) = (e2/1723/21.7−1/2)pΓ
(p

2
+ 1
)
.

Plainly, R(p) is convex (as being log-convex), whilst

L(p) =
67

80
+

13

40(p+ 2)
+

377

153600
p+ c1 · p10p + c2 · p5p +

∑
i

λipa
p
i

with positive constant c1, c2, λi (specified above) and ai > 1 (of the form (1+k/m),
k > 0). Thus, L(p) is also convex and now we proceed similarly to what we did in the
proof of Lemma 24. Note that L(0) = R(0) = 1. For 0 < p 6 0.02, we lower-bound,
R(p) > `0(p) = 1+R′(0)p and check that `0(0.02)−L(0.02) > 10−5 > 0, to conclude
R(p) > L(p), 0 6 p 6 0.02. We divide the remaining interval (0.02, 0.25) into
6 intervals: (0.02, 0.05), (0.05, 0.1), (0.1, 0.15), (0.15, 0.2), (0.2, 0.23), (0.23, 0.25),

denoted say (ui, ui+1), i = 1, . . . , 6, choose their midpoints vi = ui+ui+1

2 and lower-
bound R(p) by its tangent `i(p) = R′(vi)(p−vi)+R(vi) and check that `i(p) > L(p)
at p = ui, ui+1 (see Table 3) to conclude that R(p) > L(p) for all ui 6 p 6 ui+1

i = 1, . . . , 6, by convexity. �

Table 3. Proof of Lemma 25: lower bounds on the differences at
the end-points of the linear approximations `i to R(p).

i 1 2 3 4 5 6
104 · (`i(ui)− L(ui)) .7 1 3 4 5 3

104 · (`i(ui+1)− L(ui+1)) 2 3 4 3 3 2

We are ready to prove the main inequalities of this section.

Proof of Lemma 21. First we show (a). Lemma 22 combined with Lemma 23 (ii),
(iii) gives (a) for all 0 < p 6 4

5 , s > 2, as well as all 0 < p 6 2 and s > 8
3 ,

respectively. It remains to handle the case 4
5 < p < 2, 2 6 s 6 8

3 . We apply
Hölder’s inequality, Lemma 24 and (19) to get,

F (p, s) 6 F (p, 2)
8−3s

2 F (p, 8/3)
3s−6

2

6
(
G(p, 2)

) 8−3s
2
(
e−p/6G(p, 2)

) 3s−6
2

= e−p
s−2
4 2p−1Γ(p/2).

By concavity, log s 6 s−2
2 + log 2, s > 2, thus e−p

s−2
4 6 s−p/22p/2, s > 2, p > 0,

which gives (a).

To show (b), we proceed similarly. Lemma 22 combined with Lemma 23 (i) gives
(b) for all 0 < p 6 1

4 and s > 1.7. In the remaining case 1.3 6 s 6 1.7, from
19



Hölder’s inequality, Lemma 23 (i) and Lemma 25, we obtain

F (p, s) 6 F (p, 1.7)
10s−13

4 F (p, 1.3)
17−10s

4

6
(
G(p, 1.7)

) 10s−13
4
(
e2p/17G(p, 1.7)

) 17−10s
4

= e
p
2

17−10s
17 1.7−p/223p/2−1Γ(p/2).

Thanks to concavity, log s 6 10
17s−1+log 1.7, s 6 1.7, which gives e

p
2

17−10s
17 1.7−p/2 6

s−p/2, whence (b). �

3.4. The integral inequality: 2 < p < 3. We follow the general approach from
the previous case p < 2. Recall (15), F (p, s) =

∫∞
0
|j1(t)|stp−1dt and that the

crucial integral inequality (17) reads sp/2F (p, s) 6 2p/2F (p, 2). Thus here we let

(30) H̃(p, s) = s−p/22p/2F (p, 2)− F (p, s), 2 < p < 3, s > 1.

Note that we can express F (p, 2) explicitly: using Corollary 5 and (11), we obtain

F (p, 2) =

∫ ∞
0

j1(t)2tp−1dt = κ−1
p,4E|ξ1 + ξ2|−p = κ−1

p,42−p/2C2(p)

= 2p−1 Γ
(
p
2

)
Γ(3− p)[

Γ
(
2− p

2

)]2
Γ
(
3− p

2

) .
In view of (30), we therefore set

(31) G̃(p, s) = s−p/223p/2−1Γ(p/2)D(p)

with

(32) D(p) =
Γ(3− p)[

Γ
(
2− p

2

)]2
Γ
(
3− p

2

) ,
so that

H̃(p, s) = G̃(p, s)− F (p, s).

The main result of this section is that integral inequality (17) also holds for all

s > 2. We emphasise that H̃(p, 2) = 0.

Lemma 26. The inequality H̃(p, s) > 0 holds for all 2 < p < 3 and s > 2.

This will be established in a very much similar way to the previous section: crude
pointwise bounds on j1 will suffice to handle the case s > 8

3 which will then be
extended to s > 2 by interpolation.

Lemma 27. With D(p) defined in (32), the function p 7→ logD(p) is increasing,
convex and positive on (2, 3).

Proof. Let x = 3−p
2 , 0 < x < 1

2 . By the Legendre duplication formula (see, e.g.
6.1.18 in [1]),

D(p) =
Γ(2x)

Γ(x+ 1
2 )2Γ(x+ 3

2 )
=

22x−1Γ(x)
√
πΓ(x+ 1

2 )Γ(x+ 3
2 )
.
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Thus the convexity of logD(p) on (2, 3) is equivalent to the convexity of

f(x) = log Γ(x)− log Γ

(
x+

1

2

)
− log Γ

(
x+

3

2

)
on (0, 1

2 ). Using the series representation of (log Γ(z))′′ =
∑∞
n=0(z+n)−2 (see, e.g.

6.4.10 in [1]), we get

f ′′(x) =

∞∑
n=0

1

(x+ n)2
−
∞∑
n=0

1

(x+ n+ 1
2 )2
−
∞∑
n=0

1

(x+ n+ 3/2)2

=
1

x2
− 1

(x+ 1
2 )2

+

∞∑
n=1

1

(x+ n)2
− 2

∞∑
n=1

1

(x+ n+ 1
2 )2

.

For 0 < x < 1
2 ,

∞∑
n=1

1

(x+ n)2
− 2

∞∑
n=1

1

(x+ n+ 1
2 )2

>

∞∑
n=1

1

( 1
2 + n)2

− 2

∞∑
n=1

1

(n+ 1
2 )2

= −π
2

2
+ 4,

thus

f ′′(x) >
1

x2
− 1

(x+ 1
2 )2
− π2

2
+ 4.

The right hand side is clearly decreasing (e.g., by looking at the derivative), so for

0 < x < 1
2 , it is at least 4− 1− π2

2 + 4 = 7− π2

2 which is positive.

Moreover, d
dp logD(p)|p=2 = 1−γ

2 > 0 (γ = 0.57.. is Euler’s constant), so D(p) is

strictly increasing on (2, 3) with D(2) = 1. �

Lemma 28. For all 2 < p < 3 and s > 8
3 , we have

U(p, s) < G̃(p, s).

Proof. We let a = (2π)1/2 · 151/4 and inserting the definitions of U from (26) and

G̃ from (31), the desired inequality becomes

4pa−s

3s/2− p
+ s−p/223p/2−1

(
Γ (p/2)− Γ(p/2 + 2)

6s
+

Γ(p/2 + 4)

72s2

)
< s−p/223p/2−1Γ

(p
2

)
D(p),

equivalently,

2p/2+1a−s

3s/2− p
sp/2+2 < s2Γ

(p
2

)
(D(p)− 1) + Γ

(p
2

+ 2
) 12s− (p/2 + 2)(p/2 + 3)

72
.

The right hand side is clearly increasing with s (D(p) > 1 by Lemma 27), whereas
the left hand side is decreasing with s (for every fixed 2 < p < 3), as can be checked
by examining the derivative of log(a−ssp/2+2). Therefore, it suffices to prove this
inequality for s = 8

3 . Moreover, after replacing Γ(p2 ) on the right hand side with
0.88 (see Lemma 18) and Γ(p2 + 2) with Γ(3) = 2, it suffices to prove that the
function

f(p) = 0.88(8/3)2(D(p)− 1) +
32− (p/2 + 2)(p/2 + 3)

36
− b (16/3)

p/2

4− p
,
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where b = 2a−8/3(8/3)2, is positive for 2 < p < 3. We put

L(p) = b
(16/3)

p/2

4− p
+

1

36
(p/2 + 2)(p/2 + 3)

and

R(p) = 0.88(8/3)2(D(p)− 1) +
8

9
which are both convex (D(p) is even log-convex, Lemma 27). For 2 < p < 5

2 , we
use the tangent `1(p) = R(2) + R′(2)(p − 2) as a lower bound, R(p) > `1(p) and
check that at p = 2, p = 5

2 the linear function `1 dominates L (the difference is

0.017.. and 0.076.., respectively), which then gives R > `1 > L on (2, 5
2 ). Similarly,

for 5
2 < p < 3, R(p) > `2(p) = R(5/2) +R′(5/2)(p− 5/2), and `2 −L at p = 5

2 and
p = 3 is 1.19.. and 3.77.., respectively. This finishes the proof. �

Lemma 29. For all 2 < p < 3, we have

F (p, 8/3) < e−p/6G̃(p, 2).

Proof. Consider

L(p) = logF (p, 8/3), R(p) = log
(
e−p/6G̃(p, 2)

)
which are both convex (recall Lemma 27). Using that, we crudely bound R(p)
from below by tangents: r1(p) = R(2) + R′(2)(p − 2) on (2, 2.5) and r2(p) =
R (2.5) + R′ (2.5) (p− 2.5) on (2.5, 3) and then compare their values at the end
points with upper bounds on L to conclude that r1 > L on (2, 2.5) and r2 > L
on (2.5, 3). Estimates (28) and (29) added together (applied with m = 100 as in
Lemma 24) yield

L(2) < 0.35, L(2.5) < 0.56, L(3) < 0.96,

whereas we check directly that

r1(2) > 0.359, r1(2.5) > 0.58, r2(3) > 1.48.

Comparing these values finish the argument. �

Proof of Lemma 26. The argument relies on Lemmas 22, 28 and 29, following al-
most verbatim the proof of Lemma 21 and thus we omit the details. �

3.5. Miscellaneous facts. Our first result here is a straightforward extension of
Lemma 8 from [29] to negative moments (see also Lemma 3 in [10]).

Lemma 30. Let 0 < p < 1. Let n, d > 1 and let X1, . . . , Xn be independent
rotationally invariant random vectors in Rd. Then

E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
−p

= βp,dE

∣∣∣∣∣
n∑
k=1

〈vk, Xk〉

∣∣∣∣∣
−p

for arbitrary vectors v1, . . . , vn in Rd, where

βp,d =

√
πΓ
(
d−p

2

)
Γ
(

1−p
2

)
Γ
(
d
2

) .
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Proof. Thanks to homogeneity, we can assume that the vk are unit. Thanks to ro-
tational invariance and independence, we can assume without loss of generality that
v1 = · · · = vn = e1, but then it suffices to consider the case n = 1 (because sums of
independent rotationally invariant random vectors are rotationally invariant). The
latter can be easily justified in a number of ways.

For instance, it follows from a Fourier-analytic argument: we invoke (10), rewrite
E jd/2−1(t|Xk|) as Eeit〈vk,Xk〉 and apply (8) with d = 1 to

∑
〈vk, Xk〉 which gives

βp,d = κp,d/(2Kp,1).

Alternatively, we can apply a standard embedding-type argument: if we take a
random vector ξ uniform on the unit Euclidean sphere Sd−1, independent of the
Xk, we have for every vector x in Rd

E| 〈x, ξ〉 |−p = β−1
p,d|x|

−p

with

β−1
p,d = E| 〈e1, ξ〉 |−p =

∫ 1

−1
|t|−p(1− t2)

d−3
2 dt∫ 1

−1
(1− t2)

d−3
2 dt

=
Γ
(

1−p
2

)
Γ
(
d
2

)
√
πΓ
(
d−p

2

) .

Applying this to x = X1, taking the expectation over X1 and noting that 〈X1, ξ〉
has the same distribution as 〈X1, e1〉 finishes the argument. �

Lemma 31. For every 0 < q < 2, we have(
13

20

)q
< Γ(2− q).

Proof. The function f(q) = log Γ(2− q)− q log 13
20 is convex on (0, 2) with f ′(0) =

γ − 1 − log 13
20 > 0.007. Thus f is strictly increasing and the lemma follows since

f(0) = 0. �

4. End of the proof of Theorem 8

To finish the proof of Theorem 8, we only need to justify Steps 1-4 from Section
2.3.1.

4.1. Step 1 and 3: Integral inequality. Lemma 21 (a) and (b) gives Step 1 and
3, respectively.

4.2. Step 2: Induction. First note that, by homogeneity, (13) with C(p) = C∞(p)
is equivalent to

E

∣∣∣∣∣ξ1 +

n∑
k=2

akξk

∣∣∣∣∣
−p

6 C∞(p)

(
1 +

n∑
k=2

a2
k

)−p/2
.

For p > 0 and x > 0 we define

φp(x) = (1 + x)−p/2
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and

Φp(x) =

{
φp(x), x > 1,

2φp(1)− φp(2− x), 0 6 x 6 1.

Crucially, Φp(x) 6 φp(x) for all x > 0, as, geometrically, on [0, 1], the graph of
Φp(x) is obtained from the graph of φp(x) on [1, 2] by reflecting it about (1, φp(1)).
By induction on n, we will show a strengthened version of the above with φp on
the right hand side replaced by Φp.

Theorem 32. Let 1
4 6 p 6 2. Let ξ1, ξ2, . . . be independent random vectors uniform

on the unit Euclidean sphere S3 in R4. For every n > 2 and nonnegative numbers
a2, . . . , an, we have

(33) E

∣∣∣∣∣ξ1 +

n∑
k=2

akξk

∣∣∣∣∣
−p

6 C∞(p)Φp

(
n∑
k=2

a2
k

)
.

Proof. For the inductive base, when n = 2, (33) becomes

E|ξ1 +
√
tξ2|−p 6 2p/2Γ

(
2− p

2

)
Φp(t), t > 0,

where we have put t = a2
2. By homogeneity and the fact that Φp 6 φp, the case

t > 1 reduces to the case 0 6 t 6 1 which in turn follows by combining Corollary 16
and Lemma 19 (applied to q = p/2, noting as usual that by rotational invariance,
E|e1 +

√
tξ2|−p = E|ξ1 +

√
tξ2|−p).

For the inductive step, let n > 2 and suppose (33) holds for all n − 1 nonneg-
ative numbers a2, . . . , an. To prove it for n nonnegative arbitrary numbers, say
a2, . . . , an, an+1, we let

x = a2
2 + · · ·+ a2

n + a2
n+1

and consider 3 cases.

Case 1: ak > 1 for some 2 6 k 6 n + 1. Then x > 1, so Φp(x) = φp(x) and our
goal is to show

(34) E

∣∣∣∣∣
n+1∑
k=1

akξk

∣∣∣∣∣
−p

6 C∞(p)

(
n+1∑
k=1

a2
k

)−p/2
where we put a1 = 1. Let a∗1, . . . , a

∗
n+1 be a nonincreasing rearrangement of the

sequence a1, . . . , an+1 and set a′k =
a∗k
a∗1

, k = 1, . . . , n + 1. Thanks to homogeneity,

to prove (34), it is enough to prove

E

∣∣∣∣∣
n+1∑
k=1

a′kξk

∣∣∣∣∣
−p

6 C∞(p)Φp

(
n+1∑
k=2

a′2k

)

which is handled by either of the next two cases because here a′1 = 1 and a′k 6 1
for all k > 2.
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Case 2.1: ak 6 1 for all 2 6 k 6 n + 1 and x > 1. Since x > 1, our goal is again
(34) with a1 = 1. We have,

max
k6n+1

ak = 1 6
1√
2

√
1 + x =

1√
2

(
n+1∑
k=1

a2
k

)1/2

,

so Corollary 10 finishes the inductive argument in this case.

Case 2.2: ak 6 1 for all 2 6 k 6 n + 1 and x < 1. Fix vectors v2, . . . , vn+1 in R4

with |vk| = ak, for each k = 2, . . . , n+ 1. Then, plainly,

E

∣∣∣∣∣ξ1 +

n+1∑
k=2

akξk

∣∣∣∣∣
−p

= E

∣∣∣∣∣|e1|ξ1 +

n+1∑
k=2

|vk|ξk

∣∣∣∣∣
−p

and thanks to Lemma 30, when 0 < p < 1, the right hand side can be written as

E

∣∣∣∣∣|e1|ξ1 +

n+1∑
k=2

|vk|ξk

∣∣∣∣∣
−p

= βp,4E

∣∣∣∣∣〈e1, ξ1〉+

n+1∑
k=2

〈vk, ξk〉

∣∣∣∣∣
−p

.

If we let Q be a random orthogonal matrix, independent of the ξk and note that
(ξn, ξn+1) has the same distribution as (ξn, Qξn), we obtain

E

∣∣∣∣∣〈e1, ξ1〉+

n+1∑
k=2

〈vk, ξk〉

∣∣∣∣∣
−p

= EQEξ

∣∣∣∣∣〈e1, ξ1〉+

n−1∑
k=2

〈vk, ξk〉+
〈
vn +Q>vn+1, ξn

〉∣∣∣∣∣
−p

.

Going back to the vector sum again via Lemma 30, we arrive at the identity

E

∣∣∣∣∣ξ1 +

n+1∑
k=2

akξk

∣∣∣∣∣
−p

= EQEξ

∣∣∣∣∣ξ1 +

n−1∑
k=2

|vk|ξk + |vn +Q>vn+1|ξn

∣∣∣∣∣
−p

.

As it holds for all 0 < p < 1 and both sides are clearly analytic in p wherever
the expectations exists, so in {p ∈ C, Re(p) < 3} (as follows, e.g. from Morera’s
theorem by a standard argument), the same identity continues to hold for all 0 <
p < 3. Conditioned on the value of Q, the inductive hypothesis applied to the n−1
nonnegative numbers |v2|, . . . , |vn−1|, |vn +Q>vn+1| yields

E

∣∣∣∣∣ξ1 +

n+1∑
k=2

akξk

∣∣∣∣∣
−p

6 EQC∞(p)Φp
(
|v2|2 + · · ·+ |vn−1|2 + |vn +Q>vn+1|2

)
.

Note that

|v2|2 + · · ·+ |vn−1|2 + |vn ±Q>vn+1|2 = x± 2
〈
vn, Q

>vn+1

〉
,

so thanks to the symmetry of the distribution of Q, we can rewrite the right hand
side as

C∞(p)EQ
Φp(x+ 2

〈
vn, Q

>vn+1

〉
) + Φp(x− 2

〈
vn, Q

>vn+1

〉
)

2
.

The proof of the inductive step now follows from the following extended concavity
property of Φp applied to a± = x± 2

〈
vn, Q

>vn+1

〉
. �
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Lemma 33. Let p > 0. For every a−, a+ > 0 with a−+a+
2 6 1, we have

Φp(a−) + Φp(a+)

2
6 Φp

(
a− + a+

2

)
.

Proof. This is Lemma 20 in [10] (stated there for no reason only for 0 < p < 1, as
the proof works for every p > 0 because it only uses the convexity of φp). �

4.3. Step 4: Projection. Let us say that a1 = maxk6n |ak|, so a1 >
√

10
13 .

Projecting onto this coefficient, that is applying Corollary 17 to a = a1 and
v =

∑n
k=2 akξk (conditioning on its value), we get

E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−p

6 a−p1 6

(
13

10

)p/2
6 2p/2Γ

(
2− p

2

)
= C∞(p),

where the last inequality results from Lemma 31 (applied to q = p/2). This finishes
the proof of Theorem 8. �

5. End of the proof of Theorem 9

To finish the proof of Theorem 9, we only need to show here Steps 1 and 2 from
Section 2.3.2.

5.1. Step 1: Integral inequality. Lemma 26 gives the desired claim.

5.2. Step 2: Induction. We repeat the entire inductive argument from Section
4.2 verbatim, replacing 1

4 6 p 6 2 with 2 < p < 3 and C∞(p) with C2(p). The
only modification required is to check the inductive base which now amounts to
verifying that

E|ξ1 +
√
tξ2|−p 6 C2(p)Φp(t) = C2(p)(21−p/2 − (3− t)−p/2), 0 6 t 6 1.

By Lemma 13, the left hand side is clearly increasing in t (when 2 < p < 3 and
d = 4 all the coefficients in the power series expansion therein are positive), whereas
the right hand side is clearly decreasing in t. By the definition of C2(p), there is
equality at t = 1. This finishes the whole proof.
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Appendix: Behaviour of the constants

We sketch an argument of the following proposition which justifies (5).

Proposition 34. For every d > 1, the equation cd,2(q) = cd,∞(q) has a unique
solution q = q∗d in (−(d− 1), 2). Moreover, cd,2(q) < cd,∞(q) for −(d− 1) < q < q∗d
and cd,2(q) > cd,∞(q) for q∗d < q < 2. For d > 5, we have q∗d ∈ (−(d−1),−(d−2)).

Proof. Since the cases 1 6 d 6 4 have been explicitly dealt with (see the discussion
in the introduction), it is enough to analyse the case d > 5. Moreover, by the
Schur-concavity result of [4] and [29], cd,∞(q) < cd,2(q) for every 0 < q < 2, so we
can further assume that −(d− 1) < q < 0. We look into the sign of

hd(q) = log(cd,2(q)q)− log(cd,∞(q)q),
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which can be equivalently recast as

hd(q) = log

2−
q
2

Γ
(
d
2

)
Γ(d+ q − 1)

Γ
(
d+q

2

)
Γ
(
d+ q

2 − 1
)
− log

(2

d

)q/2 Γ
(
d+q

2

)
Γ
(
d
2

)


= −q log 2 +
q

2
log d+ log

 Γ
(
d
2

)2
Γ(d+ q − 1)

Γ
(
d+q

2

)2

Γ
(
d+ q

2 − 1
)
 .

Writing x = q+d−1
2 ∈

(
0, d−1

2

)
and h̃d(x) = hd(2x + 1 − d), we get (using the

Legendre duplication formula Γ(2x)
√
π = 22x−1Γ(x)Γ(x+ 1/2)) that

h̃d(x) = x log d+ log

(
Γ(x)

Γ
(
x+ 1

2

)
Γ
(
x+ d−1

2

))+ log

(
2d−2Γ

(
d
2

)2
√
πd

d−1
2

)
.

We now make the following claims.

Claim 1. For all 0 < x < 1, h̃′′d(x) > 0.06.

Claim 2. For every d > 5, inf1<x< d−1
2
h̃′d(x) > 0.

Claim 3. h̃d(
1
2 ) < 0.

The strict convexity from Claim 1, the simple observation that h̃d(0+) = +∞ and

Claim 3 give that that h̃d has a unique zero, say x0 in (0, 1
2 ), is positive on (0, x0)

and negative on (x0,
1
2 ). Claim 2 and the simple observation that h̃d(

d−1
2 ) = 0 gives

that h̃d is negative on
[
1, d−1

2

)
. Convexity also gives that h̃d is negative on ( 1

2 , 1), for

hd(
1
2 ) and hd(1) are negative. These give the desired behaviour of cd,2(q)− cd,∞(q)

for −(d − 1) < q < 0. Finally, it also follows from Claim 2 that h′d(0) > 0 which
gives cd,2(0)− cd,∞(0) > 0. It remains to prove the claims. �

Proof of Claim 1. Differentiating twice yields

h̃′′d(x) =

∞∑
n=0

(
1

(x+ n)2
− 1(

x+ n+ 1
2

)2 − 1(
x+ n+ d−1

2

)2
)
.

Note that the first two terms make up a decreasing function, thus for 0 < x < 1
and d > 5 the right hand side is greater than

∞∑
n=0

(
1

(1 + n)2
− 1(

1 + n+ 1
2

)2 − 1

(n+ 2)
2

)
= 5− π2

2
> 0,

which proves the claim. �

Proof of Claim 2. Differentiating once yields

h̃′d(x) = log d+

(
ψ(x)− ψ

(
x+

1

2

))
− ψ

(
x+

d− 1

2

)
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where ψ = (log Γ)′ as usual denotes the digamma function. By the well-known
inequality ψ(u) 6 log u− 1

2u , u > 0 (see, e.g. 6.3.21 in [1]), we obtain

h̃′d(x) > log d− log

(
x+

d− 1

2

)
+

1

2x+ d− 1
−
(
ψ

(
x+

1

2

)
− ψ(x)

)
.

Put y = d−1
2 and call the right hand side F (x, y). Note that for every fixed x > 1,

∂F

∂y
(x, y) =

1

y + 1/2
− 1

x+ y
− 1

2

1

(x+ y)2
>

1

y + 1/2
− 1

1 + y
− 1

2

1

(1 + y)2

which is clearly positive for all y > 0. Therefore, for all 1 < x < y,

h̃′d(x) > F (x, y) > F (x, x).

It remains to prove that f(x) = F (x, x) > 0 for every x > 1. We have,

f(x) =

(
log

(
1 +

1

2x

)
+

1

4x

)
−
(
ψ

(
x+

1

2

)
− ψ(x)

)
.

Note that each bracket is a decreasing function in x (for the second one, e.g. by
taking the derivative). Thus, crudely, for 1 < x < 1.07,

f(x) >

(
log

(
1 +

1

2 · 1.07

)
+

1

4 · 1.07

)
−
(
ψ(1)− ψ

(
1 +

1

2

))
> 0.003.

For x > 1.07, using again ψ(x + 1/2) 6 log(x + 1/2) − 1
2x+1 as well as ψ(x) >

log(x+ 1/2)− 1
x (see [17]), we get

f(x) > log

(
1 +

1

2x

)
+

1

4x
−
(

1

x
− 1

2x+ 1

)
It is elementary to verify that the right hand side is positive for x > 1.07 (it is in
fact unimodal, e.g. by analysing its derivative). �

Proof of Claim 3. We have, h̃d
(

1
2

)
= log

(
2d−2d1−d/2Γ

(
d
2

))
. Letting u = d/2 >

5/2 and using [23], we get

h̃d

(
1

2

)
< log

(√
2π2u−1e−u+ 1

12uu1/2
)
6 log

(√
2π2u−1e−u+ 1

30u1/2
)
.

Denoting the right hand side by f(u), we see that f is strictly concave. Since
f ′(5/2) < −0.1, f is decreasing for u > 5/2. Thus f(5/2) < −0.04 finishes the
argument. �

Remark 35. We have,

(35) q∗d = −(d− 1) +O(d)exp

(
−1− log 2

2
d

)
, d→∞.

As before, by Claim 1, to show q∗d < −(d− 1) + 2αd for some αd > 0, it suffices to

check that h̃d(αd) < 0. With the choice of αd from (35), this follows by using [23]
and a simple bound Γ(u) < 1

u , 0 < u < 1.
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