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Abstract. We prove an extension of Szarek’s optimal Khinchin inequality (1976) for

distributions close to the Rademacher one, when all the weights are uniformly bounded

by a 1/
√

2 fraction of their total `2-mass. We also show a similar extension of the prob-

abilistic formulation of Ball’s cube slicing inequality (1986). These results establish the

distributional stability of these optimal Khinchin-type inequalities. The underpinning

to such estimates is the Fourier-analytic approach going back to Haagerup (1981).
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1. Introduction

Let ε1, ε2, . . . be independent identically distributed (i.i.d.) Rademacher random vari-

ables, that is, symmetric random signs satisfying P (εj = ±1) = 1
2 . Motivated by his

study of bilinear forms on infinitely many variables, Littlewood conjectured in [26] (see

also [15]) the following inequality: for every n ≥ 1 and every unit vector a in Rn, we have

(1) E

∣∣∣∣∣∣
n∑
j=1

ajεj

∣∣∣∣∣∣ ≥ E
∣∣∣∣ε1 + ε2√

2

∣∣∣∣ =
1√
2
,

which is clearly best possible. Not until 46 years after it had been posed, was this proved

by Szarek in [34]. His result was later generalised in a stunning way to the setting of

vector-valued coefficients aj in arbitrary normed space by Lata la and Oleszkiewicz in [24]

(see also [30, Section 4.2] for a modern presentation of their proof using discrete Fourier

analysis). Szarek’s original proof was based mainly on an intricate inductive scheme (see

also [35]). Note that (1) holds trivially if ‖a‖∞ = maxj |aj | ≥ 1√
2
, for if, say we have

|a1| ≥ 1√
2
, then thanks to independence and convexity,

E

∣∣∣∣∣∣
n∑
j=1

ajεj

∣∣∣∣∣∣ ≥ E

∣∣∣∣∣∣a1ε1 + E
n∑
j=2

ajεj

∣∣∣∣∣∣ = E|a1ε1| = |a1| ≥
1√
2
.

Haagerup in his pioneering work [14] on Khinchin inequalities offered a very different

approach to the nontrivial regime ‖a‖∞ ≤ 1√
2
, using classical Fourier-analytic integral

representations along with tricky estimates for a special function.
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National Science Centre, Poland, grant 2018/31/D/ST1/0135. T.T.’s research was supported by the NSF
grant DMS-1955175.
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Taking that route, the point of this paper is to illustrate the robustness of Haagerup’s

method and extend (1) to i.i.d. sequences of random variables whose distribution is close

to the Rademacher one in the W2-Wasserstein distance. Using the same framework, we

also treat Ball’s cube slicing inequality from [2] which asserts that the maximal-volume

hyperplane section of the cube [−1, 1]n in Rn is attained at (1, 1, 0, . . . , 0)⊥. This can be

equivalently stated in probabilistic terms as an inequality akin to (1) as follows (see, e.g.

equation (2) in [6]). Let ξ1, ξ2, . . . be i.i.d. random vectors uniform on the unit Euclidean

sphere in R3. For every n ≥ 1 and every unit vector a in Rn, we have

(2) E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
−1 ≤ E

[∣∣∣∣ξ1 + ξ2√
2

∣∣∣∣−1
]

=
√

2,

where here and throughout | · | denotes the standard Euclidean norm.

Szarek’s inequality (1), Balls inequality (2), as well as these extensions fall under the

umbrella of so-called Khinchin-type inequalities. The archetype was Khinchin’s result

asserting that all Lp norms of Rademacher sums
∑
ajεj are comparable to its L2-norm,

established in his work [22] on the law of the iterated logarithm (and perhaps discovered

independently by Littlewood in [26]). Due to the intricacies of the methods involved, sharp

Khinchin inequalities are known only for a handful of distributions, most notably random

signs ([14, 29]), but also uniforms ([4, 5, 6, 8, 18, 21, 25]), type L ([17, 32]), Gaussian mix-

tures ([1, 10]), marginals of `p-balls ([3, 11]), or distributions with good spectral properties

([23, 33]). The present work makes a first step towards more general distributions satisfy-

ing only a closeness-type assumption instead of imposing structural properties. Viewing

sharp Khinchin-type inequalities as maximization problems for functionals on the sphere,

our results assert, perhaps surprisingly, the fact that such inequalities are stable with re-

spect to perturbations of the law of the underlying random vectors. These distributional

stability results are novel in the context of optimal probabilistic inequalities.

2. Main results

For p > 0 and a random vector X in Rd, we denote its Lp-norm with respect to the

standard Euclidean norm | · | on Rd by ‖X‖p = (E|X|p)1/p, whereas for a (deterministic)

vector a in Rn, ‖a‖∞ = maxj≤n |aj | is its `∞-norm. We say that the random vector

X in Rd is symmetric if −X has the same distribution as X. We also recall that the

vector X is called rotationally invariant if for every orthogonal map U on Rd, UX has

the same distribution as X. Equivalently, X has the same distribution as |X|ξ, where ξ

is uniformly distributed on the unit sphere Sd−1 in Rd and independent of |X|. Recall

that the W2-Wasserstein distance W2(X,Y ) between (the distributions of) two random

vectors X and Y in Rd is defined as inf(X′,Y ′) ‖X ′−Y ′‖2, where the infimum is taken over

all couplings of X and Y , that is, all random vectors (X ′, Y ′) in R2d such that X ′ has the

same distribution as X and Y ′ has the same distribution as Y .

Our first result is an extension of Szarek’s inequality (1) which reads as follows.
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Theorem 1. There is a positive universal constant δ0 such that if we let X1, X2, . . . be

i.i.d. symmetric random variables satisfying

(3)
∥∥|X1| − 1

∥∥
2
≤ δ0,

then for every n ≥ 3 and unit vectors a in Rn with ‖a‖∞ ≤ 1√
2
, we have

(4) E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣ ≥ E
∣∣∣∣X1 +X2√

2

∣∣∣∣ .
Moreover, we can take δ0 = 10−4.

Note that left hand side of (3) is nothing but the W2-Wasserstein distance between the

distribution of X1 and the Rademacher distribution since |x±1| ≥
∣∣|x|−1

∣∣ for x ∈ R and

thus the optimal coupling of the two distributions is
(
X1, sign(X1)

)
.

Our second main result provides an analogous extension for Ball’s inequality (2).

Theorem 2. Let X1, X2, . . . be i.i.d. symmetric random vectors in R3. Suppose their

common characteristic function φ(t) = Eei〈t,X1〉 satisfies

(5) |φ(t)| ≤ C0

|t|
, t ∈ R3 \ {0},

for some constant C0 > 0. Assume that

(6) W2(X1, ξ) ≤ 10−38C−9
1 min

{
(E|X1|3)−6, 1

}
,

where C1 = max{C0, 1} and ξ is a random vector uniform on the unit Euclidean sphere

S2 in R3. Then for every n ≥ 3 and unit vectors a in Rn with ‖a‖∞ ≤ 1√
2
, we have

(7) E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣
−1

≤ E
∣∣∣∣X1 +X2√

2

∣∣∣∣−1

.

Plainly, if we know that X1 and ξ are sufficently close in W3, then the parameter

E|X1|3 in (6) is redundant. In contrast to Theorem 1, here the closeness assumption

(6) is put in terms of two parameters of the distribution: its third moment and the

polynomial decay of its characteristic function. It is not clear whether this is essential.

At the technical level of our proofs, the third moment is needed to carry out a certain

Gaussian approximation, whilst the decay assumption has to do with an a priori lack of

integrability in the Fourier-analytic representation of the L−1 norm (as opposed to the

L1-norm handled in Theorem 1).

On the other hand, neither of these is very restrictive. In particular, if X1 has a density

f on R3 vanishing at ∞ whose gradient is integrable, then

|t||φ(t)| ≤
3∑
j=1

|tjφ(t)| =
3∑
j=1

∣∣∣∣∫
R3

tje
i〈t,x〉f(x)dx

∣∣∣∣ =

3∑
j=1

∣∣∣∣∫
R3

iei〈t,x〉∂jf(x)dx

∣∣∣∣
≤
√

3

∫
R3

|∇f(x)|dx,

3



so (5) holds with C0 =
√

3
∫
R3 |∇f |.

Another natural sufficient condition is the rotational invariance of X1: if, say, X1 has

the same distribution as Rξ, for a nonnegative random variable R and an independent

of it random vector ξ uniform on the unit sphere S2, then Archimedes’ Hat-Box theorem

implies that 〈t, Rξ〉, conditioned on the value of R, is uniform on [−R|t|, R|t|] and thus

|φ(t)| = |EREξei〈t,Rξ〉| =
∣∣∣∣ER sin(R|t|)

R|t|

∣∣∣∣ ≤ ER−1

|t|
=

E|X1|−1

|t|
.

Moreover, in this case W2(X1, ξ) = ‖R− 1‖2 (since for every unit vectors θ, θ′ in Rd and

R ≥ 0, we have |Rθ − θ′| ≥ |R − 1|, as is easily seen by squaring). Probabilistically, this

is an important special case as it yields results for symmetric unimodal distributions on

R. Indeed, if X is of the form Rξ as above, for q > −1, we have the identity

(8) E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣
q

= E

∣∣∣∣∣∣
n∑
j=1

ajRjξj

∣∣∣∣∣∣
q

= (1 + q)E

∣∣∣∣∣∣
n∑
j=1

ajRjUj

∣∣∣∣∣∣
q

,

where the Rj are i.i.d. copies of R and the Uj are i.i.d. uniform random variables on [−1, 1],

independent of the Rj (see Proposition 4 in [19]). The RjUj showing up in this formula

can have any symmetric unimodal distribution, uniquely defined by the distribution of

Rj . Thus, if V1, V2, . . . be i.i.d. symmetric unimodal random variables, Theorem 2 then

immediately yields a sharp upper bound on limq↓−1(1 + q)E
∣∣∣∑n

j=1 ajXj

∣∣∣q for all unit

vectors a with ‖a‖∞ ≤ 1√
2

(cf. [6, 5, 11, 25]).

A result in the same vein as Theorem 2 is König and Koldobsky’s extension [19] of Ball’s

cube slicing inequality to product measures with densities satisfying certain regularity and

moment assumptions. Their result also applies specifically to vectors of weights satisfying

the small coefficient condition ‖a‖∞ ≤ 1√
2
.

Approached differently, full extensions of (1) and (2) (i.e. without the small coefficient

restriction on a) have been obtained in our recent work [12] for a very special family of

distributions corresponding geometrically to extremal sections and projections of `p-balls.

3. Proof of Theorem 1

Our approach builds on Haagerup’s slick Fourier-analytic proof from [14]. We let

(9) φ(t) = EeitX1 , t ∈ R,

be the characteristic function of X1. Using the elementary Fourier-integral representation

|x| = 1

π

∫
R

(1− cos(tx))t−2dt, x ∈ R,

as well as the symmetry and independence of the Xj , we have,

E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣ =
1

π

∫
R

(
1− Re Eeit

∑
ajXj

)
t−2dt =

1

π

∫
R

1−
n∏
j=1

φ(ajt)

 t−2dt(10)
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(see also Lemma 1.2 in [14]). If a is a unit vector in Rn with nonzero components, using

the AM-GM inequality, we obtain Haagerup’s lower bound

(11) E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣ ≥
n∑
j=1

a2
jΨ(a−2

j ),

where

(12) Ψ(s) =
1

π

∫
R

(
1−

∣∣∣∣φ( t√
s

)∣∣∣∣s) t−2dt, s > 0.

(see Lemma 1.3 in [14]). The crucial lemma reads as follows.

Lemma 3. Under the assumptions of Theorem 1, we have Ψ(s) ≥ Ψ(2) for every s ≥ 2.

If we take the lemma for granted, the proof of Theorem 1 is finished because the small

coefficient assumption ‖a‖∞ ≤ 1√
2

gives Ψ(a−2
j ) ≥ Ψ(2) for each j, and as a result we get

E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣ ≥ Ψ(2) =
1

π

∫
R

(
1−

∣∣∣∣φ( t√
2

)∣∣∣∣2
)
t−2dt = E

∣∣∣∣X1 +X2√
2

∣∣∣∣ ,
where the last equality is justified by (10).

It remains to prove Lemma 3. To this end, we recall that if the Xj were Rademacher

random variables, then the special function Ψ becomes

(13) Ψ0(s) =
1

π

∫
R

(
1−

∣∣∣∣cos

(
t√
s

)∣∣∣∣s) t−2dt, s > 0.

Haagerup showed that for every s > 0,

(14) Ψ0(s) =
2√
πs

Γ
(
s+1

2

)
Γ
(
s
2

) =

√
2

π

∞∏
k=0

(
1− 1/(s+ 2k + 1)2

)1/2

and concluded by the product representation that Ψ0 is strictly increasing. In particular,

Lemma 3 holds in the Rademacher case due to monotonicity. The rest of the proof builds

exactly on this observation: we show that the closeness of distributions guarantees that

Ψ and Ψ0 are close for, say s ≥ 3, and that their derivatives are close for 2 ≤ s ≤ 3.

Crucially, not only do we know that Ψ0 is strictly monotone, but also we can get a good

bound on its derivative near the endpoint s = 2, which we record now for future use.

Lemma 4. We have

(15) inf
2≤s≤3

Ψ′0(s) ≥ ζ(3)− 1

8
√

2
= 0.01785...
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Proof. Differentiating Haagerup’s product expression (14) term-by-term yields

Ψ′0(s) =
d

ds

√
2

π

∞∏
k=0

(
1− (s+ 2k + 1)−2

)1/2

= Ψ0(s)
∞∑
k=0

(
1− (s+ 2k + 1)−2

)−1
(s+ 2k + 1)−3

≥ Ψ0(2)
∞∑
k=0

(2k + 4)−3 =
1√
2

ζ(3)− 1

8
. �

The rest of this section is devoted to the proof of Lemma 3. We break it into several parts.

3.1. A uniform bound on the characteristic function.

Lemma 5. Let X be a symmetric random variable satisfying (3). Then its characteristic

function φ(t) = EeitX satisfies,

(16) |φ(t)− cos t| ≤ δ0(δ0 + 2)

2
t2, t ∈ R.

Proof. By symmetry, the triangle inequality and the bound | sinu| ≤ |u|, we get

|φ(t)− cos t| = |E [cos(t|X|)− cos t]| = 2

∣∣∣∣E [sin(t |X| − 1

2

)
sin

(
t
|X|+ 1

2

)]∣∣∣∣
≤ t2

2
E
[∣∣|X| − 1

∣∣ · ∣∣|X|+ 1
∣∣] ≤ t2

2

∥∥|X| − 1
∥∥

2

∥∥|X|+ 1
∥∥

2
,

using the Cauchy-Schwarz inequality in the last estimate. Moreover,∥∥|X|+ 1
∥∥

2
≤
∥∥|X| − 1

∥∥
2

+ 2.

Plugging in the assumption
∥∥|X| − 1

∥∥
2
≤ δ0 completes the proof. �

3.2. Uniform bounds on the special function and its derivative.

Lemma 6. Assuming (3) and the symmetry of X1, the functions Ψ and Ψ0 defined in

(12) and (13) respectively satisfy

(17) |Ψ(s)−Ψ0(s)| ≤ 2

π

√
2δ0(δ0 + 2), s ≥ 1.

Proof. Fix T > 0. Breaking the integral defining Ψ into
∫ T

0 +
∫∞
T and using that |a−b| ≤ 1

for a, b ∈ [0, 1], we obtain

|Ψ(s)−Ψ0(s)| = 2

π

∣∣∣∣∫ ∞
0

[∣∣∣∣φ( t√
s

)∣∣∣∣s − ∣∣∣∣cos

(
t√
s

)∣∣∣∣s] t−2dt

∣∣∣∣
≤ 2

π

∫ T

0

∣∣∣∣∣∣∣∣φ( t√
s

)∣∣∣∣s − ∣∣∣∣cos

(
t√
s

)∣∣∣∣s∣∣∣∣ t−2dt+
2

π

∫ ∞
T

t−2dt

We also have
∣∣|a|s − |b|s∣∣ ≤ s|a− b| for a, b ∈ [−1, 1], s ≥ 1, thus Lemma 5 yields

|Ψ(s)−Ψ0(s)| ≤ 2

π

∫ T

0
s
δ0(δ0 + 2)

2

(
t√
s

)2

t−2dt+
2

πT
=

2

π

(
T
δ0(δ0 + 2)

2
+

1

T

)
.

Optimizing over the parameter T gives the desired bound. �
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Lemma 7. For s ≥ 2 and 0 < u, v < 1, we have

|us log u− vs log v| ≤ |u− v|.

Proof. Let f(x) = xs log x. It suffices to prove that on (0, 1) we have |f ′(x)| ≤ 1, which is

equivalent to |αt log t + t| ≤ 1 with t = xs−1 ∈ (0, 1) and α = s
s−1 ∈ [1, 2]. To prove this

observe that for t ∈ (0, 1) we have αt log t+ t ≤ t ≤ 1 and

αt log t+ t ≥ αt log t ≥ −α
e
≥ −2

e
> −1. �

Lemma 8. Assuming (3) and the symmetry of X1, the functions Ψ and Ψ0 defined in

(12) and (13) satisfy

(18) |Ψ′(s)−Ψ′0(s)| ≤ 0.62
√
δ0(δ0 + 2), s ≥ 2.

Proof. Changing the variables and differentiating gives

Ψ′(s) =
d

ds

(
2

π
√
s

∫ ∞
0

[
1− |φ(t)|s

]
t−2dt

)
= − 1

2s
Ψ(s)− 2

π
√
s

∫ ∞
0
|φ(t)|s log |φ(t)|t−2dt.

Thus,

|Ψ′(s)−Ψ′0(s)| ≤ 1

2s
|Ψ(s)−Ψ0(s)|

+
2

π
√
s

∫ ∞
0

∣∣∣|φ(t)|s log |φ(t)| − | cos(t)|s log | cos(t)|
∣∣∣t−2dt.

To estimate the integral, we proceed along the same lines as in the proof of Lemma 6. We

fix T > 0, write
∫∞

0 =
∫ T

0 +
∫∞
T and for the second integral use |us log u| = 1

s |u
s log(us)| ≤

1
es , 0 < u < 1, to get a bound on it by 2

esT , whilst for the first integral, using first Lemma

7 and then Lemma 5, we obtain∫ T

0

∣∣∣|φ(t)|s log |φ(t)| − | cos(t)|s log | cos(t)|
∣∣∣t−2dt ≤

∫ T

0
|φ(t)− cos(t)|t−2dt

≤ δ0(δ0 + 2)

2
T,

Altogether, with the aid of Lemma 6,

|Ψ′(s)−Ψ′0(s)| ≤ 1

2s

2

π

√
2δ0(δ0 + 2) +

2

π
√
s

(
δ0(δ0 + 2)

2
T +

2

esT

)
.

Minimising the second term over T > 0 leads to the bound by

1

πs

√
2δ0(δ0 + 2) +

4

πs

√
δ0(δ0 + 2)

e
=

√
δ0(δ0 + 2)

πs

(√
2 +

4√
e

)
.

For s ≥ 2, we have 1
πs

(√
2 + 4√

e

)
< 0.61... and this completes the proof. �

3.3. Proof of Lemma 3. First we assume that s ≥ 3. Using Lemma 6 and letting

η = 2
π

√
2δ0(δ0 + 2) for brevity, we get

Ψ(s) ≥ Ψ0(s)− η.
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Since Ψ0 is increasing, Ψ0(s) ≥ Ψ0(3) = Ψ0(3) − Ψ0(2) + Ψ0(2) and Ψ0(2) ≥ Ψ(2) − η,

again using Lemma 6. Therefore,

Ψ(s) ≥ Ψ(2) +
(
Ψ0(3)−Ψ0(2)− 2η

)
.

It is now clear that as long as δ0 is sufficiently small, namely 2η ≤ Ψ0(3)−Ψ0(2), we get

Ψ(s) ≥ Ψ(2), as desired. It can be checked that Ψ0(3)−Ψ0(2) = 4
π
√

3
− 1√

2
= 0.027.. and

a choice of δ0 ≤ 10−4 suffices for the estimate Ψ(s) ≥ Ψ(2) to hold for s ≥ 3.

Now we assume that 2 < s < 3. We have

Ψ(s) = Ψ(2) + (s− 2)Ψ′(θ)

for some 2 < θ < s. Using Lemmas 8 and 4, we get

Ψ′(θ) ≥ Ψ′0(θ)− 0.62
√
δ0(δ0 + 2) ≥ 0.017− 0.62

√
δ0(δ0 + 2)

which is positive for all δ0 ≤ 3.7 · 10−4. Thus, Ψ(s) ≥ Ψ(2) holds in both cases. �

4. Proof of Theorem 2

The approach is the same as for Theorem 1, however certain technical details are

substantially more involved. We begin with a Fourier-analytic representation for negative

moments due to Gorin and Favorov [13].

Lemma 9 (Lemma 3 in [13]). For a random vector X in Rd and −d < q < 0, we have

(19) E|X|q = βq,d

∫
Rd

Eei〈t,X〉 · |t|−q−ddt,

where βq,d = 2qπ−d/2 Γ((d+q)/2)
Γ(−q/2) , provided that the integral on the right hand side exists.

Specialised to d = 3, q = −1 (β−1,3 = 1
2π2 ) and X =

∑n
j=1 ajXj with X1, . . . , Xn

independent random vectors, we obtain

(20) E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣
−1

=
1

2π2

∫
R3

 n∏
j=1

Eei〈t,ajXj〉
 |t|−2dt.

Note that thanks to the decay assumption (5), the integral on the right hand side converges

as long as n ≥ 2 (assuming the aj are nonzero). As in Ball’s proof from [2], Hölder’s

inequality yields

(21) E

∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣
−1

≤
n∏
j=1

Φ
(
a−2
j

)a2j ,
where

(22) Φ(s) =
1

2π2

∫
R3

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt, s > 1

with

(23) φ(t) = Eei〈t,X1〉, t ∈ R3,
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denoting the characteristic function of X1. Exactly as in the proof of Theorem 1, the

following pivotal lemma allows us to finish the proof.

Lemma 10. Under the assumptions of Theorem 2, we have Φ(s) ≤ Φ(2) for every s ≥ 2.

If the Xj are uniform on the unit sphere S2 in R3, we have φ(t) = sin |t|
|t| (because 〈t,X1〉

is uniform on [−|t|, |t|]), in which case the special function Φ defined in (22) becomes

(24) Φ0(s) =
2

π

∫ ∞
0

∣∣∣∣∣sin(s−1/2t)

s−1/2t

∣∣∣∣∣
s

dt, s > 1

(after integrating in polar coordinates). Ball’s celebrated integral inequality states that

Φ0(s) ≤ Φ0(2), for all s ≥ 2 (see Lemma 3 in [2], as well as [28, 31] for different proofs).

Our proof of Lemma 10 relies on this, additional bounds on the derivative Φ′0(s) near

s = 2, as well as, crucially, bounds quantifying how close Φ is to Φ0. In the following

subsections we gather such results and then conclude with the proof of Lemma 10.

4.1. A uniform bound on the characteristic function. Throughout these sections

ξ always denotes a random vector uniform on the unit sphere S2 in R3.

Lemma 11. Let X be a symmetric random vector in R3 with δ = W2(X, ξ). Then, its

characteristic function φ(t) = Eei〈t,X〉 satisfies

(25)

∣∣∣∣φ(t)− sin |t|
|t|

∣∣∣∣ ≤ δ(δ + 2)

2
|t|2, t ∈ R3.

Proof. Let ξ be uniform on S2 such that for the joint distribution of (X, ξ), we have

‖X−ξ‖2 = W2(X, ξ) = δ. By symmetry, the bound | sinu| ≤ |u| and the Cauchy-Schwarz

inequality (used twice), we get∣∣∣∣φ(t)− sin |t|
|t|

∣∣∣∣ = |E [cos〈t,X〉− cos〈t, ξ〉]|

= 2
∣∣E [sin (1

2〈t,X − ξ〉
)

sin
(

1
2〈t,X + ξ〉

)]∣∣
≤ |t|

2

2
E
[∣∣X − ξ∣∣ · ∣∣X + ξ

∣∣]
≤ |t|

2

2

∥∥X − ξ∥∥
2

∥∥X + ξ
∥∥

2
.

To conclude we use the triangle inequality∥∥X + ξ
∥∥

2
≤
∥∥X − ξ∥∥

2
+ 2‖ξ‖2 =

∥∥X − ξ∥∥
2

+ 2. �

4.2. Bounds on the special function. We begin with a bound on the difference Φ(s)−
Φ0(s) obtained from the uniform bound on the characteristic functions (Lemma 11 above).

In contrast to Lemma 6, the bound is not uniform in s. For s not too large (the bulk),

we incur the factor s3/4. To fight it off for large values of s, we shall employ a Gaussian

approximation. For that part to work, it is crucial that Φ0(2)−Φ0(∞) =
√

2−
√

6
π > 0.

4.2.1. The bulk.
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Lemma 12. Let X be a symmetric random vector in R3 with δ = W2(X, ξ) and charac-

teristic function φ satisfying (5) for some C0 > 0. Let Φ and Φ0 be defined through (22)

and (24) respectively. For every s ≥ 2, we have

(26) |Φ(s)− Φ0(s)| ≤ 211/4

3π
s3/4

(
δ(δ + 2)

)1/4(
C2

0 + 1
)3/4

.

Proof. Given the definitions, we have

Φ(s)− Φ0(s) =

√
s

2π2

∫
R3

(
|φ(t)|s −

∣∣∣∣sin |t||t|
∣∣∣∣s) |t|−2dt.

We fix T > 0 and split the integration into two regions.

Small t. Using Lemma 11 and ||a|s − |b|s| ≤ s|a− b| when |a|, |b| ≤ 1, we obtain∣∣∣∣∣
∫
|t|≤T

(
|φ(t)|s −

∣∣∣∣sin |t||t|
∣∣∣∣s) |t|−2dt

∣∣∣∣∣ ≤ sδ(δ + 2)

2

∫
|t|≤T

dt =
2π

3
sδ(δ + 2)T 3.

Large t. Since s ≥ 2, we have∣∣∣∣∣
∫
|t|≥T

(
|φ(t)|s −

∣∣∣∣sin |t||t|
∣∣∣∣s) |t|−2dt

∣∣∣∣∣ ≤
∫
|t|≥T

(
|φ(t)|2 +

∣∣∣∣sin |t||t|
∣∣∣∣2
)
|t|−2dt.

By virtue of the decay assumption (5), this is at most∫
|t|≥T

C2
0 + 1

|t|4
dt = 4π

C2
0 + 1

T

Adding up these two bounds and optimising over T yields∣∣∣∣∫
R3

(
|φ(t)|s −

∣∣∣∣sin |t||t|
∣∣∣∣s) |t|−2dt

∣∣∣∣ ≤ 215/4π

3
s1/4

(
δ(δ + 2)

)1/4(
C2

0 + 1
)3/4

.

Plugging this back gives the assertion. �

4.2.2. The Gaussian approximation. We now present a bound on Φ(s) which does not

grow as s→∞ that will allow us to prove Lemma 10 for s sufficiently large.

Lemma 13. Let X be a symmetric random vector in R3 with δ = W2(X, ξ) and char-

acteristic function φ satisfying (5) for some C0 > 0. Let Φ be defined through (22).

Assuming that δ ≤ min{ 1√
3
, (15C0)−2}, we have

Φ(s) ≤
√

6

π

(
(1− δ

√
3)2 − θE|X|3

)−1/2

+

√
6

π
exp

{
−s
(
θ2

6
− 26δ(δ + 2)

)}
+ 2C0

(√
s+

2√
s

)
e−s, s ≥ 2,

(27)

with arbitrary 0 < θ < (1−δ
√

3)2

3E|X|3 .

Proof. We split the integral defining Φ(s) = 1
2π2

∫
R3 |φ(s−1/2t)|s|t|−2dt into several regions.

Large t. Using the decay condition (5), we get∫
|t|≥eC0

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤

∫
|t|≥eC0

√
s
Cs0 |s−1/2t|−s|t|−2dt =

4πe
√
s

s− 1
C0e

−s.

10



Thus, for s ≥ 2,

1

2π2

∫
|t|≥eC0

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤ 2e

√
s

π(s− 1)
C0e

−s <
4C0√
s
e−s,

as 2e
√
s

π(s−1) <
4√
s

for s ≥ 2.

Moderate t. This case is vacuous unless C0 > π/e. We use Lemma 11 to obtain∫
π
√
s≤|t|≤eC0

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt

≤
∫
π
√
s≤|t|≤eC0

√
s

(∣∣∣∣∣sin(s−1/2|t|)
s−1/2|t|

∣∣∣∣∣+
δ(δ + 2)

2

(
s−1/2|t|

)2
)s
|t|−2dt

≤
∫
π
√
s≤|t|≤eC0

√
s

(
1

π
+
δ(δ + 2)

2
(eC0)2

)s
|t|−2dt

= 4π
√
s

(
1

π
+
δ(δ + 2)

2
(eC0)2

)s
(eC0 − π)+.

In this case, the condition δ < (15C0)−2 suffices to guarantee that 1
π + δ(δ+2)

2 (eC0)2 < 1
e

(also using, say δ + 2 < 3). Then we get

1

2π2

∫
π
√
s≤|t|≤eC0

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤ 2

π

√
se−s(eC0 − π)+ < 2C0

√
se−s.

Small t. For 0 < u < π, we have

(28)
sinu

u
=

∞∏
k=1

(
1− u2

(kπ)2

)
≤ exp

(
−
∞∑
k=1

u2

(kπ)2

)
= e−u

2/6.

Fix 0 < θ < π. Then, first using Lemma 11 and then (28), we obtain∫
θ
√
s≤|t|≤π

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt

≤
∫
θ
√
s≤|t|≤π

√
s

(∣∣∣∣∣sin(s−1/2|t|)
s−1/2|t|

∣∣∣∣∣+
δ(δ + 2)

2

(
s−1/2|t|

)2
)s
|t|−2dt

≤
∫
θ
√
s≤|t|≤π

√
s

(
e−|t|

2/(6s) +
δ(δ + 2)

2
π2

)s
|t|−2dt

≤
∫
|t|≥θ

√
s
e−|t|

2/6

(
1 +

δ(δ + 2)

2
π2eπ

2/6

)s
|t|−2dt.

Integrating using polar coordinates and invoking the standard tail bound∫ ∞
u

e−y
2/2dy ≤

√
π/2e−u

2/2, u > 0,

the last integral gets upper bounded by

4π3/2

√
3

2
e−θ

2s/6

(
1 +

δ(δ + 2)

2
π2eπ

2/6

)s
< 4π3/2

√
3

2
e−θ

2s/6
(
1 + 26δ(δ + 2)

)s
,

11



Summarising, we have shown that

1

2π2

∫
θ
√
s≤|t|≤π

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤

√
6

π

(
1 + 26δ(δ + 2)

)s
e−sθ

2/6

≤
√

6

π
exp

{
−s
(
θ2

6
− 26δ(δ + 2)

)}
.

Very small t. Taylor-expanding φ at 0 with the Lagrange remainder,∫
|t|≤θ

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt

=

∫
|t|≤θ

√
s

∣∣∣∣∣∣1− 1

2
E
〈
X, s−1/2t

〉
2 +

s−3/2

6

3∑
j,k,l=1

∂3φ

∂tj∂tk∂tl
(θ)tjtktl

∣∣∣∣∣∣
s

dt,

for some point θ in the segment [0, s−1/2t]. To bound the error term, we note that∣∣∣∣ ∂3φ

∂tj∂tk∂tl
(θ)

∣∣∣∣ ≤ E|XjXkXl|,

thus ∣∣∣∣∣∣
3∑

j,k,l=1

∂3φ

∂tj∂tk∂tl
(θ)tjtktl

∣∣∣∣∣∣ ≤ E (|t1||X1|+ |t2||X2|+ |t3||X3|)3 ≤ |t|3E|X|3.

We also note that in the domain {|t| ≤ θ
√
s}, the leading term 1 − 1

2E
〈
X, s−1/2t

〉
2 is

nonnegative, provided that 1
2θ

2E|X|2 ≤ 1. Since ‖X‖2 ≤ δ+ 1 under the assumption (6),

it suffices that θ <
√

2
1+δ . Assuming this, we thus get∫

|t|≤θ
√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤

∫
|t|≤θ

√
s

(
1− 1

2
E
〈
X, s−1/2t

〉
2 +

1

6
|s−1/2t|3E|X|3

)s
|t|−2dt.

Evoking (6), let ξ be uniform on S2 such that ‖X−ξ‖2 ≤ δ with respect to some coupling.

Then, for a fixed vector v in R3, we obtain the bound

‖〈X, v〉‖2 ≥ ‖〈ξ, v〉‖2 − ‖〈X − ξ, v〉‖2 = 1√
3
|v| − ‖〈X − ξ, v〉‖2 ≥ 1√

3
|v| − δ|v|.

Thus, provided that δ < 1√
3
, this yields∫

|t|≤θ
√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤

∫
|t|≤θ

√
s

(
1− (1/

√
3− δ)2

2s
|t|2 +

θE|X|3

6s
|t|2
)s
|t|−2dt

≤
∫
R3

exp
(
−α|t|2/2

)
|t|−2dt =

2π
√

2π√
α

,

where we have set α = ( 1√
3
− δ)2 − 1

3θE|X|
3 and assumed that α is positive in the last

equality (guaranteed by choosing θ sufficiently small). Then we finally obtain

1

2π2

∫
|t|≤θ

√
s

∣∣∣φ(s−1/2t
)∣∣∣s |t|−2dt ≤

√
2

πα
.

Putting these three bounds together gives the assertion. Note that we have imposed the

conditions δ < 1√
3

and δ < (15C0)−2 when C0 > π
e , as well as θ < π, θ <

√
2

1+δ and
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θ < (1−δ
√

3)2

3E|X|3 . Since ‖X‖3 ≥ ‖X‖2 ≥ 1 − δ and δ < 1√
3
, we have (1−δ

√
3)2

3E|X|3 < (1−δ
√

3)2

3(1−δ)3 =

1
3(1−δ)

(
1−δ
√

3
1−δ

)2
< 1

3−
√

3
< 0.79. Moreover,

√
2

1+δ >
√

2
1+1/

√
3
> 0.89, so the condition

θ < (1−δ
√

3)2

3E|X|3 implies the other two conditions on θ. �

4.3. Bounds on the derivative of the special function.

Lemma 14. Let X be a symmetric random vector in R3 with δ = W2(X, ξ) and charac-

teristic function φ satisfying (5) for some C0 > 0. Let Φ and Φ0 be defined through (22)

and (24) respectively. For every s ≥ 2, we have

|Φ′(s)− Φ′0(s)| ≤ 27/4

3π

(
δ(δ + 2)

)1/4(
C2

0 + 1
)3/4

s−1/4 + 1.04
(
δ(δ + 2)

)1/7(
C

3/2
0 + 1

)6/7
s1/2.

Proof. First we take the derivative,

Φ′(s) =
d

ds

(√
s

2π2

∫
R3

|φ(t)|sdt
)

=
1

2s
Φ(s) +

√
s

2π2

∫
R3

|φ(t)|s log |φ(t)|dt.

For the resulting Φ−Φ0 term, we use Lemma 12. To bound the difference of the integrals

resulting from the second term, we fix T > 0 and split the integration into two regions.

Small t. Using Lemmas 7 and 11, we obtain∣∣∣∣∣
∫
|t|≤T

(
|φ(t)|s log |φ(t)| −

∣∣∣∣sin |t||t|
∣∣∣∣s log

∣∣∣∣sin |t||t|
∣∣∣∣) |t|−2dt

∣∣∣∣∣
≤
∫
|t|≤T

δ(δ + 2)

2
dt =

2π

3
δ(δ + 2)T 3.

Large t. Note that for s ≥ 2, and 0 < u < 1 we have,

|us log u| = |2us−1/2u1/2 log(u1/2)| ≤ 2

e
u3/2.

Thus, ∣∣∣∣∣
∫
|t|≥T

(
|φ(t)|s log |φ(t)| −

∣∣∣∣sin |t||t|
∣∣∣∣s log

∣∣∣∣sin |t||t|
∣∣∣∣) |t|−2dt

∣∣∣∣∣
≤ 2

e

∣∣∣∣∣
∫
|t|≥T

(
|φ(t)|3/2 +

∣∣∣∣sin |t||t|
∣∣∣∣3/2
)
|t|−2dt

∣∣∣∣∣
which, after applying the decay condition (5), gets upper bounded by

8π

e

∫ ∞
T

C
3/2
0 + 1

t3/2
dt =

16π

e
(C

3/2
0 + 1)T−1/2.

Adding up these two bounds and optimising over T yields∣∣∣∣∫
R3

(
|φ(t)|s log |φ(t)| −

∣∣∣∣sin |t||t|
∣∣∣∣s log

∣∣∣∣sin |t||t|
∣∣∣∣) |t|−2dt

∣∣∣∣
≤ 7 · 219/7π

3e6/7

(
δ(δ + 2)

)1/7(
C

3/2
0 + 1

)6/7
.
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Going back to the difference of the derivatives, we arrive at the desired bound using

7 · 212/7

3e6/7π
< 1.04. �

4.4. Bounds on Ball’s special function. We will need two estimates on Φ0 defined in

(24), that is

(29) Φ0(s) =
2

π

∫ ∞
0

∣∣∣∣∣sin(s−1/2t)

s−1/2t

∣∣∣∣∣
s

dt =
2
√
s

π

∫ ∞
0

∣∣∣∣sin tt
∣∣∣∣s dt, s > 1.

First, we have a bound on the derivative near s = 2.

Lemma 15. For 2 ≤ s ≤ 2.01, we have Φ′0(s) ≤ −0.02.

Second, on the complementary range, Φ0(s) is separated from its supremal value Φ0(2).

Lemma 16. For s ≥ 2.01, we have Φ0(s) ≤ Φ0(2)− 2 · 10−4.

We begin with a numerical bound which will be used in the proofs of these assertions.

Lemma 17. We have ∫ ∞
0

(
sinu

u

)2

log

∣∣∣∣sinuu
∣∣∣∣du ≤ −0.48.

Proof. Using (28), we get∫ π

0

(
sinu

u

)2

log

∣∣∣∣sinuu
∣∣∣∣du ≤ −1

6

∫ π

0
(sinu)2du = − π

12
.

Moreover,∫ ∞
π

(
sinu

u

)2

log

∣∣∣∣sinuu
∣∣∣∣ du =

∞∑
k=1

∫ (k+1)π

kπ

(
sinu

u

)2

log

∣∣∣∣sinuu
∣∣∣∣

≤
∞∑
k=1

∫ (k+1)π

kπ

(
sinu

(k + 1)π

)2

log

∣∣∣∣ 1

kπ

∣∣∣∣ = − 1

2π

∞∑
k=1

log(kπ)

(k + 1)2
.

Therefore our integral is bounded above by

− π

12
− 1

2π

∞∑
k=1

log(kπ)

(k + 1)2
= −0.4867.. < −0.48. �

We let

(30) I(s) =

∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣s du, s > 1.

Proof of Lemma 15. First we observe that

I ′(s) =

∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣s log

∣∣∣∣sinuu
∣∣∣∣du.

Note that I is decreasing. We have,

Φ′0(s) =
2

π

(
I(s)

2
√
s

+
√
sI ′(s)

)
≤ 2

π

(
I(2)

2
√
s

+
√
sI ′(s)

)
=

1

2
√
s

+
2
√
s

π
I ′(s),
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since I(2) = π
2 . Moreover,

|I ′′(s)| =
∫ ∞

0

∣∣∣∣sinuu
∣∣∣∣s log2

∣∣∣∣sinuu
∣∣∣∣ du ≤ ∫ ∞

0

∣∣∣∣sinuu
∣∣∣∣2 log2

∣∣∣∣sinuu
∣∣∣∣du

≤ sup
t∈(0,1)

(
√
t log2 t)

∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣3/2 du = 16e−2

∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣3/2 du

≤ 16e−2

(
1 +

∫ ∞
1

1

u3/2
du

)
= 48e−2.

With the aid of Lemma 17, we therefore have

I ′(s) ≤ I ′(2) + 48e−2(s− 2) < −0.48 + 48e−2(s− 2).

Thus, for 2 ≤ s ≤ 2.01, we have

Φ′0(s) ≤ 1

2
√
s

+
2
√
s

π
I ′(s) <

1

2
√
s

+
2
√
s

π

(
− 0.48 + 48e−2(s− 2)

)
<

1

2
√

2
+

2
√

2

π
(−0.48 + 48e−2(s− 2))

≤ 1

2
√

2
+

2
√

2

π
(−0.48 + 48e−20.01) < −0.02,

where in the first inequality we used that the term in parenthesis is negative. �

For the proof of Lemma 16, we need several more estimates. First, we record a lower

bound on the derivative of Φ0(s) for arbitrary s.

Lemma 18. For s ≥ 2, we have Φ′0(s) ≥ −12
√
s

πe .

Proof. We have,

Φ′0(s) =
2

π

(
I(s)

2
√
s

+
√
sI ′(s)

)
≥ 2
√
s

π
I ′(s),

so it is enough to upper bound |I ′(s)|. Note that

|I ′(s)| =
∫ ∞

0

∣∣∣∣sinuu
∣∣∣∣s(− log

∣∣∣∣sinuu
∣∣∣∣) du

≤
∫ ∞

0

∣∣∣∣sinuu
∣∣∣∣2(− log

∣∣∣∣sinuu
∣∣∣∣)du

≤ sup
t∈(0,1)

(−
√
t log t)

∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣ 32 du

≤ 2e−1

(
1 +

∫ ∞
1

1

u
3
2

du

)
= 6e−1. �

Second, we obtain a quantitative drop-off of the values of Φ0.

Lemma 19. Let a ∈ [1, π3 ] and suppose that for some s0 ≥ 2, we have Φ0(s0) =
√

2
a .

Then

(31) Φ0(s) ≤
√

2

a
, s ≥ s0.
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To prove this, we build on the argument of Nazarov and Podkorytov from [31]. For a

somewhat similar bound, we refer to Proposition 7 in König and Koldobsky’s work [20] on

maximal-perimeter sections of the cube. For convenience and completeness, we include

all arguments in detail. We consider functions

(32) fa(x) = e−
π
2
x2a, g(x) =

∣∣∣∣sinπxπx

∣∣∣∣ , x > 0,

and their distribution functions

(33) Fa(y) = |{x > 0 : fa(x) > y}|, G(y) = |{x > 0 : g(x) > y}|, y > 0.

Lemma 20. For a ∈ [1, π3 ] the function Fa − G has precisely one sign change point y0

and at this point changes sign from ”− ” to ” + ”.

Proof. Note that Fa(y) = G(y) = 0 for y ≥ 1, so we only consider y ∈ (0, 1). We have

Fa(y) =
√

2
πa ln( 1

y ).

The function g(x) has zeros for x ∈ Z. For m ∈ N, let ym = max[m,m+1] g. We clearly

have ym < 1
πm and ym > g(m+ 1

2) = 1
π(m+ 1

2
)
. Thus ym ∈ ( 1

π(m+ 1
2

)
, 1
πm), which shows that

the sequence ym is decreasing. We have the following claims.

Claim 1. The function Fa −G is positive on (y1, 1).

Note that if g(x) > y1 then x ∈ (0, 1). Moreover g(x) ≤ f(x) for x ∈ [0, 1], since

g(x) =
sinπx

πx
=
∞∏
k=1

(
1− x2

k2

)
≤
∞∏
k=1

e−
x2

k2 = e−
π2

6
x2 ≤ e−

π
2
ax2 = fa(x).

Thus, for y ∈ (y1, 1), we have

G(y) = |{x ∈ (0, 1) : g(x) > y}| < |{x ∈ (0, 1) : fa(x) > y}| ≤ Fa(y).

Claim 2. The function Fa −G changes sign at least once in (0, 1).

Due to Claim 1 it is enough to show that Fa − G is sometimes negative. We have

Fa−G ≤ F1−G and
∫∞

0 2y(F1(y)−G(y))dy =
∫

(f2
1 −g2) = 0, so F1−G can be negative.

Claim 3. The function Fa −G is increasing on (0, y1).

Clearly F ′a > F ′1 and thus the claim follows from the fact that F1 −G is increasing on

(0, y1), which was proved in [31] (Chapter I, Step 5). �

Proof of Lemma 19. The assumption Φ0(s0) =
√

2
α is equivalent to∫ ∞

0

∣∣∣∣sinπxπx

∣∣∣∣s0 dx =

∫ ∞
0

∣∣∣e−π2 x2a∣∣∣s0 dx.

After changing variables and using Lemma 20, we get from the Nazarov–Podkorytov

lemma (Chapter I, Step 4 in [31]) that for s ≥ s0∫ ∞
0

∣∣∣∣sinxx
∣∣∣∣s dx ≤

∫ ∞
0

∣∣∣e− 1
2π
x2a
∣∣∣s dx =

π√
2as

. �

Proof of Lemma 16. Take s0 = 2.01 and a = 2Φ0(s0)−2 in Lemma 19. Since Φ0(2) =
√

2,

Ball’s inequality gives that a ≥ 1. We need to check that a ≤ π
3 . From Lemma 18, we
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have that for s ∈ [2, 2.01], Φ′0(s) ≥ −12
√

2.01
πe > −2. Thus, Φ0(s0) ≥ Φ0(2) − 2(s0 − 2) =√

2 − 0.02. Therefore, a < 2 · (
√

2 − 0.02)−2 < 1.03 < π
3 , as needed. By Lemmas 19 and

15, we thus get that for s ≥ s0 = 2.01,

Φ0(s) ≤
√

2

a
= Φ0(s0) ≤ Φ0(2) + sup

[2,2.01]
Φ′0 · 0.01 ≤ Φ0(2)− 0.02 · 0.01. �

4.5. Proof of Lemma 10. Recall that we assume X is a symmetric random vector in

R3 with δ = W2(X, ξ) and characteristic function φ satisfying (5), that is |φ(t)| ≤ C0/|t|,
for all t ∈ R3 \ {0}. Let C1 = max{C0, 1}. Our goal is to show that if (6) holds, that is

δ ≤ 10−38C−9
1 min

{
(E|X|3)−6, 1

}
,

then Φ(s) ≤ Φ(2) for all s ≥ 2, where Φ is defined in (22). For the sake of clarity, we shall

be fairly lavish with choosing constants. Since C1 ≥ 1, the above assumes in particular

that δ ≤ 10−38. With this in mind, we note the following consequences of Lemmas 12

and 14 respectively: for s ≥ 2,

(34) |Φ(s)− Φ0(s)| ≤ 211/4

3π
s3/4

(
δ(δ + 2)

)1/4(
C2

0 + 1
)3/4

< 2s3/4δ1/4C
3/2
1

and similarly

(35) |Φ′(s)− Φ′0(s)| < s−1/4δ1/4C
3/2
1 + 2.1 · s1/2δ1/7C

9/7
1 .

We also remark that ‖X‖3 ≥ ‖X‖2 ≥ ‖ξ‖2 − ‖X − ξ‖2 = 1− δ ≥ 1− 10−38.

We break the argument into several regimes for the parameter s.

Large s. With hindsight, we set

(36) s0 = max
{

106(E|X|3)2, 2 logC1

}
In particular, s0 ≥ 105. Using Lemma 13, that is

Φ(s) ≤
√

6

π

(
(1− δ

√
3)2 − θE|X|3

)−1/2

+

√
6

π
exp

{
−s
(
θ2

6
− 26δ(δ + 2)

)}
+ 2C0

(√
s+

2√
s

)
e−s = A1 +A2 +A3,

we will show that Φ(s) ≤ Φ(2) for all s ≥ s0. We take θ = 1
100E|X|3 which satisfies the

conditions of the lemma and then, for the first term A1, we use

A1 =

√
6

π

(
(1− δ

√
3)2 − θE|X|3

)−1/2
≤
√

6

π

(
1− 0.01

)−1/2
<
√

2− 1

50
.

Thanks to (34), we also have
√

2 = Φ0(2) ≤ Φ(2) + 27/4δ1/4C
3/2
1 = Φ(2) +A4,

so it suffices to show that each of the second and third terms A2, A3 as well as this

additional error A4 do not exceed 1
150 . Using δ < 10−38C−9

1 , we get

A4 ≤ 27/4 · 10−19/2C
−3/4
1 <

1

150
.
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For the exponent in the second term A2, observe that

26δ(δ + 2) < 53δ < 53 · 10−38C−9
1 (E|X|3)−6 ≤ 10−36(E|X|3)−2,

and, consequently,

θ2

6
− 26δ(δ + 2) ≥ 1

6 · 104(E|X|3)2
− 1

1036(E|X|3)2
≥ 1

105(E|X|3)2
.

Thus, using s ≥ s0 ≥ 106(E|X|3)2, we get

A2 ≤
√

6

π
exp

{
− s0

105(E|X|3)2

}
≤
√

6

π
exp{−10} < 1

150
.

Finally, for the third term, since s ≥ s0 ≥ 105,(√
s+

2√
s

)
e−s ≤ (

√
s+ 1)e−s ≤ e

√
s−s ≤ 1

300
e−s/2,

therefore, since s ≥ s0 ≥ 2 logC1,

A3 ≤ 2C1

(√
s+

2√
s

)
e−s ≤ C1

150
e−s/2 ≤ 1

150
.

Moderate s. We now assume that 2.01 ≤ s ≤ s0. Using (34) twice and Lemma 16,

Φ(s) ≤ Φ0(s) + 2s
3/4
0 δ1/4C

3/2
1 ≤ Φ0(2)− 2 · 10−4 + 2s

3/4
0 δ1/4C

3/2
1

≤ Φ(2)− 2 · 10−4 + 2 · 23/4δ1/4C
3/2
1 + 2s

3/4
0 δ1/4C

3/2
1

≤ Φ(2)− 2 · 10−4 + 3s
3/4
0 δ1/4C

3/2
1 .

Inserting the bound on δ,

3s
3/4
0 δ1/4C

3/2
1 ≤ 3 · 10−19/2C

−3/4
1 s

3/4
0 ·min

{
(E|X|3)−3/2, 1

}
If s0 = 106(E|X|3)2, then using the (E|X|3)−3/2 term in the minimum and C

−3/4
1 ≤ 1,

we get the above bounded by 3 · 10−19/2+9/2 = 3 · 10−5. If s0 = 2 logC1, then using

the other term in the minimum, we get the bound by 3 · 23/410−19/2C
−3/4
1 (logC1)3/4 <

3(2/e)3/410−19/2 < 10−4 since u−1 log u ≤ e−1 for u > 1. In either case, we get the

conclusion Φ(s) ≤ Φ(2).

Small s. We finally assume that 2 ≤ s ≤ 2.01. To argue that Φ(s) ≤ Φ(2), we will show

that Φ′(s) < 0. By virtue of (35) and Lemma 15,

Φ′(s) ≤ Φ′0(s) + s−1/4δ1/4C
3/2
1 + 2.1 · s1/2δ1/7C

9/7
1

< −0.02 + (δC6
1 )1/4 + 3

(
δC9

1

)1/7
.

Since δC6
1 ≤ δC9

1 ≤ 10−38, this is clearly negative and the proof is complete. �

5. Concluding remarks

Remark 1. Assumption (3) seems natural: plainly, there are distributions which are not

close to the Rademacher one, for which the unit vector attaining inf E|
∑
ajXj | is different

than a = ( 1√
2
, 1√

2
, 0, . . . , 0), for instance it is a = (1, 0, . . . , 0) for Gaussian mixtures (see
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[1, 10]), or for the Rademacher distribution with a large atom at 0 (see Theorem 4 and

Remark 14 in [16]).

Remark 2. Handling the complementary case ‖a‖∞ > 1√
2

which is not covered by Theo-

rems 1 and 2 is a different story. The trivial convexity argument presented in the intro-

duction works in fact only for the Rademacher case, as it requires 1√
2
E|X1| ≥ E

∣∣∣X1+X2√
2

∣∣∣,
and only for the L1-norm (see Remark 21 in [6]). To circumvent this, several different ap-

proaches have been used: Haagerup’s ad hoc approximation (see §3 in [14]), Nazarov and

Podkorytov’s induction with a strengthened hypothesis (see Ch. II, Step 5 in [31]) which

has also been adapted to other distributions (see [6, 5, 8]), and very recently a different

inductive scheme near the extremiser (without a strengthening) needed in a geometric

context (see [12]). None of these techniques appears amenable to the broad setting of

general distributions that is treated in this paper.

Remark 3. De, Diakonikolas and Servedio obtained in [9] a stable version of Szarek’s

inequality (1) with respect to the unit vector a, namely

(37) E

∣∣∣∣∣∣
n∑
j=1

ajεj

∣∣∣∣∣∣ ≥ E
∣∣∣∣ε1 + ε2√

2

∣∣∣∣+ κ
√
δ(a)

for a universal positive constant κ, where the deficit is given by δ(a) = |a−( 1√
2
, 1√

2
, 0, . . . , 0)|2,

assuming that a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Note that in the setting of Theorem 1, we have∣∣∣∣∣∣E
∣∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣∣− E

∣∣∣∣∣∣
n∑
j=1

ajεj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ δ0,

by a simple application of the triangle inequality and ‖ · ‖1 ≤ ‖ · ‖2. Thus, applying this

(twice) and the bound (37) of De Diakonikolas and Servedio, we conclude that Theorem

1 also holds for unit vectors a with δ(a) ≥ (2δ0/κ)2. The same will apply to Theorem 2

with the aid of Theorem 1.2 from [7], a strengthening of Ball’s inequality (2) (see also

[27]). See [12] for numerical values of the constants κ.

Remark 4. We have used the W2-distance in Theorems 1 and 2 for concreteness and

convenience. Of course, for every p ≥ 1, if we use the Wp-distance in (3) and assume that

X1 is in L p
p−1

, then the proofs of Lemmas 5 and 11 go through with the Cauchy–Schwarz

inequality replaced by Hölder’s inequality and the rest of the proof remains unchanged.

It might be of interest to examine weaker distances in such statements.
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