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Abstract

We establish several optimal moment comparison inequalities (Khinchin-type inequal-
ities) for weighted sums of independent identically distributed symmetric discrete ran-
dom variables which are uniform on sets of consecutive integers. Specifically, we obtain
sharp constants for even moments (using ultra subgaussianity introduced by Nayar and
Oleszkiewicz) as well as for the second moment and any moment of order at least 3 (us-
ing convex dominance by Gaussian random variables). In the case of only 3 atoms, we
also establish a Schur-convexity result. For moments of order less than 2, we get sharp

constants in two cases by exploiting Haagerup’s arguments for random signs.
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1 Introduction

The classical Khinchin inequality asserts that all moments of weighted sums of independent
random signs are comparable (see [15]). More specifically, if we consider independent random
signs €1, €2, ..., the probability of each ¢; taking the value 1 is a half and form a weighted
sum S =Y.' | a;e; with real coefficients a;, then for every p,q > 0, there is a positive constant

Cp,q independent of n and the a; such that
1515 < Cp.qllSllg- (1)

As usual, | X||, = (E|X|?)'/? denotes the p-th moment of a random variable X. Moment
comparison inequalities like this one are well understood up to universal constants in a great
generality due to Latala’s formula from [20]. They have found numerous applications in clas-
sical results in analysis (for example in the proof of the Littlewood-Payley decomposition or
Grothendieck’s inequality) and, especially their extensions to vector valued settings (Kahane’s
inequalities), have been widely used in (local) theory of Banach spaces (see [23], [26]). One

of the major challenges is to find the best constants C), 4, which has attracted considerable

*Carnegie Mellon University; Pittsburgh, PA 15213, USA. Email: alumhavr@andrew.cmu.edu
tCarnegie Mellon University; Pittsburgh, PA 15213, USA. Email: ttkocz@math.cmu.edu. Research sup-

ported in part by the Collaboration Grants from the Simons Foundation.



attention and has important applications (for instance in geometry, Cs ; is directly linked with
the maximum volume projections of the n-dimensional cross-polytope onto n — 1 dimensional
subspaces, see [3, 5]). Besides, attacking sharp inequalities forces us to uncover often deep
and effective mechanisms explaning bigger pictures and providing insights as to why certain
inequalities are true.

Plainly, since for any random variable X, the function p — | X||,, is nondecreasing, the best
value of C}, 4 in (1) when p < ¢ equals 1. Since ||.S||2 is explicit in terms of the weights a;, that
is [|S||2 = v/ a2, the most important are C, 5 when p > 2 and Cy, when ¢ < 2. In the case
being discussed of symmetric random signs, the values of these constants have been known
since the work of Haagerup [13]. We mention in passing works [39, 9, 37] which had made
important partial contributions preceeding Haagerup’s result. Papers [27, 29] provide great
simplifications and deeper understanding of technical parts in Haagerup’s proofs. Paper [21]
establishes in a slick way that Cy ; = V/2 in a general setting of norm space-valued coefficients a;
(for recent results concerning this setting see also [33]). We refer to [28] for historical accounts
and beautiful recent results for even moments. The constants Cp 2, p > 2 are attained in
the asymptotic case when the number of summands n tends to infinity with weights a; being
chosen all equal. Consequently, by the central limit theorem, the value of C), 4 is given by
the p-th moment of a standard Gaussian. This phenomenon is in some sense universal — for
distributions other than random signs where such results are known, the same case is extremal.
The behaviour of the opimal value of Cy 4, ¢ < 2, is more involved: as g decreases, the worst
case changes at ¢ = qp = 1.847.. from the asymptotic one just described to the one given by
n = 2 and equal weights a1 = ay (see [13]).

There have been only a handful of results concering random variables other than random
signs. They involve continuous random variables uniformly distributed on symmetric intervals
and generalisations for random vectors uniformly distributed on Euclidean spheres and balls
(see [2, 17, 18, 22]), as well as mixtures of centred Gaussians (see [1, 10]). Papers [19, 32]
establish moment comparison inequalities for quite general random variables (based on their
spectral properties, introducing differential inequalities techniques), which additionally yield
sharp constants in certain cases. In recent works [10, 11], Eskenazis, Nayar and the second
author have settled most of the cases for random variables with densities proportional to
e 171 when 0 < o < (the so-called exponential family). This, combined with results from
[4], yields sharp constants in Khinchin inequalities for linear forms based on vectors uniformly
distributed on unit balls B} = {z € R™, |z1]|*+...+|z,|* < 1} of ¢, spaces (previously these
constants were known up to constant factors — see [4]). This is particularly interesting because
the summands of such linear forms are not independent. For results concerning dependent
random signs, see [34, 36] (moment comparison is obtained with constants of the right order,
but their optimal values in most cases do not seem to be known).

This paper initiates the study of Khinchin-type inequalitites with sharp constant for sym-
metric discrete random variables, generalising random signs by allowing more than just two
atoms. Specifically, in the simplest case, let L be a positive integer and let X be uniform on the
set {—L,...,—1} U{l,...,L}. What are best constants in moment comparison inequalities

for weighted sums of independent copies of X? Note that the following two extreme cases



have been understood: when L = 1, X is a symmetric random sign discussed above, whereas
when L — oo, X/L converges in distribution to a random variable uniform on [—1, 1], the case
analysed in [22].

We present our results in the next section and then proceed with their proofs in their order
of statement. We say that a random variable X is symmetric if —X has the same distribution
as X, equivalently eX and £|X| have the same distribution as X, where ¢ is an independent
symmetric random sign, that is P (¢ = —1) = P (¢ = 1) = 3. We usually denote by G a standard
Gaussian random variable, that is a real-valued random variable with density \/%6*9”2/ 2. For
%, where I' stands for the gamma function. If p is a positive
W;/Q)! =1-3-...-(p—1) = (p— 1)l (the double factorial of

—1). A nonnegative sequence (a,)22; is called log-concave, if it is supported on a contiguous
set, that is the set {n > 1,a, > 0} is of the form {a,a + 1,...,b} for some 1 < a < b < o0,

and a2 > a,_1an41 for n =2,3,.... Sometimes we write x which is max{z,0}.

p > 0, we have E|GJP =

even integer, then E|G|P =
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2 Results

2.1 Even moments

Nayar and Oleszkiewicz introduced in [28] the following notion of ultra sub-Gaussianity (as

well as its multidimensional analogue): a random variable X is ultra sub-Gaussian if it is

2m
symmetric, has all moments finite and the sequence (a,)5%_, defined by ag = 1, an, = %,

2Mm!

m > 1, is log-concave, that is a;,—1amy1 < afn for every m > 1. This means that we have

EIX|* < 3(E|X[*)? (2)

(m = 1) and reverse Cauchy-Schwarz estimates hold

zz - 1IE\X|2m 2EIX 22 < (BIX[2™)2,  for all m > 2. (3)
The normalisation is chosen such that if X is a standard Gaussian random variable G, then

= (1,1,...) is a constant sequence (since E|G|*™ =1-3-----(2m — 1)). For example, a
symmetric random sign is ultra sub-Gaussian. Results from [28] (see Lemma 2 and Theorem 2
therein) assert that sums of independent sub-Gaussian random variables are sub-Gaussians and,

consequently, it leads to Khinchin-type inequalities with sharp constants for even moments.

Theorem 1 (Nayar and Oleszkiewicz, [28]). Let 2 < p < q be even integers and let X1,..., X,

be independent ultra sub-Gaussian random variables. Then X1+ ...+ X, is ultra sub-Gaussian

q\ 1/a 1/p
(E|G]9)*
(IE: ) <GP < ) ; (4)

and




/ B (g1
where G is a standard Gaussian random variable, so Eg:g‘t;/z = Hggg_gﬁ/z

In particular, in this elegant and slick way, Nayar and Oleszkiewicz obtained sharp constants
in the classical Khinchin inequalities for even moments. We extend this result to symmetric

random variables on consecutive integers by verifying that they are ultra sub-Gaussian.

Theorem 2. Let py € [0,1] and let L be a positive integer. Let X1, Xo,... be i.i.d. copies of

a random variable X with P(X =0)=pg and P(X = —j) =P (X =j) = 1;£°,j: 1,...,L.

Then X is ultra sub-Gaussian if and only if po = 1, or

o<1 2 3L2+3L-1
0 <1-2

5L DL+ 1) )

If this holds, then, consequently, for positive even integers ¢ > p > 2, every n > 1 and reals

q\ 1/q p\ 1/p
(IE ) < Chyq (IE ) (6)

D aXi D> aiXi
=1 i=1
Remark 3. It can be checked that the right hand side of (5) as a function of L is strictly

ai,...,ay, we have

_ [18e(g=1)]V/

with Cp.g = (131175

which is sharp.

decreasing. It converges to 1 — % - % = % as L — oo, so (5) holds for every positive integer
L as long as pg < % This is precisely the condition under which a random variable QU is

ultra sub-Gaussian, where 6 is a Bernoulli random variable with parameter 1 — pg and U is an
independent random variable uniformly distributed on [—1, 1] (which is not surprising because
X/L converges in distribution to 0U).

As explained in the proof, it is condition (2) that imposes the restriction (5) on pg, the mass
put at 0. It turns out that condition (3) holds for every integers L > 1 and m > 2 (regardless

po) and our proof proceeds by induction on L.

2.2 Second, third and higher moments

Here we first need to recall the classical notions of majorisation and Schur-convexity. Given
two nonnegative sequences (a;)"_; and (b;)7,, we say that (b;)"_; majorises (a;)7,, denoted

M " k k
Zl:ai:i:bi and Zaszbf forall k=1,...,n,
i=1 i=1 i=1 i=1

where (af)?_, and (b})?_; are nonincreasing permutations of (a;)?_, and (b;)}_; respectively.

1 1 1

no'n’ o n

For example, ( ) < (a1,az,...,a,) < (1,0,...,0) for every nonnegative sequence (a;)
with 37, a; = 1. A function ¥: [0, 00)" — R which is symmetric (with respect to permuting
the coordinates) is said to be Schur-convez if ¥(a) < U(b) whenever a < b and Schur-concave
if ¥(a) > ¥(b) whenever a < b. For instance, a function of the form ¥(a) = Y7, ¢(a;) with
¥: [0,400) — R being convex is Schur-convex. We refer to the classical monograph [14], or to

[6] for a concise exposition of majorisation.



Let p > 0, let X3,...,X,, be ii.d. copies of a symmetric random variable X with finite
p-th moment and consider the function ¥: [0,00)™ — [0, +00) defined as

p

U(ay,...,a,) =E

> v,
=1

When X is uniform on [—1, 1], Latata and Oleszkiewicz showed in [22] that ¥ is Schur-concave
when p > 2 and Schur-convex when 1 < p < 2 (see also [11] for a different proof). Such results
give extremal sequences in Khinchin inequalities for any fixed number of summands n and in
particular yield that optimal values of constants valid for all n are Gaussian. Suppose now
that X is a symmetric random sign. Based on Eaton’s criterion from [9], Komorowski showed
in [16] that when p > 3 (the easy regime), ® is Schur-concave (which gives sharp constants
in Khinchin inequalities; they were first found by Young in Theorem 9 in [40] and can be
easily deduced from Corollary 2.5 from Pinelis’ work [35]). For p < 3 (the hard regime), the
Schur-convexity /concavity of ¥ fails and its behaviour is much more complicated (it is worth
mentioning here the tantalizing Zinn’s doubling-conjecture discussed in [41]: for p € (2,3),
n>1 a1,...,a, >0, we have W(%, 4, ..., % %) >W(ay,...,a,,0,...,0)).

2.2.1 No atom at 0

If X is uniformly distributed on the set {—L,...,—1} U {l,...,L}, then we confirm for the

easy regime that the Gaussian case yields sharp constants in Khinchin inequalities.

Theorem 4. Let L be a positive integer. Let X1, Xs,... be i.i.d. copies of a random variable
X withP(X =—j) =P(X =j) = ﬁ, j=1,...,L. For every n > 1, reals ay,...,a, and
p > 3, we have
n py\ 1/p n 2\ 1/2
(IE > aiX; ) <Gy |ED aX; (7)
i=1 i=1

pt1y\ 1/p
with C, = \/i(r(\/% )) which is sharp.

Our inductive argument (on n) crucially uses independence and convexity of certain func-
tions and is based on swapping the X; one by one with independent Gaussians (the same yields
a short proof of the classical Khinchin inequalities with sharp constants — see Theorem 1.1. in

[12] as a nice illustration of such an approach; see also [5] and [11] where the same was used).

Remark 5. When p is a positive even integer, then of course Theorem 4 follows from Theorem 2.
In this special case, it can be deduced from the main result of [30] (see also [31]). Indeed, after
Newman, a random variable X if of type L if Ee*X, z € C is well defined, possibly vanishes
only if z is purely imaginary and there is a positive constant C' such that Ee*¥X < €% for all
real z. Newman'’s result asserts that if the X; are independent, each of type L, then (7) holds

for every even integer p. It can be checked that X from Theorem 4 is of type L.

2.2.2 A Schur-convexity result for 3 atoms

We make an incremental progress for Schur-convexity in the easy regime for more general

symmetric distributions than random signs by allowing an atom at zero.



Theorem 6. Let py € [0, %] Let Xq,X5,... be i.i.d. copies of a random variable X with

P(X=0)=pyand P(X=-1)=P(X=1) = 1;"“. Let p > 3. For every n > 1 and reals

A1y eylny b1,y .. by such that (@), < (b3, we have

1
n
E a; X;
i=1

Our proof follows a direct approach from Eaton’s work [9], combined with rather standard

E >E (8)

techniques (used for instance in [12], or [11]) exploiting linearity and allowing to reduce verifi-
cation of certain inequalities needed for averages of power functions | - |P to simple (piecewise
linear) functions.

As an immediate corollary, we obtain best constants in Khinchin inequalities (it can be

done as, for instance, in the proof of Corollary 25 from [10]).

Corollary 7. Under the assumptions of Theorem 6 for every n > 1 and reals aq,...,a,, we

p\ 1/p
(IE ) <C, |E

n
>_aiXi
=1
1/p
) which is sharp.

have
o\ 1/2

(9)

n
E a; X;
i=1

with €, = v/2( 02

2.3 First and second moments

Littlewood posed in [24] the conjecture that the sharp constant in the classical Khinchin
inequality for the first and second moment (Cs; in (1)) is attained in the case of exactly
two nonzero equal weights (n = 2, a1 = a2). Not until 45 years after it had been stated, was
Littlewood’s conjecture proved, by Szarek in [37]. His argument was simplified by Tomaszewski
in [38]. Haagerup, using integral representations for power functions, gave a different, much
shorter proof in his seminal work [13] on sharp constants in Khinchin inequality. We show here

that his argument is robust enough to cover certain cases for more atoms.

Theorem 8. Let py € [%, 1] and let L be a positive integer. Let X1, Xs,... be i.i.d. copies of

a random variable X withP(X =0)=po and P(X = —j) =P (X =j) = 1;5",]': 1,...,L.

For every n > 1 and reals a1, ..., a,, we have
o\ 1/2

E Z C1 E (10)

n
E a; X;
i=1

EIX| _  /3(1—po)L(L+1)
VEXE 2(2L+1)
Remark 9. When L = 1 and py = %, then ¢ = % Note that the X; have the same distribution
, where g1, €/, ... are i.i.d. symmetric random signs. Consequently, (10) follows directly

n
g a; X;
i=1

with ¢; = which is sharp.

| site;
as ~5

from Szarek’s result,

1/2 o\ 1/2

E =E =c |ED aX;
=1

2
u "\ e tel 1 "\ g +él
;%Xi ;ai 5 > 7 E ;ai 5




The sharpness of ¢; can be seen by taking n = 1.

Remark 10. A substantial generalisation of (10) to arbitrary symmetric random variables and
coefficients in Banach space is provided by Corollary 2.4 of [32]. The value of the constant ¢;
obtained therein is sharp for three-valued random variables. Thus in this special case, that is

of L =1, it recovers Theorem 8.

3 Proofs

3.1 Even moments: Proof of Theorem 2

Let X be a random variable as in the statement of Theorem 2. If X is ultra sub-Gaussian, then
so are a;X;, thus (6) follows directly from (4). The sharpness of C, 4 can be seen by taking
a1 =---=ap = ﬁ7 letting n — oo and invoking the central limit theorem.

Showing that X is ultra sub-Gaussian amounts to verifying (2) and (3). Note that (2) is
necessary for (6), as seen by taking there n = 1, a; = 1, p = 2 and ¢ = 4. We can write the

low order moments explicitly,

1—
E|X|? = ”0 Zk2 ST 4 1) (2L + 1),
L
E|X|* = Z — (L +1)(2L+1)(3L> + 3L —1).
k=1

As a result, (2) becomes
2 3L°+3L-1
l—pg> oo o™
5(L+1)(2L+1)
which is (5).

Condition (3) is equivalent to the following: for all integers m > 2

2
2m—1 m— m - m
2:_|_1Zk2 QZkz +2 (ZkQ > )

k=1 k=1

It turns out to be true for every integers L > 1 and m > 2. We only have a rather lengthy
cumbrous proof by induction on L. It turns out that the sequence b, = m2£=1 Emt
m > 1, is log-concave, that is by, _1bmi1 < b2, for all m > 2 (Lemma 12 below, see also

Remark 13). Then, for all m > 2, we have b3,, > bay_1b2mi1 > \/bgm,gbgm \/bgmb2m+2, thus
(2m—1)(2m+3) .
(2m+1)2

. Before showing the log-concavity of (b,,), which will occupy the rest of

b2, > bam_obam2, Which gives the above with a slightly better constant in place

2m

of the required 3

this section, we make a remark about the i.i.d. assumption in Theorem 2.

Remark 11. Since Nayar and Oleszkiewicz’s Theorem 1 does not require the X; to be identically
distributed, but only independent, we can drop that assumption in Theorem 2 and consider
the X; there to be independent (not necessarily identically distributed). We stated it in the

i.i.d. case for simplicity.

As indicated, the log-concavity of (b,,) follows from the following lemma.



Lemma 12. For integers ¢ > 2 and n > 1, we have

Proof. Let

By induction on n we show that for every ¢ > 2, we have
q(q+2)Sn(q = 1)Sn(g +1) < (¢ +1)*Sn(a)*.

The statement is clearly true for n = 1. Assume the statement holds for some n > 1. For

n + 1, using the inductive hypothesis, we have

q(q+2)Sn11(q = 1)Sny1(g + 1)
= q(qg+2) (Sn(q — 1)+ (n+ 1)(1*1) (Sn(q +1)+(n+ 1)q+1)

< (¢+1)*Sn(9)* +qlg+2)(n+1)7" (Sn(q + D)+ (n+1)°S(qg—1)+(n+ 1)"“)-
It suffices to show that this is at most

(g +1)%Sn41(0)? = (¢ + 1)*(Sn(g) + (n + 1)9)?
=(q+1)*Sn(q)* +2(g+ 1)*(n 4+ 1)%Sn(q) + (g + 1)*(n + 1)*

which is equivalent to showing that for ¢ > 2 and n > 1, we have
ala+2)(Sulg+1) + (0 +1)2Su(a — 1) < 2(q+1)*(n+ 1)Sa(a) + (n+ 17,
We shall do this inductively on n. The base case
5q(q+2) <4(g+1)* +2771,  g>2 (11)
is verified later. By the inductive hypothesis, for n > 1, we have

a(g+2)(Suarlg+ 1) + (1 +2)2S,11(a - 1))
<2(g+1)*(n+1)Su(g) + (n+1)7H!
—aqlg+2)(n+1)28,(¢ — 1)
+qlg+2) ((n + 1) 4 (n+2)28 41 (q — 1))
=2(¢+ 1)*(n+1)Sn(q) + a(q+2)(2n +3)S,u(g — 1)
+(g+1)*n+ 1) +qlg+2)(n+2)*(n+1)77"

It suffices to show that this is at most

2(q +1)%(n +2)Sp11(q) + (n 4+ 2)7t



which is equivalent to showing that for ¢ > 2 and n > 1, we have

a(g+2)2n+3)S(g— 1)+ (g + 1)} (n+ 1) +qg + 2)(n +2)*(n +1)471
<2(qg+1)28,(q) +2(g+ 1)*(n+2)(n + 1)9 4 (n +2)971,

Writing (n+2)2 = (n+1)2+2(n+1) + 1 as well as n +2 = (n+ 1) + 1 and simplifying gives

q(q+2)(2n+3)Sn(qg—1) + q(g+2)(n+1)77"
<2+ 1)%5,(q) + (n+2)7 + (n+ 1) 4+ 2(n +1)7.

We show this again by induction on n. The base case
5q(q+2) +qlg+2)27 " <2(¢+1)* 4+ 39T 42972 g >2 (12)
is verified later. By the inductive hypothesis, for n > 1, we have

2(q+1)*Sns1(q) > qlg+2)2n +3)Su(g— 1) + q(g +2)(n + 1)**
—(n+2) —(n+ 1) —2(n+1)4
g+ R0+ 1)1

It suffices to show that this is at least
q(q+2)2n+5)Spi1(g— 1)+ q(g+2)(n+2)71 — (n+3)9T! — (n 4 2)7T — 2(n 4 2)¢
which after simplifying is equivalent to showing that for ¢ > 2 and n > 1, we have

(n+3)1 +2(n +2)4
>2q(q+2)Sn1(g — 1) +qlg+2)(n+2)77" + (n 4+ 1)7.

We show this again by induction on n. The base case
4971 4 2.39 > 2¢(q+2)(1 + 2771 +q(g +2)397 1 + 2071 g>2 (13)
is verified later. By the inductive hypothesis, for n > 1, we have

2q(q+2)Sn12(qg — 1) <2¢(¢+2)(n+2)" + (n+3)7"" +2(n + 2)*
—qlg+2)(n+2)7"" = (n 4 1)

It suffices to show that this is at most
(n+4) "™ +2(n+3)" —q(g +2)(n+3)"" — (n+2)™
which after simplifying is equivalent to showing that for ¢ > 2 and n > 1, we have

qg+2)(n+3)7 4 qg+2)(n+2)T 1 + (n+3)9T 4 2(n +2)7 + (n+2)47!
< (n+ 4 4 2(n +3)7 + (n+ 1)



Setting * = n + 1 and swapping ¢ for ¢ + 1, we see that it is enough to show that for every
g > 1 the function

fo(@) = (x+3)72 — (2 4+2)72 — (x + )92 42772 4 2(x + 2)97 — 2(z 4 1)7H!

—(q+1)(g+ 3)((x +2)7 4 (2 + 1)‘1)

is nonnegative for x > 2. We show in fact that it is nonnegative for £ > 0. From now on we
use that ¢ is an integer and apply the binomial formula (if it was not, we could proceed by
writing Taylor’s expansion instead, but we would need to verify that the |g| derivative of f,

is nonnegative). The coefficients at 292 and 297! vanish and we have

<q + 2> (3q+2—k _ 2q+2—k _ 1) + Q(Q-]: 1) (2q+2—k _ 1)

folz) = Z

k=0

k

q

zk,

@3] ety

It suffices to show that for every 0 < k < ¢, we have

G R e R o R S R Rl () G

or dividing by (f) and simplifying,

(Q+2) 2—k _ 2 _ _
3otk _gat2=k _ 1y = (20F27k _ 1) > 3)(277F +1).
@12 Mg i B U )2 (@+3)@7 " +1)
Setting | = ¢ — k and multiplying through by (H;l_#, it becomes
ﬂ(:sl“ -2 1)+ #2(1 +2)2*2 —1) > (1+ 1)1 +2)(1+2Y. (14)
q+3 q+3 -

We show this for every integers 0 <[ < ¢ in the following steps.

Step 1. We check that (14) for | = 0, 1 becomes equality and for | = 2, 3, it becomes respectively

4(g+1) 30(q+1) :
73 >0, R o > 0, so it holds true for [ < 3.

Step 2. For integers ¢ > | > 4 we bound the left hand side below by

6 a1
—(3 +2 21+2 -1
2 )
and verify that 6
?(3”2 —22 D>+ +2)2 1), 1>4 (15)
To finish the proof, we shall now show the omitted inductive base inequalities (11), (12),
(13) as well as final estimate (15). O

Proof of (11). The right hand side minus the left hand side is
297 +4(g+1)* = Bg(g+2) =297 —¢? =29+ 4 =27 — (¢ +1)* +5.

This is nonnegative for ¢ = 2. For ¢ > 3, we use that 2* > 22 for x > 4 (which is easy to
check). O

10



Proof of (12). The right hand side minus the left hand side is
31 42972 1 2(g+1)2 — 297 (g +2) — 5q(q+2) = 37T — 2771 g(q+2) + 2972 —3¢(q +2) + 2.

We check directly that this is nonnegative for ¢ = 2,3,4. For ¢ > 5, easy inductive arguments
show that 3971 > 2971¢(q + 2) and 2972 > 3¢(q + 2). O

Proof of (13). We check the inequality directly for ¢ = 2,3,...,10. For ¢ > 11, easy inductive
arguments show that 4971 > 3971¢(q + 2) and 3¢ > (1 + 297 1)g(q + 2) + 29. Multiplying the
second inequality and adding to the first one gives (13). O
Proof of (15). We verify the inequality for [ = 4. Then, by induction, for [ > 4, we have

6

2

It remains to check that this is at least (I +2)(I 4 3)(2"* + 1) + 22173 4 5. The difference is

g3l+3 > 304+ 1)1 +2)(2 +1) 43 221“ +3.

18 6
PP —1— ) +28+4i+2-
( 7 ) + 207 + 4l + 7
which is clearly positive for [ > 4. O

Remark 13. It is natural to ask what other symmetric discrete random variables are ultra
sub-Gaussian. We pose the following question: is it true that for every positive integer L
and every positive monotone log-concave sequence (x,)E_, of length L, the function F(t) =
log [t Zle x};} is concave on (0,00)? This would imply that a symmetric discrete random
variable X with P(X =0) = pp and P(X = —z3) = P(X =x3,) = 52, k= 1,...,L, for
some pg € [0, 1] satisfies (3), hence X would be ultra sub-Gaussian if and only if it satisfies

(2). When z, = k, Lemma 12 implies that the sequence (F'(t))$2, is concave. This question
also naturally appears in a different context (see [25]). Moreover, it is known that if v > 0 and
f: (a,b) = (0,+00) is such that f7 is concave on (a,b), then ¢t — log ((t +7) ff f(ac)”dx) is

concave on (—y,00) (see [7], [8]). It is therefore tempting to ask for a stronger statement: for

N
n=1»

N
t - log ((Hv) Zzﬁ/”)

n=1

~v > 0 and a positive monotone concave sequence (yy,) is the function

concave on (—v,00)? As pointed to us by Melbourne (also see [25]), the examples of sequences
1141

4729119
both questions.

x = 1) and y = (1,2,3,2,1) show that the assumption of monotonicity is needed in

Remark 14. The question from Remark 13 has the affirmative answer for N = 3. In this
case, the assumption of the log-concavity of (z,,) is not needed (the assertion does not depend
on the order of the z, and given 3 numbers x1,z2, 23 we can always order them to form a
concave sequence by choosing xs to be max{xz1, 22, x3}). Thus, we claim that for every positive

numbers s,t,a, b, c, we have

t s+t s+t s+t
st 3 T —|—c;)2\/s(as—l—bs—i—cs)-t(at—l—bt—&—ct)

11



which is equivalent to the conjecture being true when N = 3. To show the above, by homo-
geneity, it is enough to consider s +t = 2, that is to prove that for every positive numbers

a,b,c and s € (0,2), we have

a+b+c>/5(2—s)(a*+ b5+ c) (a2 + b2—5 + 2—9),
or, after squaring and rearranging,
(s —1)2(a®> + b* 4+ ¢*) + 2(ab + be + ca) > s(2 — ) (asb27S +a®>7%b*
BSR4 B2 4 52 CQ—sas)_

This holds if we show that for every positive a,b and s € (0,2), we have

(s —1)?
2

(a® + ) + 2ab > 5(2 — 5)(a*b*™° + a®>7%b°).

This follows from the following claim (divide through by ab and set e* = ¢, 0 =1 — s).
Claim. Let § € [-1,1] and = € R. Then

2+ 0% coshz > 2(1 — 6?) cosh(Ax).

Proof of the claim. Expanding into a power series yields,

2 2k
S =2+ 6?coshx — 2(1 — 6%) cosh(z) = 2 + 67 1+x—+ *
1792 erka
22 C(2k)
—1 1—20%-2(1—6?%)
—els e ey |
kZ o8

Note that for & > 2, we have 1 — 202¢=2(1 — §%) > 1 —202(1 — §%) > % >0, so if 262 —1 > 0,
then S is clearly positive. If 262 — 1 < 0, then using 1 — 26%=2(1 — §%) > 1 — 202, we get

202 -1 , ) 22k
3+ = 2+ (1-20%)) .
k>2

S > 62

5 5 22 22k
= 3 1-2 - .
+( =7 T2 @m
k>2
It remains to observe that —“‘—22 + Zkzz (é;ikk)' > _L; + % _ (w22—46)2 B % > _%7 thus S >
0%(3 — 3(1 —26%)) = 62(3 + 36%) > 0. O

Combining Remarks 13 and 14 yields the following corollary.

Corollary 15. Let pg € [0,1) and let 21, xo,z3 be positive. Let X1, Xa,... be i.i.d. copies of
a random variable X with P(X =0) = py and P(X = —2;) =P (X = 2;) = =2, j =1,2,3.
Then X is ultra sub-Gaussian if and only if x5 + 25 + x5 < (1 — po)(z? + 23 + 333) . Moreover
in this case, (6) holds.

12



3.2 Second, third and higher moments, no atom at 0: Proof of The-

orem 4

The value of the constant C), equals the p-th moment of a standard Gaussian random variable
and is seen to be sharp by takinga; =... =a, = ﬁ, letting n — oo and applying the central
limit theorem.

To establish (7), we shall follow an inductive argument exploiting independence based on
swapping the X; one by one with independent Gaussians (similar ideas have appeared e.g. in
[5], [11] or [12]). An appropriate normalisation of the Gaussians is crucial and we shall choose

them to have the same variance as the X;.

Let
L+1)(2L +1)\"?
- /E|X1|2 _ ((—’_)(6—’_)> (16)
and let G, G, ... be i.i.d. centred Gaussian random variables with variance 2. Since

2 p/2 P

cr (B

b

n p/2
=C? (Z a§> o/ =E
i=1

n
E a; X;
i=1

n
E a;G;
i=1

inequality (7) is equivalent to
P

P
E <E

n n
E a; X; E a;G
i1 i=1

By independence and induction, it suffices to show that for every reals a, b, we have

Ela + bX1|P < Ela + bGP (17)
This will follow from the following claim.
Claim. For every convex nondecreasing function h: [0,400) — [0, +00), we have

Eh(X?) < Eh(G?). (18)
Indeed, (17) for b = 0 is clear. Assuming b # 0, by homogeneity, (17) is equivalent to
Ela + X1|P < Ela+ G1]P.
Using the symmetry of X, we can write
2Ela + X1|” = Ela + | X1||” + Ela — | X1||? = Ehq(X7),

where
ha(2) = la+ Vol +la— ValP, 220 (19)

(and similarly for G1). The convexity of h,, is established in the following standard lemma (see

also e.g. Proposition 3.1 in [12]).

Lemma 16. Let p > 3, a € R. Then h, defined in (19) is convex nondecreasing on [0, 00).

13



Proof. The case a = 0 is clear (and the assertion holds for p > 2). The case a # 0 reduces by

homogeneity to, say a = 1. We have

(@) 11+ Va4 sen(va - 1) lva — 1177

_2\[

\1+y|p*1+€gn(y Dly—1/7""

and it suffices to show that the function g(y) = is nondecreasing on
(0,00). Call the numerator f(y). Since g(y) = w, it sufﬁces to show that f is convex
(0,00). We have f'(y) = (p—1)(J]1 +y[P~2 + |y — 1|P~2) which is convex on R for p > 3, hence
nondecreasing on (0,00) (as being even). This justifies that h} is nondecreasing, hence h; is
convex. Since h}(0) = f/(0) = 2(p — 1) > 0, we get hi(z) > h}(0) > 0, so h; is increasing on

(0, 00). O

Thus 2E|a+ X1 |P = Ehy(X?) < Eh,(G?) = 2E|a+ G [P by the claim, as desired. It remains

to prove the claim.

Proof of the claim. When L = 1, the claim follows immediately because X? = 1 and by
Jensen’s inequality, Eh(G?) > h(EG?) = h(1) = Eh(X?). We shall assume from now on that
L>2.

By standard approximation arguments, it suffices to show that the claim holds for h(z) =

(x — a)+ for every a > 0. Here and throughout x4 = max{z,0}. Note that

and

o 1 2 2
E GQ _ — 2 _ e " /20 / —a)e~ " /202 dx
(GY —a)+ /_00(33 a)+ 27m2 “\ 702 z? —a)e

with o (depending on L) defined by (16). Fix an integer L > 2 and set for nonnegative a,

— 2 > 2 —z2/20'2d 1 = k2
=\ 02 ﬁ(x —a)e -7 Z (k* — a).

k=[/a]

Our goal is to show that f(a) > 0 for every a > 0. This is clear for a > L? because then
the second term is 0. Note that f is continuous (because x — x4 is continuous). For a €

(b%,(b+1)?) with b € {0,1,..., L — 1} our expression becomes

fo) =2 [T e L Y g
a) = g e z° —a)e T : a),
is differentiable and
7m2/2cr
SV 7T0'2/ L Z

k=b+1

‘/m?/ e o2 4y +u a€ (b (b+1)?%). (20)
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Bounding b < y/a yields

[ [
\f/wa 12/2dx+<1f).

(o)
—\/5/ e 2z + (1 — ﬁ) .
s Va/o L

We have obtained f’ > § on (0, L?) (except for the points 12,22,...). Since f is absolutely

continuous and f(0) = 0, we can write f(a fo x)dx and consequently

Call the right hand side g(a),

fla) 2 g(a),  a€0,L%,

where we define

Note: ¢"(a) = §'(a) = # (\/Ele’ﬁ — %) which changes sign from positive to negative

(since \/z%—f>0forL>2)
(0

decreasing and together with g

This implies that ¢’ is first strictly increasing, then strictly
) =g(0) =0, ¢’(00) = —o0, it gives that ¢’ is first positive,
then negative. Consequently, g is first strictly increasing and then strictly decreasing. Since
g(0) = 0, to conclude that g is nonnegative on [0, L?] (hence f), it suffices to check that
g(L?) > 0. We have,

g(L?) = l \f/f/g 24y (1 —~ f) ]d
NZ/WU e ™2y — ‘f} da
\/7/L/U 222)e " /2y — §L2.

Note that for ¢t = ¢t(L) = L—Q = m, the expression %;) becomes

NG
2
= \/>/ (t—xZ)e_’CZ/de— =
T Jo
NG
‘(t) = \/5/ e 2dy — 2
™ Jo 3

For L > 7, we have t > to = t(7) = 33. We check that #'(to) = #'(33) > 0.2 and since
W' is increasing, h'(t) is positive for ¢ > to, hence h(t) > h(to) = h(33) > 0.01 for t > to.

Consequently, g(L?) > 0 for every L > 7, which completes the proof for L > 7.

We have,

It remains to address the cases 2 < L < 6. Here lower-bounding f by g incurs too much

loss, so we show that f is nonnegative on [0, L?] by direct computations. First note that

15



f'(a) (see (20)) is strictly increasing on each interval a € (b2, (b+ 1)?), b € {0,1,...,L — 1}.
Clearly f’(0+) = 0 and we check that 01, = f/(b*+) > 0 for every b € {1,...,L — 2} and
3 < L <6 (see Table 1), so f(a) is strictly increasing for a € (0, (L — 1)?). Since f(0) = 0,
this shows that f(a) > 0 for a € (0,(L — 1)?). On the interval ((L — 1)?, L?), we use the
convexity of f and we lower-bound f by its tangent at a = (L — 1)?+ with the slope 0, 1,1
(which is negative), that is f(a) > 0 p—1(a — (L — 1)?) + f((L — 1)?). It remains to check
that v, = 0, ,—1(2L — 1) + f((L — 1)?), the values of the right hand side at the end point
a = L?, are positive. We have, vy > 0.2, v3 > 0.7, v4 > 1.2, v5 > 1.9, vg > 2.6. This finishes
the proof. O

Table 1: Lower bounds on the values of the slopes 0, , = f/(b*+).
b=1 b=2 b=3 b=4

0, | 0.02

61, | 0.03 0.03

05, | 0.03 0.05 0.03

66 | 0.03 0.05 005 0.02

Remark 17. We can drop the assumption in Theorem 4 of the X; being identically distributed
and only assume their independence (we stated it in the i.i.d. case for simplicity). The proof
does not change: we only have to choose the independent Gaussian random variables G; to be
such that E|G;|? = E|X;|? and then (18), hence (17) holds for each X;.

3.3 A Schur-convexity result for 3 atoms: Proof of Theorem 6

We need to begin with two technical lemmas. Let C be the linear space of all continuous
functions on R equipped with pointwise topology. Let C; C C be the cone of all odd functions
on R which are nondecreasing convex on (0,400) and let Co C C be the cone of all even
functions on R which are nondecreasing convex on (0, +00). Note that Cs is the closure (in the

pointwise topology) of the set S = {(|z| — ¥)+, v > 0} .

Lemma 18. Let ¢ > 2, w > 0 and ¢ (z) = sgn(z + w)|z + w|? + sgn(z — w)|z — w|?, x € R.
Then ¢y, € C1. Let ry(x) = ¢“T(T), x € R (with the value at x = 0 understood as the limit).
Then ry, € Cs.

Proof. The case w = 0 is clear. For w > 0, verifying that ¢,, € C; and r,, € C2, by homogeneity,
is equivalent to doing so for w = 1. Let w = 1 and denote ¢ = ¢; and r = r1. Suppose we
have shown that r € Cy. Then, plainly, ¢(x) = xr(x) is also nondecreasing on (0,00) and
¢"(x) = (r(x) + xr'(x)) = 2r'(x) + xr’(z) is nonnegative on (0,00) since 7 and " are
nonnegative on (0, 00).

It remains to prove that r € C. Plainly ¢(x) is odd and thus r(x) is even. Thus we consider

x> 0.
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Case 1. x > 1. We have, ¢(z) = (z+1)7+ (z — 1),
r(x) = ¢'(x)  ox) q(ﬂc +1)9 4 (@ -1 (@ )74 (@ 1)

T 2 T 2

and

() = V“(m) 9@

x x?
= qlg— 2w+ 1)1 + (@ - 1)1
= 2@+ 17 + (@ = )T 2@ + D)7+ (2 - 1)),
Note that taking one more derivative gives
(&*"(2)' = alg = D(q = 2)a* |z + )7 + (@ = 17~

which is clearly positive for = > 1 since ¢ > 2. Thus, for z > 1, we have

2
5 7
#h () > 1"(1) = qlg —1)- 2972 = 2¢- 2971 4220 = 2972 ((q - 2) N 4) !

Therefore, r”(z) > 0 for z > 1. Since 7/(1) = 2971 — 29 = 2971(q — 2) > 0, we also get that

r’(z) is positive for = > 1.

Case 2. 0 < x < 1. The argument and the computations are very similar to Case 1. We have,
¢(z) = (1+z)!—(1—-=)7,

/fﬂ T :L.qfl 71,q71 )4 — — )4
PR o BRUURR. S U (el VR

and

+
T 2

(2 o [aﬁ”(fc) L@ 2¢£§>]
= qlg— D2 [(1+2)72 = (1 - 2)1?]
—2qe[(14+2)77 + (1 - 2)7 ! 21+ @)1 — (1 - 2)1).
Taking one more derivative yields
(#*"(@)) = ala = (g = D [(1+2)7 + (1 = 2)?).
If ¢ > 2, this is positive for 0 < # < 1. Then in this case, consequently, x*r"(x) >

23" (z) = 0, so r'’(z) is positive for 0 < z < 1. As a result, r'(z) > r'(0+) = 0 for

0<z< 11t q = 2, we simply have ¢(z) = 4z and r(z) = 4.
Combining the cases, we see that both " and r” are nonnegative on (0, +00), which finishes
the proof. O

Lemma 19. The best constant D such that the inequality

pla+d)—¢(b—a) dlatb)+¢(b—a) o(b)  ¢(a)
D 2a B 2b ]>{b B a}

(21)

holds for all 0 < a < b and every function ¢(x) of the form xr(x), r € Ca, is D = 1.

17



Proof. For ¢(x) = ar(z), r(x) = |z|, by homogeneity, inequality (21) is equivalent to: for all
0 < a <1, we have
(14+a)?-(1-a)? (1+a)?+(1-a)?

D- - Z]_*CL,
2a 2

that is D - (1 —a?) > (1 —a) for all 0 < a < 1, which holds if and only if D > 1. Now we show
that in fact (21) holds with D = 1 for every ¢(z) = zr(z), where r € Cy. Since Cs is the closure
of 8, by linearity, it suffices to show this for all simple functions r € S, that is r(z) = (Jz|—7)+.
By homogeneity, this is equivalent to showing that for all v > 0 and 0 < a < 1, we have

(l+a)i+a—s-(1-al-a—7): (+a)l+a-7s+(-a)l-a—9),

2a 2
> (1 =)+ —(a—7)+

Fix 0 < a < 1. Let hq(y) be the left hand side minus the right hand side. For v > 1 + a,
ha(v) = 0. Since as a function of 7, h,(7) is piecewise linear, showing that it is nonnegative on
[0, 1+a] is equivalent to verifying it at the nodes v € {0, 1, a, 1—a}. We have, h,(0) = a—a® > 0.

Next, hy(1) = (1;5)“ - (1+2a)a = 2(1+a)(1 —a) > 0. Finally, to check y =a and v =1 —aq,

we consider two cases.

Case 1. a<1—a,that is0 < a < % Then,

I+a)—(1—-a)(1—2a) (A+a)+(1—-a)(l—2a)

ha(a) = - —(1—a)=a(l -
a(a) %4 2 (1—-a)=a(l—a)>0
and
1 2 1 2 1 1 1
ha(l—ay= @20 (+a2e o oy 1 11
2a 2 4 2 4

Case 2. a > 1 — a, that is % < a < 1. Then,

~(I+a) (1+a) ~ (1-a)?
hala) === - ~(-a)="—F—>0
and 1 2 1 2
ho(l—ay= UFW20 (AFa)2a 0 o0 )2t —a) > 0.

2a 2
O

Proof of Theorem 6. Fix p > 3 and let F(x) = |z|P. Then (8) is equivalent to saying that the

function
®(ay,...,an) =EF (Z ﬁX)
i=1

is Schur concave. Since ® is symmetric, by Ostrowski’s criterion (see, e.g., Theorem 11.3.14 in

[6]), @ is Schur concave if and only if

0w o0
aal el 8042’ ay az,
which is equivalent to ) )
——E[X 1 F'(S)] > —E[X,F'(S
\/a[1()]_\/a—2[z()},
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where S = /a1 X1 + /as Xo + W and W = Zi>2 Vva; X;. After taking the expectation with

respect to X7 and Xs, it becomes

%(1 S22 poBLF (ar + W) = F(—ar + W)

- (1_2p0> E[F(Var + vaz + W) = F'(=Var + Vaz + W)

+F(ar - a + W) = P /ar - iz + W>1>

Y

3~
[\~]

(1 SR OBLF (i + W) = F(—/a + W)
L —po ?
+ (2> E[F'(\/az + a1 + W) — F'(—/az + /a1 + W)
+ F'(Vaz — Vai + W) — F'(—/a — Var + W>1>.

This trivially holds for pg = 1. Suppose pg < 1. Note that F’ is odd and W is symmetric.
Thus, —EF'(—\/a; + W) = EF'(y/a; + W) and similarly for the other terms. Consequently,

the inequality is equivalent to

ja <2poEF’<¢aT W)

+ (1= po)E[F' (Va1 + az + W) — F'(=/a1 + y/az + W)])
> \/1672 <2poEF’(¢a3 +W)
+ (1= po)E[F'(Vag + v/ar + W) + F'(\/az — /a1 + W)])-

Set a = /a1, b = \/az and
¢(z) =EF' (z+ W), zeR

(¢ is also odd). Suppose pg > 0. Then, the validity of the above inequality is equivalent to the
question whether for all 0 < a < b,

pla+b)—¢(b—a) ¢(a+b)+¢>(b—a)} > [aﬁ(b) ¢(a)] .

(" —1) (22)

2a 2b b a

By the symmetry of W, it has the same distribution as ¢|W/|, where ¢ is an independent
symmetric random sign, so we can write ¢(z) = $E¢|(z), where for w > 0, we set ¢, (z) =
F'(z +w)+ F'(z — w). By Lemmas 18 and 19, inequality (22) holds for ¢,, in place of ¢ (for
every w > 0) as long as py ' — 1 > 1. Taking the expectation against [W| yields the inequality
for ¢, as desired. For pg = 0, we can for instance argue by taking the limit pg — 0+ directly
in (8). O
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3.4 First and second moments: Proof of Theorem 8

Note that for a; = 1, ag = -+ = a,, = 0, we have equality in (10), which explains why the
value of the constant ¢; is sharp.
We shall closely follow Haagerup’s approach from [13]. Let ¢x(t) = Ee®X be the charac-

teristic function of X. We have

¢x(t) = po+(1—po)— Zcoskt

>po—(1—=po)=2po—12>0.

We also define

2 [ t \|°] dt
F(s)= =2 1— — = s>
@=2 [l (B ] % 2
By symmetry, without loss of generality we can assume that ay, . .., a, are positive with > a? =

1. By Lemma 1.2 from [13] and independence,

2 [ dt
B> % =2 [ [1-T[ex(n| G
j 0 j
As in the proof of Lemma 1.3 from [13], by the AM-GM inequality,

[Tox(ait) <> a2lox(ap)l

~

thus
E Zanj > Za?F(aj_z).
J J
If we show that
F(s) > F(1), s>1, (23)

then
1/2

53 0,

=1

X 2
Ezj:ajxj >ZaF F(1) = \/W

Since ¢x is nonnegative, using again Lemma 1.2 from [13], we have
2 [ a2 [~ dt
F(l) =— 1-— ) = = — 1-— t)] = =E|X
=2 [ n-lox@l =2 [ 0-ex)F=ExI
so the proof of (10) is finished.
It remains to show (23). For a fixed s > 1, the left hand side

-t prrnt () )
=1

is concave as a function of pg, whereas the right hand side F'(1) = E|X| = (1 — po)£$? is linear

as a function of pg. Therefore, it is enough to check the cases: 1) pp = 1 which is clear, 2)

po = 1/2 which becomes




cos T—‘rl

Using = cos?(z/2) and then employing convexity, the left hand side can be rewritten
and lower bounded as follows

SR R AN

A change of variables t = v/2t/ /k allows to write the right hand side as

z/ e ()

FHaa(QS)

*lat & L+1
V2 202

where Fiaa(s) = 2 fo {1 — ‘cos (ﬁ) } th is Haagerup’s function (see Lemma 1.3 and 1.4 in
[13]). He Showed therein that it is increasing, so for s > 1, we get Fiaa(25) > Fhaa(2) = ==

V2
and this finishes the proof.

Remark 20. Thanks to Remark 2.5 from [13], the same proof also works if we replace the first

moment by pg-th one, where py = 1.847... is the unique solution to F(L‘gl) = @, p € (0,2).

The cases of other values of p € (1,2) have been elusive.
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