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Abstract. A symmetric random variable is called a Gaussian mixture if it has the same dis-
tribution as the product of two independent random variables, one being positive and the other
a standard Gaussian random variable. Examples of Gaussian mixtures include random variables
with densities proportional to e−|t|

p

and symmetric p-stable random variables, where p ∈ (0, 2]. We
obtain various sharp moment and entropy comparison estimates for weighted sums of independent
Gaussian mixtures and investigate extensions of the B-inequality and the Gaussian correlation in-
equality in the context of Gaussian mixtures. We also obtain a correlation inequality for symmetric
geodesically convex sets in the unit sphere equipped with the normalized surface area measure. We
then apply these results to derive sharp constants in Khintchine inequalities for vectors uniformly
distributed on the unit balls with respect to p-norms and provide short proofs to new and old
comparison estimates for geometric parameters of sections and projections of such balls.

1. Introduction

Gaussian random variables and processes have always been of central importance in probability
theory and have numerous applications in various areas of mathematics. Recall that the measure

γn on Rn with density dγn(x) = (2π)−n/2e−
∑n
j=1 x

2
j/2 dx is called the standard Gaussian measure

and a random vector distributed according to γn is called a standard Gaussian random vector. A
centered Gaussian measure on Rn is defined to be a linear image of standard Gaussian measure.
In the past four decades intensive research has been devoted to geometric properties related to
Gaussian measures (see, e.g., the survey [Lat02]), which have provided indispensable tools for
questions in convex geometry and the local theory of Banach spaces. In many cases, however, it
still remains a challenging open problem to determine whether such properties are Gaussian per se
or, in fact, more general.

The main purpose of the present article is to investigate properties of mixtures of Gaussian
measures and demonstrate that they are of use to concrete geometric questions.

Definition 1. A random variable X is called a (centered) Gaussian mixture if there exists a positive
random variable Y and a standard Gaussian random variable Z, independent of Y , such that X
has the same distribution as the product Y Z.

For example, a random variable X with density of the form

f(x) =
m∑
j=1

pj
1√

2πσj
e
− x2

2σ2
j ,

where pj , σj > 0 are such that
∑m

j=1 pj = 1, is a Gaussian mixture corresponding to the discrete

random variable Y with P(Y = σj) = pj . Finite weighted averages of non-centered Gaussian
measures are ubiquitous in information theory and theoretical computer science (see, for instance,
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[Das99], [AK01] for relevant results in learning theory) and are often referred in the literature as
Gaussian mixtures. In this paper, we shall reserve this term for centered Gaussian mixtures in the
sense of Definition 1. Observe that Gaussian mixtures are necessarily symmetric and continuous.
We shall now discuss a simple analytic characterization of Gaussian mixtures in terms of their
probability density functions.

Recall that an infinitely differentiable function g : (0,∞)→ R is called completely monotonic if

(−1)ng(n)(x) > 0 for all x > 0 and n > 0, where for n > 1 we denote by g(n) the n-th derivative

of g and g(0) = g. A classical theorem of Bernstein (see, e.g., [Fel71]) asserts that g is completely
monotonic if and only if it is the Laplace transform of some measure, i.e. there exists a non-negative
Borel measure µ on [0,∞) such that

f(x) =

∫ ∞
0

e−tx dµ(t), for every x > 0. (1)

Bernstein’s theorem implies the following equivalence.

Theorem 2. A symmetric random variable X with density f is a Gaussian mixture if and only if
the function x 7→ f(

√
x) is completely monotonic for x > 0.

Theorem 2 will be proven in Section 2. It readily implies that for every p ∈ (0, 2] the random

variable with density cpe
−|x|p is a Gaussian mixture; we denote its law by µp and by µnp = µ⊗np the

corresponding product measure. Another example of Gaussian mixtures are symmetric p-stable
random variables, where p ∈ (0, 2] (see Lemma 21 in Section 2). Recall that a symmetric p-stable

random variable X is a random variable whose characteristic function is EeitX = e−c|t|
p
, for t ∈ R

and some c > 0. Standard symmetric p-stable random variables correspond to c = 1. In the
consecutive subsections we shall describe our main results on Gaussian mixtures.

1.1. Sharp Khintchine-type inequalities. The classical Khintchine inequality asserts that for
every p ∈ (0,∞) there exist positive constants Ap, Bp such that for every real numbers a1, . . . , an
we have

Ap

( n∑
i=1

a2
i

)1/2
6
(
E
∣∣∣ n∑
i=1

aiεi

∣∣∣p)1/p
6 Bp

( n∑
i=1

a2
i

)1/2
, (2)

where ε1, . . . , εn ∈ {−1, 1} are independent symmetric random signs. Whittle discovered the best
constants in (2) for p > 3 (see [Whi60]), Szarek treated the case p = 1 (see [Sza76]) and finally
Haagerup completed this line of research determining the optimal values of Ap, Bp for any p > 0
(see [Haa81]).

Following Haagerup’s results, sharp Khintchine inequalities for other random variables have also
been investigated extensively (see, for example, [LO95], [BC02], [Kön14]). In particular, in [LO95],
Lata la and Oleszkiewicz treated the case of i.i.d. random variables uniformly distributed on [−1, 1]
and proved a comparison result in the sense of majorization that we shall now describe.

We say that a vector a = (a1, . . . , an) is majorized by a vector b = (b1, . . . , bn), denoted a � b, if
the nonincreasing rearrangements a∗1 > . . . > a∗n and b∗1 > . . . > b∗n of the coordinates of a and b,
respectively, satisfy the inequalities

k∑
j=1

a∗j 6
k∑
j=1

b∗j for each k ∈ {1, . . . , n− 1} and
n∑
j=1

aj =
n∑
j=1

bj .

For a general reference on properties and applications of the majorization ordering see [MO79]. For
instance, every vector (a1, . . . , an) with ai > 0 and

∑n
i=1 ai = 1 satisfies( 1

n
, . . . ,

1

n

)
� (a1, . . . , an) � (1, 0, . . . , 0). (3)
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A real-valued function which preserves (respectively reverses) the ordering � is called Schur convex
(respectively Schur concave).

The main result of [LO95] reads as follows. Let U1, . . . , Un be i.i.d. random variables, uniformly
distributed on [−1, 1]. For p > 2 and (a1, . . . , an), (b1, . . . , bn) ∈ Rn we have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒ E

∣∣∣ n∑
i=1

aiUi

∣∣∣p > E
∣∣∣ n∑
i=1

biUi

∣∣∣p (4)

and for p ∈ [1, 2) the second inequality is reversed. In particular, combining (3) and (4), for any
p > 2 and a unit vector (a1, . . . , an) we get

E|U1|p 6 E
∣∣∣ n∑
i=1

aiUi

∣∣∣p 6 E
∣∣∣U1 + · · ·+ Un√

n

∣∣∣p, (5)

whereas for p ∈ [1, 2) the reverse inequalities hold. Inequality (5) along with the central limit
theorem implies that the sharp constants in the Khintchine inequality

Ap

(
E
∣∣∣ n∑
i=1

aiUi

∣∣∣2)1/2
6
(
E
∣∣∣ n∑
i=1

aiUi

∣∣∣p)1/p
6 Bp

(
E
∣∣∣ n∑
i=1

aiUi

∣∣∣2)1/2
(6)

are precisely

Ap =

{
γp, p ∈ [1, 2)

31/2

(p+1)1/p
, p ∈ [2,∞)

and Bp =

{
31/2

(p+1)1/p
, p ∈ [1, 2)

γp, p ∈ [2,∞)
, (7)

where γp =
√

2

(
Γ( p+1

2 )√
π

)1/p

is the p-th moment of a standard Gaussian random variable.

Our main result for moments is an analogue of the Schur monotonicity statement (4) for Gaussian

mixtures. Recall that for a random variable Y and p 6= 0 we denote by ‖Y ‖p = (E|Y |p)1/p its p-th
moment and ‖Y ‖0 = exp(E log |Y |). Notice that since a standard Gaussian random variable Z
satisfies E|Z|p =∞ for every p 6 −1, a moment comparison result for Gaussian mixtures can only
make sense for p-th moments, where p > −1.

Theorem 3. Let X be a Gaussian mixture and X1, . . . , Xn be independent copies of X. For two
vectors (a1, . . . , an), (b1, . . . , bn) in Rn and p > 2 we have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒

∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6
∥∥∥ n∑
i=1

biXi

∥∥∥
p
, (8)

whereas for p ∈ (−1, 2) the second inequality is reversed, provided that E|X|p <∞.

The proof of Theorem 3 and the straightforward derivation of sharp constants for the corre-
sponding Khintchine inequalities (Corollary 23) will be provided in Section 3.

As an application we derive similar Schur monotonicity properties for vectors uniformly dis-
tributed on the unit ball of `nq for q ∈ (0, 2], which were first considered by Barthe, Guédon,
Mendelson and Naor in [BGMN05]. Recall that for a vector x = (x1, . . . , xn) ∈ Rn and q > 0 we

denote ‖x‖q =
(∑n

i=1 |xi|q
)1/q

and ‖x‖∞ = max16i6n |xi|. We also write `nq for the quasi-normed
space (Rn, ‖ · ‖q) and Bn

q = {x ∈ Rn : ‖x‖q 6 1} for its closed unit ball. In [BGMN05], the authors
discovered a representation for the uniform measure on Bn

q , relating it to the product measures µnq
defined after Theorem 2, and used it to determine the sharp constants in Khintchine inequalities
on Bn

q up to a constant factor. Using their representation along with Theorem 3 we deduce the
following comparison result.
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Corollary 4. Fix q ∈ (0, 2] and let X = (X1, . . . , Xn) be a random vector uniformly distributed on
Bn
q . For two vectors (a1, . . . , an), (b1, . . . , bn) in Rn and p > 2 we have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒

∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6
∥∥∥ n∑
i=1

biXi

∥∥∥
p
, (9)

whereas for p ∈ (−1, 2) the second inequality is reversed.

The derivation of the sharp constants in the corresponding Khintchine inequality is postponed
to Corollary 24. Given Corollary 4 and the result of [LO95], which corresponds to the unit cube
Bn
∞, the following question seems natural.

Question 5. Let X = (X1, . . . , Xn) be a random vector uniformly distributed on Bn
q for some

q ∈ (2,∞). What are the sharp constants in the Khintchine inequalities for X?

It will be evident from the proof of Corollary 4 that Question 5 is equivalent to finding the
sharp Khintchine constants for µnq , where q ∈ (2,∞). We conjecture that there exists a Schur
monotonicity result, identical to the one in (4).

1.2. Entropy comparison. For a random variable X with density function f : R → R+ the
Shannon entropy of X is a fundamental quantity in information theory, defined as

Ent(X) = −
∫
R
f(x) log f(x) dx = E[− log f(X)],

provided that the integral exists. Jensen’s inequality yields that among random variables with a
fixed variance, the Gaussian random variable maximizes the entropy. Moreover, Pinsker’s inequality
(see, e.g., [GL10, Theorem 1.1]) asserts that if a random variable X has variance one and G is a
standard Gaussian random variable, then the entropy gap Ent(G) − Ent(X) dominates the total
variation distance between the laws of X and G. Consequently, the entropy can be interpreted as
a measure of closeness to Gaussianity. The following question seems natural.

Question 6. Fix n > 2 and suppose that X1, . . . , Xn are i.i.d. random variables with finite variance.
For which unit vectors (a1, . . . , an) is the entropy of

∑n
i=1 aiXi maximized?

The constraint
∑n

i=1 a
2
i = 1 on (a1, . . . , an) plainly fixes the variance of the weighted sum

∑n
i=1 aiXi

and the answer would give the corresponding most Gaussian weights.
The first result concerning the entropy of weighted sums of i.i.d. random variables was the

celebrated entropy power inequality, first stated by Shannon in [SW49] and rigorously proven by
Stam in [Sta59]. An equivalent formulation of the Shannon-Stam inequality (see [Lie78]) reads as
follows. For every λ ∈ [0, 1] and independent random variables X,Y we have

Ent(
√
λX +

√
1− λY ) > λEnt(X) + (1− λ)Ent(Y ), (10)

provided that all the entropies exist. It immediately follows from (10) that if X1, . . . , Xn are i.i.d.
random variables with finite variance and (a1, . . . , an) is a unit vector, then we have

Ent
( n∑
i=1

aiXi

)
> Ent(X1). (11)

In other words, the corresponding minimum in Question 6 is achieved at the direction vectors ei.
Moreover, a deep monotonicity result for Shannon entropy was obtained in the work of Artstein-

Avidan, Ball, Barthe and Naor [ABBN04]. The authors proved that for any random variable X
with finite variance and any n > 1 we have

Ent
( n∑
i=1

1√
n
Xi

)
6 Ent

( n+1∑
i=1

1√
n+ 1

Xi

)
, (12)
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where X1, X2, . . . are independent copies of X.
Given inequality (12), a natural guess for Question 6 would be that the vector

(
1√
n
, . . . , 1√

n

)
is

a maximizer for any n > 2 and for any square-integrable random variable X. However, this is not
correct in general. In [BNT16, Proposition 2], the authors showed that for a symmetric random
variable X uniformly distributed on the union of two intervals the Shannon entropy of the weighted
sum

√
λX1 +

√
1− λX2 is not maximized at λ = 1

2 .
Nonetheless, for Gaussian mixtures it is possible to obtain the comparison for Rényi entropies

which confirms the natural guess. Recall that for a random variable X with density f : R → R+

and α > 0, α 6= 1, the Rényi entropy of order α of X is defined as

hα(X) =
1

1− α
log
(∫

R
fα(x) dx

)
.

Note that if for some α > 1 the integral of fα is finite, then hα(X) tends to Ent(X) as α → 1+

(see [BC15, Lemma V.3]), which we shall also denote by h1(X) for convenience.

Theorem 7. Let X1, . . . , Xn be i.i.d. Gaussian mixtures and α > 1. Then for two vectors
(a1, . . . , an), (b1, . . . , bn) in Rn we have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒ hα

( n∑
i=1

aiXi

)
> hα

( n∑
i=1

biXi

)
, (13)

provided that all the entropies are finite. In particular, for every unit vector (a1, . . . , an)

Ent(X1) 6 Ent
( n∑
i=1

aiXi

)
6 Ent

(X1 + · · ·+Xn√
n

)
. (14)

Extensions of inequality (14), even for the uniform measure on the cube, appear to be unknown.

Question 8. Let U1, . . . , Un be i.i.d. random variables, each uniformly distributed on [−1, 1]. Is it
correct that for every unit vector (a1, . . . , an)

Ent
( n∑
i=1

aiUi

)
6 Ent

(U1 + · · ·+ Un√
n

)
? (15)

Geometrically, this would mean that, in the entropy sense, the most Gaussian direction of the
unit cube Bn

∞ is the main diagonal.
We close this subsection with an intriguing question in the spirit of the well known fact that

a Gaussian random variable has maximum entropy among all random variables with a specified
variance. Note that Theorem 7 along with

(1, 1, 0, . . . , 0) �
(

1,
1

2
,
1

2
, 0, . . . , 0

)
� · · · �

(
1,

1

n
, . . . ,

1

n

)
imply that for every i.i.d. Gaussian mixtures X1, X2, . . . the sequence Ent

(
X1 + X2+···+Xn+1√

n

)
,

n = 1, 2, . . . is increasing and in particular

Ent(X1 +X2) 6 Ent
(
X1 +

X2 + · · ·+Xn+1√
n

)
.

Thus, the following result should not be surprising.

Proposition 9. Let X1, X2 be independent Gaussian mixtures with finite variance. Then

Ent(X1 +X2) 6 Ent(X1 +G), (16)

where G is a Gaussian random variable independent of X1 having the same variance as X2.
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We pose a question as to whether this is true in general, under the additional assumption that
X1, X2 are identically distributed.

Question 10. Let X1, X2 be i.i.d. continuous random variables with finite variance. Is it true that

Ent(X1 +X2) 6 Ent(X1 +G), (17)

where G is a Gaussian random variable independent of X1 having the same variance as X2?

The preceding entropy comparison results will be proven in Section 3.

1.3. Geometric properties of Gaussian mixtures. Recall that a function ϕ : Rn → R+ is
called log-concave if ϕ = e−V for some convex function V : Rn → (−∞,∞]. A measure µ on Rn is
called log-concave if for every Borel sets A,B ⊆ Rn and λ ∈ (0, 1) we have

µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ. (18)

A random vector is called log-concave if it is distributed according to a log-concave measure. Two
important examples of log-concave measures on Rn are Gaussian measures and uniform measures
supported on convex bodies. The geometry of log-concave measures, in analogy with the asymptotic
theory of convex bodies, has been intensively studied and many major results are known (see, for
example, the monograph [AAGM15]). The Gaussian measure, however, possesses many delicate
properties which are either wrong or whose validity is still unknown for other log-concave measures.
In what follows, we will explain how to extend, in the context of Gaussian mixtures, two such
properties: the B-inequality, proven by Cordero-Erausquin, Fradelizi and Maurey in [CEFM04],
and the Gaussian correlation inequality, recently proven by Royen in [Roy14].

Choosing the sets A,B in (18) to be dilations of a fixed convex set K ⊆ Rn we deduce that for
every a, b > 0 and λ ∈ (0, 1)

µ
(
(λa+ (1− λ)b)K

)
> µ(aK)λµ(bK)1−λ. (19)

The B-inequality provides a substantial strengthening of (19) for Gaussian measure, under an
additional symmetry assumption: for any origin symmetric convex set K ⊆ Rn, a, b > 0 and
λ ∈ (0, 1)

γn(aλb1−λK) > γn(aK)λγn(bK)1−λ, (20)

or, in other words, the function t 7→ γn(etK) is log-concave on R. In fact, in [CEFM04] the following
strong form of the above inequality was proven.

Theorem 11 (B-inequality, [CEFM04]). Let K be a symmetric convex set and γ a centered Gauss-
ian measure on Rn. Then, the function

Rn 3 (t1, . . . , tn) 7−→ γ(∆(et1 , . . . , etn)K) (21)

is log-concave on Rn, where ∆(s1, . . . , sn) is the diagonal n× n matrix with entries s1, . . . , sn.

The authors also proved that the same conclusion holds for an arbitrary unconditional log-
concave measure, provided that the convex set K is unconditional as well (see [CEFM04, Section 5]
for further details). Furthermore, they asked whether the B-inequality holds for any symmetric
log-concave measure and symmetric convex set K; this is currently known as the B-conjecture.
We note that in [Sar16], Saroglou confirmed the B-conjecture on the plane (the case of uniform
measures on convex planar sets had previously been treated in [LBo14]). Our result in this direction
is the following theorem.

Theorem 12. Let X1, . . . , Xn be Gaussian mixtures such that Xi has the same distribution as YiZi,
where Yi is positive and Zi is a standard Gaussian random variable independent of Yi. Denote by
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µi the law of Xi and by µ the product measure µ1 × · · · × µn. If, additionally, log Yi is log-concave
for each i, then for every symmetric convex set K in Rn the function

Rn 3 (t1, . . . , tn) 7−→ µ(∆(et1 , . . . , etn)K) (22)

is log-concave on Rn.

We do not know whether the additional assumption on the Yi can be omitted, but we verified
(Corollary 28) that both the measure with density proportional to e−|t|

p
and the symmetric p-

stable measure have this property for p ∈ (0, 1], whereas they do not for p ∈ (1, 2). Notice that the
corresponding product measures, apart from µn1 , are not log-concave. We note that extending the
B-inequality to µnp , where p > 2, is of importance. For instance, it has been proven by Saroglou
[Sar15] that the B-inequality for µn∞ (that is, the uniform measure on the unit cube Bn

∞) would
imply the conjectured logarithmic Brunn-Minkowski inequality (see [BLYZ12]) in its full generality.
The proof of Theorem 12 will be given in Section 4.

An application of the B-inequality for Gaussian measure is a small ball probability estimate due
to Lata la and Oleszkiewicz [LO05]. For a symmetric convex set K denote by r(K) its inradius,
i.e. the largest r > 0 such that rBn

2 ⊆ K. In [LO05], the authors used Theorem 11 along with the
Gaussian isoperimetric inequality (see, e.g., [AAGM15, Theorem 3.1.9]) to prove that if K ⊆ Rn is
a symmetric convex set with γn(K) 6 1/2, then

γn(tK) 6 (2t)
r(K)2

4 γn(K), for every t ∈ [0, 1]. (23)

Using Theorem 12 and an isoperimetric-type estimate of Bobkov and Houdré from [BH97] we
deduce the following corollary.

Corollary 13. Let K be a symmetric convex set in Rn such that µn1 (K) 6 1/2. Then

µn1 (tK) 6 t
r(K)

2
√
6 µn1 (K), for every t ∈ [0, 1]. (24)

Our next result is an extension of the Gaussian correlation inequality, which was recently proven
by Royen in [Roy14] (see also [LM15] for a very clear exposition of Royen’s proof and the references
therein for the history of the problem).

Theorem 14 (Gaussian correlation inequality, [Roy14]). For any centered Gaussian measure γ on
Rn and symmetric convex sets K,L in Rn we have

γ(K ∩ L) > γ(K)γ(L). (25)

This inequality admits a straightforward extension to products of laws of Gaussian mixtures.

Theorem 15. Let X1, . . . , Xn be Gaussian mixtures and denote by µi the law of Xi. Then, for
µ = µ1 × · · · × µn and any symmetric convex sets K,L in Rn we have

µ(K ∩ L) > µ(K)µ(L). (26)

This theorem implies that the correlation inequality (26) holds for the product measure µnp as
well as for all symmetric p-stable laws on Rn, where p ∈ (0, 2) (Corollary 33). In particular,
the multivariate Cauchy distribution, which is a rotationally invariant 1-stable distribution on Rn

defined as dµ(x) = cn(1+‖x‖22)−
n+1
2 dx, satisfies the inequality (26). In [Mem15], Memarian proved

partial results in this direction and noticed that such inequalities are equivalent to correlation-type
inequalities on the unit sphere Sn−1. We will recap his argument in Section 5. Let Sn−1

+ ⊆ Sn−1

be the open upper hemisphere, i.e. Sn−1
+ = Sn−1 ∩ {x ∈ Rn : xn > 0} whose pole is the point

p = (0, . . . , 0, 1). A subset A ⊆ Sn−1
+ is called geodesically convex if for any two points x, y ∈ A the

shortest arc of the great circle joining x, y is contained in A. Furthermore, A is called symmetric
(with respect to the pole p) if for any x ∈ A, the point x∗ 6= x which lies on the great circle joining
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x and p and satisfies dSn−1(x, p) = dSn−1(p, x∗), also belongs in A. Here dSn−1 denotes the geodesic
distance on the sphere.

Corollary 16. Let Sn−1
+ ⊆ Sn−1 be the open upper hemisphere. Then for every symmetric geodesi-

cally convex sets K,L in Sn−1
+ we have

|K ∩ L| · |Sn−1
+ | > |K| · |L|, (27)

where | · | denotes the surface area measure on Sn−1.

Finally, we want to stress that one cannot expect that all geometric properties of the Gaussian
measure will extend mutatis mutandis to Gaussian mixtures. For example, it has been proven by
Bobkov and Houdré in [BH96] that the Gaussian isoperimetric inequality actually characterizes
Gaussian measures. Nevertheless, it might be the case that there are many more that admit such
an extension.

1.4. Sections and projections of Bn
q . The study of quantitative parameters of sections and

projections of convex bodies is a classical topic in convex geometry (for example, see the monograph
[Kol05]). As a first application, we revisit two well known theorems and reprove them using some
relevant Gaussian mixture representations.

Denote by H1 the hyperplane (1, 0, . . . , 0)⊥ and by Hn the hyperplane (1, . . . , 1)⊥. It has been
proven by Barthe and Naor in [BN02] that for any q ∈ (2,∞] and any hyperplane H ⊆ Rn we have

|ProjH1
Bn
q | 6 |ProjHB

n
q | 6 |ProjHnB

n
q |, (28)

where | · | denotes Lebesgue measure. To deduce this, they proved that for any q ∈ [1,∞], if
X1, . . . , Xn are i.i.d. random variables with density

fq(t) = cq|t|
2−q
q−1 e−|t|

q
q−1

, t ∈ R, (29)

then the volume of hyperplane projections of Bn
q can be expressed as

|Proja⊥B
n
q | = αq,nE

∣∣∣ n∑
i=1

aiXi

∣∣∣, (30)

where a = (a1, . . . , an) is a unit vector and αq,n is a positive constant. It immediately follows
from the characterization given in Theorem 2 that for q > 2 the random variables Xi are Gaussian
mixtures and thus, from Theorem 3 (with p = 1), we deduce the following strengthening of (28).

Corollary 17. Fix q ∈ (2,∞]. For two unit vectors a = (a1, . . . , an), b = (b1, . . . , bn) in Rn we
have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒ |Proja⊥B

n
q | > |Projb⊥B

n
q |. (31)

We now turn to the dual question for sections. Meyer and Pajor and later Koldobsky (see [MP88],
[Kol98]) proved that for any q ∈ (0, 2) and any hyperplane H ⊆ Rn

|Bn
q ∩Hn| 6 |Bn

q ∩H| 6 |Bn
q ∩H1|. (32)

More precisely, in [MP88] the authors proved the upper bound of (32) for q ∈ [1, 2) and the
lower bound for q = 1 and posed a conjecture that would imply (32) for any q ∈ (0, 2); this
was later confirmed in [Kol98]. The main ingredients in Koldobsky’s proof of (32) were a general
representation of the volume of hyperplane sections of a convex body in terms of the Fourier
transform of the underlying norm and an elegant lemma about symmetric q-stable densities. Using
a different approach, we prove the analogue of Corollary 17 for sections.

Corollary 18. Fix q ∈ (0, 2). For two unit vectors a = (a1, . . . , an), b = (b1, . . . , bn) in Rn we have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒ |Bn

q ∩ a⊥| 6 |Bn
q ∩ b⊥|. (33)

8



In fact, Corollary 18 will follow from a more general comparison of Gaussian parameters of
sections which is in the spirit of [BGMN05]. For a hyperplane H ⊆ Rn and a convex body K ⊆ Rn
denote by ‖ · ‖K∩H the norm on H associated with the convex body K ∩H.

Theorem 19. Fix q ∈ (0, 2). For a unit vector θ ∈ Rn let Gθ be a standard Gaussian random vector
on the hyperplane θ⊥. Then for every λ > 0 and unit vectors a = (a1, . . . , an), b = (b1, . . . , bn) in
Rn we have

(a2
1, . . . , a

2
n) � (b21, . . . , b

2
n) =⇒ Ee

−λ‖Ga‖q
Bnq ∩a⊥ 6 Ee

−λ‖Gb‖q
Bnq ∩b⊥ . (34)

In [BGMN05], the authors used a different method to prove that for any q ∈ (0, 2) and λ > 0
the Gaussian parameters appearing in (34) are maximized when a = e1. As explained there, such
inequalities imply the comparison of various other parameters of sections and projections of Bn

q ,
most notably the volume (Corollary 18) and the mean width. Recall that for a symmetric convex
body K in Rn the support function hK : Sn−1 → R+ is defined as hK(θ) = maxx∈K〈x, θ〉 and the
mean width is

w(K) =

∫
Sn−1

hK(θ) dσ(θ),

where σ is the rotationally invariant probability measure on the unit sphere Sn−1. Exploiting the
duality between sections and projections we deduce the following corollary.

Corollary 20. Fix q ∈ (2,∞] and let H ⊆ Rn be a hyperplane. Then

w(ProjH1
Bn
q ) 6 w(ProjHB

n
q ) 6 w(ProjHnB

n
q ). (35)

The lower bound in (35) was first obtained in [BGMN05], where the authors also proved that
for any q ∈ (0, 2) and any hyperplane H ⊆ Rn

w(ProjHB
n
q ) 6 w(ProjH1

Bn
q ). (36)

Given this result and Corollary 20, what remains to be understood is which hyperplane projections
of Bn

q have minimal mean width for q ∈ (0, 2), similarly to the study of volume. We will provide
the proof of Theorem 19 and its consequences in Section 6.

2. Proof of Theorem 2 and examples

Here we establish some initial facts about Gaussian mixtures, prove the characterization pre-
sented in the introduction and use it to provide relevant examples.

Let X be a Gaussian mixture with the same distribution as Y Z, where Y is positive and Z
is an independent standard Gaussian random variable; denote by ν the law of Y . Clearly X is
symmetric. Furthermore, for a Borel set A ⊆ R we have

P(X ∈ A) = P(Y Z ∈ A) =

∫ ∞
0

P(yZ ∈ A) dν(y) =

∫
A

∫ ∞
0

1√
2πy

e
− x2

2y2 dν(y) dx, (37)

which immediately implies that X has a density

f(x) =
1√
2π

∫ ∞
0

e
− x2

2y2
dν(y)

y
. (38)

We now proceed with the proof of Theorem 2.

Proof of Theorem 2. Let X be a symmetric random variable with density f such that the function
x 7→ f(

√
x) is completely monotonic. By Bernstein’s theorem, there exists a non-negative Borel

measure µ supported on [0,∞) such that

f(
√
x) =

∫ ∞
0

e−tx dµ(t), for every x > 0 (39)
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or, equivalently, f(x) =
∫∞

0 e−tx
2

dµ(t) for every x ∈ R. Notice that µ({0}) = 0, because otherwise
f would not be integrable. Now, for a subset A ⊆ R we have

P(X ∈ A) =

∫
A

∫ ∞
0

e−tx
2

dµ(t) dx =

∫ ∞
0

∫
A
e−tx

2
dx dµ(t)

=

∫ ∞
0

∫
√

2tA

1√
2π
e−x

2/2 dx

√
π

t
dµ(t) =

∫ ∞
0

γn(
√

2tA) dν(t),

(40)

where dν(t) =
√

π
t dµ(t). In particular, choosing A = R, we deduce that ν is a probability measure,

supported on (0,∞). Let V be a random variable distributed according to ν; clearly V is positive
almost surely. Define Y = 1√

2V
and let Z be a standard Gaussian random variable, independent of

Y . Then (40) implies that

P(Y Z ∈ A) = P
(

1√
2V
· Z ∈ A

)
=

∫ ∞
0

γn(
√

2tA) dν(t) = P(X ∈ A),

that is, X has the same distribution as the product Y Z. The converse implication readily follows
from (38) and Bernstein’s theorem after a change of variables. �

Before applying Theorem 2 we first provide some examples of completely monotonic functions.
Direct differentiation shows that the functions e−αx, x−α and (1+x)−α, where α > 0, are completely

monotonic on (0,∞) and a straightforward induction proves that the same holds for e−x
β
, where

β ∈ (0, 1]. The same argument implies that if g is a completely monotonic function on (0,∞) and
h is positive and has a completely monotonic derivative on (0,∞), then g ◦ h is also completely
monotonic on (0,∞). Moreover, one can easily see that products of completely monotonic functions
themselves are completely monotonic.

Combining the last example with Theorem 2, we get that for every p ∈ (0, 2] the random

variable with density proportional to e−|t|
p

is a Gaussian mixture. Recall that we denote by µp
the probability measure with density cpe

−|t|p , p > 0, where cp = (2Γ(1 + 1/p))−1, and µnp = µ⊗np .
Furthermore, it is a classical fact that symmetric p-stable random variables, where p ∈ (0, 2], are
Gaussian mixtures. For these measures we can describe the positive factor in their Gaussian mixture
representation. Recall that a positive random variable W with Laplace transform Ee−tW = e−ct

α
,

where α ∈ (0, 1) and c > 0, is called a positive α-stable random variable. Standard positive α-stable
random variables correspond to c = 1; we denote their density by gα.

Lemma 21. Fix p ∈ (0, 2) and let Z be a standard Gaussian random variable.

(i) If Vp/2 has density proportional to t−1/2gp/2(t) and is independent of Z, then (2Vp/2)−1/2Z

has density cpe
−|t|p.

(ii) If Wp/2 is a standard positive p/2-stable random variable and is independent of Z, then

(2Wp/2)1/2Z is a standard symmetric p-stable random variable.

Proof. To show (i), we shall decompose a symmetric random variable with density cpe
−|x|p into a

product of two independent random variables: a positive one and a standard Gaussian. To this
end, denote by µ the measure in the representation (39) written for the density cpe

−|x|p , that is

cpe
−xp/2 =

∫ ∞
0

e−tx dµ(t), x > 0.

Therefore, the Laplace transform of c−1
p µ is e−x

p/2
, which implies that c−1

p µ is a standard positive
p/2-stable measure with density gp/2. Now, an inspection of the proof of Theorem 2, reveals that

the positive factor Y in the Gaussian mixture representation is Y = (2V )−1/2, where V has law√
π
t dµ(t), so in this case the density of V is indeed proportional to t−1/2gp/2(t), as required.
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On the other hand, (ii) is a straightforward characteristic function computation. Using the
independence of Wp/2 and Z we get

Eei
√

2tW
1/2
p/2

Z
= EWp/2

EZe
i
√

2tW
1/2
p/2

Z
= Ee−t

2Wp/2 = e−t
p
,

which concludes the proof of the lemma. �

Lemma 21 will be useful in Section 4. For instance, a direct computation shows that these
Gaussian mixture representations have the following explicit forms when p = 1.

(i) Let E be an exponential random variable (that is, a random variable with density e−t1t>0)

and Z a standard Gaussian random variable, independent of E . Then the product
√

2EZ has
density 1

2e
−|t|, t ∈ R (symmetric exponential density).

(ii) Let Z1, Z2 be independent standard Gaussian random variables. Then the quotient Z1/|Z2| is
distributed according to the Cauchy distribution with density 1

π(1+x2)
, which is the symmetric

1-stable distribution.

Remark 22. It was noted in [BN02, p. 8] that for an infinitely differentiable integrable function

f : (0,∞) → R, the function x 7→ f(
√
x) is completely monotonic if and only if x 7→ f̂(

√
x) is

completely monotonic, where f̂ is the Fourier transform of f . Applying this to the density cpe
−|t|p

and then using Theorem 2 yields that symmetric p-stable random variables are Gaussian mixtures,
as was also proven above.

3. Moment and entropy comparison

For the proofs of this section, we will use an elementary result of Marshall and Proschan from
[MP65] which reads as follows. Let φ : Rn → R be a convex function, symmetric under permutations
of its n arguments. Let X1, . . . , Xn be interchangeable random variables, that is, random variables
whose joint distribution is invariant under permutations of its coordinates. Then for two vectors
(a1, . . . , an), (b1, . . . , bn) ∈ Rn we have

(a1, . . . , an) � (b1, . . . , bn) =⇒ Eφ(a1X1, . . . , anXn) 6 Eφ(b1X1, . . . , bnXn) (41)

or, in other words, the function Rn 3 (a1, . . . , an) 7→ Eφ(a1X1, . . . , anXn) is Schur convex. If φ is
concave, then the second inequality in (41) is reversed, i.e. the function above is Schur concave.
This result follows directly from the fact that a convex (respectively concave) function that is
symmetric under permutations of its arguments is Schur convex (respectively concave), which, in
turn, is a consequence of the following simple property. If a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn
then

a � b ⇐⇒ a ∈ conv
{

(bσ(1), . . . , bσ(n)) : σ is a permutation of {1, . . . , n}
}
,

where conv(A) denotes the convex hull of a set A ⊆ Rn (for details, see [MO79]).
We start with the comparison of moments of Gaussian mixtures.

Proof of Theorem 3. Fix p > −1, p 6= 0. Let X be a Gaussian mixture and X1, . . . , Xn be
independent copies of X. Since each Xi is a Gaussian mixture, there exist i.i.d. positive random
variables Y1, . . . , Yn and independent standard Gaussian random variables Z1, . . . , Zn such that Xi

has the same distribution as the product YiZi. For a1, . . . , an ∈ R the joint independence of the
Yi, Zj implies that

E
∣∣∣ n∑
i=1

aiXi

∣∣∣p = E
∣∣∣ n∑
i=1

aiYiZi

∣∣∣p = E
∣∣∣( n∑

i=1

a2
iY

2
i

)1/2
Z
∣∣∣p = γpp · E

∣∣∣ n∑
i=1

a2
iY

2
i

∣∣∣p/2,
where Z is a standard Gaussian random variable independent of all the Yi and γp = (E|Z|p)1/p.

The conclusion now follows directly from Marshall and Proschan’s result (41) since t 7→ tp/2 is
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convex for p ∈ (−1, 0) ∪ [2,∞) and concave for p ∈ (0, 2). Notice that when the exponent 1/p is
negative, the resulting norm becomes Schur concave. The result for p = 0 is proven similarly. �

The derivation of sharp constants in the corresponding Khintchine inequalities is now straight-
forward.

Corollary 23. Let X be a Gaussian mixture and X1, . . . , Xn be independent copies of X. Then,
for every p ∈ (−1,∞) and a1, . . . , an in R we have

Ap

∥∥∥ n∑
i=1

aiXi

∥∥∥
2
6
∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6 Bp

∥∥∥ n∑
i=1

aiXi

∥∥∥
2
, (42)

where

Ap =

{‖X‖p
‖X‖2 , p ∈ (−1, 2)

γp, p ∈ [2,∞)
and Bp =

{
γp, p ∈ (−1, 2)
‖X‖p
‖X‖2 , p ∈ [2,∞)

, (43)

provided that all the moments exist. Here γp =
√

2

(
Γ( p+1

2 )√
π

)1/p

is the p-th moment of a standard

Gaussian random variable. These constants are sharp.

Proof. We can clearly assume that (a1, . . . , an) is a unit vector. We will prove the statement for
p > 2; the case p ∈ (−1, 2) is identical. The Schur convexity statement of Theorem 3 along with
(3) implies that ∥∥∥X1 + · · ·+Xn√

n

∥∥∥
p
6
∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6 ‖X1‖p. (44)

Applying this for a1 = · · · = an−1 = (n− 1)−1/2 and an = 0, where n > 2, shows that the quantity
on the left-hand side is decreasing in n and the central limit theorem implies that

γp‖X‖2 6
∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6 ‖X‖p,

which is equivalent to

γp

∥∥∥ n∑
i=1

aiXi

∥∥∥
2
6
∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6
‖X‖p
‖X‖2

∥∥∥ n∑
i=1

aiXi

∥∥∥
2
.

The sharpness of the constants is evident. �

For the proof of Corollary 4 we need to exploit two results about the geometry of Bn
q which are

probabilistic in nature. Let Y1, . . . , Yn be i.i.d. random variables distributed according to µq and
write Y = (Y1, . . . , Yn).

We denote by S the random variable
(∑n

i=1 |Yi|q
)1/q

. As explained in the introduction, the main
ingredient of the proof of Corollary 4 is a representation for the uniform measure on Bn

q discovered
in [BGMN05] that reads as follows. Let E be an exponential random variable (that is, the density
of E is e−t1t>0) independent of the Yi. Then the random vector( Y1

(Sq + E)1/q
, . . . ,

Yn

(Sq + E)1/q

)
is uniformly distributed on Bn

q . Furthermore, we will need a result of Schechtman and Zinn from
[SZ90], also independently proven by Rachev and Rüschendorf in [RR91], which asserts that the
random variables S and Y

S are independent.

Proof of Corollary 4. Recall that X = (X1, . . . , Xn) is a random vector uniformly distributed on
Bn
q and let Y1, . . . , Yn, S and E be as above. For the reader’s convenience we repeat the following

12



computation from [BGMN05]. Using the representation described before and the independence of
S and Y

S we get

E
∣∣∣ n∑
i=1

aiXi

∣∣∣p = E
∣∣∣ 1

(Sq + E)1/q

n∑
i=1

aiYi

∣∣∣p = E
∣∣∣ S

(Sq + E)1/q

∣∣∣pE∣∣∣ n∑
i=1

ai
Yi
S

∣∣∣p.
Then, again by independence, E

∣∣∑n
i=1 ai

Yi
S

∣∣pE|S|p = E
∣∣∑n

i=1 aiYi
∣∣p and thus

E
∣∣∣ n∑
i=1

aiXi

∣∣∣p =
1

E|S|p
E
∣∣∣ S

(Sq + E)1/q

∣∣∣pE∣∣∣ n∑
i=1

aiYi

∣∣∣p = c(p, q, n)E
∣∣∣ n∑
i=1

aiYi

∣∣∣p, (45)

where c(p, q, n) > 0 is independent of the vector (a1, . . . , an). In other words, the moments of linear
functionals applied to the vector X are proportional to the moments of the same linear functionals
applied to Y . In view of Theorem 3 and of the fact that Y1, . . . , Yn are i.i.d. Gaussian mixtures,
this property readily implies Corollary 4. �

Similarly to Corollary 23, it is straightforward to deduce the sharp constants for Khintchine
inequalities on Bn

q .

Corollary 24. Fix q ∈ (0, 2] and let X = (X1, . . . , Xn) be a random vector, uniformly distributed
on Bn

q . Then, for every p ∈ (−1,∞) and a1, . . . , an in R we have

Ap

∥∥∥ n∑
i=1

aiXi

∥∥∥
2
6
∥∥∥ n∑
i=1

aiXi

∥∥∥
p
6 Bp

∥∥∥ n∑
i=1

aiXi

∥∥∥
2
, (46)

where

Ap =

{‖X1‖p
‖X1‖2 , p ∈ (−1, 2)

γp, p ∈ [2,∞)
and Bp =

{
γp, p ∈ (−1, 2)
‖X1‖p
‖X1‖2 , p ∈ [2,∞)

(47)

and for r > −1

‖X1‖r = cq,n

(2

q

)1/r
B
(r + 1

q
,
n+ q − 1

q

)1/r
, (48)

for some cq,n > 0, independent of r, which does not affect the values of Ap, Bp. These constants
are sharp.

Proof. The derivation of (47) is identical to the one in the proof of Corollary 23. To deduce (48),

notice that X1 has density f(x) = cq,n(1− |x|q)
n−1
q 1|x|61 and thus for every r > 0

‖X1‖r = cq,n

(
2

∫ 1

0
xr(1− xq)

n−1
q dx

)1/r
= cq,n

(2

q

)1/r
B
(r + 1

q
,
n+ q − 1

q

)1/r
,

which completes the proof. �

We now turn to comparison of entropy.

Proof of Theorem 7. Let X be a Gaussian mixture and X1, . . . , Xn independent copies of X.
There exist i.i.d. positive random variables Y1, . . . , Yn and independent standard Gaussian random
variables Z1, . . . , Zn such that Xi has the same distribution as the product YiZi. For a vector
θ = (θ1, . . . , θn) ∈ Rn denote by Xθ the random variable

∑n
i=1 θiXi and by fθ the density of

Xθ. Since Xθ is itself a Gaussian mixture, Theorem 2 implies that the function x 7→ fθ(
√
x) is

completely monotonic. Consequently, there exists a measure µθ on [0,∞) so that

fθ(
√
x) =

∫ ∞
0

e−tx dµθ(t), for every x > 0.
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It now immediately follows from Hölder’s inequality that for x, y > 0 and λ ∈ (0, 1) we have

fθ(
√
λx+ (1− λ)y) =

∫ ∞
0

(e−tx)λ(e−ty)1−λ dµθ(t)

6
(∫ ∞

0
e−tx dµθ(t)

)λ(∫ ∞
0

e−ty dµθ(t)
)1−λ

= fθ(
√
x)λfθ(

√
y)1−λ

or, in other words, the function ϕθ(x) = − log fθ(
√
x) is concave.

Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn be such that (a2
1, . . . , a

2
n) � (b21, . . . , b

2
n). We first

consider the case of Shannon entropy, i.e. α = 1. Jensen’s inequality implies the following well
known variational formula

Ent(Xb) = E[− log fb(Xb)] = min
{
E[− log g(Xb)] : g : R→ R+ is a probability density

}
. (49)

Thus, using (49) for g = fa we get

Ent(Xb) 6 E[− log fa(Xb)] = E
[
− log fa

( n∑
i=1

biYiZi

)]
= E

[
− log fa

(( n∑
i=1

b2iY
2
i

)1/2
Z
)]

= EZEY ϕa
( n∑
i=1

b2iY
2
i Z

2
)
,

(50)

where in the last equality we used the fact that Z is independent of the Yi. Now, since (a2
1, . . . , a

2
n)

is majorized by (b21, . . . , b
2
n), the concavity of ϕa along with Marshall and Proschan’s result (41)

imply that

EY ϕa
( n∑
i=1

b2iY
2
i Z

2
)
6 EY ϕa

( n∑
i=1

a2
iY

2
i Z

2
)

which, after averaging over Z, gives

Ent(Xb) 6 Eϕa
( n∑
i=1

a2
iY

2
i Z

2
)

= E[− log fa(Xa)] = Ent(Xa).

For the Rényi entropy of order α, where α > 1, we need to prove that∫
R
fαa (x) dx 6

∫
R
fαb (x) dx. (51)

Notice that, as before, we can write∫
R
fαa (x) dx = Efα−1

a (Xa) = EZEY fα−1
a

(( n∑
i=1

a2
iY

2
i

)1/2
Z
)
. (52)

The concavity of ϕa implies that, since α > 1, the function x 7→ fα−1
a (

√
x) = e(1−α)ϕa(x) is convex

and thus from (41) we get

EY fα−1
a

(( n∑
i=1

a2
iY

2
i

)1/2
Z
)
6 EY fα−1

a

(( n∑
i=1

b2iY
2
i

)1/2
Z
)

which, after integrating with respect to Z, gives∫
R
fαa (x) dx 6 Efα−1

a

(( n∑
i=1

b2iY
2
i

)1/2
Z
)

= Efα−1
a (Xb) =

∫
R
fα−1
a (x)fb(x) dx. (53)

Finally, Hölder’s inequality yields∫
R
fα−1
a (x)fb(x) dx 6

(∫
R
fαa (x) dx

)α−1
α
(∫

R
fαb (x) dx

) 1
α
. (54)
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Combining (53) and (54) readily implies (51), i.e. the comparison hα(Xa) > hα(Xb). �

Remark 25. We note that a result of similar nature was proven in the work [Yu08] of Yu, who showed
that for every i.i.d. symmetric log-concave random variables X1, . . . , Xn the function (a1, . . . , an) 7→
Ent

(∑n
i=1 aiXi

)
is Schur convex on Rn. In particular, for every vector (a1, . . . , an) ∈ Rn such that∑n

i=1 |ai| = 1 we have

Ent
( 1

n

n∑
i=1

Xi

)
6 Ent

( n∑
i=1

aiXi

)
6 Ent(X1). (55)

The main actors in Yu’s argument are the same: the variational principle for entropy (49) and
Marshall and Proschan’s comparison result (41) (the log-concavity assumption is paired up with
the linear constraint on the coefficients).

Finally, we proceed with the proof of Proposition 9.

Proof of Proposition 9. Let X1, X2 be independent Gaussian mixtures such that Xi has the same
distribution as the product YiZi, for some independent positive random variables Y1, Y2 and inde-
pendent standard Gaussian random variables Z1, Z2. Let G be a centered Gaussian random variable
independent of X1 with the same variance as X2. Notice that X1 + X2 has the same distribution
as (Y 2

1 + Y 2
2 )1/2Z, whereas X1 + G has the same distribution as (Y 2

1 + EY 2
2 )1/2Z, where Z is a

standard Gaussian random variable independent of the Yi. Denote by f the density of X1 + X2

and by g the density of X1 +G. Using the variational formula for entropy (49) we get

Ent(X1 +X2) = E[− log f(X1 +X2)]

6 E[− log g(X1 +X2)] = E(Y1,Z)EY2 [− log g((Y 2
1 + Y 2

2 )1/2Z)].

Since X1 + G is also a Gaussian mixture, as remarked in the proof of Theorem 7, the function
x 7→ − log g(

√
x) is concave and thus

EY2 [− log g((Y 2
1 + Y 2

2 )1/2Z)] 6 − log g((Y 2
1 + EY 2

2 )1/2Z).

Combining the above we deduce that

Ent(X1 +X2) 6 E[− log g((Y 2
1 + EY 2

2 )1/2Z)] = E[− log g(X1 +G)] = Ent(X1 +G),

which concludes the proof. �

Remark 26. In light of Proposition 9, it could seem that the assumption that X1, X2 are identically
distributed in Question 10 is redundant. However, this is not the case. Let X1, X2 be independent
symmetric random variables such that X1 has a smooth density f : R→ R+ and let G be an inde-
pendent Gaussian random variable with the same variance as X2. A straightforward differentiation
shows that the inequality

Ent(X1 + εX2) 6 Ent(X1 + εG)

as ε→ 0+ is equivalent to the comparison of the fourth order Taylor coefficients of these expressions,
namely

EX4
2

∫
R
f (4)(x) log f(x) dx > EG4

∫
R
f (4)(x) log f(x) dx.

However, this inequality can easily be seen to be wrong, e.g. by taking X1 to have density function

f(x) = x2√
2π
e−x

2/2 and X2 to be uniformly distributed on a symmetric interval.
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4. The B-inequality

We start by establishing a straightforward representation for products of laws of Gaussian mix-
tures. Let X1, . . . , Xn be independent Gaussian mixtures (not necessarily identically distributed)
so that Xi has the same distribution as the product YiZi, where Y1, . . . , Yn are independent positive
random variables and Z1, . . . , Zn are independent standard Gaussian random variables. Denote by
νi the law of Yi, by µi the law of Xi and by ν, µ the product measures ν1×· · ·×νn and µ1×· · ·×µn
respectively. Then, for a Borel set A ⊆ Rn we have

µ(A) = P((X1, . . . , Xn) ∈ A) = P((Y1Z1, . . . , YnZn) ∈ A)

=

∫ ∞
0
· · ·
∫ ∞

0
P((y1Z1, . . . , ynZn) ∈ A) dν1(y1) · · · dνn(yn)

=

∫
(0,∞)n

γn(∆(y1, . . . , yn)−1A) dν(y1, . . . , yn),

(56)

where ∆(y1, . . . , yn) is the diagonal matrix with entries y1, . . . , yn. In other words, µ is an average
of centered Gaussian measures on Rn. We now proceed with the proof of the B-inequality for
Gaussian mixtures.

Proof of Theorem 12. Let X1, . . . , Xn be as in the statement of the theorem and denote by hi
the density of Yi. Clearly, the log-concavity of the random variable log Yi is equivalent to the
log-concavity of the function s 7→ hi(e

−s) on R. Let K ⊆ Rn be a symmetric convex set and
(t1, . . . , tn) ∈ Rn. Then, by (56) and the change of variables yi = e−si we have

µ(∆(et1 , . . . , etn)K) =

∫
(0,∞)n

γn(∆(y−1
1 et1 , . . . , y−1

n etn)K)h1(y1) · · ·hn(yn) dy

=

∫
Rn

γn(∆(es1+t1 , . . . , esn+tn)K)h1(e−s1) · · ·hn(e−sn)e−
∑n
i=1 si ds.

(57)

The B-inequality for Gaussian measure (Theorem 11) immediately implies that the function

Rn × Rn 3 (s, t) 7−→ γn(∆(es1+t1 , . . . , esn+tn)K)

is log-concave on Rn × Rn. Consequently, the integrand in (57) is a log-concave function of
(s, t) ∈ Rn × Rn as a product of log-concave functions. The result now follows from the Prékopa-
Leindler inequality (see, e.g., [AAGM15, Theorem 1.4.1]) which implies that marginals of log-
concave functions are log-concave (see also [GNT14, Theorem 3.15]). �

Remark 27. An inspection of the proof of Theorem 12 shows that the same argument also yields
the B-inequality for rotationally invariant measures of the form dµ(x) = f(‖x‖2) dx, where f is
proportional to the density of a Gaussian mixture that satisfies the assumption of Theorem 12.

Checking whether a particular Gaussian mixture X satisfies the assumption of Theorem 12
might be non-trivial, since one has to know the distribution of the positive factor Y occurring in
its representation. However, by Lemma 21, we know this factor for random variables with densities
proportional to e−|t|

p
and for symmetric p-stable random variables, where p ∈ (0, 2). This allows us

to determine the values of p ∈ (0, 2) for which the assumption is satisfied, for each of these random
variables.

To this end, denote, as before, by gα the density of a standard positive α-stable random variable,
α ∈ (0, 1). Recall that the positive factor in the representation of a standard symmetric p-stable

random variable is (2Wp/2)1/2, where Wp/2 is a standard positive p/2-stable random variable. Thus,

the assumption of Theorem 12 is equivalent to the log-concavity of the function s 7→ gp/2(e−s) on
R. On the other hand, the corresponding factor in the representation of the random variable
with density cpe

−|t|p is of the form (2Vp/2)−1/2 where Vp/2 has density proportional to t−1/2gp/2(t).
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Therefore, the corresponding assumption in this case is again equivalent to the log-concavity of
s 7→ gp/2(e−s) on R, since the remaining factor es/2 is log-affine. If X is a random variable with

density g : R → R+, the log-concavity of s 7→ g(e−s) is referred in the literature as multiplicative
strong unimodality of X. The multiplicative strong unimodality of positive α-stable distributions
has been studied by Simon in [Sim11], who proved that such a random variable has this property
if and only if α 6 1/2. Combining this with the above observations and Theorem 12 we deduce the
following.

Corollary 28. For every p ∈ (0, 1] the product measure on Rn with density proportional to e−‖x‖
p
p

and the symmetric p-stable product measure on Rn satisfy the B-inequality for every symmetric
convex set K ⊆ Rn.

We now turn to the proof of the small ball estimate for the symmetric exponential measure
(Corollary 13) described in the introduction. The argument is very similar to the one in [LO05].

Proof of Corollary 13. Let K ⊆ Rn be a symmetric convex set such that µn1 (K) 6 1/2 and we
denote by r = r(K) the inradius of K. For a set A ⊆ Rn and h > 0 we also denote by Ah the
h-enlargement of A, that is, Ah = A+hBn

2 . Notice that for s ∈ (0, 1) we have (sK)∩(Kc)(1−s)r = ∅,
where Kc is the complement of K, and thus

µn1 (sK) 6 1− µn1 ((Kc)(1−s)r). (58)

Now, choose u > 0 such that µn1 (K) = µ1((u,∞)) or, equivalently, µn1 (Kc) = µ1((−u,∞)). Bobkov
and Houdré proved in [BH97] that if A ⊆ Rn is a Borel set and x ∈ R is such that µn1 (A) =
µ1((x,∞)), then for every h > 0 we have

µn1 (Ah) > µ1

((
x− h

2
√

6
,∞
))
. (59)

Combining (58) and (59) we get

µn1 (sK) 6 1− µ1

((
− u− (1− s)r

2
√

6
,∞
))

= µ1

((
u+

(1− s)r
2
√

6
,∞
))

= e
s−1
2
√
6
r(K)

µn1 (K). (60)

For 0 < t 6 s 6 1 we can write s = t
log s
log t and the B-inequality for µn1 implies that

µn1 (tK)
log s
log t µn1 (K)

1− log s
log t 6 µn1 (sK),

or equivalently

µn1 (tK)

µn1 (K)
6

(
µn1 (sK)

µn1 (K)

) log t
log s

, (61)

which, in view of (60), gives the estimate

µn1 (tK) 6 e
s−1
2
√
6
· log t
log s

r(K)
µn1 (K) = t

r(K)

2
√
6
· s−1
log sµn1 (K).

Taking the limit s→ 1− we finally deduce that

µn1 (tK) 6 t
r(K)

2
√
6 µn1 (K),

for every t ∈ [0, 1], which concludes the proof. �

Remark 29. In [PV16a], Paouris and Valettas proved a different small ball probability estimate for
the symmetric exponential measure and any unconditional convex body K in terms of the global
parameter β(K) = Var‖W‖K/m(K)2, where W is distributed according to µn1 and m(K) is the
median of ‖ · ‖K with respect to µn1 . Their result is in the spirit of the work [KV07] of Klartag and
Vershynin. In the follow-up paper [PV16b], they showed that a similar estimate holds for every
unconditional log-concave measure and unconditional convex body K with a worse dependence on
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β(K). In the particular case of the symmetric exponential measure the unconditionality assumption
in the suboptimal estimate from [PV16b] can be omitted, because of Corollary 28.

We would like to remark that Theorem 12 combined with a result of Marsiglietti, [Mar16, Propo-
sition 3.1], immediately implies the following corollary.

Corollary 30. Let µ be as in Theorem 12. Then, for every symmetric convex set K ⊆ Rn the
function t 7→ µ(tK) is 1

n -concave for t > 0, that is

µ
(
(λt+ (1− λ)s)K

)1/n
> λµ(tK)1/n + (1− λ)µ(sK)1/n, (62)

for every t, s > 0 and λ ∈ (0, 1).

5. Correlation inequalities

To prove the correlation inequality for Gaussian mixtures (Theorem 15) we will use Royen’s
Gaussian correlation inequality (Theorem 14), along with a simple lemma for symmetric log-concave
measures. Recall that we write ∆(y) = ∆(y1, . . . , yn) for the diagonal n× n matrix with diagonal
y = (y1, . . . , yn).

Lemma 31. Let µ be a symmetric log-concave measure on Rn and K a symmetric convex set in
Rn. Then the function t 7→ µ

(
∆(t, 1, . . . , 1)K

)
is nondecreasing for t > 0.

Proof. It clearly suffices to consider the case when the support of µ is n-dimensional and K has
nonempty interior. We will prove that the function ψ(t) = logµ

(
∆(t, 1, . . . , 1)K

)
is nondecreasing

for t > 0. The log-concavity of the measure µ yields

µ(λ∆(t, 1, . . . , 1)K + (1− λ)∆(s, 1, . . . , 1)K) > µ(∆(t, 1, . . . , t)K)λµ(∆(s, 1, . . . , 1)K)1−λ,

for every t, s > 0 and λ ∈ (0, 1) or, in other words, ψ is a concave function on (0,∞). To verify
that ψ is nondecreasing, it is enough to prove that limt→∞ ψ(t) > −∞. Take δ > 0 such that
[−δ, δ]n ⊆ K. For every t > 0 we have

ψ(t) > logµ([−tδ, tδ]× [−δ, δ]n−1),

which, for t→∞, gives

lim
t→∞

ψ(t) > logµ(R× [−δ, δ]n−1) > −∞.

This concludes the proof of the lemma. �

Proof of Theorem 15. Let µ be a product of laws of Gaussian mixtures. According to (56) for every
Borel set A ⊆ Rn we have

µ(A) =

∫
(0,∞)n

γn(∆(y)−1A) dν1(y1) · · · dνn(yn),

for some probability measures ν1, . . . , νn on (0,∞). Let K,L ⊆ Rn be symmetric convex sets. The
Gaussian correlation inequality yields

µ(K ∩ L) =

∫
(0,∞)n

γn(∆(y)−1K ∩∆(y)−1L) dν1(y1) · · · dνn(yn)

>
∫

(0,∞)n
γn(∆(y)−1K)γn(∆(y)−1L) dν1(y1) · · · dνn(yn).

(63)
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Fix y1, . . . , yn−1 > 0. Lemma 31 implies that the functions yn 7→ γn(∆(y)−1K) and yn 7→
γn(∆(y)−1L) are nonincreasing on (0,∞). Consequently, combining (63) and Chebyshev’s inte-
gral inequality (see, e.g., [HLP88, p. 168]) for the probability measure νn, we get

µ(K ∩ L) >∫
(0,∞)n−1

(∫ ∞
0

γn(∆(y)−1K) dνn(yn)
)(∫ ∞

0
γn(∆(y)−1L) dνn(yn)

)
dν1(y1) · · · dνn−1(yn−1).

After iteratively applying Chebyshev’s inequality to ν1, . . . , νn−1 we finally deduce that

µ(K ∩ L) >
∫

(0,∞)n
γn(∆(y)−1K) dν1(y1) · · · dνn(yn) ·

∫
(0,∞)n

γn(∆(y)−1L) dν1(y1) · · · dνn(yn)

= µ(K)µ(L),

which is the correlation inequality (26). �

Remark 32. Similarly to the B-inequality, an inspection of the proof of Theorem 15 reveals that the
same argument also gives the correlation inequality for rotationally invariant probability measures
of the form dµ(x) = f(‖x‖2) dx, where f is proportional to the density of a Gaussian mixture.

Recall that a function f : Rn → R+ is called quasiconcave if for any t > 0 the set At = {x ∈ Rn :
f(x) > t} is convex. Writing

f(x) =

∫ ∞
0

1At(x) dt, x ∈ R,

one can immediately see that if a measure µ satisfies the correlation inequality (26) for any sym-
metric convex sets K,L ⊆ Rn then for every symmetric quasiconcave functions f, g : Rn → R+ we
have ∫

Rn
f(x)g(x) dµ(x) >

∫
Rn
f(x) dµ(x) ·

∫
Rn
g(x) dµ(x). (64)

Correlation inequalities of the form (64) were treated by Koldobsky and Montgomery-Smith in
[KMS96] for another class of functions when µ is a general symmetric stable measure on Rn.
Recall that the law µ of a random vector X in Rn is called a symmetric p-stable measure if every
marginal 〈X, a〉, a ∈ Rn, is a symmetric p-stable random variable. It is a well known fact (see, e.g.,
[Wer84, p. 312]) that symmetric p-stable random vectors X = (X1, . . . , Xn) in Rn are in one-to-one
correspondence with finite measures mX on the unit sphere Sn−1 such that

E exp
(
i

n∑
j=1

ajXj

)
= exp

(
−
∫
Sn−1

∣∣∣ n∑
j=1

ajxj

∣∣∣p dmX(x)
)
, (65)

for every a1, . . . , an ∈ R. We will argue that the correlation inequality (26) holds for the law µ
of any symmetric p-stable random vector X in Rn. Assume first that the corresponding measure
mX on Sn−1 has a finite support, namely supp(mX) = {y1, . . . , y`}, and let Y be a standard `-
dimensional symmetric p-stable random vector with independent coordinates. In this case, one can
find θ1, . . . , θn ∈ R` such that Xj has the same distribution as 〈Y, θj〉 or, in other words, X is a
linear image of Y and the correlation inequality (26) immediately follows. For a general measure
mX on Sn−1 there exists a sequence of finitely supported measures m` that converges to mX in the
weak* topology (e.g. by the Krein-Milman theorem) which means, by (65), that the corresponding
p-stable random vectors X` converge to X in distribution. Note that to prove the correlation
inequality (26) for a symmetric p-stable measure µ on Rn, it suffices to consider the case when
K,L ⊆ Rn are convex polytopes, which are sets whose boundaries are contained in a finite union of
affine hyperplanes. However, any affine hyperplane is of µ-measure zero, since the one-dimensional
marginals of µ are p-stable, thus continuous. Therefore, the convergence in distribution concludes
the proof of the following corollary.
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Corollary 33. Let µ be a symmetric p-stable measure on Rn. Then for every symmetric convex
sets K,L ⊆ Rn we have

µ(K ∩ L) > µ(K)µ(L).

This corollary implies inequalities of the form (64), analogous to the ones proven in [KMS96].

It also implies that the multivariate Cauchy distribution, defined as dµ(x) = cn(1 + ‖x‖22)−
n+1
2 dx,

satisfies the correlation inequality (26). Notice that this also follows from Remark 32. In [Mem15],
the author showed that this is actually equivalent to Corollary 16. We reproduce his argument
below.

Proof of Corollary 16. Consider the hyperplane Rn−1 ≡ Rn−1 × {0} ⊆ Rn and let S ⊆ Rn be the
sphere of radius 1 centered at en = (0, . . . , 0, 1). Denote by S+ the open lower hemisphere of S, i.e.
S+ = {x ∈ S : xn < 1}, and define a bijection q : S+ → Rn−1 by the formula

q(x) = the point of Rn−1 which lies on the line joining x to en. (66)

One can easily check that closed arcs of great circles on S+ are mapped to line segments on Rn−1

and vice versa, which immediately implies that geodesically convex sets in S+ are in one-to-one
correspondence with convex sets in Rn−1. Moreover, since q(0) = 0, symmetry in Rn−1 agrees with
geodesic symmetry in S+. Denoting by µ the push-forward under q of the normalized surface area
measure on S+, we get that for every r > 0, µ satisfies the identity

µ(rBn−1
2 ) =

|BSn−1(arctan r)|
|S+|

,

where BSn−1(θ) is a spherical cap of radius θ on Sn−1. A simple computation for the volume of
spherical caps along with the rotational invariance of µ shows that µ is precisely the law of the mul-
tivariate Cauchy distribution on the hyperplane Rn−1. Therefore, for two symmetric geodesically
convex sets K,L ⊆ S+, the multivariate Cauchy correlation inequality for the symmetric convex
sets q(K), q(L) ⊆ Rn−1 implies that

|K ∩ L|
|S+|

= µ(q(K ∩ L)) = µ(q(K) ∩ q(L)) > µ(q(K)) · µ(q(L)) =
|K|
|S+|

· |L|
|S+|

,

which completes the proof of the corollary. �

Remark 34. It is a straightforward consequence of Theorem 15 that the product probability measure
µnp with density cnpe

−‖x‖pp satisfies the correlation inequality (26) for every p ∈ (0, 2] and n > 1. It
turns out that this is the exact range of p > 0 for which this property holds. To see this, take δ > 0
and consider the symmetric strips

Kδ = {(x, y) ∈ R2 : |x− y| 6 δ} and Lδ = {(x, y) ∈ R2 : |x+ y| 6 δ}

on the plane. We will show that µ2
p(Kδ ∩ Lδ) < µ2

p(Kδ)µ
2
p(Lδ) for p > 2 and small enough δ > 0.

Indeed, a straightforward differentiation yields that the Taylor expansions of these two quantities
around δ = 0 are

µ2
p(Kδ ∩ Lδ) = 4c2

pδ
2 + o(δ3) and µ2

p(Kδ)µ
2
p(Lδ) = 4c2

p2
1− 2

p δ2 + o(δ3)

and since 1 < 2
1− 2

p for p > 2, the correlation inequality (26) cannot hold for small enough δ > 0.
A computation along the same lines together with Remark 32 prove that a similar behavior is
exhibited by the rotationally invariant probability measures with densities proportional to e−‖x‖

p
2 :

they satisfy (26) if and only if p ∈ (0, 2].
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6. Sections and projections of Bn
q revisited

In this section we derive the comparison results for geometric parameters of hyperplane sections
and projections of the balls Bn

q described in the introduction. First, let us explain how the compar-
ison of the aforementioned Gaussian parameters (Theorem 19) implies the comparison of volume
(Corollary 18) and mean width (Corollary 20), following [BGMN05].

Proof of Corollaries 18 and 20. Fix q ∈ (0, 2) and let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn be unit
vectors such that (a2

1, . . . , a
2
n) � (b21, . . . , b

2
n). Recall that Ga, Gb are standard Gaussian random

vectors on the hyperplanes a⊥ and b⊥ respectively. According to Theorem 19, for every λ > 0 we
have

Ee
−λ‖Ga‖q

Bnq ∩a⊥ 6 Ee
−λ‖Gb‖q

Bnq ∩b⊥ .

Integrating this inequality with respect to λ and any measure µ on (0,∞) we deduce that

E
∫ ∞

0
e
−λ‖Ga‖q

Bnq ∩a⊥ dµ(λ) 6 E
∫ ∞

0
e
−λ‖Gb‖q

Bnq ∩b⊥ dµ(λ),

which, by Bernstein’s theorem, is equivalent to the validity of the inequality

Eg(‖Ga‖qBnq ∩a⊥) 6 Eg(‖Gb‖qBnq ∩b⊥) (67)

for every completely monotonic function g : (0,∞) → R. In particular, choosing g(s) = s−α/q, we
get that

E‖Ga‖−αBnq ∩a⊥ 6 E‖Gb‖−αBnq ∩b⊥ ,

provided that 0 < α < n − 1 so that the integrals are finite. Integration in polar coordinates now
shows that for every 0 < α < n− 1 we have∫

S(a⊥)
‖θ‖−α

Bnq ∩a⊥
dσa(θ) 6

∫
S(b⊥)

‖θ‖−α
Bnq ∩b⊥

dσb(θ), (68)

where σa, σb are the rotationally invariant probability measures on the unit spheres S(a⊥), S(b⊥)
of the hyperplanes a⊥ and b⊥, respectively. Letting α→ n− 1 in (68) along with the identity∫

Sm−1

‖θ‖−mK dσ(θ) =
|K|
|Bm

2 |
, (69)

which holds for every symmetric convex body K in Rm, imply that |Bn
q ∩ a⊥| 6 |Bn

q ∩ b⊥| and
Corollary 18 follows.

Furthermore, applying (67) to g(s) = e−λs
β
, where β ∈ (0, 1] and λ > 0, we have

Ee
−λ‖Ga‖βq

Bnq ∩a⊥ 6 Ee
−λ‖Gb‖βq

Bnq ∩b⊥ .

Since both sides, as functions of λ > 0, are equal at λ = 0 we deduce that their derivatives at λ = 0
also satisfy the same inequality, that is

E‖Gb‖βqBnq ∩b⊥ 6 E‖Ga‖βqBnq ∩a⊥ ,

for every β ∈ (0, 1]. Choosing β = 1/q and integrating in polar coordinates yields∫
S(b⊥)

‖θ‖Bnq ∩b⊥ dσb(θ) 6
∫
S(a⊥)

‖θ‖Bnq ∩a⊥ dσa(θ). (70)

Recall that for a symmetric convex body K in Rm, the polar body Ko of K is defined to be
Ko = {x ∈ Rm : 〈x, y〉 6 1 for every y ∈ K} and if ‖ · ‖Ko is the norm associated with Ko
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then ‖θ‖Ko = hK(θ) for every θ ∈ Sn−1. Thus, combining (70) with the well known identity
Bn
q ∩H = (ProjH(Bn

q∗))
o, where q∗ > 2 is such that 1

q + 1
q∗ = 1, we deduce that

w(Projb⊥(Bn
q∗)) 6 w(Proja⊥(Bn

q∗)). (71)

In particular, for every hyperplane H ⊆ Rn we obtain

w(ProjH1
(Bn

q∗)) 6 w(ProjH(Bn
q∗)) 6 w(ProjHn(Bn

q∗)),

where H1 = (1, 0, . . . , 0)⊥ and Hn = (1, . . . , 1)⊥. This concludes the proof of Corollary 20. �

We finally proceed with the proof of Theorem 19.

Proof of Theorem 19. Fix q ∈ (0, 2). For a hyperplane H = a⊥, where a = (a1, . . . , an) ∈ Rn is a
unit vector, let Ga be a standard Gaussian random vector on a⊥ and denote by H(ε) the set

H(ε) = {x ∈ Rn : |〈x, a〉| < ε}. (72)

To proceed, we will need a representation from [BGMN05, Lemma 14] for the Laplace transforms
of ‖Ga‖qBnq ∩H that reads as follows. For every λ > 0 there exist constants α(q, λ), β(q, λ) > 0 and

c(q, λ, n) > 0 such that for every hyperplane H = a⊥, a = (a1, . . . , an) ∈ Sn−1, we have

Ee
−λ‖Ga‖qBnq ∩H = c(q, λ, n) lim

ε→0+

1

2ε
µnq,λ(H(ε)), (73)

where the probability measure µq,λ on R is of the form

dµq,λ(t) = e−α(q,λ)|t|q−β(q,λ)t2 dt (74)

and µnq,λ = µ⊗nq,λ. An immediate application of Theorem 2 yields that µq,λ is the law of a Gaussian

mixture. Thus, by (56) there exists a probability measure ν = ν(q, λ) on (0,∞) such that if A ⊆ Rn
is a Borel set, then

µnq,λ(A) =

∫
(0,∞)n

γn(∆(y)−1A) dνn(y),

where νn = ν⊗n. Notice that for the symmetric strip (72) we have

∆(y)−1H(ε) =
{
x ∈ Rn :

∣∣∣ n∑
j=1

ajyjxj

∣∣∣ < ε
}
,

that is, ∆(y)−1H(ε) is also a symmetric strip of width
(∑n

j=1 a
2
jy

2
j

)−1/2
ε. Consequently, the

rotational invariance of the Gaussian measure implies that

µnq,λ(H(ε)) = 2

∫
(0,∞)n

Ψ
(( n∑

j=1

a2
jy

2
j

)−1/2
ε
)

dνn(y), (75)

where Ψ(s) = 1√
2π

∫ s
0 e
−x2/2 dx. Combining (73) and (75) we deduce that

c(q, λ, n)−1 · Ee−λ‖Ga‖
q
Bnq ∩H = lim

ε→0+

1

ε

∫
(0,∞)n

Ψ
(( n∑

j=1

a2
jy

2
j

)−1/2
ε
)

dνn(y)

=

∫
(0,∞)n

d

dε

∣∣∣
ε=0

Ψ
(( n∑

j=1

a2
jy

2
j

)−1/2
ε
)

dνn(y)

=
1√
2π

∫
(0,∞)n

( n∑
j=1

a2
jy

2
j

)−1/2
dνn(y) =

1√
2π

E
( n∑
j=1

a2
jY

2
j

)−1/2
,
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where Y1, . . . , Yn are i.i.d. random variables distributed according to ν. To verify the assumptions
of the dominated convergence theorem for the swap of the limit and integration in the second

equality, it suffices to check that
(∑n

j=1 a
2
jy

2
j

)−1/2 ∈ L1(νn), since Ψ(s) 6 s√
2π

for s > 0. This

immediately follows by Fatou’s lemma, that is∫
(0,∞)n

( n∑
j=1

a2
jy

2
j

)−1/2
dνn(y) 6

√
2π lim inf

ε→0+

1

2ε
µnq,λ(H(ε)) =

√
2πc(q, λ, n)−1Ee

−λ‖Ga‖qBnq ∩H <∞.

Now, since t 7→ t−1/2 is a convex function on (0,∞) and Y1, . . . , Yn are i.i.d. random variables,
Marshall and Proschan’s result (41) implies the comparison (34), as required. �

We note that the crucial identity (75) can also be proven in purely probabilistic terms. Let
X1, . . . , Xn be i.i.d. random variables distributed according to µq,λ and take i.i.d. positive random
variables Y1, . . . , Yn and standard Gaussian random variables Z1, . . . , Zn such that Xi has the same
distribution as the product YiZi. Then we have

µnq,λ(H(ε)) = EY PZ
(∣∣∣ n∑

j=1

ajYjZj

∣∣∣ < ε
)

= EY PZ
(
|Z|
( n∑
j=1

a2
jY

2
j

)1/2
< ε
)

= EY PZ
(
|Z| <

( n∑
j=1

a2
jY

2
j

)−1/2
ε
)

= 2E
[
Ψ
(( n∑

j=1

a2
jY

2
j

)−1/2
ε
)]
,

where Z is a standard Gaussian random variable, independent of the Yi.

Remark 35. A similar approach also yields a direct proof of Corollary 18. The crucial ingredient
in this case would be an identity from [MP88] instead of (73). They proved that there exists a
constant c(q, n) > 0 such that if H ⊆ Rn is any hyperplane and H(ε) is defined by (72), then

|Bn
q ∩H| = c(q, n) lim

ε→0+

1

2ε
µnq (H(ε)), (76)

where µnq is the measure on Rn with density proportional to e−‖x‖
q
q . Since this measure is also a

product of laws of i.i.d. Gaussian mixtures the preceding argument works identically.
In [KZ03], Koldobsky and Zymonopoulou investigated extremal volumes of sections of the com-

plex `q-balls Bn
q (C), which can also be treated by the approach presented above. From now on

we will adopt the obvious identification of Cn with R2n without further ado. We will denote by
〈·, ·〉 the standard Hermitian inner product on Cn and for a vector ζ ∈ Cn we will write ζ⊥ for
the complex hyperplane orthogonal to ζ. Recall that for a vector z = (x1, y1, . . . , xn, yn) ∈ R2n we
denote

‖z‖`nq (C) =
( n∑
j=1

(x2
j + y2

j )
q/2
)1/q

=
( n∑
j=1

|zj |q
)1/q

,

where zj = xj + iyj , and Bn
q (C) = {z ∈ R2n : ‖z‖`nq (C) 6 1}. Let Hn = ξ⊥ be any complex

hyperplane such that |ξ1| = · · · = |ξn| and H1 = η⊥ be such that ηj = 0 for j > 2, where
ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ Cn. In [KZ03], the authors proved that for any q ∈ (0, 2) and
any complex hyperplane H ⊆ Cn the inequalities

|Bn
q (C) ∩Hn| 6 |Bn

q (C) ∩H| 6 |Bn
q (C) ∩H1| (77)

hold true. We will sketch an alternative proof of their result, similar to the proof of Theorem 19.
For a complex hyperplane H = ζ⊥, where ζ ∈ Cn, and ε > 0 denote by Hcyl(ε) the cylinder

Hcyl(ε) = {z ∈ Cn : |〈z, ζ〉| < ε}. (78)
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One can prove (see also [MP88, Corollary 2.5]) that there exists a constant c(q, n) > 0 such that
for every complex hyperplane H ⊆ Cn we have

|Bn
q (C) ∩H| = c(q, n) lim

ε→0

1

ε2
τnq (Hcyl(ε)), (79)

where the measure τnq on R2n is of the form

dτnq (x, y) = cnq e
−

∑n
j=1(x2j+y

2
j )q/2 dx dy.

Writing e−s
q/2

=
∫∞

0 e−ts dµ(t) for some measure µ, we deduce that the density of τnq can be written
in the form

e−
∑n
j=1(x2j+y

2
j )q/2 =

∫
(0,∞)n

e−
∑n
j=1 tj(x

2
j+y

2
j ) dµn(t),

where µn = µ⊗n. Therefore, an application of Fubini’s theorem and a change of variables imply
that there exists a measure ν on (0,∞) such that for νn = ν⊗n and for every Borel set A ⊆ R2n we
can write

τnq (A) =

∫
(0,∞)n

γ2n(∆(y1, y1, . . . , yn, yn)−1A) dνn(y), (80)

where each coordinate of y = (y1, . . . , yn) is repeated twice. Notice that the image

∆(y1, y1, . . . , yn, yn)−1Hcyl(ε) =
{
z ∈ Cn :

∣∣∣ n∑
j=1

ζjyjzj

∣∣∣ < ε
}

is still a cylinder in Cn with radius
(∑n

j=1 |ζj |2y2
j

)−1/2
ε. Thus, the unitary invariance of complex

Gaussian measure and a simple calculation in polar coordinates imply that

γ2n(∆(y1, y1, . . . , yn, yn)−1Hcyl(ε)) = 1− exp
(
− 1

2

( n∑
j=1

|ζj |2y2
j

)−1
ε2
)
. (81)

After interchanging limit and integration in (79) and using (80), (81) we deduce that

|Bn
q (C) ∩H| = c(q, n)

2
·
∫

(0,∞)n

( n∑
j=1

|ζj |2y2
j

)−1
dνn(y) =

c(q, n)

2
· E
( n∑
j=1

|ζj |2Y 2
j

)−1
,

where Y1, . . . , Yn are i.i.d. random variables distributed according to ν. This yields (77) as well as
a more general comparison result, similar to Corollary 18, by a direct application of Marshall and
Proschan’s result (41). �

We note that, in view of Ball’s theorem from [Bal86], a Schur monotonicity result for the volume
of sections of Bn

q cannot hold in any fixed dimension n > 2 and q large enough. Similarly, according
to Szarek’s result from [Sza76], the same can be said for the volume of projections of Bn

q for values
close to q = 1. Finally, we want to stress that a careful look in the previous works [BN02], [Kol98]
and [KZ03] reveals that, even though not stated explicitly, the Schur monotonicity for the volume
was established there as well. The new aspect here is the replacement of representations which were
Fourier-analytic in flavor by others that exploit the rotational invariance of the Gaussian measure.
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