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Abstract. We show that every symmetric random variable with log-concave
tails satisfies the convex infimum convolution inequality with an optimal cost

function (up to scaling). As a result, we obtain nearly optimal comparison

of weak and strong moments for symmetric random vectors with independent
coordinates with log-concave tails.

1. Introduction

Functional inequalities such as the Poincaré, log-Sobolev, or Marton-Talagrand
inequality to name a few, play a crucial role in studying concentration of measure,
an important cornerstone of the local theory of Banach spaces. In this paper we
focus on another example of such inequalities, the infimum convolution inequality,
introduced by Maurey in [11].

Let X be a random vector with values in Rn and let ϕ : Rn → [0,∞] be a mea-
surable function. We say that the pair (X,ϕ) satisfies the infimum convolution
inequality (ICI for short) if for every bounded measurable function f : Rn → R,

(1.1) E ef�ϕ(X) E e−f(X) ≤ 1,

where f�ϕ denotes the infimum convolution of f and ϕ defined as f�ϕ(x) =
inf{f(y) + ϕ(x− y) : y ∈ Rn} for x ∈ Rn. The function ϕ is called a cost function
and f is called a test function. We also say that the pair (X,ϕ) satisfies the convex
infimum convolution inequality if (1.1) holds for every convex function f : Rn → R
bounded from below.

Maurey showed that Gaussian and exponential random variables satisfy the ICI
with a quadratic and quadratic-linear cost function respectively. Thanks to the ten-
sorisation property of the ICI, he recovered the Gaussian concentration inequality
as well as the so-called Talagrand two-level concentration inequality for the expo-
nential product measure. Moreover, Maurey proved that bounded random variables
satisfy the convex ICI with a quadratic cost function (see also Lemma 3.2 in [14]
for an improvement).

Later on, Maurey’s idea was developed further by Lata la and Wojtaszczyk who
studied comprehensively the ICI in [10]. By testing with linear functions, they
observed that the optimal cost function is given by the Legendre transform of the
cumulant-generating function (here optimal means largest possible, up to a scaling
constant, because the larger the cost function is, the better (1.1) gets). They intro-
duced the notion of optimal infimum convolution inequalities, established them for
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log-concave product measures and uniform measures on `p-balls, and put forward
important, challenging and far-reaching conjectures (see also [6]).

The recent works [4] and [3] enable to view the ICI from a different perspective.
In [4] the authors introduce weak transport-entropy inequalities and establish their
dual formulations. The dual formulations are exactly the convex ICIs. In [3] the
authors investigate extensively the weak transport cost inequalities on the real line,
obtaining a characterisation for arbitrary cost functions which are convex and qua-
dratic near zero, thus providing a tool for studying the convex ICI. Around the same
time, the convex ICI for the quadratic-linear cost function was fully understood in
[2].

In this paper we go along Lata la and Wojtaszczyk’s line of research and study
the optimal convex ICI. Using the aforementioned novel tools from [3], we show
that product measures with symmetric marginals having log-concave tails satisfy
the optimal convex ICI, which complements Lata la and Wojtaszczyk’s result about
log-concave product measures. This has applications to concentration and moment
comparison of any norm of such vectors in the spirit of celebrated Paouris’ inequality
(see [13] and [1]) and addresses some questions posed lately in [7]. We also offer
an example showing that the assumption of log-concave tails cannot be weakened
substantially.

2. Main results

For a random vector X in Rn we define

Λ∗X(x) := LΛX(x) := sup
y∈Rn

{〈x, y〉 − lnE e〈y,X〉},

which is the Legendre transform of the cumulant-generating function

ΛX(x) := lnE e〈x,X〉, x ∈ Rn.
If X is symmetric and the pair (X,ϕ) satisfies the ICI, then ϕ(x) ≤ Λ∗X(x)

for every x ∈ Rn (see Remark 2.12 in [10]). In other words, Λ∗X is the optimal
cost function ϕ for which the ICI can hold. Since this conclusion is obtained by
testing (1.1) with linear functions, the same holds for the convex ICI. Following
[10] we shall say that X satisfies (convex) IC(β) if the pair (X,Λ∗X(·/β)) satisfies
the (convex) ICI.

We are ready to present our first main result.

Theorem 2.1. Let X be a symmetric random variable with log-concave tails, i.e.
such that the function

t 7→ N(t) := − lnP(|X| ≥ t), t ≥ 0,

is convex. Then there exists a universal constant β ≤ 1680e such that X satisfies
convex IC(β).

The (convex) ICI tensorises and, consequently, the property (convex) IC ten-
sorises: if independent random vectors Xi satisfy (convex) IC(βi), i = 1, . . . , n, then
the vector (X1, . . . , Xn) satisfies (convex) IC(maxβi) (see [11] and [10]). Therefore
we have the following corollary.

Corollary 2.2. Let X be a symmetric random vector with values in Rn and in-
dependent coordinates with log-concave tails. Then X satisfies convex IC(β) with
a universal constant β ≤ 1680e.

Note that the class of distributions from Theorem 2.1 is wider than the class of
symmetric log-concave product distributions considered by Lata la and Wojtaszczyk
in [10]. Among others, it contains measures which do not have a connected support,
e.g. a symmetric Bernoulli random variable.
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In order to comment on the relevance of the assumptions of Theorem 2.1 and
present applications to comparison of weak and strong moments, we need the fol-
lowing definition. Let X be a random vector with values in Rn. We say that the
moments of X grow α-regularly if for every p ≥ q ≥ 2 and every θ ∈ Sn−1 we have

‖〈X, θ〉‖p ≤ α
p

q
‖〈X, θ〉‖q,

where ‖Y ‖p := (E |Y |p)1/p is the p-th integral norm of a random variable Y . Clearly,
if the moments of X grow α-regularly, then α has to be at least 1 (unless X = 0
a.s.).

Remark 2.3. If X is a symmetric random variable with log-concave tails, then its
moments grow 1-regularly (this classical fact follows for instance from Proposition
5.5 from [5] and the proof of Proposition 3.8 from [10]).

The assumption of log-concave tails in Theorem 2.1 cannot be replaced by
a weaker one of α-regularity of moments: if X is a symmetric random variable
defined by

(2.1) P(|X| > t) = 1[0,2)(t) +
∞∑
k=1

e−2k

1[2k,2k+1)(t), t ≥ 0,

then the moments of X grow α-regularly (for some α < ∞), but there does not
exists C > 0 such that the pair (X,x 7→ max{(Cx)2, C|x|}) satisfies the convex
ICI. All the more, X cannot satisfy convex IC(β) with any β < ∞ (see Section 5
for details). Thus it seems that the assumptions of Theorem 2.1 are not far from
necessary conditions for the convex ICI to hold with an optimal cost function (ran-
dom variables with moments growing regularly are akin to random variables with
log-concave tails as the former can essentially be sandwiched between the latter,
see (4.6) in [9]).

Our second main result is an application of Theorem 2.1 to moment comparison.
Recall that for a random vector X its p-th weak moment associated with a norm
‖ · ‖ is the quantity defined as

σ‖·‖,X(p) := sup
‖t‖∗≤1

‖〈t,X〉‖p,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. The following version of [10, Proposition 3.15]
holds (some non-trivial modifications of the proof are necessary in order to deal
with the fact that the inequality (1.1) only holds for convex functions).

Theorem 2.4. Let X be a symmetric random vector with values in Rn which
moments grow α-regularly. Suppose moreover that X satisfies convex IC(β). Then
for every norm ‖ · ‖ on Rn and every p ≥ 2 we have(

E
∣∣‖X‖ − E‖X‖∣∣p)1/p

≤ Cαβσ‖·‖,X(p),

where C is a universal constant (one can take C = 4
√

2e < 16).

Immediately we obtain the following corollary in the spirit of the results from
[13, 1, 7, 8]. Similar inequalities for Rademacher sums with the emphasis on exact
values of constants have also been studied by Oleszkiewicz (see [12, Theorem 2.1]).

Corollary 2.5. Let X be a symmetric random vector with values in Rn and with
independent coordinates which have log-concave tails. Then for every norm ‖ · ‖ on
Rn and every p ≥ 2 we have

(2.2)
(
E ‖X‖p

)1/p ≤ E ‖X‖+Dσ‖·‖,X(p),

where D is a universal constant (one can take D = 6720
√

2e2 < 70223).
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Note that each of the terms on the right-hand side of (2.2) is, up to a constant,
dominated by the left-hand side of (2.2), so (2.2) yields the comparison of weak
and strong moments of the norms of X.

Note also that the constant standing at E ‖X‖ is equal to 1. If we only assume
that the coordinates of X are independent and their moments grow α-regularly,
then (2.2) does not always hold (the example here is a vector with independent
coordinates distributed like in (2.1); see Section 5 for details), although by [7,
Theorem 1.1] it holds if we allow the constant at E ‖X‖ to be greater than 1 and to
depend on α. Hence Corollary 2.5 and example (2.1) partially answer the following
question raised in [7]: “For which vectors does the comparison of weak and strong
moments hold with constant 1 at the first strong moment?”

The organization of the paper is the following. In Section 3 and 4 we present
the proofs of Theorem 2.1 and Proposition 2.4 respectively. In Section 5 we discuss
example (2.1) in details.

3. Proof of Theorem 2.1

Our approach is based on a characterization – provided by Gozlan, Roberto,
Samson, Shu, and Tetali in [3] – of measures on the real line which satisfy a weak
transport-entropy inequality. We emphasize that our optimal cost functions need
not be quadratic near the origin, therefore we cannot apply their characterization
as is, but have to first fine-tune the cost functions a bit. We shall also need the
following simple lemma.

Lemma 3.1. If X is a symmetric random variable and EX2 = β−2
1 , then

Λ∗X(x/β1) ≤ x2 for |x| ≤ 1.

Proof. Since X is symmetric, we have

E etX = 1 +

∞∑
k=1

‖X‖2k2kt2k

(2k)!
≥ 1 +

∞∑
k=1

‖X‖2k2 t2k

(2k)!
= 1 +

∞∑
k=1

β−2k
1 t2k

(2k)!
= cosh(β−1

1 |t|).

Moreover, L
(
ln cosh(·)

)
(|u|) ≤ |u|2 for |u| ≤ 1 (see for example the proof of [10,

Proposition 3.3]). Therefore

Λ∗X(x/β1) = L(ΛX(β1·))(x) ≤ L(ln cosh(·))(x) ≤ x2 for |x| ≤ 1. �

Throughout the proof g−1 stands for the generalized inverse of a function g
defined as

g−1(y) := inf{x : g(x) ≥ y}.

Proof of Theorem 2.1. Note that N(0) = 0 and the function N is non-decreasing.
First we tweak the assumptions and change the assertion to a more straightforward
one.

Step 1 (first reduction). We claim that it suffices to prove the assertion for
random variables for which the function N is strictly increasing on the set where
it is finite (or, in other words, N(t) = 0 only for t = 0). Indeed, suppose we
have done this and let now X be any random variable satisfying the assumptions
of the theorem. Let Xε be a symmetric random variable such that P(|Xε| ≥ t) =
exp(−Nε(t)), where Nε(t) = N(t)∨εt. If X and Xε are represented in the standard
way by the inverses of their CDFs on the probability space (0, 1), then |Xε| ≤ |X|
a.s. (and also Xε → X a.s. as ε → 0+). Hence ΛXε

≤ ΛX and therefore also
Λ∗Xε

≥ Λ∗X .
The theorem applied to the random variable Xε and the above inequality imply

that the pair (Xε,Λ
∗
X(·/β)) satisfies the convex ICI. Taking ε → 0+ we get the

assertion for X (in the second integral we just use the fact that the test function
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f is bounded from below and thus e−f is bounded from above; for the first in-
tegral it suffices to prove the convergence of integrals on any interval [−M,M ],
and on such an interval we have f�Λ∗X(x/β) ≤ f(x) + Λ∗X(0) = f(x), and thus
exp(max[−M,M ] f) is a good majorant).

Step 2 (second reduction). We claim that it suffices to prove the assertion for
random variables such that ΛX < ∞. Indeed, suppose we have done this and
let X be any random variable satisfying the assumptions of the theorem. Let
Nε(t) = N(t)∨ε2t2 and let Xε be a symmetric random variable such that P(|Xε| ≥
t) = exp(−Nε(t)). Then, similarly as in Step 1., ΛXε

≤ ΛY < ∞, where Y is
symmetric and P(|Y | ≥ t) = exp(−ε2t2). Thus we can apply the proposition to Xε

and we continue as in Step 1.
Step 3 (scaling). Due to the scaling properties of the Legendre transform, we

can assume that EX2 = β−2
1 , where β1 := 2e (the case where X ≡ 0 is trivial).

Note that then, by Markov’s inequality, e−N(1/2) = P(|X| ≥ 1
2 ) ≤ 4EX2 = e−2, so

(3.1) N(1/2) ≥ 2.

Step 4 (reformulation). For x ∈ R let

ϕ(x) :=
(
x21{|x|<1} + (2|x| − 1)1{|x|≥1}

)
∨ Λ∗X(x/(2β1)).

We claim that there exists a universal constant b̃ ≤ 1/420, such that the pair

(X,ϕ(b̃·)) satisfies the convex infimum convolution inequality. Of course the asser-
tion follows immediately from that.

Note that ϕ is convex, increasing on [0,∞) (because Λ∗X(·/(2β1)) is convex and
symmetric and thus non-decreasing on [0,∞)). Crucially, ϕ(x) = x2 for x ∈ [0, 1]
(by Lemma 3.1), so the cost function ϕ is quadratic near zero. Moreover, by Lemma
3.1, ϕ−1(3) = 2.

Let U = F−1 ◦ Fν , where F , Fν are the distribution functions of X and the
symmetric exponential measure ν on R, respectively. By [3, Theorem 1.1] we know
that if there exists b > 0 such that for every x, y ∈ R we have

(3.2)
∣∣U(x)− U(y)

∣∣ ≤ 1

b
ϕ−1

(
1 + |x− y|

)
,

then the pair (X,ϕ(̃b·)), where b̃ = b
210ϕ−1(2+12) = b

420 , satisfies the convex ICI. We

will show that (3.2) holds with b = 1.
Step 5 (further reformulation). Let a = inf{t > 0 : N(t) = ∞}. We have three

possibilities (recall that N is left-continuous):

• a = ∞. Then N is continuous, increasing, and transforms [0,∞] onto
[0,∞]. Also, F is increasing and therefore F−1 is the usual inverse of F .
• a < ∞ and N(a) < ∞. Then X has an atom at a. Moreover, N(a) =

limt→a− N(t).
• a <∞ and N(a) =∞ = limt→a− N(t).

Of course, in the first case one can extend N by putting N(a) = ∞, so that all
formulas below make sense.

Note that

F (t) =

{
1
2 exp(−N(|t|)) if t < 0,

1− 1
2 exp(−N+(t)) if t ≥ 0,

whereN+(t) denotes the right-sided limit ofN at t (which is different fromN(t) only
if t = a and X has an atom at a). Hence, F is continuous on the interval (−a, a),
the image of (−a, a) under F is the interval

(
1
2 exp(−N(a)), 1 − 1

2 exp(−N(a))
)
,

and we have F (−a) = 1
2 exp(−N(a)) and F (a) = 1. Since the image of R under

U is equal to the image of (0, 1) under F−1, we conclude that U(R) = (−a, a) if
N(a) =∞ and U(R) = [−a, a] if N(a) <∞. Denote A := U(R).
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When N(a) < ∞, it suffices to check condition (3.2) for x, y ∈ [−N(a), N(a)]
(otherwise one can change x, y and decrease the right-hand side while not changing
the value of the left-hand side of (3.2)). For x ∈ [−N(a), N(a)] we can write
U−1(x) = N(|x|) sgn(x) and U−1(x) ∈ R. When N(a) = ∞, U is a bijection (on
its image), so we can obviously write again U−1(x) = N(|x|) sgn(x) for any x ∈ R.

Therefore, in order to verify (3.2) we need to check that

(3.3) |x− y| ≤ ϕ−1
(
1 +

∣∣N(|x|) sgn(x)−N(|y|) sgn(y)
∣∣) for x, y ∈ A.

Since we consider the case when ΛX(t) is finite for every t ∈ R, the Chernoff
inequality applies, so for t ≥ EX = 0 we have

1

2
e−N(t) = P(X ≥ t) ≤ e−Λ∗

X(t),

so

(3.4) N(t) ≥ Λ∗X(t)− ln 2.

Note that ϕ(|x − y|) < ∞ for x, y ∈ A, since ϕ(|x − y|) = ∞ would imply
Λ∗X(|x − y|/(2β1)) = ∞, and hence Λ∗X(|x − y|/2) = ∞, and – by (3.4) – also
N(|x − y|/2) = ∞, but for x, y ∈ A we have |x − y|/2 ∈ [0, a) when N(a) = ∞
or |x − y|/2 ∈ [0, a] when N(a) < ∞ and in either case N(|x − y|/2) is finite.
Therefore for every x, y ∈ A we have ϕ(|x − y|) < ∞. Since ϕ−1(ϕ(z)) = z for z
such that ϕ(z) < ∞ (because ϕ is then continuous and increasing on [0, z]), the
condition (3.3) is implied by

(3.5) ϕ
(
|x− y|

)
≤ 1 +

∣∣N(|x|) sgnx−N(|y|) sgn y
∣∣ for x, y ∈ A.

In the next step we check that this is indeed satisfied.
Step 6 (checking the condition). Let x0 = inf{x ≥ 1 : 2x − 1 = Λ∗X( x

2β1
)} (if

x0 =∞ we simply do not have to consider Case 2 below). We consider three cases.
We repeatedly use the fact that uN(t) ≥ N(ut) for u ≤ 1, t ≥ 0, which follows by
the convexity of N and the property N(0) = 0.

Case 1. |x−y| ≤ 1. Then ϕ
(
|x−y|

)
= (x−y)2 ≤ 1, so (3.5) is trivially satisfied.

Case 2. |x − y| ≥ x0. Then ϕ
(
|x − y|

)
= Λ∗X( 1

2β1
|x − y|) ≤ Λ∗X(|x − y|/2).

Inequality (3.4) implies that in order to prove (3.5) it suffices to show that if x, y
are of the same sign, say x, y ≥ 0, then N

(
|x − y|/2) ≤ |N(x) − N(y)| and if x, y

have different signs, we have N
((
|x|+ |y|

)
/2
)
≤ N(|x|) +N(|y|).

By the convexity of N , for s, t ≥ 0 we have

N
(
(s+ t)/2

)
≤ 1

2
N(s) +

1

2
N(t) ≤ N(s) +N(t)

and

N(s/2) +N(t) ≤ N(s) +N(t) ≤ s

s+ t
N(s+ t) +

t

s+ t
N(s+ t) = N(s+ t).

This finishes the proof of (3.5) in Case 2.
Case 3. 1 ≤ |x − y| ≤ x0. Then ϕ

(
|x − y|

)
= 2|x − y| − 1. Consider two

sub-cases:

(i) x, y have different signs. Without loss of generality we may assume x ≥
|y| ≥ 0 ≥ y. Thus in order to obtain (3.5) it suffices to show that N(x) ≥
2x+ 2|y|. Note that 1 ≤ x+ |y| ≤ 2x, so x ≥ 1

2 . Thus

N(x) ≥ N(1/2)2x
(3.1)

≥ 4x ≥ 2x+ 2|y|,

which finishes the proof in case (i).
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(ii) x, y have the same sign. Without loss of generality we may assume x ≥ y ≥
0. Thus it suffices to show that 2(x− y) ≤ N(x)−N(y). Note that due to
the assumption of Case 3 we have x ≥ x− y ≥ 1 ≥ 1

2 , so by the convexity
of N we have

N(x)−N(y)

x− y
≥
N( 1

2 )−N(0)
1
2 − 0

(3.1)

≥ 4 ≥ 2

This ends the examination of case (ii) and the proof of the theorem. �

4. Comparison of weak and strong moments

The goal of this section is to establish the comparison of weak and strong mo-
ments with respect to any norm ‖ · ‖ for random vectors X with independent
coordinates having log-concave tails (Corollary 2.5). In view of Theorem 2.1 and
Remark 2.3, it is enough to show Theorem 2.4.

Our proof of Theorem 2.4 comprises three steps: first we exploit α-regularity of
moments of X to control the size of its cumulant-generating function ΛX , second
we bound the infimum convolution of the optimal cost function with the convex test
function being the norm ‖ · ‖ properly rescaled, and finally by the property convex
IC(β) we obtain exponential tail bounds which integrated out give the desired
moment inequality.

We start with two lemmas corresponding to the first two steps described above
and then we put everything together.

Lemma 4.1. Let p ≥ 2 and suppose that the moments of a random vector X in
Rn grow α-regularly. If for a vector u ∈ Rn we have ‖〈u,X〉‖p ≤ 1, then

ΛX((2eα)−1pu) ≤ p.

Proof. Let k0 be the smallest integer larger than p. If αe‖〈u,X〉‖p ≤ 1/2, then by
α-regularity we have

ΛX(pu) ≤ ln
(∑
k≥0

E |〈pu,X〉|k

k!

)
≤ ln

( ∑
0≤k≤p

pk
‖〈u,X〉‖kp

k!
+
∑
k>p

(αk)k
‖〈u,X〉‖kp

k!

)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+
∑
k>p

(
αe‖〈u,X〉‖p

)k)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+ 2(αe‖〈u,X〉‖p)k0
)

≤ ln
( ∑

0≤k≤p

pk‖〈u,X〉‖kp
k!

+
(2αep‖〈u,X〉‖p)k0

k0!

)
≤ ln

( ∑
0≤k≤k0

(2αep‖〈u,X〉‖p)k

k!

)
≤ 2αep‖〈u,X〉‖p ≤ p.

Replace u with (2eα)−1u to get the assertion. �

Lemma 4.2. Let ‖ · ‖ be a norm on Rn and let X be a random vector with values
in Rn and moments growing α-regularly. For β > 0, p ≥ 2, and x ∈ Rn we have(

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p,

where a = p(2eαβσ‖·‖,X(p))−1.
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Proof. For f(x) = a‖x‖ with positive a being arbitrary for now we bound the
infimum convolution as follows(

Λ∗X(·/β)�f
)
(x) = inf

y
sup
z

{
β−1〈y, z〉 − ΛX(z) + a‖x− y‖

}
= inf

y
sup
u

{
(2eαβ)−1p〈y, u〉 − ΛX((2eα)−1pu) + a‖x− y‖

}
≥ inf

y
sup

u:‖〈u,X〉‖p≤1

{
(2eαβ)−1p〈y, u〉 − p+ a‖x− y‖

}
,

where in the last inequality we have used Lemma 4.1. Choose u = σ‖·‖,X(p)−1v
with ‖v‖∗ ≤ 1 such that 〈y, v〉 = ‖y‖. Then clearly ‖〈u,X〉‖p ≤ 1 and thus

Λ∗X(·/β)�f(x) ≥ inf
y

{
(2eαβσ‖·‖,X(p))−1p‖y‖ − p+ a‖x− y‖

}
.

If we now set a = p(2eαβσ‖·‖,X(p))−1, then by the triangle inequality we obtain
the desired lower bound (

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p. �

Proof of Theorem 2.4. Let f(x) = a‖x‖ with a = p(2eαβσ‖·‖,X(p))−1 as in Lemma
4.2. Testing the property convex IC(β) with f and applying Lemma 4.2 yields

E ea‖X‖ E e−a‖X‖ ≤ ep.

By Jensen’s inequality we obtain that both E ea(‖X‖−E ‖X‖) and E ea(−‖X‖+E ‖X‖)

are bounded above by ep. Thus Markov’s inequality implies the tail bound

P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
≤ 2e−tep ≤ 2e−t/2, t ≥ 2p.

Consequently,

ap E
∣∣‖X‖ − E ‖X‖

∣∣p =

∫ ∞
0

ptp−1P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
dt

≤ (2p)p + 2

∫ ∞
0

ptp−1e−t/2dt = (2p)p + 2 · 2ppΓ(p)

≤ 2(2p)p.

Plugging in the value of a gives the result (we can take C = 4
√

2e < 16). �

5. An example

Let X be a symmetric random variable defined by P(|X| > t) = T (t), where

(5.1) T (t) := 1[0,2)(t) +

∞∑
k=1

e−2k

1[2k,2k+1)(t), t ≥ 0,

or, in other words, let |X| have the distribution

(1− e−2)δ2 +

∞∑
k=2

(
e−2k−1

− e−2k)
δ2k .

Let us first show that the moments of X grow 3-regularly, but X does not satisfy
IC(β) for any β <∞ (we also prove a slightly stronger statement later).

Let Y be a symmetric exponential random variable. Then Y has log-concave
tails, so the moments of Y grow 1-regularly (see Remark 2.3). Moreover, if X
and Y are constructed in the standard way by the inverses of their CDFs on the
probability space (0, 1), then

|Y | ≤ |X| ≤ 2|Y |+ 2.
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Therefore, for p ≥ q ≥ 2,

‖X‖p ≤ 2‖Y ‖p + 2 ≤ 2
p

q
‖Y ‖q + 2 ≤ 3

p

q
‖X‖q

(we used the fact that |X| ≥ 2 in the last inequality). Thus the moments of X
grow 3-regularly.

On the other hand, for every h > 0 there exists t > 0 such that

P(|X| ≥ t+ h) = P(|X| ≥ t).
Therefore by [2, Theorem 1] there does not exist a constant C such that the pair
(X,ϕ(·/C)), where ϕ(x) = 1

2x
21{|x|≤1} + (|x| − 1/2)1{|x|>1}, satisfies the convex

infimum convolution inequality. But, by symmetry and the 3-regularity of moments
of X,

ΛX(s) ≤ ln
(

1 +
∑
k≥1

s2k EX2k

(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3k)2k
(
EX2

)k
(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3e/2)2k
(
EX2

)k)
= ln

(
1 +

∑
k≥1

(
9e2s2 EX2/4

)k)
.

Thus for some A, ε > 0 we have ΛX(s) ≤ As2 for |s| ≤ ε and 2Aε2 ≥ 1. Hence

Λ∗X(t) ≥ sup
|s|≤ε
{st−As2} = 1

4A t
21{|t|≤2Aε} + (ε|t| −Aε2)1{|t|>2Aε}

= 2Aε2ϕ
(
t/(2Aε)

)
≥ ϕ

(
t/(2Aε)

)
.

We conclude that X cannot satisfy IC(β) for any β.

Remark 5.1. Let us also sketch an alternative approach. Take a, c > 0, b ∈ R, and
denote ϕ(x) = min{x2, |x|}, f(x) = fa,b(x) = a(x − b)+ for x ∈ R. One can check
that (

f�ϕ(c·)
)
(x) =


0 if x ≤ b,
c2(x− b)2 if b < x ≤ b+ 1/c,

c(x− b) if x > b+ 1/c,

if a > 2c. It is rather elementary but cumbersome to show that for any c > 0 there
exist a > 0 and b ∈ R such that (1.1) is violated by the test function f . We omit
the details.

In fact, the above example shows that even a slightly stronger statement is true:
for vectors with independent coordinates with α-regular growth of moments the
comparison of weak and strong moments of norms does not hold with the constant
1 at the first strong moment. More precisely, let X1, X2, . . . be independent random
variables with distribution given by (5.1). We claim that there does not exist any
K <∞ such that

(5.2)
(
Emax

i≤n
|Xi|p

)1/p ≤ Emax
i≤n
|Xi|+K sup

‖t‖1≤1

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

holds for every p ≥ 2 and n ∈ N (note that we chose the `∞-norm as our norm).
We shall estimate the three expressions appearing in (5.2).

We have

(5.3) sup
‖t‖1≤1

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

≤ sup
‖t‖1≤1

n∑
i=1

|ti|‖Xi‖p = ‖X1‖p

(this inequality is in fact an equality). Since the moments of X1 grow 3-regularly,

the last term in (5.2) is bounded by K̃p for some K̃ <∞.
To estimate the remaining two terms we need the following standard fact.
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Lemma 5.2. For independent events A1, . . . , An,

(1− e−1)
(

1 ∧
n∑
i=1

P(Ai)
)
≤ P

( n⋃
i=1

Ai

)
≤ 1 ∧

n∑
i=1

P(Ai).

In particular, for i.i.d. non-negative random variables Y1, . . . , Yn,

(1− e−1)

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt ≤ Emax

i≤n
Yi ≤

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt.

Proof. The upper bound is just the union bound. The lower bound follows from de
Morgan’s laws combined with independence and the inequalities 1 − x ≤ e−x and
1− e−y ≥ (1− e−1)y for x ∈ R, y ∈ [0, 1]. �

Fix m ≥ 2 and let e2m−1 ≤ n < e2m

. Then

1 ∧ nT (t) =

{
1 if 0 < t < 2m,

nT (t) if t ≥ 2m.

By the above lemma,

Emax
i≤n
|Xi| ≤

∫ 2m

0

dt+ n

∫ ∞
2m

T (t)dt = 2m + n

∞∑
j=m

e−2j

(2j+1 − 2j)

= 2m + n

∞∑
j=m

e−2j

2j ≤ 2m + ne−2m

2m
∞∑
j=0

(2e−2m

)j = 2m +
ne−2m

2m

1− 2e−2m .

Set θ = θ(m,n) = ne−2m ∈ [e−2m−1

, 1). Then

(5.4) Emax
i≤n
|Xi| ≤ 2m

(
1 +

θ

1− 2e−2m

)
.

Similarly,

Emax
i≤n
|Xi|p ≥ (1− e−1)

∫ ∞
0

1 ∧ T (t1/p)dt

= (1− e−1)
[ ∫ 2mp

0

dt+ n

∫ ∞
2mp

T (t1/p)dt
]

= (1− e−1)
[
2mp + n

∞∑
j=m

e−2j(
2(j+1)p − 2jp

)]
.

Hence

(5.5) Emax
i≤n
|Xi|p > (1− e−1)ne−2m(

2(m+1)p − 2mp
)

= (1− e−1)θ2mp(2p − 1).

Putting (5.3), (5.4), and (5.5) together, we see that (5.2) would imply

(1− e−1)1/pθ1/p2m(2p − 1)1/p ≤ 2m
(

1 +
θ

1− 2e−2m

)
+ K̃p

for every p ≥ 2, m ≥ 2, and θ ∈ [e−2m−1

, 1) of the form ne−2m

, n ∈ N. Take
p = 1/θ and θ ∼ 1/m to get

(1− e−1)θθθ(21/θ − 1)θ ≤ 1 +
θ

1− 2e−2m +
K̃

2mθ
.

Since θ → 0 and 2mθ → ∞ as m → ∞ this inequality yields 2 ≤ 1, which is
a contradiction. Hence inequality (5.2) cannot hold for all p ≥ 2 and n ∈ N.
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