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Abstract

Our goal is to write an extended version of the notes of a course given by Olivier
Guédon at the Polish Academy of Sciences from April 11-15, 2011. The course is
devoted to the study of concentration inequalities in the geometry of convex bod-
ies, going from the proof of Dvoretzky’s theorem due to Milman [75] until the
presentation of a theorem due to Paouris [78] telling that most of the mass of an
isotropic convex body is ”contained” in a multiple of the Fuclidean ball of radius
the square root of the ambient dimension. The purpose is to cover most of the
mathematical stuff needed to understand the proofs of these results. On the way,
we meet different topics of functional analysis, convex geometry and probability in
Banach spaces. We start with harmonic analysis, the Brascamp-Lieb inequalities
and its geometric consequences. We go through some functional inequalities like
the functional Prékopa-Leindler inequality and the well-known Brunn-Minkowski
inequality. Other type of functional inequalities have nice geometric consequences,
like the Busemann Theorem, and we will present some of them. We continue with
the Gaussian concentration inequalities and the classical proof of Dvoretzky’s the-
orem. The study of the reverse Holder inequalities (also called reverse Lyapunov’s
inequalities) is very developed in the context of log-concave or v-concave functions.
Finally, we present a complete proof of the result of Paouris [78]. We will need
most of the tools introduced during the previous lectures. The Dvoretzky theorem,
the notion of Z, bodies and the reverse Holder inequalities are the fundamentals of
this proof. There are classical books or surveys about these subjects and we refer
to [8, 9, 13, 48, 49, 55, 30, 80, 27] for further readings. The notes are accessible
to people with classical knowledge about integration, functional and/or harmonic
analysis and probability.
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1 Introduction

In harmonic analysis, Young’s inequalities tell that for a locally compact group G
equipped with its Haar measure, if 1/p+1/¢ =1+ 1/s then

V€ Ly(G),g € Ly(G), I xglls < fllllgll-

The constant 1 is optimal for compact groups such that constant functions belong to
each L,(G). However, it is not optimal for example in the real case. During the seven-
ties, Beckner [14] and Brascamp-Lieb [26] proved that the extremal functions in Young’s
inequality are among Gaussian densities. We discuss the geometric version of these in-
equalities introduced by Ball [7]. The problem of computing the value of the integrals
for the maximizers disappears when we write these inequalities in a geometric context.
The proof can be done via the transport argument that we will present. The geomet-
ric applications of this result are that the cube, among symmetric convex bodies, has
several extremal properties. Indeed, Ball [7] proved a reverse isoperimetric inequality,
namely that for every centrally symmetric convex body K in R", there exists a linear
transformation K of K such that

Vol K = Vol B%, and Vol 9K < Vol B~

Moreover, in the case of random Gaussian averages, Schechtman and Schmuckenschlager
[86] proved that for every centrally symmetric convex body K in R™ which is in the
so-called John position, E|[(g1,...,9:)|k = El(g1,...,9n)|ec Where g1,...,¢, are inde-
pendent Gaussian standard random variables.

Another powerful inequality in convex geometry is the Prékopa-Leindler inequality
[82]. This is a functional version of the Brunn-Minkowski inequality which tells that for
any non-empty compact sets A, B C R"

vol(A + B)Y™ > vol(A)Y™ + vol(B)/".

We prove the Prékopa-Leindler inequality and we discuss a modified version of this
inequality introduced by Ball [6], see also [24]. Ball [6] used it to create a bridge between
probability and convex geometry, namely that one can associate a convex body with any
log-concave measure.

1.1 Theorem. Suppose f : R" — R, € Li(R™) is an even log-concave function and

p>—1. Then
o) —1/p+1
2] = (/ Tpf(’I“I)dT) , x#0
0
0

, =0

defines a norm on R™.



The result is seen as a generalisation of Busemann theorem [29]. Some properties of
these bodies will be studied in Section 6.

Dvoretzky’s Theorem tells that ¢ is finitely representable in any infinite dimensional
Banach space. Its quantified version due to Milman [80] is one of the fundamental result
of the local theory of Banach spaces.

1.2 Theorem. Let K be a symmetric convex body such that K C BY. Define

M*(K) = / hic (0)do(0).
Sn—1
Then for all € > 0 there exists a vector subspace E of dimension
k= k"(K) = [en(M*(K))?*/log(1/e)

such that
(1—e)M*(K)Pp By C P K C (14¢)M*(K)Pg Bj.

Instead of using the concentration of measure on the unit Euclidean sphere, this can be
proved via the use of Gaussian operators. We will present some classical concentration
inequalities of a norm of a Gaussian vector following the ideas of Maurey and Pisier
[80]. The argument of the proof of Dvoretzky’s theorem is now standard and is done
in three steps: a concentration inequality for an individual vector of the unit sphere, a
net argument and discretisation of the sphere, a union bound and optimisation of the
parameters.

The subject of the inverse Holder inequalities is very wide. In the context of log-
concave or s-concave measures, major tools were developed by Borell [21, 20]. In partic-
ular, he proved that for every log-concave function f : [0,00) — R, the function

1 <

is log-concave on (—1,4+00). For p > 1, the Z,-body associated with a log-concave
density f is defined by it support function

ha6) = ([ 007, e v

where (x, 0) , is the positive part of (z, ). We present some basic properties of these bod-
ies. It will be of particular interest to understand the behaviour of the bodies Z,(mg(f))
where 7 (f) is the marginal density of f on a k-dimensional subspace E. The inverse
Holder inequalities give some information and we will try to explain how it reflects geo-
metric properties of the density f.

The goal of the last Section is to present a probabilistic version of Paouris theorem
[78] that appeared in [2].



1.3 Theorem. There exists a constant C' such that for any random vector X distributed
according to a log-concave probability measure on R™, we have

(EIX[5)'" < C(E|X]2 + 0,(X))

for all p > 1, where 0,(X) = suppegn—1 E(X,0)} is the weak p-th moment associated
with X .
Moreover, if X is such that for any 0 € S" ', E(X,60)*> = 1, then for any t > 1,

P(|X]z > ctyv/n) < exp(—tv/n),

where ¢ s a universal constant.

Most of the tools presented in the first lectures are needed to make this proof : Dvoret-
zky’s theorem, Z,-bodies, the inverse Holder inequalities. The sketch of the proof is the
following. Let G ~ N (0,1d) be a standard Gaussian random vector in R™. Observe that
for any random vector X distributed with a log-concave density f,

(EIX]5)? = () (ExEc(X,G)%)"?
= () (Bahz, (i (G,

where for a standard Gaussian random variable g ~ N(0,1), 75 = (E¢%)"?. By a
Gaussian concentration inequality, we see that for any 1 < p < ck*(Z,(f)),

(Ehz, 5 (G))" % Ehzy)(G) = M*(Z,(f))EIG]:,

where k*(Z,(f)) is the Dvoretzky dimension of the convex Z,(f). Looking at the con-
clusion of Dvoretzky’s theorem, we also observe that M*(Z,(f)) is the £-th power of
the volume of most of the k-dimensional projection of Z,(f) where k < k*(Z,(f)). It
remains to study the volume of these projections. For any k£ dimensional subspace F,
let mg f denote the marginal of the density f on FE, that is

Ve € E, mpf(r) = f(x +y)dy.

EJ_

By the Prékopa-Leindler inequality, 7g f is still log-concave on E. We can prove that for
any p > 1 and any k-dimensional subspace F

Pe(Z,(f)) = Zp(tef) = Zp(Kiip(TEf)),

where Ky ,(mgf) is the convex body whose norm is

1
o0 ~ 5
lelltion = (4 0) [ - tmppteajar)
0
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In a log-concave setting, we will see that for p > k, Z,(Ky1,(mgf)) is "approximately”
Kiip(mgf) so that the %—th power of the volume of Pg(Z,(f)) is approximately the %-th
power of the volume of Kjy,(mgf). The reverse Holder inequalities will give several
properties that will lead to the conclusion.

Besides the standard notation, we adopt throughout the notes the common convention
that universal constants sometimes change from line to line.

Acknowledgements. We are grateful to the Institute of Mathematics Polish Academy
of Sciences (IMPAN) for its hospitality when the lectures were given and to Rafal Latala
for his editorial work. We would like also to thank an anonymous referee who read care-
fully the preliminary version of these notes and proposed several improvements of the
presentation.



2 Brascamp-Lieb inequalities in a geometric context

2.1 Motivation and formulation of the inequality

Let G be a locally compact group with Haar measure u. Let p,q,s > 1 be such that
I/p+1/g=1+1/s,let f € L,(G,pu) and g € L,(G, ). Then we have the following
Young’s inequality

1f*glls < 11f1l, llgll, (2.1)

where

(f *g)(x /fxy Na(y) du(y).

The constant 1 in (2.1) is optimal when constant functions belong to L,(G), p > 1, but
it is not optimal when G = R and p is the Lebesgue measure. In the seventies, Beckner
and independently Brascamp and Lieb proved that in R the "equality case” is achieved
for sequences of functions f, and g, with Gaussian densities, i.e. functions of the form

ha(z) = \/a/me™ "
Note that if 1/r +1/s =1 then
£ <al.= s [ [ o=t dyao

heL-(R)
[[R]l, <1

andwehavefEL(R) g € Ly(R), h € Ly(R) with 7 + -+ o = -+ 1+ =2 Let
v1 = (1,—1), v = (0,1) and v3 = (1,0). Then

[ [ 7= natne) dy e = [ FX0)a((X. (X)) X

This is a type of expression studied by Brascamp and Lieb. Namely, they prove

2.1 Theorem. Let n,m > 1 and let p1,...,pm > 0 be such that Y " 1p =n. If
U1y .o U € R and f1,..., frn : R — Ry then
me [T, fil{vi,x)) da
[LZ 11,

1s "maximized” when fi,..., fin are Gaussian densities. However, the supremum may
not be attained in the sense that one has to consider Gaussian densities f, with a — 0.

In this context, it remains to compute the constants for the extremal Gaussian densi-
ties which is not so easy. In a geometric setting we have a version of the Brascamp-Lieb
inequality due to Ball [7].



2.2 Theorem. Let n,m > 1 and let uy,...,um € S™1, c1,...,¢c;m > 0 be such that
Id = Z;”Zl cjuj @u;. If fi,..., fm : R = R4 are integrable functions then

[Tt ar<T1( [ 5)" 22

2.3 Remark. The condition

Id = Z CjUj ® Uj (23)
j=1
means that .
Ve eR", x= ch (@, u;) u;
j=1
and is equivalent to
Vo € R™, |zf5= ch (z,u;)”.
j=1

We can easily construct examples of vectors satisfying condition (2.3). Let H be an n-
dimensional subspace of R™. Let eq, ..., e,, be the standard orthonormal basis in R™ and
let P:R™ — H be the orthogonal projection onto H. Clearly, Idgm = Z] 16 ®ej and
x =" (x,¢;) ej, hence Pr = Z] (@, e;) Pe;. If x € H then Px = z and (x,e;) =
(Px,ej) = (x, Pej), therefore x = 377" | (z, Pej) Pej. Thus Idyre = 370, cju; @ uy,
where ¢; = |Pe;|* and u; = Pe;/|Pe;|.

7=1

2.4 Remark. Let f;(t) = e % for 1 < j < m. If (2.3) is satisfied then

(fi({z,u)))? = exp( Zac] T, uj) ) = exp(—alz[3).

m

j=1

/ 1:_11 (fi({x, uj)) /n exp(—alz|3) dz = (/Rexp(—atz) dt)n
ﬁ(/Rexp )dt)cj:ﬁ(/ﬂ{fj>cj7

7=1 7=1

Thus,

since we have
m m m
1) =) etr(y; ©uy) =) glyli=) e
j=1 j=1 j=1

Therefore we have equality in (2.2) when f;’s are identical Gaussian densities.



2.2 The proof

We start the proof of Theorem 2.2 with a simple lemma.

2.5 Lemma. Suppose ui,...,uy, € S* ! and c1,...,cn are positive numbers. Assume
that 1d = 37", cju; @ uj. Then
(1) If v =377, c;05u; for some numbers 01, ..., 0, then |xf5 < 377, c;60%.

(2) For all T € L(R™) we have

|det T| < [ [Tl

J=1

(a generalisation of Hadamard’s inequality).

(3) For all ay,...,a, >0 we have
det (Z cjouj @ uj> > H a;j.
j=1 j=1
Moreover, if a1 = ... = ,, then equality holds.

Proof. (1) Using the Cauchy-Schwarz inequality we obtain

jzf5 = (z,7) = <Z Cﬂj“j,$> =

J=1

m
¢t (uj, x)
=1

< (Zcﬂ?) <ch (uj,x>2) _ (Zcﬁ?) |z|o.
=1 j=1 =1

(2) We can assume that 7" is symmetric and positive definite. Indeed, since T*T is
symmetric, for any 7' € GL,(R) we have the decomposition T*T = U*DU, where U is
orthogonal and D is diagonal. Let S = U *D3U. Clearly, S? = T*T and S is symmetric
and positive definite. Suppose we can show (2) for S. Then we have

|det S| = Videt D = Vdet T*T = | det T|

and
Tujl3 = (Tuy, Tuy) = (uy, TTu;) = (uy, S*uy) = (Suy, Sug) = |Suyl;.
Thus (2) is also true for 7'



Assume that T is symmetric and positive definite. Then there exist Ay,..., A, > 0
and an orthonormal basis vy, ..., v, of R" such that

T = i )\l"UZ' X v;.
=1

Clearly, Tu; = Y"1 | i (uj, v;) v; and therefore
Tusl3 = N (uj,01)°
i=1

Since |ujl; = 1, we have 327, (u;,v;)> = 1. Let A2 = ¢; > 0 and p; = (u;,v;)°. Then
>, pi =1 and therefore by the AM-GM inequality, we get

n

> = [Tt

i=1

which means that .
rugy > T
i=1
We obtain

- z ™ eil(ug,vi)|? L
[Lirus > [[2F " ~ [ n = a7,
j=1 i=1 i=1

as Z}L cil (g, vi) [P = |uils = 1.

(3) We prove that for all symmetric positive definite matrices we have

tr T'ST*
(det S)™ = min (tr TST) (2.4)
T:detT=1 n
If A,..., A\, > 0 are the eigenvalues of the symmetric and positive definite matrix 7°ST*

then y
(“ T5T") Z A > (H A) — (det(TST)NV"™ = (det 5)"/"

To find the equality case in (2.4) take the orthogonal matrix U such that S = U*DU,
where D is diagonal. Let

D\
"~ (fws) 0o

10



Clearly, det T'= 1. We also have

* * 2
(tr TST™) _ (tr DLUSU*Dy) _ (tr DiD) _ (detS)l/n.

n n n

Let S =37, cjaju; @ uj. Following our last observation we can find a matrix 7" with
det T = 1 such that (det S)/" = @ Note that

T(uj @ uj)T* = Tuju;T* = Tuj(Tu;)* = (Tuj) @ (Tuy).

Therefore
m 1/n 1 m
(det (Z ciou; @ Uj> ) = ﬁtr (Z cijo;Tu; @ Tuj>
7j=1 7j=1
“ > i Tuld > [T (o1 Tw3) ™ = o
j=1 j=1 j=1
The second inequality follows from point (2) of our lemma. ]

Besides the lemma, we need the notion of mass transportation. Let us now briefly
introduce it.

2.6 Definition. Let u be a finite Borel measure on R? and let T : R — RY be measurable.
The pushforward of u by T is a measure T, on R? defined by

T,(4) = p(T(4)), A€ BRY.
If v =T, then we say that T' transports p onto v.
Note that if v = T}, then for all bounded Borel functions 5 : R? — R we have
[ ) vty = [ n(r(a) duto)
Rd Rd

If p and v are absolutely continuous with respect to the Lebesgue measure, i.e. du(x) =
f(z)dz and dv(y) = g(y)dy then

[ e dy = [ wr@)s@ do

R4

Assuming 7' is C' on R?, we obtain by changing the variable in the first integral

/R h(y)g(y) dy = / W(T(2))g(T ()| det dT(2)] de,

Ra

11



where d7" is the differential of 7". Therefore p almost everywhere we have

9(T(x))| det dT'(x)| = f(x).

This is the so called transport equation (or a Monge-Ampere equation). Assume that
i and v are probabilistic measures absolutely continuous with respect to the Lebesgue
measure on R, say measures with densities f,g > 0. There exists a map T": R — R
which is non-decreasing and which transports p onto v. Indeed, define T' by

/OO () dt = /i) o) du.

It

then

T(x) = R </_Oo £(#) dt) |

The simplest case is when f and g are continuous and strictly positive. Then T is of
class C* and

T'(z)g(T(x)) = f(z), zeR

In higher dimensions for 7" we can set the so called Knéthe map [61] or Brenier map [28].
For instance, the Brenier map is of the form T" = V¢, where ¢ is a convex function.

Proof of Theorem 2.2. We have Id = 7", cju; ® u; and |u;]5 = 1. We would like to

- [Tt e <TT(f 1)

By homogeneity we can assume that [ f; = 1. Moreover, let us suppose that each f; is
continuous and strictly positive. Let g(s) = e~ Then Jg=1.Let Tj : R — R be the
map which transports f;(z)dz onto g(s)ds, i.e.

[ nas= [ gt as

We have the transport equation f;(t) = T;(t)g(T;(t)). Hence, using (3) of Lemma 2.5 we
obtain

[ Iy ar= [ TL@ e a))” TTo@ ) d

12



§/ det <Z ;T ({x,u5)) uy ®u]) exp (—WZCJ (x uj)))2> dz.

7j=1
Note that T} > 0 since f and g are strictly positive and continuous. Let

y—ZCJ (z,u;))

Note that

E c; T J?U u €;) Uj
axz J J 7 Z> J

and therefore

Dy(z) = Z%’T]{ (7, u;)) u; @ uy.

By (1) of Lemma 2.5 we have
ZCJ (z,u) ) = [yl3,
7=1

thus, changing variables we arrive at
/ [T (i uy,))® da < / exp (—7lyl3) dy = 1.
n ]:1 n

For general integrable functions f; : R — R*, let ¢ > 0 and define f ](E) = f; * g. where g,
is a centered Gaussian variable of variance £2. The new function f;g) is C' and strictly

positive so the inequality holds true for the functions ( fl(s), ce 755)) Letting ¢ — 0, the
classical Fatou lemma gives the inequality for (fi,..., fi)- O

2.3 Consequences of the Brascamp-Lieb inequality
Let us state the reverse isoperimetric inequality.

2.7 Theorem. Let K be a symmetric convex body in R"™. Then there exists an affine
transformation K of K such that

K| =|B"|, and |0K|<|0B"] (2.5)

or equivalently
|8K \ |aB |

K| IB"! "

(2.6)

13



Before we give a proof of Theorem 2.7 we introduce the notion of the volume ratio.

2.8 Definition. Let K C R"™ be a convex body. The volume ratio of K is defined as

IR . .
vr(K) = inf G , € C K is an ellipsoid p .

The ellipsoid of mazximal volume contained in K is called the John ellipsoid. If the John
ellipsoid of K is equal to By then we say that K is in the John position.

We have the following two theorems.

2.9 Theorem. For every symmetric convex body K C R"™ we have
2

or(K) <wvr(BY) = ———- (2.7)
(183"
2.10 Theorem. If B} C K is the ellipsoid of mazimal volume contained in a symmetric
convex body K C R™ then there exist ¢y, ..., ¢, > 0 and contact points uq, ..., u,, € R”
such that |ujls = ||u;|l = |ujll o =1 for 1 <5 <m and
Ian = Z CjUj ® Uj. (28)
j=1

Here we do not give a proof of Theorem 2.10. Originally, John [58] proved it with a
simple extension of the Karush, Kuhn and Tucker theorem in optimisation to a compact
set of constraints (instead of finite number of constraints). We refer to [52] for a modern
presentation, very close to the original approach of John. We only show how John’s
theorem implies Theorem 2.9.

Proof of Theorem 2.9. The quantity vr(K) is invariant under invertible linear transfor-
mations.We let as an exercise to check that the ellipsoid of maximal volume contained
in K is unique. Therefore we may assume that the John ellipsoid of K is B}. Using
Theorem 2.10 we find numbers ¢y, ..., ¢, > 0 and unit vectors uq, ..., u,, € R™ on the
boundary of K such that

m

Ian = Z CjUj ® Uj.

j=1
Since u; € 0By NOK and K is symmetric we get

KcK ={zxeR", [{z,u;)|] <1, forall 1<j<m}.

Let f;(t) = 1j_11y(¢t) for 1 < j < m. Note that f; = fjcj, 1 < j <m. From Theorem 2.2
we have

|K| <|K'| = /Ranjcj ((z,u;)) do < H (/fj) 99Xt _9n |BZ|.
j=1 j=1

14



Clearly, this also yields that By is the John ellipsoid for the cube BY.. Therefore

2

vr(BL) = ———.
)= iy

[e.o]

]

We finish our considerations on the reverse isoperimetric problem showing that The-
orem 2.9 implies Theorem 2.7.

Proof of Theorem 2.7. Let K be the linear image of K such that By C K is the John
ellipsoid of K. By Theorem 2.9 we have |K| < 2". Hence,

-~ K +eBp| — |K K +eK|—|K
|8K\:liminf| +eBs| - | |§liminf| e - |K]
0+ £ e—0t e

= n|K| = n|K|"* - |K|7 < 2n|K|5.

K| - . )
‘ “nll is affine invariant. O
K| 7n

We state yet another application of the Brascamp-Lieb inequality.

This finishes the proof as the ratio

2.11 Theorem. If K is a symmetric convex body in the John position then E |G|, >
E|G|s, where G is the standard Gaussian vector in R", i.e. the vector (g1, ..., gn) where
(9i)i<n are independent standard Gaussian random variables.

Proof. As in the proof of Theorem 2.7 we consider numbers ¢y, ..., ¢, > 0 and vectors
U, ..., Uy, satisfying the assertion of the Theorem 2.10. Note that

KCcK ={zeR", [(z,u;)| <1 1<j<m}.

Clearly,
Gl > 16 = s | (G} |

Moreover,
+o00o
E |G|l :/ P (max[(G,ujH > t) dt.
0 J
We have |G| = maxi<j<m | (G, e;) | so that

+o0 +o0
BiGle = [P (maxlGoel 2 ) ai= [ 0Pl <o)
0 J 0

where ¢ is the standard Gaussian random variable. To get the conclusion, it suffices to
prove

P (max (G < ) < (P(1g] < )"

15



Take

—s2/2
e
hi(8) = Lmaa(s) 5= fi(5) = Limea(s).
Since .
3= e uy)?,
j=1
Theorem 2.2 implies that
1 ki3
P max (G, u;)| <t ) = L s L) DS o © de
o c; 1 | <:C,u]'> ‘2 N
= [ T (o) gy (-0 o
R™ G
— [ TIhs o) s
R 1)
m Cj t 1 2/2 n
< h) = (/ e du)
Jl_‘[ (/ ! -tV 2w
=P (gl <1)",
where we have used the fact that 2721 cj =n. ]

2.4 Notes and comments

This section is devoted to the study of the Brascamp-Lieb inequalities [26] in a convex
geometric setting. As we emphasized, this approach is due to Ball [7] where he proved
Theorem 2.9 and Theorem 2.7. We refer to [9] for a large survey on this subject. The
proof using mass transportation approach is taken from [12]. Tt is important to notice
a significant development of this study, the reverse Brascamp-Lieb inequality due to
Barthe [11]. Theorem 2.11 is due to Schechtman and Schmuckenschléger [86] and has a
very nice application in the study of Dvoretzky’s theorem, because it gives a Euclidean
structure associated with a convex body where the minimum among convex bodies K of
M(K) = [gu1 ||lz]|don(z) is known and attained for the cube. We refer to Section 4 to
learn about it. A non-symmetric version of these results is known, see [7, 88, 10].
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3 Borell and Prékopa-Leindler type inequalities, the
notion of Ball’s bodies

3.1 Brunn-Minkowski inequality

Brunn discovered the following important theorem about sections of a convex body.

3.1 Theorem. Let n > 2 and let K be a convex body in R"™. Take 6 € S"~! and define
H,={x €R", (z,0) =1} =10+ 6+

Then the function
r+— (vol(H, N K))»1

18 concave on its support.

Minkowski restated this result providing a powerful tool.

3.2 Theorem. If A and B are non-empty compact sets then for all X € [0,1] we have
vol (1= A)A+ AB)Y™ > (1 — A)(vol A)Y/™ 4 X(vol B)'/". (3.1)

Note that if either A = @ or B = &, this inequality does not hold in general since
(1 —=XN)A+ AB = @. We can use homogeneity of volume to rewrite Brunn-Minkowski
inequality in the form

vol (A + B)Y/™ > (vol A)/™ + (vol B)'/™, (3.2)

At this stage, there is always a discussion between people who prefer to state the Brunn-
Minkowski inequality for Borel sets (but it remains to prove that if A and B are Borel
sets then A+ B is a measurable set) and people who prefer to work with approximation
and say that for any measurable set C, volC is the supremum of the volume of the
compact sets contained in C. We choose the second way in this presentation.

The proof of the theorem of Brunn follows easily. For any ¢t € R, define 4, = {x €
0+, z +t0 € K}. Observe that when s = (1 — A\)r + A, only the inclusion

A DA+ (1= NA,

is important. And inequality (3.1) applied in 8+ which is of dimension n — 1 leads to the
conclusion.
We can also deduce from inequality (3.2) the isoperimetric inequality.

3.3 Theorem. Among sets with prescribed volume, the Euclidean balls are the one with
minimum surface area.
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Proof. By a compact approximation of C', we can assume that C' is compact and vol C' =
vol BY. We have

ol 9C — lim jnf YOUC +eB3) — vol(C)

e—0+ g

By the Brunn-Minkowski inequality (3.1), we get
vol(C 4 eBI)Y/™ > (vol C)Y™ + &(vol B})Y™,

hence
vol(C' 4+ eBy) > (14 ¢)"vol C,

SO

vol(OC) > lim inf (14¢)" =1)vol(C)

e—0+ £

= nvol(C) = nvol(Bjy) = vol(0BY).

]

There is an a priori weaker statement of the Brunn-Minkowski inequality. Applying
the AM—GM inequality to the right hand side of (3.1) we get

(1= NA+AB| > |ANBP,  Aelo1]. (3.3)

Note that this inequality is valid for any compact sets A and B (the assumption that A
and B are non-empty is no longer needed). We can see that there is no appearance of
dimension in this expression.

The strong version of the Brunn-Minkowski inequality (3.1) tells us that the Lebesgue
measure is a %—concave measure. The weaker statement (3.3) justifies that it is a log-
concave measure.

3.4 Definition. A measure p on R™ is log-concave if for all compact sets A and B we
have

p((1= NA+AB) > u(A) u(BY, A€o, 1.

3.5 Definition. The function f : R™ — R s log-concave if for all x,y € R™ we have

=Nz +Xy) > fl@) T f ) Aelo1].

Note that these definitions are dimension free.

The weak form of the inequality (3.3) for the Lebesgue measure is in fact equivalent
to the strong inequality (3.1). It is a consequence of the homogeneity of the Lebesgue
measure. Indeed, if

B A(vol B)Y/
B =0 = N (vol A)/n + A(vol BYU/n

18



then

(1—NA+AB B A B
vol ((1 — N (vol A)t/n + A(volB)l/") = vol ((1 ~ MW oty “(volB)l/n)

A 1= B H
> £ 2 ) =1,
2 vol <(V01A)1/”> <(V01 B)l/”> 1

3.2 Functional version of the Brunn-Minkowski inequality

If we take f =14, g = 1p and m = 1(3_x)a4ap then (3.3) says that

[r=(f5) ()

and obviously m, f, g satisfies

m((1 =Nz +Ay) > (=) Pg)™.

We will prove the following functional version of the Brunn-Minkowski inequality
called the Prékopa-Leindler inequality. This will conclude the proof of inequality (3.1)
and of Theorem 3.1.

3.6 Theorem. Let f, g, m be nonnegative measurable functions on R™ and let X € [0, 1].
If for all x,y € R™ we have

m((1 =Nz +Ay) > f(z)"g(y)*,

L= (L) (L) 50

We start with proving inequalities (3.1) and (3.3) in dimension 1.

then

3.7 Lemma. Let A, B be non-empty compact sets in R. Then
[(1=MNA+AB|>|(1—=NA|+ |AB|, Xe€]0,1].
Moreover, for any compact sets A, B in R,
(1= XN)A+AB| > |A|"MBY, Xe0,1].

Proof. Observe that the operations A — A + v, B — B + vy where v;,v, € R do not
change the volumes of A, B and (1 — A)A+ AB (adding a number to one of the sets only
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shifts all of this sets). Therefore we can assume that sup A = inf B = 0. But then, since
0 € A and 0 € B, we have

(1= MA+AB>(1—-M\AUMB).
But (1 — M)A and (AB) are disjoint, up to the one point 0. Therefore
(1 =MNA+AB| > |(1-NA|+ |AB],

hence we have proved (3.1) in dimension 1.
The log-concavity of the Lebesgue measure on R follows from the AM—-GM inequality.
O

Proof of Theorem 3.6. Step 1. Let us now justify the Prékopa-Leindler inequality in
dimension 1. We can assume, considering f1s<p and gly<ps instead of f and g, that
f, g are bounded. Note also that this inequality possesses some homogeneity. Indeed, if
we multiply f, g, m by numbers cy, ¢4, ¢, satisfying

1-A A
Cm = C; "Cy,

then the hypothesis and the assertion do not change. Therefore, taking ¢; = |||,

¢ = |9l and ¢, = HfH;O(l_’\) |g]l= we can assume (since we are in the situation when
f and g are bounded) that ||f||. = |lg|/.,, = 1. But then

[m= [ tmz st as

[r=[1r=nia,
[o=[ tto=niar

Note also that if x € {f > r} and y € {g > r} then by the assumption of the theorem
we have (1 — XNz + Ay € {m > r}. Hence,

A=M{fzr}+Mg=ric{m=>r}

Moreover, the sets {f > r} and {g > r} are non-empty for r € [0,1). This is very
important since we want to use the 1-dimensional Brunn-Minkowski inequality proved
in Lemma 3.7! For any non empty compact subsets A C {f > r} and B C {g > r}, we

have by Lemma 3.7, [{m > r}| > (1 — A\)|A| + A|B|. Since Lebesgue measure is inner
regular, we get that

{m =7} = (1= N{f =i+ A{g =7}l
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Therefore, we have
[m= [Ttz [tz 1000200000 @
>0 [ rzatao [znia=a-n [0 g

=([1) (f)-

Observe that we have actually proved a stronger inequality

[mza-x[rex [0

but under the assumption ||f||. = [lg]|,, = 1, without which the inequality does not
hold as it lacks homogeneity, in contrast to (3.6).

Step 2 (the inductive step). Suppose our inequality is true in dimension n — 1. We
will prove it in dimension n.

Suppose we have numbers yo, 41,92 € R satisfying yo = (1 — AN)y; + Ayz2. Define
Myos fons Gys : R" = Ry by

myo(x) :m(y()wr)a fy1<$> :f(yh‘x)? gyz(‘r) = (y2,$>,
where # € R"™!. Note that since yo = (1 — \)y; + Ay> we have
My, (1 — Nz + Az2) = m((1 — Ny + Aya, (1 — X)zy + Aag)
> fyn,x0) g (y2, 22)t = fy (21)' gy, (),

hence my,, f,, and g,, satisfy the assumption of the (n—1)-dimensional Prékopa-Leindler
inequality. Therefore we have

fomez (L) (Lome)

Define new functions M, F,G : R — R,

M) = [ e Fo) = [ e G = [ o

Rn—1

We have seen (the above inequality) that when yo = (1 — A)y; + Ays then there holds

M((1 =Ny + Ayz) = F(yr) 7 G(y2)
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Hence, by 1-dimensional Prékopa-Leindler inequality proved in Step 1, we get

[u=([#)"([e)
ek e fee s
Los (L) (L)

The next theorem will be useful in the sequel to prove the functional version of the
so-called Blaschke-Santalé inequality, Theorem 3.11.

]

3.8 Theorem. Suppose f,g,m : [0,00) — [0,00) are measurable and suppose there exists
A € [0,1] such that

m(t) > f(r)'g(s)*, whenever t =r' st

o (1) (1)

Proof. This inequality has a lot of homogeneity. Again, if we multiply f, g, m by numbers
cf, Cq, Cpy satisfying

Then

-2\
Cm = ¢} " Cy,

then the hypothesis and the assertion do not change. Moreover, we can rescale arguments
of f,g,m by ds,dg,d,, in such a way that

1-2 g\
dy = di A

We can assume, by taking f1;<ay1_nnp, 9lg<arl—ara that f and g are bounded and
have compact support. Moreover, by scaling we can assume that

suprf(r) =suprg(r) = 1. (3.6)

Let
M(z) =e"m(e®), F(x)=e"f(e"), G(z)=-¢e"g(e”).

Clearly, changing variables we have

+o00 +00 400 +o0
/0 m(t) dt = M (w) dw, f(t)dt = /_ F(w) dw,

—00 0
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By (3.6), we get

/+OOF(W) dw=/01|{FZT}|dr and /+OOG(w) dw:/01|{GZr}|dr,

o0 — 00

By the hypothesis of f, g and m we have

M((1 = Nu+ ) =m((e") 7 (e"))(e") 7 (e")?
> (f(e)) M gle )M (e) e = (F(w) " MGw)* (3.7)

Hence, for any r € [0,1),ifz € {F > r}andy € {G > r}, then (1-N)z+Ay € {M > r}.
The sets {F' > r} and {G > r} are not empty therefore by Lemma 3.7 (which is the 1-
dimensional Brunn-Minkowski inequality), for any non empty compact sets A C {F > r}
and B C {G >r}, {M > r} > (1 — N)|A| + A|B|. Since Lebesgue measure is inner
regular, we conclude that [{M >r} > (1 = N){F > r}|+ A{G > r}| and

" w) dwz/ll{Mzr}\drz(1—)\)/+OOF(w) i G de

—0o0 o0 —0o0

([ rem) ([ e e)

Note that after establishing (3.7) we could have directly used the 1-dimensional
Prékopa-Leindler inequality, Theorem 3.6. But we can also recover Theorem 3.6. Indeed,
let

]

M(t)=[{m=t}, F(r)=Kf=r}, G(s)=H{g=s}
We have to prove that

My de > ( /0 e dr) - ( Om G(s) ds) N

Note that if t = r'=*s* then from the hypothesis of Theorem 3.6 we have

0

{m=13 51 -N{f =71} + Mg = s}

From Lemma 3.7, we get
M(t) = F(r)'=*G(s)*

(even if the sets are empty, because we just use the log-concavity of the Lebesgue measure
on R). We conclude by using Theorem 3.8.
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3.3 Functional version of the Blaschke-Santal6 inequality

We only recall the Blaschke-Santal6 inequality (without the proof). We discuss the
symmetric case.

3.9 Definition. Let C' be a compact and symmetric set in R™. We define the polar body
C° by
C°={yeR", Ve elC|(zr,y)| <1}

3.10 Theorem. Let C' be a compact and symmetric set in R™. Then
C]-|C° < B3| (B-5)
Nevertheless, we will prove its functional version using (B-S) inequality.

3.11 Theorem. Suppose f,g: R™ — [0,00) and 2 : [0,00) — [0,00) are integrable and
f, g are even. Suppose that Q(t) > +/f(x)g(y) whenever |(x,y)| > t>. Then

/ng(mz) da :n|B;‘|/O+OOt”_1Q(t) dt > (/f)l/2 (/g) - (3.8)

3.12 Remark. We can recover the classical version of the (B-S) inequality from the
functional one. Take f = 1¢, g = 1co and Q = 1jgy. If 2 € C and y € C° then

| (z,y)| < 1. Hence, if t > 1 then Q(t) = /f(z)g(y) = 0. If ¢ < 1 then obviously
1=Q(t) > +/f(z)g(y). By Theorem 3.11 we get (B-S).

Proof of Theorem 3.11. The first equality is just an integration in polar coordinates. It
is enough to prove the statement for the function

t — sup{/f()g(y) : | (z,y) | > £*},

so that we can assume () non-increasing. For r,s,t € R, we take

o(r)=H{f =r}, o(s)=Hg=s}, m(t)=|B3] - {Q=>1}"
We claim that m(y/rs) > \/¢(r)¥(s). Thanks to this we can apply Theorem 3.8 with

A = 1/2 and obtain 12 1/2
[r=(f2) ([*)

Thus, the proof of (3.8) will be finished since

+oo “+oo too  pl{Q=>t}
/ m(#) dt — \B;‘|/ Q> )" dt — |B§\/ / " du dt
0 0 0 0

“+oo +oo “+oo
= |B§L|/ nu”_l/ 1, jfo>ey (u) dt du = |B§L|/ nu™ 'Q(u) du.
0 0 0
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Now we prove our claim. Let C'={f >r} and C° = {y, Vo € C | (x,y) | < 1}. Let

o = sup{| (z,y) |, f(z) >7,9(y) > s}.

Using the definition of C,C° and « we get {y, g(y) > s} C o*C°. By the assumption
on Q, f,g we obtain Q(u) > /rs for u < «, hence |{Q > /rs}| > «a. Therefore,
m(y/rs) > a"|By|. By the (B-S) inequality we have |C||C°| < |BY|?. Thus,

By = [{f =} |C° = [{f =} - {g = s}Ha™™",

SO

Vo(r)w(s) = VILF =} - {g > s} < |Bjla"™ < m(v/rs).

3.4 Borell and Ball functional inequalities

The following is another type of functional inequality, in the spirit of Theorem 3.6. We
will see in the next section its role in convex geometry.

3.13 Theorem. Suppose f,g,m : (0,00) — [0,00) are measurable and such that

rssg(s)rls, 1_{_ 1 = 2}
r S t

mt) > sup {f(r)

for allt > 0. Then

2 (/OOO m(t)tP? dt> E < (/OOO )t dt>_; + </Ooog(t)t7’1 dt>_; (3.9)

for every p > 0.

Proof. Considering min{f;, M}1.<ps for fi = f,fo = g, fs = m we can assume that
f, g, m are bounded, compactly supported in (0, c0) and not 0 a.e. We do not have good
homogeneity. Let # > 0 be such that

supr?*f(r) = 07 sup 1 g(r). (3.10)

Let

A= (/OOO f)rt dt); ,B = (/OOO g(t)tr! dt) Co= (/Ooom(t)tp—l dt) "
T ) e ()"
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o= (52 () @)

Hence, changing the variables we have

o0 +o00 +o0 1+ 0 p+1
/ F(u) du = Ap,/ G(u) du = (0B)?, M(u) du = <—2 ) CP.
0 0 0

We want to prove that
2 1.1
C - A B
Note that by virtue of equality (3.10) we have sup G = sup F.
We claim that

M(w) > sup{F(u)@% G(v)#5, u+ v = 2w}, w e (0,00).
If u + Ov = 2w, then setting r = 1/u, s = 1/(0v), t = 1/w we have 1/r +1/s = 2/t and

1
S o0 U

r+s %—1—%:11—1—91)’

hence -
F(u)@m G o)t = f(r)g(s)7 <r$(93)ris> .
We obtain 1181
s g < T gs = (1+6) s :i—.
r+s r+s r+s 2 w
Thus,
_u 6v 1 —|_ 0 p+1 1 1 p+1
F u+6v utov < _— — — = M .
e s (50" (3) () -

Summarizing, we have sup F' = sup G and
1 0
§{F2§}+§{GZ§}C{M25}-

Therefore, Lemma 3.7 (which is nothing else but Brunn-Minkowski inequality in dimen-
sion 1) yields that

sup F 1 [sup F g [suwp G
Juz [Tz glaes g [ upzalaeg [ HE = gl

1 0
5[5 e
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In terms of A, B, C' we have

p+1
(ﬂ) cr > %Ap + Q(@B)p7

2 2
hence

» pAp + gr+1 pp
T (14 6ptt

Define ¢ : [0, 00) — [0, 00) by
AP + grtiBp
o(0) = ——F—7

(1+ 6)r*

Since infg, ¢(0) = ¢(A/B) (calculate the derivative to see that ¢ is unimodal and
¢'(A/B) =0), we get

1 P
CPZQPAP+AP++/1B:2P APAPZ(QAB) ‘
(1447 (1+ %) A+B
Now the proof is complete. O]

3.5 Consequences in convex geometry

Having the Prékopa-Leindler inequality at hand we can constitute a handful of basic
properties of log-concave measures. We begin with a simple observation that a measure
with a log-concave density is log-concave.

3.14 Proposition. If h : R® — R, is log-concave and h € L}  then

loc

defines a log-concave measure on R™.

Proof. For compact sets A, B take m(2) = 1xara-ns(2)h(2), f(x) = 1a(x)h(z), 9(y) =
15(y)h(y). Then from log-concavity of h and by the definition of the Minkowski sum we
have m(Az + (1 — N)y) > f(x)*g(y)!=*. Therefore, by the Prékopa-Leindler inequality,
i.e. Theorem 3.6, we have ['m > ([ f)*([ g)'*, which is exactly the desired inequality

PAA + (1= N)B) > u(A)'u(B)' .

27



For example, the standard Gaussian measure and the standard symmetric exponential
distribution on R™ are log-concave measures. Another key example is the following. Let
i be the uniform measure on a convex body K C R" that is for any measurable set
A CR",

|K N A|

Since the function x — 1k (z) is log-concave, u is log-concave. It follows also from the
weak form of the Brunn-Minkowski inequality, see Lemma 3.7.

Now we show that marginal distributions of a log-concave density are again log-
concave.

3.15 Theorem. If h : R"*? — R, is a log-concave integrable function (R™ x R?) >
(z,y) — h(z,y), then the function

R"> 2z [ h(z,y)dy

RP

15 log-concave on R™.

Proof. We want to prove that for z,x; € R, y € R? and A € [0, 1] we have

/Rp T e = (/R Wee,) dy)A (/R W1, y) dy) -

m(y) = h((1 = Nzo+ Az1,y),  f(y) = h(zo,y), g(y) = h(z1,y).
Then log-concavity of h yields

Let

m((1 = ANyo + Ay1) = h((1 = A)(2o, yo) + A(z1,41)) > h(0, yo)l_/\h(xhyl)A
= f(y0)' g(y)™.

Therefore, by the Prékopa-Leindler inequality, i.e. Theorem 3.6, we get
1-X A
m(y) dy = (/ (o, Yo) dyo) (/ h(z1,91) dy1> :
RP RP RP

A simple consequence is that the class of log-concave distributions is also closed with
respect to convolving.

[]

3.16 Proposition. Let f,g: R™ — Ry be log-concave. Then the convolution fxg: x —
Jan f(x —y)g(y)dx is also log-concave.
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Proof. Apply Theorem 3.15 to h(z,y) = f(z — y)g(y). O

Due to the Brunn-Minkowski inequality, the function of the measures of sections of
a convex body is not completely arbitrary.

3.17 Theorem. Let K be a convex body in R™ and let E be k-dimensional subspace of
R". Let F = E+. Then the function f : F — R,

fly) =volx((y + £) N K)
is 1/k-concave on its support Pr(K), namely
PR+ (1= Ny) 2 A @) + (1= A 7 (),

when f(x)f(y) > 0.

Proof. As in the proof of Theorem 3.1, we deduce from convexity of K and Brunn-
Minkowski inequality in R¥, i.e. Theorem 3.2,

POz + (1= Ny) = vol’¥ (MK N (z 4+ E)) + (1= AN(K N (y + E)))
> Avol,/*(K N (z 4+ E)) + (1= A\ voll/"(K N (y + E))
= MYE@) + (1= 2 ().
O

3.18 Remark. If K is symmetric with respect to 0 then f is even and therefore f is
maximal at 0. Moreover, it is known from a result of Fradelizi [40] that if K has center
of mass at the origin then

max f(y) < ¢"f(0).
y
3.19 Remark. If K, L are convex bodies in R", then the function

fly) =vol((y + L) N K)

is %—concave on its support, that is K — L. Moreover, Fradelizi [40] proved also that if
K — L has barycentre at the origin, then

maxvol((y + L) N K) < e"vol(LNK) (3.11)
y
Proof. 1t is enough to check that
M4+ 1 =Ny+LNEK>XNz+L)NK+(1-Ny+L)NK

and then the same argument as in Theorem 3.17 finishes the proof. Suppose we have
a point A\a + (1 — A)b, where @ € (x+ L)NK and b € (y+ L)N K. Then a,b € K
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and a = x + ag, b = y + by, where ag,by € L. Therefore, from convexity of K we have
Aa+ (1 —A)b € K. Moreover,

Aa+1=MNb=X X+ (1-=Ny+Xag+ (1 =Nby € x+ (1 —-Ny+L
from convexity of L. O

Our next observation concerns the measure of both sections and projections of convex
bodies.

3.20 Proposition. Let C' be a convezr body in R™ with non-empty interior. Let E be
k-dimensional subspace of R™ and let F = E+. Then
1
PR(C)] - max [C' 1 (y + )| = [C] = 7| Pe(C)] - max|C N (v + B, (3.12)
yeF (k) yeF
Before giving a proof, we show the following corollary about two bodies, known as
Rogers-Shephard inequalities.

3.21 Corollary. Let A, B be two convex bodies in R™. Then

A—B
2"|—— | max [(A—z)N(B—vy)| > |A|-|B| >
2 z,yeR”
2" |A—B
> - - — ).
=7y | mmax [(A—2)N (B -y

In particular, if A — B has barycentre at the origin then up to a universal constant
. A-B 1n
gai-1sp~ ([452] ans)
Moreover, if A, B are symmetric, then
27l
AN B2 1Al 1B

)
1/n
141150~ (|25 2 ] ansl)

Proof. Take C = A x B C R*" and

A+ B
2

A+ B

2’!’1,
2

-lan Bl

and

E={(z,y) eR™, ==y}

Then
F=FE"={(z,y) eR™ z+y=0}.
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Note that n
r—rvy r—vy
(2,y) = T(l’ 1)+ T(la —1).

Therefore, Prp(z,y) = *5%(1, —1), hence

Pr(C) = {x;y(l,—l) ER™|z€Aye B}.
Consider the linear function L : R" — R*", L(z) = (x, —x). Clearly, L ((A— B)/2) =

Pr(C). Therefore,
- 452 ()

Moreover,
(Ax B)N (@,9) + B) = [(A=2) x (B=y) N E| + (2,).
If we consider R(x) = (z,z), R : R" — R*" then
R(A=x)N(B—-y)) =(A-x)x(B-y)NE.
Thus, .
CN @y +E) = (V2) I(A=2)n(B-y),

and the conclusion follows from Proposition 3.20.
To prove the second inequality it suffices to observe that if A — B has barycentre at
the origin, we get from inequality (3.11) that
|IANB| < max (A—x)N(B—y)| <e"|ANB|.
z,yeR™

Moreover, if A and B are symmetric, then A = —A, B=—B and |(A—z)N (B —y)| is
maximal when z =y = 0. [

Proof of Proposition 3.20. Consider the function f : F — R, given by f(y) = |[(y+ E)N
C|. Obviously,

] = / £(y) dy < |Pr(C)| - max ().
Pr(C)

yelF

The second estimate is more delicate. By translation we can assume that max,cp f(y)
= f(0). Let [|-|p,, () be the gauge induced by Pr(C) on F. If y € Pp(C) then |[y[[p, ) <
1. Note that

v == llepi) -0+ Wl g —
Pr(C
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Since, by Theorem 3.17, f is 1/k-concave on its support Pp(C), 0 € Pgr(C), and
y/ HyHPF(C) € Prp(C), we have

PR ) 2 FPEO) =yl ppey) + L5 9] ) 19 ppiey 2 FEO)E = Y]l ppey)-

Hence,

o=/ vz 50) / PR () .

It is clear that for a convex body K in R™, by integrating with respect to the cone
measure, we have

[ sttty an=[ [ atyaya—ix | g(men at,

/ 1dy =t"|K], / 1dy = mt™ K]
Iyl <t 1yl =t

Applying this to the convex body Pr(C') which lives in dimension n — k, we get

since

f(0)|Pr(C)
&

which was our goal since f(0) = maxyep f(y). ]

C] > £(0)Pe(C)] / (n— k)(1 — 1)1 dt =

Just to illustrate the usefulness of the functional inequalities from the previous sec-
tion, we show a one dimensional result which does not seem to be obvious at first glance.

3.22 Proposition. For A, B C (0,00) we set

2
HAB)=¢———,a€AbeB;.
(4, B) {1/a+1/b’“ ’ }
Then we have 214] 1B
|H(A,B)| > 21— (3.13)
| Al +|B]
Proof. Set f =14, g=1p and m = 14 p) and use Theorem 3.13 with p = 1. O

At the end of this section we consider how to construct a convex body out of a
log-concave function. It is a crucial observation following from Theorem 3.13. Let us
emphasize its importance in the sequel (Section 6) where we establish basic properties
of the so-called Z,-bodies.
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3.23 Theorem. Suppose that a function f: R™ — [0, 00) is log-concave, integrable and
not 0 a.e.. Then for p >0

+00 —1/p
Iz]| = ( flra)rP=? dr) , ¢ #£0
0
0, z=0
15 a gauge on R™.

Proof. Obviously, [|[Az| = Aljz|| if A > 0 and ||z|| = 0 if and only if = 0. Therefore,
the main difficulty is to prove that

[z +yll < ll=ll + {1yl

Fix z,y € R™. Let us take g(r) = f(rz), h(s) = f(sy) and m(t) = f(3t(z +y)) for
r,s,t > 0. Suppose 1/r+1/s =2/t. Let A =1r/(r + s) so that t/2 = s = (1 — \)r. By
log-concavity of f

T

m(t) = f (%t(:z: + y)) > f(rz) ™ f(sy)* = g(r) ™ h(s)7s.

Now it suffices to use Theorem 3.13 for m, g and h. n

The previous theorem can be seen as a generalisation of a theorem due to Busemann
from [29]. Choosing f and p suitably we obtain the following result.

3.24 Theorem. Let K be a symmetric convex body with 0 in its interior. Then

|$|2

Il = pra &g

1s a norm on R™.

3.6 Notes and comments

Most of the material of this section is taken from the PhD Thesis of Keith Ball [5].
Historically, the names of Prékopa and Leindler stay attached to Theorem 3.6. Indeed,
Prékopa [81, 82, 83] studied a lot the notion of log-concave functions. Theorem 3.6 is
the culmination in this theory, and yet it is a simple statement. Prékopa’s proof uses an
argument of transport of mass which can be traced back to Knéthe [61]. On the other
hand, Borell [24] submitted his paper only six months after the paper of Prékopa and he
presented a more general version of the inequality. But it seems that the general version
of a Theorem of Borell [24] has been forgotten. This is why we would like to restate it
here.
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3.25 Theorem. Let Qq,...,Qn be open subsets of R™ and let ¢ : 01 X -+ X Qn — R”
be a Ct function such that

o= (d1,...,0n) and%>0

forallje{l,....,n} and alli € {1,...,N},k € {1,...,n}. Define
Qo= o(Q,...,0), anddu; = fi(x)de where f; € L'*°(Q,),i=0,1,...,n.

Suppose ® : [0, +00)N — [0,+00) is a continuous function homogeneous of degree one
and increasing in each variable separately. Then the inequality

M0<¢<A17 s 7AN)) Z (I)(:ul(Al)a s >/LN(AN))>

holds for all nonempty sets A1 C Qq,..., Ay C Qn
if and only if
for almost all x1,...,zn, foralli=1,...,N;k=1,...n and p¥ > 0, we have

=h
O
<
)
IS
z
m s
S
Sk
AV
A
N
=k
B
—
=
>
s
Z
—
>
N——

Of course, the sets are not necessarily measurable. This is why the measures have
to be understood as inner measures. By the inner measure associated with 1 we mean
p*(A) = sup{u(K), K C A, K compact} defined for any set A. Borell’s proof followed
the argument of Hadwiger and Ohman [57] and Dinghas [34]. The papers of Das Gupta
[32] and of Prékopa [83] illuminate very much the situation. It is now well understood
that we can prove the Prékopa-Leindler inequality (Theorem 3.6) using a parametrisation
argument like we have used in the proof of Theorem 2.2. We refer to [13] for an exhaustive
presentation. Fradelizi (see [44]) kindly indicated to us that this argument can also be
followed for proving Theorem 3.25. Theorem 3.25 is extremely important, not only in
the log-concave case but also in the s-concave setting, s € R. The case s < 0 is also
known in the literature as the case of convex measures or unimodal functions.

The geometric consequences of these functional inequalities are now classical. The-
orem 3.15 is due to Prékopa [82]. Proposition 3.16 appeared first in [33]. Proposition
3.20 and Corollary 3.21 are due to Rogers and Shephard [84] and Theorem 3.23 is due
to Ball [6].

There was a big amount of work to develop the functional forms of some classical
convex geometric inequalities and we refer the interested reader to [4, 45, 46, 66, 67, 47].
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4 Concentration of measure. Dvoretzky’s Theorem.

4.1 Isoperimetric problem

The Brunn-Minkowski inequality yields the isoperimetric inequality for the Lebesgue
measure on R”. Indeed, suppose we have a compact set A C R™ and let B be a Euclidean
ball of the radius 74 such that |B| = |A|. Then from the Brunn-Minkowski inequality
we have

A" = A+ eBy V" > |AV" + [eBy [
= |B5|"/"ra + |By|"e = | B + By | = |B| V",
In general, an isoperimetric problem reads as follows.

Isoperimetric problem. Let (€2, d) be a metric space and let i be a Borel measure on
Q. Let > 0 and € > 0. We set

A ={zx € Q, d(z,A) <¢e}.
What are the sets A C ) of the measure « such that

A)= inf u(B.).
wAe) = inf p(B)

This problem is very difficult in general. It has been solved in a few cases. For example,
as we have seen, the case of R" equipped with the Lebesgue measure and the Euclidean
distance follows from the Brunn-Minkowski inequality. For the spherical and the Gaus-
sian settings the isoperimetry is also known. These two examples will lead us to the
notion of the concentration of measure.

We start with the spherical case (S"71,d, 0,,) where d is the geodesic metric and o,
is the Haar measure on S™~!.

4.1 Theorem. For all0 < a <1 and all € > 0,
min{o,(4.), 0,(A) = a}

is attained for a spherical cap C' = {x € S" ' d(z,x¢) < r} with zg € S ',r > 0, such
that o(C') = «.

A crucial consequence of Theorem 4.1 is the concentration of measure phenomenon
on S™ 1. Indeed, if a = % then the spherical cap of measure 1/2 is a half sphere. A
simple exercise consists in showing that

T
(Clan, )9 < |/ vl = 2)%/2),
It is now easy to deduce the following Corollary.
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4.2 Corollary. If A is a Borel set on S"' such that 0,(A) > 1/2 then

on(Ag) >1— \/g exp (—(n —2)?/2).

We can therefore deduce the concentration of Lipschitz functions on the Euclidean
sphere. The statement of this result may be considered as the starting point of the
concentration of measure phenomenon. It tells that any 1-Lipschitz function on the
sphere of high dimension may be viewed as “constant” when looking at its behaviour on
sets of overwhelming measure. Of course the statement is interesting in large dimension.

4.3 Corollary. Let f : S" ' — R be 1-Lipschitz with respect to the geodesic distance. If
M is a median of f, namely o,({f > M}) > 3 and o,({f < M}) > 3, then fore >0

on({f>M+e¢e}) < \/g exp(—ne?/4), and o,({f < M —¢}) < \/g exp(—ne?/4),

Moreover,
{1 = M1 > €)) <\ [T explone?/a),

We also know the solution of the isoperimetric problem in the Gaussian setting. Let
R™ be equipped with the Euclidean distance |- | and ~, be the standard Gaussian

distribution d
_ ole32_9T
dy,(z) = e "2 (2m)n/2

Let @ be the distribution function of 71, i.e., we define for any u € R

1 v 2
q)(U,) = E/ €_t /2 dt

4.4 Theorem. Let a € R and let A be a Borel set in R" such that v,(A) = ®(a), then
Tm(A:) = Ba+e).

The theorem tells that half spaces are solutions of the isoperimetric problem that is
YulAs) > Y (H.), whenever 7, (H) = 7,(A) = ®(a), and for some § € S" !, H = {x €
R™, (x,0) < a} is a half space.

As before, having this isoperimetric result at hand, we deduce results concerning the
concentration of measure phenomenon in the Gaussian setting. Since for any r > 0 we
have

1
1-d(r) < §e_r2/2

it is easy to deduce the following corollary.
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4.5 Corollary. If A C R" satisfies v,(A) > 1/2 then
1 _,,,,2/2
Yn(Ap) > 1 — 3¢ )

Moreover, if F : R™ — R is a 1-Lipschitz function with respect to |- |s and M is a median
of F' then

1 1
W{F > M+1}) < oe? q({F <M —r}) < g2

and ,
Wm{|[F = M| >r}) <e /2

4.2 Concentration inequalities

In many applications we just want concentration inequalities and we do not care much
about the constants. This is why we are interested in presenting simpler proofs of these
concentration inequalities, which may lead to more general results. We start off by
proving the following simple and deep inequality.

4.6 Theorem. Let A C R"™ and let v, be the Gaussian measure. Then

/eXp (d(x;TA)Q) () < %(1/1)' (4.1)

Moreover, if v,(A) > 1/2 then

(Ac) > 1 —2exp(—c”/4). (4.2)
Proof. Let .
fz) = @ exp(d(z, A)?/4) exp(—|z[3/2),
o) = rrata)expl—ul3/2)
and

() = Gy oxpl=3/2).

We show that

h(:r;;ry) > VT@)Ve(w).
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Indeed, it suffices to consider the case when y € A. In this case we have d(z, A) < |z—yla
and therefore

)" f(olalo) < e (5 v lels M) o <_ﬂ>

4 2 2 4

- (o))

By the Prékopa-Leindler inequality we obtain

(1) 2 () () = o (45

The second part of the statement follows from Markov’s inequality. Indeed, if 7, (A) >
1/2 then

/ exp(d(z, A)?/4)dra(z) < 2.
hence

(d(z, A) > ) < exp(—e?/4) / exp <d(xf)2) dyn(z) < 2exp(—e?/4).

O

As usual, it is now easy to deduce the concentration of measure phenomenon for
1-Lipschitz functions.

4.7 Corollary. If M is a v, median of a 1-Lipschitz function f, then

W{f = M +e}) < 2exp(—e*/4), 7 ({f < M —e}) < 2exp(—€”/4),

and
m{[f = M| > e}) < dexp(—e?/4).

Proof. Let A = {f < M}. Then ~,(A) > 1/2. Since f is 1-Lipschitz we have {f >
M + e} C AL Therefore,

W{f = M+ e}) < 7a(A2) < 2exp(—£?/4).

The second inequality is proven identically, taking A = {f < M}. n

Sometimes, it is not so easy to use a concentration inequality with respect to the
median of the function. Historically, there is another way to prove Gaussian concentra-
tion inequalities in the setting of random vectors in a Banach space. For ai,...,a; in
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a Banach space E and gy, ..., g, i.i.d. standard Gaussian random variables A/(0,1), we

define a Gaussian vector
k

X =Y ga;€E.
i=1
We define the operator u : /5 — E by u(e;) = a;, where (e;)¥_, is the standard orthonor-
mal basis in £§. The weak variance of X is o(X) = ||u: ¢4 — E||. Observe that

o(X) = sup |lu(z)|| = sup sup |{(u(z))|= sup sup [£(u(x))].
|CE‘2§1 |CC|2§]_ £€E* é’eE* ‘$|2§1

€1l <1 €l <1

Writing z = Y2 | z;e; so that |z]2 = 3 22, we deduce that

(Zm az>‘ = sup Z%f a;)
|z|2<1

sup [§(u(z))| = sup

lz|2<1 lz]2<1

k 1/2
= (Z |§(az‘)|2>

=1

and consequently,
1/2
o(X) = sup 1€ (as) :
el <1 (21: )

We present now a Gaussian concentration inequality of a Lipschitz function around its
mean. The argument is based on the study of a Gaussian process. The important fact
is that if Xy, Xy are two independent copies of a Gaussian vector, then for all § € R we
have the equality in law

(X1 cos0+ Xysinf, —X;sinf + Xy cos6) ~ (X, Xo).

4.8 Theorem. For a Gaussian vector X = Zle gia; with values in a Banach space E
we have

P(] 1X| - E|X]| ‘ >t> < 2exp (—#i()?) (4.3)

Proof. Let F : R¥ — R be given by the formula

F(z) = [lu(z

i g

and let G, Gy be two independent copies of the standard Gaussian vector (g, ..., gk)-
We take
G(0) = Gy cos + Gysind.
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Observe that G(0) = Gy, G(7/2) = G5 and
G'(0) = —Gysinf + Gy cos.

Therefore,
(G(0), G'(0)) ~ (G1,Ga).

The function F is Lipschitz and therefore it is absolutely continuous, so we can apply the
fundamental theorem of calculus. Alternatively, one can approximate F by C* functions.
We have

w/2 /2
F(Ga) — F(Gy) = / LR(G(0) o = / (VF(G(9)),G(6)) db.

Jensen’s inequality for the convex function exp and the normalized Lebesgue measure
on [0, 7/2] yields for every A > 0,

w/2 T
exp(A(F(G2) — F(Gh))) = exp <§/0 A5 (VE(G(6),G'(0)) d9)

< % /0 " exp (Ag <VF(G(0)),G’(0)>> d.

Taking expectation we deduce

EG1EG2 exp(/\(F(Gg) -

mw

/ Ee,Eg, exp (/\g <VF(G(9)),G’(9)>> a9

0

But the function -
0 Eg,Eq, exp (A (V G’(9)>>

is a constant function, since (G(0),G'(6)) ~ (G, Gs). Therefore,
7r
EGlEG2 eXp()\<F(G2) - F(G1>>> < EGlEG2 exp ()‘5 <VF(G1>’ G2>>
= Eq, exp (N’ |VF(G1)[3/8)

where we have computed the expectation over Gj.
Recall that ||U||e§—>E = o(X). We obtain

|F(z) = F(y)| = Hu(@)] = lu@)] | < [lulz =)l < o(X)|z = yl2,
therefore |[VF(-)|a < o(X). We then arrive at

Eg,Ea, exp(\(F(Gy) — F(G1))) < exp (M) .

8
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Using Jensen’s inequality to the convex function exp(—(-)) and the expectation over G,
we have

E¢,Eq, exp(A(F(G2) — F(Gh))) = Eg, exp (A(F(Gz) — E, F(G1)))
— Eexp (A(|X] —E|IX])).
Therefore,

Eexp (M| X] - E[|IX])) < exp (M) .

8
Using Markov’s inequality we get

. Nrlo(X)? 2t°
_ < — — s | = T2 (x)2 )
B (X BN > ) < nfesp (3 2700 gy (20 0)
O

We have seen that the Lipschitz constant of F' : R¥ — R defined by F(x) =

HZle Tiai

median (which is not very different than a concentration inequality around its mean).

is 0(X) hence Corollary 4.7 gives a concentration inequality of F' around its

4.9 Remark. Of course the same argument yields that if I’ : R* — R is L-Lipschitz
with respect to the Euclidean norm on R* then for every ¢ > 0,

21
P((|F(G) —EF(G)| > 1)) <2exp (_7T2L2) ,
where G ~ N(0,1d) is a standard Gaussian vector in R”.
We now give an improvement of this result, based on the same method of proof.

4.10 Theorem. Let G, : {5 — R™ be a random Gaussian operator given by an n X k

matriz with the independent standard Gaussian entries. Let a,b € S*=1 and let ||-|| be a
norm on R™ such that ||-|| < |-|s. Then
P(Gu(a)ll = IGO0 = 1) < 8 (4.4)
(@) = |Gy >ty <exp|—-——5 |- :
ST
4.11 Corollary. Let || - || be a norm on R™ such that for any x € R™, ||z| < |x|s. For

any set T C S*1, we have
Esup |||G,(a)]| — EHG(H)H‘ < CEsup | (G, a)|,
acT a€T

where G,y and G are standard Gaussian vectors in R" and R*, and where C is a
universal constant. In particular,

E[Guwll - CEIGwl <E inf [|Gu(a)| <E sup [Gula)ll <E[Gewl + CEIG w2

acSk-1
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Proof. It G, = (G4, ...,Gk) = (gi;) where 1 <i<n, 1< j <k then

k n k
Gy (a) = ZajGj = Z (Z anij) €,
j=1 i=1 \j=1

for a € S"~!. Therefore G, (a) has the same distribution as the standard Gaussian vector

Gy = (g15---,9n) on R". Indeed, we only have to check the covariance matrix,
k k ko k ko k
j=1 j=1 j=1j'=1 Jj=1j'=1

k
2
= 5k,l E a; = 5k,la
Jj=1

where we use Kronecker’s delta d,; = 1 if and only if k = [. Hence E |G, (a)|| = E HG(n) H
Theorem 4.10 tells that the random process

Yiam ||Gu(a)] - E[Gu(a)ll = |Gula)ll - E |Gl

is a subgaussian process, namely
2t
P(Y(a) =Y(b) >t) <exp|——5—3 | -

m|a — b[3

One can therefore apply the majorizing measure theorem [90] to deduce that for any set
T c S¥ ! we have
Esup |Y(a)| < C’IESUIT)| (G, a) |,
ac

a€T

where C'is a universal constant. The particular case is obtained by taking 7' = S*~1. It
can be checked that

L 1/2
E|Gul. =E <Z gf) ~Vk ask — oc.
i=1

]

Proof of Theorem 4.10. We follow the same idea as in the proof of Theorem 4.8. For
a,b € S* 1 we set X, = G, (a) and X, = G,,(b). We can find a vector a’ such that a_Ld’
and b = acos by + a’ sin Oy with 0y € [0, 7]. Let X, = G, (a’). We take

X(0) = X, cos0 + X, sinf.
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Since G, is a linear operator, we have
X (6y) = Gu,(b) = X,
We take F'(x) = ||x||. Then using Jensen’s inequality
Eexp (A(|GL(0)] = [|Gu(a)l])) = Eexp (A (F(Xacos O + Xarsinby) — F(X,)))
< 910 /0 " Eexp (M (VE(X(0)), X'(6))) 16

— EeXp ()\90 <VF(Xa)> Xa’))
< exp(\*05/2),

for
|F'(x) = F(y)| = [zl = llylll < llz —yll <]z =yl

Now it suffices to observe that
la — b|3 = 2(1 — cos ) = 4sin’(6y/2) > 4(2/7)2(02/4),

and to conclude with Markov’s inequality as it is done in the proof of Theorem 4.8.

4.3 Dvoretzky’s Theorem

We denote by G, i the set of k-dimensional subspaces of R" equipped with its Haar
measure, that is the unique probability measure invariant under the action of the or-
thogonal group on R"™. Dvoretzky’s theorem tells about the random Euclidean sections

of a symmetric convex body in R"™.

4.12 Theorem. Let K be a symmetric convex body in R™ such that BY C bK. Let M be

a median of ||-|| with respect to o, on S, where ||-|| = ||| ;.. Then for every e € (0, 1),
if
b enM?e?
[ v2In(4/¢)

then the set of subspaces E € G, such that

(1—-e)M(KNE) C ByNE C (1+e)M(KNE)

1 — 2exp (—klog (g)) .

Here ¢ > 0 is an absolute constant.

has a measure greater than

We will prove the Gaussian version of this theorem.
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4.13 Theorem. Let K be a symmetric convex body in R"™ such that By C bK. Let || - ||
be the norm associated with K and let G be a standard Gaussian vector in R™. Then for

every € > 0, if
| ElG
b>m21n(21/¢)
then the set of subspaces E € G, 1, such that

E|G|

EIG]]
1 —
( €>E\G|2

E|Gl,

(KNE) C ByNE C (1+¢)

21
1 —4exp (—k:log (—)) .
€

4.14 Remark. Let 6 be a random vector uniformly distributed on the unit sphere S™ 1.
Then G ~ |G|26, hence

(KNE) (4.5)

has a measure greater than

Elcll
E|Gl,

Thus, E ||G|| = /nE ||0]|, so up to the fact that M is replaced with 0 [|0]| = [, [|0]] don(6),
both theorems are identical.

=E0].

The idea of the proof is standard now. We consider the random Gaussian operator
G, : 05 — (R™, ||-]|) and we

a) do an individual estimate on deviations of |G, ()| from its mean,
b) apply a discretization argument (construct a net),
c¢) deduce a general estimate from a net estimate.

4.15 Remark. A procedure to generate the Haar measure v, ; on G, is the following.
Let 7, be the standard N (0,1d) Gaussian measure on R™. Take the push-forward of the
product of 4, X ... x 7y, on R"&...®R" under the map span{zy,...,z;}. The result is
invariant under the action of the orthogonal group and it has to be the Haar measure on
Gn. i because of the uniqueness. If we denote by A the subspaces of G, j such that (4.5)
holds true then v, x(E € A) = P(ImG, € A)

4.16 Lemma. For every § € (0,1) there exists a -net of S*=' with respect to | - | of
cardinality less than (3/9)F.

Proof. Let 01, ...,0y be a maximal number of points of S¥~! such that for all i # j,
0; — 6;] > 6. Then, for any 6 € S¥~!, there exists ¢ € {1,..., M} such that |0 — ;| <4,
otherwise, the set would not have been maximal. Hence {61, ...,0} is a d-net of S¥~1,
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It remains to estimate M. The Euclidean balls centred at 6; of radius 6/2 are disjoint.
They are all contained in the Fuclidean ball centred at the origin and of radius 1 + g.

We get
M 5 M 5 N
vol (gB (91‘7 5)) = ;vol (B <9Z~, 5)) =M (5) vol(BY)
5 k‘
S (1 + 5) VOI(B;L)
which proves that M < (1 +2/0)% < (3/6)". O

4.17 Lemma. Let N be a §-net of S¥=1 with respect to | - |5 and let T : 05 — (R™,||-]|)
be an operator such that Ay < ||Ta|| < Ay for all « € N'. Then for all x € S*~' we have

O
1—

A1
1—-0

Yo = 125 < 17| <

Proof. Let zy € S*! be such that ||Txg|| = max,cge—1 ||[Tx||. There exists an element
ag of the d-net N such that |ag — zglo < 5. We have

1T zol] < [[Taoll + 1T (z0 — ao)ll < A1+ |an — o2

T (0‘0—) H <A\ 40| Tl

|040 - 900|2

hence ||Txg|| < Ai/(1 —3d). Now let # € S*! and take a € A such that |a — z]y, < 4.

Then ) i
1 1
52 |Taol| > |Tz]| > [Ta| = |T(z — )| > A2 — s

]

Proof of Theorem 4.13. If G =" | g;e; then with E = (R", ||-||) we deduce from B} C
bK that
o(G) = |lid - &3 = (R [|-|)I} <b.

Set a € S*~1. Since G, (a) ~ G then by Theorem 4.8 we have

ct?
P (161 - Bl | > ¢) < 2o (-5 )
where we can set ¢ = 2/7%. Therefore,
2 EllG 2
P(|IGu(@)l ~EIGI| | > cE||G]) < 2exp ( #) _
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Let N be an e-net in the unit sphere of cardinality (3/¢)*. Then the union bound gives

2E G 2
F (30 € N3 | 16l ~ E 61| > B 1) < 2iVenp (- ELIE)

2 2
< 2exp (kln (g) — W)

3 1 c*(E|G])?
<< - —_ 7 .
kln (E) 5 02 ; (4.6)

Then if

we have

VaeN,  (1-gE[G] <[Gu()] <(1+e)E|G]

with probability greater than
1—2exp (—k:ln <§)) .
€

Since (1 —e— %) = %, we deduce from Lemma 4.17 that

1— 3¢ 1+¢
E < |G, <
T 1G]] < |Gu()]| < T

vz e SF1, E G|

If k satisfies (4.6) then, thanks to ||-|| < b]- |, we observe that

3 1
k1n (g) < 5052(E|G|g)2

and therefore we can get the same conclusion with ||-|| replaced by | - |2,
1-3 1
vre sl STU EIGh < [Gu(@)k < f E|G),.

Taking the intersection of the two events we infer that with probability greater than

sm(Can(?)

both conclusions hold true for the operator G,,. Using these inequalities and homogeneity
of the norm we have

13 E|G]| _[Gu(@)l _ 1+¢ E|G|
1+e E|Gl — |Gu(@)]s = 1—3¢ E|Gf

with high probability. We set E = ImG,,. Therefore, if k satisfies (4.6), that is,

c(E[|G]))%?
= 202 In(3/2)

Vi € RF
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then we have

13 E|C| _ |yl _ 1+ E|G|
1+e¢ E|Gla ~ |yla — 1 -3¢ E|G|y’

Vye FE

Moreover, it is clear that dim £ = k and changing ¢ to /7, we achieve our goal. The
result follows from Remark 4.15. O

We will need later a dual version of this theorem. We write it for a simple choice of €.

4.18 Theorem. Let K be a symmetric convex body in R™ such that its support function
hx satisfies hy(-) < b|-|o. If
2
ST
then the set of subspaces E € G, 1, such that

1Ehg(G)
2 E|G|s

3Ehg(G)

PrpBl PrK —_
ez C PR C 5T

PpB

has probability greater than
1 —4dexp(—ck),

where ¢ 1s a universal constant.

Proof. Note that ||-|| o = hk, where hg is the support function of a convex body K.
The hypothesis ||-|| o < b] - |2 is equivalent to By C bK°. Applying Theorem 4.13 to
K°, we get that for e = 1/2, if

then there exists a set of subspaces E € G, j, of measure greater than 1 — 4e~ such that

Ehy(G) 3Ehx (G)

— (K°NEkE) Cc BPNE ¢ ———~
EmG, K NE) B 2E|C],

(K°N E).

We can now dualize these inclusions using (B N E)° = PpB}, (K° N E)° = PgK to

obtain
Ehk(G)

OE|G],

3Ehx(G)
2E|G

To conclude this part, we state and prove the classical Dvoretzky’s Theorem.

4.19 Theorem. Let (R", || -||) be a normed space. For every e € (0,1), there exists a
subspace E C (R™, || -||) of dimension k > c(¢)logn such that d(E, (%) <1+e¢.

Consequently, (o is finitely representable in any infinite dimensional Banach space
X.
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Proof. Although in the notes the concept of Banach Mazur distance between two Banach
spaces has not been explained, we refer for a basic presentation to classical books on
Banach spaces, e.g. [80, 92]. The statement of the theorem means that given R™ equipped
with a norm || - || and its unit ball K then one can find a linear transformation 7" € GL,,
such that T'(K) admits a section with a subspace E of dimension k satisfying

R
rBJNECT(K)YNECRBINE with — <1+e¢.
T

Of course, By N E is nothing else but a Euclidean ball in dimension £k that you may
identify as BS. We can now start the proof.

Let T' € GL,, be such that BY is the ellipsoid of maximal volume contained in T'(K).
This map exists and is uniquely characterized by Theorem 2.10. Of course, By C T(K)
and by Theorem 2.11 we get

E|Gllri) = E|Glo = E max |g; > ¢ y/logn,

where the last inequality follows from a simple estimate of the distribution of the maxi-
mum of n independent Gaussian standard N (0, 1) random variables. By Theorem 4.13
with b = 1 we conclude that for every € € (0,1) there exists a subspace E of dimension
greater than ¢ (¢?/log(1/¢)) logn such that

E|[Gllzw)

E|Gllzu
1—¢ _
=9~ Eep,

(T(K)NE) C ByNE C (1+¢) EG]

(T(K)NE)

which is the desired conclusion up to a change of ¢ to £/3.

By definition, /5 is finitely representable in an infinite dimensional Banach space X
if and only if for any £ € N and any € € (0, 1), there exists a k dimensional subspace
E C X such that d(E, (%) < 1+ e. This follows immediately since logn goes to infinity
as n goes to infinity. O

4.4 Comparison of moments of a norm of a (Gaussian vector
From the Gaussian concentration inequalities we can deduce the following theorem.

4.20 Theorem. There is a constant ¢ such that for any norm || - || on R™ whose unit
ball is denoted by K, the following holds true. Assume that ||-|| < b]|-|2. Then

(=11 -l61]) " <cbyp. forp=1 (47

where G is a standard N'(0,1d) Gaussian vector in R™. Set
E |G|\
0 (IS
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If 1 <p < k*(K) then
E G
e et | DAY (4.8)
Elcll

If p > k*(K) then

(EG")"" < cb . (4.9)
In addition, if b is the smallest constant such that ||-|| x < b|- |2, then, for all1 <p < 0o
we have

cbp < (E||GIIN)". (4.10)

Proof. From Theorem 4.8 we deduce

P [e.e] o0
BlIG—Elcl| = p [ P UIGH~EIGI > 0 <2p [ exp(—e /i) at

VS|

_ P e _pt”
= M/o w2 exp(—u) du = WI‘(p/Q).

Therefore to obtain the first inequality it suffices to use Stirling’s formula. It follows
from the triangle inequality that

ey - lel| < (8 ien - Elal )" < cb v
therefore if p < k*(K') we have
(E(IGIF)? <E|IG|l + cbyp < (1+ E |G-
If p > k*(K) then
(E[IGIF)? < E|IG|| + cby/p < (1+ c)by/p.
Moreover, for all 1 < p < oo we have

ENGI)?=(E sup [(6,G)[")" > sup (E|(6,G) )"

1l o =1 18]l o =1
For any ¢ € R™, (¢, G) ~ N (0, |¢|2), therefore
(El (¢, G) I")" > clélov/p-

If b is the smallest constant such that |||, < b]|- |2 then |- |3 <b ||| 4 and there exists
¢ € R" such that [¢|o = b ||¢|| ;.. Therefore, (E||G||")/? > cb/p. O
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4.5 Notes and comments

The results presented in this chapter are at the heart of the study of high dimensional
concentration phenomena. They can be considered as the basics of the theory. Theorem
4.1 is due to Lévy [68]. Theorem 4.12 is taken from [75]. Moreover the isoperimetric
problem on the sphere is delicate and a proof based on the Steiner symmetrisation can be
found in [37]. The paper [37] is a masterpiece on this subject. Vitali Milman had a great
influence in the discovery of the power of the concentration measure phenomenon on the
Euclidean sphere. His proof of the quantified version of Dvoretzky’s Theorem 4.19 is the
starting point of a main branch of the local theory of Banach spaces. We emphasize that
the original paper of Dvoretzky [35] contains also a quantified finite dimensional version.

In the Gaussian setting, the isoperimetric problem was solved by Sudakov and Tsirelson
[89] as well as independently by Borell [23], see Theorem 4.4. It may be deduced from
the spherical case by using the Poincaré lemma. There is also a proof by Ehrhard, [36]
which uses the so-called Ehrhard symmetrisations.

As we said, all these proofs are delicate and this is why it was attractive to study the
concentration of measure phenomenon by itself. We have presented simple proofs in the
Gaussian setting. The proof of Theorem 4.8 is due to Maurey and Pisier. We followed the
presentation from [80]. Theorem 4.10 is due to Schechtman [85] but we followed a proof
indicated to us by Pisier. Up to the constant C', its Corollary 4.11 is know as consequences
of Gordon’s min-max inequalities [50]. We have showed a proof that uses the Majorizing
Measure Theorem of Talagrand [90]. Never mind the original papers of Gordon [50, 51],
a detailed proof of the Gordon’s min-max inequalities can be found in [69]. Theorem 4.6
is due to Talagrand [91] and we have followed the argument of Maurey [73] using the
so-called Property (7). It can be extended to the setting of uniformly smooth Banach
spaces [87, 3| recovering a concentration of measure phenomenon on uniformly convex
spaces due to Gromov and Milman [53]. Theorem 4.20 is due to Litvak, Milman and
Schechtman [71].

Several books about the concentration of measure phenomenon and its applications
have been written. We refer to [65, 64, 25, 30] for further readings about various other
results.

50



5 Reverse Holder inequalities and volumes of sec-
tions of convex bodies

5.1 Berwald’s inequality and its extensions
We start by formulating a reverse Holder inequality due to Berwald [15].

5.1 Theorem. Let ¢ be a nonnegative concave function supported on a convex body K
in R™. Then for any 0 < p < q we have

(3 fers) = (2 )’

Note that
(n+p):(n+p)<n+p—1)...(p+1>: 1 5.1)
n n! pfol (1 —w)"ur=1 du
Observe also that for any r such that the integrals are finite,
1 oo
i | o@rtar=en [ ratoz o) a (5.2
K| Jx 0

where £ is the measure uniformly distributed on K, pu(A) = |K N A|/|K|. Since ¢ is
concave we have

{o= (1= Nu+ v} 51 =A{¢=u}+ Mo =0}

Let us define f(t) = u({¢ > t}). Since K is a convex body, the measure p satisfies the
Brunn-Minkowski inequality, and by Theorem 3.2, we have

P = N Av) = (1= X) Y% () + A f"(0) (5.3)
whenever f(u)f(v) > 0. We state a generalisation of Berwald’s inequality.

5.2 Lemma. Let h: Ry — Ry be a decreasing function. Let ® : Ry — R, be such that
®(0) = 0 and the function x — ®(x)/x is increasing. Then the function

Clp) = ( o (D ()P da:)p

0+OO h(z)xr dx

is decreasing on (—1,00).

It is a generalisation of Berwald’s inequality. First we show how it implies Theorem
5.1 and then we prove the lemma.
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Proof of Theorem 5.1. Let h(u) = (1 —u)"1p1j(u). Take

o(x) =1 - pu({o > 2})V",
where 1 is uniformly distributed on K. By inequality (5.3), we know that & is convex.
Obviously, (0) = 0. Thus, @ = %?(o) is increasing. Hence, from Lemma 5.2, the
function

5 ({0 > ohar da\ T
G(p):< B(n+1,p+1) )

is decreasing on (—1,400). Here and throughout we shall use the Beta function B(z,y) =
fol t*=1(1 — t)¥~1d¢t. Tt follows from (5.1) and (5.2) that

1\ 1 1 too

(" o >_/ ¢(x)P* dz = (p+1) (n o ) / P u({o > t}) dt = G(p)"*,
n K| Jk n 0

and Berwald’s inequality is proved. O]

Proof of Lemma 5.2. Let a = 1/G(p). Then it follows that

/0 " h(ax)z? de = /o h h(P(z))x? dz.
Set .
o) = [ (hlaz) = (@) do.

Then by the definition of a we have g(0) = 0. Obviously g(oco) = 0. We are able to
analyse the sign of h(ax) —h(®(z)). Since ®(x)/x is increasing, there exists xo € [0, +00]
such that ®(z) < ax for x < xy and ®(z) > ax for x > xy. Since h is decreasing we
have h(az) —h(®(x)) <0 for z < z9 and h(ax) — h(P(x)) > 0 for © > . Therefore, we
know the sign of ¢/(t) and we can conclude that g is increasing on [0, xy] and decreasing
on [zg,00). Since g(0) = g(+00) = 0, we deduce that g > 0 on R.

The statement of the lemma follows by integration by parts. Indeed, taking —1 <
P=q

/0 (@) do = /0 R ())a 7 da
= (¢—p) /0 " (@) /0 "t du da
=(¢—p) /O+OO ui~P! /foo 2Ph(®(z)) do du

adtl

+00 1 +oo
= / hax)z? doe = / h(z)x? dx,
0 0
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which is equivalent to G(q) < G(p). O

5.3 Proposition. Suppose [ : R, — R is log-concave with f(0) = 1. Then the function
+00 %
tPf(t)de\”
o (B
Fip+1)

Proof. Let h(t) = e'. By log-concavity we have f = ¢~®, where ® is convex on R, and
since f(0) = 1, we have ®(0) = 0. Clearly f = h o ®, therefore we can apply Lemma 5.2
and use the fact that

is decreasing on (—1,400).

+oo
/ e ‘el de =T (p+1).
0
[l

We shall present now a crucial property of log-concave distributions which says that
they have log-concave tails. It will be important in view of the next proposition, where
we discuss the comparison of moments of random variables with log-concave tails.

5.4 Proposition. If f : R — R is log-concave then it has log-concave tail, namely
+o0
t — f(z) dz

t

15 log-concave.

Proof. We define functions g(x) = f(2)1¢,,00)(2), h(y) = f(¥)Litz,00(y) and m(z) =
F(2)1 00, +(1-A)ta,00) (2). Then log-concavity of f yields

m(Az + (1= A)y) > g(x)*h(y)' ™
and by the Prékopa-Leindler inequality, Theorem 3.6, we have

/;Oo f(z) dz > ( ) dx)A< tm (@) dx>H.

tl—‘r(l—)\)tg t1 2
]

We state the reverse Holder inequalities for positive random variables with log-
concave tails. In particular, due to Proposition 5.4, it is valid for log-concave distributions
as well.
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5.5 Proposition. Suppose Z is a positive random variable with log-concave tail, i.e. the
function f(t) =P (Z > t) is log-concave. Let £ be the exponential random variable with
parameter 1. Then for p > q > 0 we have

(EEP)L/P
(Ezp)l/p < W(EZQ)l/q_
5.6 Remark. Note that EE? =T'(p + 1), so
(EEN)P _ p
=) <ok
e =y
where C' is a universal constant.
Proof. Define
1 too EZP
= Pl qp =
G(p) o s (x)z T= g

By Proposition 5.3 we have
G(p)'" < G(g)"e.

O

The last proposition is a typical example of a reverse Holder inequality. We deduce
the so-called Khinchine type inequality for linear functionals.

5.7 Corollary. Let § € S"!, take H = 6+ and H, = {x € R", (x,0) > 0}. Let

(x,0>+:{ (x,0), if (x,0) >0 |

0 otherwise

Then for every log-concave probability measure p on R”

(/n (z,0)" du(x))l/p < % (/Rn (2,0)% du(x))l/q (5.4)

for any p > q > 0.
In particular, it holds for a uniform measure  on a convex body K C R™.

5.8 Remark. Since | (z,0) [P = (x,0)" + (x,—0)", it is easy to see that inequality (5.4)
holds true for the function | (x,0) | instead of (z,0)_ .

Proof of Corollary 5.7. The function ¢(z) = (x,6) is affine, hence for every u,v > 0, and
any A € [0, 1]

(1= M{(z,0) . > u} +M(z,0), >v} C{{z,0), > (1 —Nu+ v}
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By log-concavity of p, we deduce that the function t — f(t) = p({(x,0), > t}) is
log-concave on R,. Let Z be a random variable with tail f. Then we have

/n (2, 0)% dp() = p/;oo P u({(z,0) . > t}) dt =EZP

and the result follows from Proposition 5.5. m

We quickly explain why Lemma 5.2 is related to the study of the comparison of the
volume of a convex body with the volume of its hyperplane sections.

5.9 Corollary. Let K be a symmetric convex body and let p > 0. Take 8 € S ! and
H = 60+. Then

1 1/p e ! 1/p
(e [1mapan) "< ()
K| Jx vol, «(KNH)2\(p+1)...(p+n)

5.10 Remark. There is equality if K is a double cone

conv{{x:(m,...,xn) E]R”|x%+...+xfkl < 17xn:0}76n;_6n}
and H = e

5.11 Remark. If K is such that its inertia matrix is the identity, that is for all 8 € R"

1
ﬁa[g@ﬁﬂﬁu=W@

then taking p = 2 in Corollary 5.9 yields

vol,_1 (K N H) < \/ n?

vol, K 2(n+1)(n+2)

This type of inequality is related with the slicing problem.

Proof of Corollary 5.9. Since K is symmetric we have

1 l,,— K =
o [y [pprett SR D 20,
K| Jk R vol K

_ /*O" p¥olnt K0 (10 + H)
) vol K

dt.

As a consequence of the Brunn-Minkowski inequality, we have seen in Theorem 3.17 that

the function
vol,_1 (K N (t0+ H))

vol K

ft) =
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is ﬁ concave. Let h(t) = (1 —¢)" 1} (¢). Take

M:l_(%)*—:

Obviously @ is convex on R and ®(0) = 0. Therefore, x — ®(x)/z is increasing. Since
max f = f(0), we have ®(z) € [0, 1]. By Lemma 5.2, we know that

Tk d P [l (@,0) P de 77
Clo) — 0 T x B 2‘K| x| (T, x
(p)_ - |[KNH|

foxpl—x)”ldx T [} ap(1 —z)n-t da

is decreasing for p > —1. Hence for all p > 0, G(p) < G(0). Rewriting the inequality,
we see that we are done. Indeed, the inequality G(p) < G(0) is equivalent to

_1
(ﬁfK .0) \pdw)”“ cn. K]
-2

KNH
Bt B(p+1,n)

Therefore,

p+1

meH| vn K] \'7
p < 1 o
(w1 [ 1o dx) <(Harserin) (5 mom
_n
2

|KHZWB@+1MWP

It suffices to notice that

 TmT(p+1)  alp+1) n!
nB(p+1,n)—nP(n+p+1) T Tn+p+1) (p+1...(p+n)

]

Now we conclude this section with the strongest form of generalisation of Berwald’s
inequality.

5.12 Theorem. Let f : [0,00) — [0,00) be 1/n-concave on its support. We define
H [—1,00) —>R+ by

e f(t) dt X
H(p)=14 Blp+1,n+1) T
f(0) p=-1

Then H is log-concave on [—1,400).
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Another proof of Theorem 5.1. We have

400
e [otertar=y [ oz 0)a

where p(A) = |[K N A|/|K|. We have seen in (5.3) that the function f(t) = pu({¢ > t})

is 1/n-concave, therefore by Theorem 5.12,

pel-tioo o i) = (") e [ ot a

is log-concave. Take —1 < p < ¢g. We can find A € [0, 1] such that p = (1 — X\)(—1) + Ag,

ie. A= 2%. By log-concavity of H we have

H(p) > H(=1)"""H(q)*,
and since H(—1) = f(0) = 1 we obtain H(p)"/®+) > H(q)Y/(a+1), O

5.13 Corollary. Let f be a log-concave function on R,. Then the function H : [—1,00)
— R, given by
(L) dt
H(p) = T(p+1)
f(0) p=-1

is also log-concave. Moreover, if f(0) =1 then the function

Feogr f(t) dt i
0
p'_>< I'lp+1) )

p>—1

18 decreasing.

Proof. Let f = e~?, where ¢ is convex. The function

g(t) = <1 - M)n

/4

is (1/n)-concave, therefore by Theorem 5.12 the function

ds

+o00 RGOS
b P-%E) 4 rpansn 1 /°° ON
p Blp+t1lLn+tl)  Tp+)T(n+ ) ), n ),

is log-concave for p € [—1, +00). Letting n — oo gives the result.

To prove the other part it suffices to observe that for every log-concave function F
In(F(x))

such that F'(0) = 1 the function z — —=—=* is increasing. Consequently, we have

recovered Proposition 5.3. O
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Proof of Theorem 5.12. Since f is nonnegative, 1/n-concave on its support and satisfies
some integrability condition at infinity (so that H is defined at least at one point), we
know that f is supported on a finite interval.

Step 1. Take —1 < p < ¢ < r. We can find nonnegative parameters a, b such that for
the function g, : Ry — Ry given by

Jap(t) = a (1 - 2)” Lou(t)

we have
“+oo “+o0o
/ tPgap(t) dt = / tPf(t) dt == m,,
0 0
and

+o0o +00
/ (g0 (t) dt = / () dE = .
0 0

Indeed, for any s > —1
+oo
/ t5gap(t) dt = ab*t'B(s +1,n + 1),
0

so the solution reads

b:(@‘B(q—l—l,n—l—l))qu
m, B(p+1,n+1) ’

1
mitt CB(g+1,n+ 1PN
mitt B(p+1,n4 1)a+!

Step 2. Denote by H, the function H associated with g,,. Then Hy(s) = ab*™!, so
we have
Hy(q) = Hg(p)l_/\Hg(T)A7

whenever (1 —\)p+ Ar = ¢. This means that we have equality in the special case of H,.
Step 3. Set h = g — f. We will prove that

“+oo
/ t"h(t) dt > 0. (5.5)
0
This will conclude the statement since for (1 — \)p + Ar = ¢
H(q) = Hy(q) = Hy(p)' " Hy(r)* = H(p) " H(r)"

Let oo oo
H(t) = / sPh(s) ds, Hy(t) = / sTP1H | (5) ds.
¢ ¢
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We have f0+°° tPh(t) dt = 0, thus Hy(o0) = H;(0) = 0. We observe that
+oo +o0
0= / t9h(t) dt = / PP (8) dt
0 0

+o0 “+o0o
__ / FP () dt = (g — p) / 1L (1) dt
0 0

= (¢ — p)H>(0),

whence Ho(0o) = Hy(0) = 0. Since Hj(t) = —t7 P~ H,(t), the function H; changes sign
at least once (if not, then H) > 0 or Hj < 0, and since Hy(0) = Hy(co) = 0, we have
Hy; = 0, but then H; = 0, h = 0 and there is nothing to do). Since H; changes sign
at least once and H;(0) = Hy(o0) = 0, therefore H{ changes sign at least twice. Since
H!(t) = —tPh(t), we have that h changes sign at least twice. Moreover, ¢g'/" is affine and
f1/7 is concave. Therefore, h changes sign exactly twice at points ¢; and ¢, and we have
a > f(0) and b > maxsuppf.
Now we can analyse the behaviour of our functions,

t 0 t to 400
h(t) + 0 - 0 +
Hi(t) - 0 + 0 -~
0
/ 0
H(t) + 0 _
(1) / \
0 0

Hence Hy > 0. Therefore,
+oo +00 +oo
/ t"h(t) dt = / t"PPh(t) dt = — / t""PH(t) dt
0 0 0
+00 too
= (r— p)/ P H () At = (r — p)/ P L () dt
0 0

=—(r—p) /Om tTIHy(t) dt = (r — p)(r — q) /Om t"9 Hy(t) dt > 0.

This proves (5.5). O
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5.2 Some concentration inequalities

With a view to extending Corollary 5.7 to a vector setting, we require new tools. Indeed,
a function like a norm || - || is not concave but convex and Theorem 5.1 cannot be
applied. In this setting, the reverse Holder inequalities are based on some concentration
inequalities of log-concave measures.

5.14 Lemma. Let K be a symmetric convex set in R™ and let p be a log-concave prob-
ability measure such that p(K) =0 > 1. Then

W((tK)) < 6 (%) < (#) >

Proof. We prove that for any ¢t > 1

2 t—1
KD —(tK)*+ —K. 5.6
t+ 1( )+ t+1 (56)
To this end, suppose that y € K and that z ¢ tK. If there was z := t%z—i—i;—iy € K, then
we would have %z = %x — %y € K by convexity and symmetry of K, a contradiction.

Hence (5.6) is proved. By log-concavity of u, we get
_2 =1 2 41
1= 0 = p(K%) > [u((tK))] 7 [u()] 7 = [u((¢K)9)] o=,
Rewriting the expression, we arrive at
t+1 t t
1 11 1-6\ 2z 1-60\2 1-6\:2
(K < (1—0)2 072 =0 (T) = (T) VoI —0) < (T) .

Observe that this inequality is meaningful only if # > 1/2 so that (1 —6)/0 < 1. O

5.3 Kahane Khinchine type inequalities

5.15 Proposition. Let p be a log-concave probability measure on R™ and let || - || be a

norm. Then
r ({HxH > [ H:vl\du(x)}) <ot izl

Proof. Let I = [||z||du(z). Then by Markov’s inequality u(||z]| > 4I) < 1/4. Let K
be the symmetric convex body defined by {z : |lz|| < 47}. Then p(K) = 6 > 3 and
(tK)¢ = {]||z|]| > 4t I}. We conclude from Lemma 5.14 that

u({lle]l = 46 1}) = u((tE)) < (17) <3<t
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Such exponential decay of the tails is related to the following reverse Holder inequality.

5.16 Proposition. Let p be a log-concave probability measure and || - || be a norm. Then
for any 1 < p < q we have

</“ﬂVdM$0Uh§12§(/ﬂﬂFdeO;.

Proof. Observe that by replacing | - | by its multiple, we can assume that

[l duta) =1
Therefore, by Markov’s inequality, we have

p({llzll = 4}) <477

Take K = {z : [|z|| < 4}. Then p(K) =60 >1—-4"7 > 1 and (tK)° = {z : ||z]| > 4t}.
By Lemma 5.14, we have

N o NE
pl{||x|| > 4t}) < (T) < (1 — 4p) <e fort > 1
since 47 > eP 4 1 for all p > 1. Using this inequality, we can write
4 +o0
/lellq du(z) = CI/ = u({llz] > ) dt+(1/ t p({[l=]] > ¢}) dt
0 4
+00
<attg [ s (] = 45)) ds
1
+00
<47+ 4qq/ s97te™3P/2 g
0
8 q
< 49 + (—> ['(g+1).
p

Since for every ¢ > 1, I'(¢ + 1)'/? < ¢, we deduce that for any 1 < p < ¢,

Ha q q
(/MﬂWd#@Q cirsl o
p p

]

5.17 Remark. For § € S"~! one can take ||z| = | (x,6) | whose unit ball is the symmet-
ric strip {x : | (x,0) | < 1}. In that case, Proposition 5.16 is, up to a universal constant,
the same as the symmetric version of Corollary 5.7
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5.4 Notes and comments

The starting point of this section is an old result of Berwald [15]. His paper is readable
and it is not difficult to go over all the statements to see that Theorem 5.1 is nothing
else but Satz 7 from [15]. We followed a modern presentation of the results. Lemma 5.2
is taken from [76] and the reader may find there several other types of reverse Holder
inequalities. Moreover, paper [76] contains a beautiful presentation of the slicing problem
for convex bodies, where relations between the volume of sections of a convex set with
the moments of linear functionals are established, like Corollary 5.9. The strongest form
of reverse Holder inequalities, Theorem 5.12 and Corollary 5.13 appeared in [20], see also
[31]. Corollary 5.7 is stated in [74].

The non-symmetric version of inequalities like those obtained in Corollary 5.9 and
the functional versions are of interest in the study of geometry of convex bodies. It has
been done by Makai-Martini [72] and Fradelizi [40, 41, 42].

The extension of Corollary 5.7 to a vector setting is known since the work of Borell
[22]. Lemma 5.14 is taken from [22] and is known as Borell’s lemma. Proposition 5.16,
is also stated in [22]. It is usually referred to as the Kahane Khinchine type inequality
because it implies the classical Kahane inequality, see [77]. However, Corollary 5.7 and
Proposition 5.16 do not cover the case when p goes to zero. It had been an open problem
for some time and took quite an effort. The problem for p > 0 was addressed by Latala
[62]. Then the first named author proved the equivalence for negative exponents (see
[54]), using a completely different approach — the so-called localization lemma. Latata’s
theorem as well as Guédon’s result led to a strong result of Bobkov [16]. It is also worth
to mention here that Latala’s method could be used for the negative exponents, as it
was shown in [70]. It has to be noticed that a more general statement than Lemma 5.14
has been established in [54]. Namely, we have the following theorem.

5.18 Theorem. Let K be a symmetric conver body in R™ and let yu be log-concave
probability measure. Then for any t > 1,

t+1

p((tE)) < (1 — u(K))F

It is the key tool to prove Kahane Khinchine type inequalities for negative exponents
[54]. More general concentration inequalities for level sets of functions instead of norms
have been established by Bobkov [17], Bobkov-Nazarov [19] and Fradelizi [43].

62



6 Concentration of mass of a log-concave measure

6.1 The result
Let X be a random vector in R™, and define 0,(X) by

0p(X) = sup (E[(X,0) )"

fesSn—1
Our goal is to prove the following theorem.

6.1 Theorem. There exists a constant C' such that for any random vector X distributed
according to a log-concave probability measure on R™, we have for all p > 1,

(E[X[)"? < C(E[X]2 + 0,(X)). (6.1)
Moreover, if X is such that for all § € S"7!, E (X, 6>2 =1, then for any t > 1 we have
P(|X |y > ¢ ty/n) < etV (6.2)

where ¢; 18 a universal constant.

Proof of the “moreover” part. Since X is distributed according to a log-concave proba-
bility, we get from Corollary 5.7 (or Proposition 5.16) that for all p > 1,

1/2
0,(X) = sup (E[(X,0) )" <C'p sup (E[(X,0)2)"
gesn—1 pesn—1

where C’ is a universal constant. Moreover, since for all § € S"7 1 E|(X,60)|*> = 1, we
deduce that

1/2
E|X|, < (B|X[2)/? = (ZE\ (X, e;) ) =n
and conclude from (6.1) that for all p > 1,
(E|X[5)"" < Cvn+ C'p.

For any ¢t > 1 take p = ty/n and ¢; = e(C' 4+ C”) so that cit\/n > e(C'p + Cy/n) >
e(E|X|5)Y? and by Markov’s inequality

P(|X]2 > c1tv/n) < P(IX[5 > eB|X[) < e = e VW
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The proof of the main inequality (6.1) requires more work. The first step is a simple
reduction to the symmetric case. Indeed, let X’ be an independent copy of X. Then by
the Minkowski and Jensen’s inequalities,

1
(EIX[2)? < (B||X]s — E[X"]o[")* + B|X|5
< (E|IX]2 — 1X':")"" + X2 < (E|X — X')Y7 + E|X],.

Assuming that inequality (6.1) is proved in the symmetric case, we apply it to X — X’
(which is symmetric and log-concave, see Proposition 3.16) and get

(E[X — X'))YP < C(EIX — X'|s + 0,(X — X))
But E|X — X'|; <2E|X|; and 0,(X — X’) < 20,(X). Therefore,
(E[X[5)"? <3C (E|X|2 +0,(X)).

This means that to conclude the proof of Theorem 6.1, we just need to prove inequality
(6.1) for a log-concave symmetric random vector X in R".
This is the purpose of the rest of this chapter. We start off by introducing Z,-bodies.

6.2 The Z,-bodies associated with a measure

6.2 Definition. Let pu be a measure on R™. We define the convex set Z, (i) by its support
function

hz,(0) = (/ (z,0)% du(x)> : 6 c R
where (x,0), = (x,0) if (x,0) >0 and 0 otherwise.

6.3 Remark. To justify Definition 6.2, recall that the support function of a convex
body K is given by hi(u) = sup,cx (,u). And it is well known that any function h
satisfying h(Ax) = Ah(z) and h(z +y) < h(z) + h(y) for any A > 0 and any z,y € R" is
the support function of a unique convex set.

6.4 Remark. Let g be a standard Gaussian N (0, 1) random variable and let G be a
standard Gaussian N (0, Id) random vector in R". For any = € R", (G, x) ~ g|z|s, hence
we have

Therefore,

[l due) =& [ (Gt () g = B, (O oy (6.3
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The next Lemma is crucial to understand the properties of the Z,-bodies associated
with a measure with a density with respect to the Lebesgue measure on R”.

6.5 Lemma. Let i1 be a measure on R™ with density w : R™ — R,. Given a subspace
F CR", let Ig(p) be the marginal of p, i.e.

Hpp(y) = / - w(z) da.

Then Prp(Zy(pt)) = Zp(llpp).
Moreover, if w is log-concave and w(0) > 0, let for any r > 0

K, (w) = {:c € R", r/0+oo tlw(tz) dt > w(O)} :

Then for any p > 0

Zy(11) = w(0) /7 Zy (K p(w)) = w(0) P | Koy (w) |75 Zy(Kpyp(w)),  (6.4)

where Z,(Knip(w)) is the Z,-body associated with the measure of density 1k, () and

K, ip(w) is the homothetic image of K,,(w) of volume 1.

Proof. For 6 € F' we have

hpp(zyu)(@) = sup  (x,0) = sup (Pr(y),0) = sup (y, Prd) = hz,.,(0)
r€PF(Zp(1)) YE€Zp (1) YE€Zp(1)

_ ( / (.0)" dﬂ(@)”p
: (/F /f” (2,00 wly + 2) dz dy> N
: (/F o (/F w(y +2) d2> dy) :

= ( /F (y,0)%. Trp(y) dy) " hz, (115 (0)-

By Theorem 3.23 we know that when w : R — R, is a log-concave function not 0
almost everywhere with w(0) > 0, then the function

too L w(tr) )_i
x =|r Lt
| HKT(w) ( /0 w(0)
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is a gauge on R" (recall that it is meant that it satisfies the triangle inequality). Therefore,
the set K, (w) = {[|z| x,(,) < 1} is a convex set containing the origin. The second part
of the lemma follows by integration in polar coordinates. We have

+00
hép(u)(e) = / (7,0)8 w(z) dv = ”|Bg’/0 /Sn_1 Pl (2, 0)" w(tz) do(z) dt

,0)F
—w "m0 4
e

+o00
= n\BS\w(O)/ /s Pl (o) 0)" 1g,,,(tz) do(z) dt
0 n—1

— w(0) / (2,0)" 15, (z)de
= w07, (k) (0)-

Moreover, by a change of variable

1/p 1/p
th(Kn+p)(0) = (/ <$7 9>}—7|— d[L‘) - |Kn+p|;+; (/N <l‘7 0>i dZL’)
Kn+p Kn+p

T T T
- |Kn+p|p th(K,H_p)(e)

which means that Z,(K,4,) = |Kn+p|%+%2p(m). The meaning of equality (6.4) is
that in the log-concave case, the Z,-bodies associated with the measure p are the same
as the Z,-bodies associated with a properly defined convex body. O]

In view of Lemma 6.5, we notice that it is of importance to work with family of
measures which are stable after taking the marginals. By Theorem 3.15, we know that
indeed, the marginals of a log-concave measure remains log-concave. At this stage, it is
of interest to know some geometric properties of Ball’s bodies, K, (w).

6.6 Proposition. Let w : R" — R be an even log-concave function such that w(0) > 0.
For any r > 0 let
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Proof. For any x € R", let f, be the log-concave function defined on R by f.(t) =
w(tx)/w(0). Then Proposition 5.3 gives the right hand side inclusion. Indeed, suppose
r € Ky(w). Then

<sf0+°° v Ul) dy)1 § <tf0+°° ) dy>1 o

I(s+1) L(t+1) e

Let z = %JE It follows that

400 +o00 F(t+ 1)l/t
s—1 - dy = / s—1 -~ d
8/0 v faly) dy =s Ve
D(t+ 1)/t

oo s—1
= NS—MS/O v fa(y) dy > 1.

Therefore, 7 € K (w) and = € ggi—?;il(s(w).

The left hand side is a consequence of Holder inequality. Indeed, since w is even and
log-concave, f, is decreasing and right-continuous on R*. As a result, we can define a
positive random variable Y such that for every t > 0, P(Y > t) = f(¢) so that for every
r >0, lzllw,w = EY") /" O

Since we have understood that in the case of a log-concave measure, the Z,-bodies
are the same as the Z,-bodies of a properly defined convex set containing the origin, we
investigate the properties of the Z,-bodies in this particular case.

6.7 Proposition. Let K be a symmetric convex body in R"™ such that |K| = 1. Then
for any 1 <p <q,
Z(K) C Z,(K) C CZ% Z,(K).

Moreover for any p > n,
Z,(K) D cK and ¢ <|Z,(K)|'" <1, (6.5)
where ¢ and C' are positive universal constant.

Proof. The first inclusion follows from Corollary 5.7 (or Proposition 5.16). Now we prove
the second part. Observe that for any p, and for every § € R"

“+oc0
M, a0)(0) = /K@’@)‘i diU:P/O PLf(¢) dt,

where f(t) = |[{x € K : (x,0) > t}| is a 1/n-concave function on (0, +o00). This follows
from the Brunn-Minkowski inequality, see the proof of (5.3). We know from Theorem
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5.12 that the function H : [0, 00) — R, defined by

() de
H(p) = B(p,n+1)
f(0) p=0

is log-concave on [0, +00). Since H(0) = f(0) = |KN{(x,0) > 0}|, we have by symmetry
of K, H(0) = 1/2 and deduce that for any p < g,

p/q
211() = 00 = () = @y (6:)
We get
. g _ (Fe+10(n+1) ”PH "
Z,,(K)()_( T(n+p+1) ) (p)/*.

We conclude from (6.6) that for any p < g,

T(q+ 1)T(n+ 1))1/‘1 ( oM (p+n+1)
2l(g+n+1) F'p+1DHI'(n+1

hz,)(0) < ( ))1/10 hz,)(6).

Since |K| =1, we have

lim hz,x)(0) = max | (x,0) | = hg(0)

q——+00 zeK

and by properties of the Gamma function the first term tends to one, so we get for any
p=n

T(p+1)T(n+ 1))1“’h 0) > (F(p + 1) (p+1)

1/p
M(p+n+1) M (p+p+1) ) hi(0) = chx(0),

hz,x)(0) > (

where ¢ is a universal constant. O]

6.8 Corollary. Let w be an even log-concave density of a probability measure p in R™.
Then o

w(o)l/n’

C
— < |Z, W] <
ST < 2] <

where ¢, C' are absolute constants.

Proof. From (6.4),

Zn(p) = w(())l/nZR(K%) = w(o)l/n|K2n|2/nZn([/—(;;)v
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where Ky, = Ky, (w) is a symmetric convex body in R™ and f(\z; is its homothetic image
of volume 1. We deduce from Proposition 6.7 that there is a universal constant ¢ such
that ¢ < |Z,(Ka,)|"/™ < 1. Therefore,

cw(0)" K" < | Zu ()" < w(0)M" | K", (6.7)
From Proposition 6.6,

F(Qn 1)1/

|K |1/n < O|K |1/n

By definition of K,,, we get after integration in polar coordinates,

K, = | B —n|B"\/ /+°°t" 1000) 4y d4o(0) = /w(x) dz
! 21 Jgne H@HKn sn1 w(0) w(0) '

Since p is a probability measure, we have
| Kl = w(0)™" (6.8)

and conclude that w(0)~"/" < |Ky,|"" < Cw(0)~*/". Combining this estimate with
(6.7) gives the conclusion. O

6.9 Corollary. Let w be an even log-concave density of a probability measure p in R™.

Then
1/2 1/2 1/2
(/N |m|§ dx) < w(O)I/” (/ |x|§w(x) dx) <C (/N |m|§ dx) ,
Knio K2

where C' is a universal constant. Moreover,

12 1/2 -
xde> > / z|2 dz = B~V >/, 6.9
([ mtan) = ([ et B s eV, (69)

where ¢ 1s a universal constant.

Proof. The proof is again based on (6.4). We use it with p = 2 and get that
v € R", / (, 0>i w(x) dz = w(0) |Kn+2|%+1 /KN (z, 0>i dz. (6.10)
n-+2

From Proposition 6.6

1
n o L(n+3)»+ n
K < Kool < DT g un,

- T(n+1)
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Since |K,| = w(0)7!, see (6.8), we deduce that

w(0)~2/" < w(0) |Kn+2|%+1 < (n+2)(n+1)

< UK WO < Cul0) 2

by properties of the Gamma function. To conclude, we observe that for any orthonormal
basis uq, ..., u, of R" we have

w(0)2/" / o) de = w(0" Y / (2w w(z) do

=wmf“§;/Xauyhmwdx+/ka—mﬁzuwdx

and we use (6.10).
The “moreover” part is in fact slightly more general. Let K be of volume 1. Then

[latar= [ pBdos [ jofdex [ e
K KN} K\B} E

since the Euclidean norm of any vector in K \ B} is larger than for any vector in By \ K
and |K \ BY| = |By \ K]|. O

6.3 The final step

Proof of inequality (6.1). Recall that to conclude the proof of Theorem 6.1 it is enough
to prove that for any random vector X distributed according to a log-concave symmetric

probability measure p,
(EIX)'” < C(E|X ]2 + 0,(X)). (6.11)

Let k be the integer such that p < k < p + 1. Then (E|X|5)Y? < (E|X[%)Y* and by
Corollary 5.7, 03x(X) < 0,41(X) < Co,(X). From (6.3) we have

1MWE$QSWW%W)7 (6.12
;

1/k

(E[X[3)

where Zj, is associated with p. Observe that o (X) is the smallest number b such that

Zy C bBY. We split the discussion in two cases. Let ¢ be a small enough constant.

Ehz, (G) 2
If k> (c o é“X) ) we deduce from Theorem 4.20 that

1/k

(B, ()" < CVEay(X)

and (6.11) is proved.
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Ehz, (G)\ 2
Ifk < (c T%) we deduce from Theorem 4.20 that

(E(h, ()" < CE(hz(@)). (6.13)

Moreover, from Dvoretzky’s Theorem, see Theorem 4.18, we get that the set of subspaces
E € G, such that

3 Ehz (G)

lEth(G) 2
2 RG],

— k. P.BY PrZ
> E|Gl, PR < EeR ©

P

has a measure greater than 1 — 4 exp(—ck). Therefore

Ehzk(G) ‘PEZk‘ HE l 1/k
2T 9 < C'"Vk|PpZ.|Y 6.14
B, S | < \/_| 5 k| ( )

since it is well known that |B%|"/* > ¢/v/k. The Z;-body is associated with the symmetric
log concave measure pu, therefore Lemma 6.5 implies that Pg(Zy) = Zp(Ilpp). We
conclude from Corollary 6.8 that

1k ¢
| Pe(Z)|V* < O

Combining (6.12), (6.13), (6.14) and (6.15), and using the fact that E|G|y < /n, we get

(6.15)

EIXE) < (6.16)

Let Y = PpX then g (p) is the density associated with Y which is even and log-concave.
Since FE is of dimension k, we deduce from Corollary 6.9 that

(Ipu(0))* (EY ) = C V.

Therefore the set of subspaces E € G, such that

BN < 07 EPexi (617

has a measure greater than 1 — 4 exp(—ck). Rotational invariance of the Haar measure
Vi o0 G, 1 implies that for each fixed 6y € S" 1,

E,, . |Psbol} = / Pe6l2 do (0)
Sn—l
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where Ej is a fixed subspace in G, ;. We can choose E, = spanfey,...,ex], where e;
are the vectors coming from the canonical basis of R™. Since for every i = 1...,n,
Jgn1 07 do(0) = [, 0% do(0) we get

k n
k k
Pg, 0|3 do(0) = / Qfdaﬁzk/ 6? do(0) = — / 62 do(6) = —.
[ rtsac@ =3 [ otao@ =k [ staew =13 [ e =]

Therefore,
k
BE, . [PoX [} = CEIXE
and the set of subspaces F € G, such that
ec/4)k
(51Pex ) < /L ) (6.15)

has a measure greater than 4 exp(—c). We can find a subspace E such that (6.17) and
(6.18) hold true which proves that

(E|X|9)VF < O (BIX2)V2.

By Proposition 5.16, we already know that (E|X|2)1/2 < CE|X|, and this finishes the
proof of (6.11). O

6.4 Notes, comments and further readings

Theorem 6.1 is due to Paouris [78]. It had a great influence on the theory of high
dimensional convex bodies, as well as in the random matrix theory and the topics of
probability in Banach spaces. In his paper Paouris assumed a log-concave measure to be
in isotropic position. Theorem 6.1 is stated following [2] where the authors propose a new
short proof of the result in particular avoiding the notion of Z,-bodies associated with a
measure. In [2], they propose this formulation because it corresponds to a probabilistic
point of view. Indeed, it indicates that one can compare the strong moments and the
weak moments of a log-concave random vector in a Hilbert space. It is conjectured in [63]
that it still holds true in a general Banach space and some partial answers are given in
[63], in particular for an unconditional log-concave measure. In this particular case, the
“moreover” part of Theorem 6.1 was established by Bobkov and Nazarov [18]. To present
the proof of Theorem 6.1, we have followed the original approach of Paouris except the
fact that we have written all the formulas with a Gaussian random vector instead of
the uniform measure on the sphere. Moreover, we have simplified the presentation by
reducing the proof to the even log-concave setting. In this case, Proposition 6.7 and
Corollary 6.8 are simpler to state and to prove. Their analogues in the case of a log-
concave measure with barycentre at the origin are known and we refer to [79] for an

72



extensive study of the Z,-bodies. Paouris (see [79]) studied also the negative moments.
This problem concerns small ball concentration.

In the log-concave setting, major progress has recently been made in the study of the
concentration of mass in a Euclidean thin shell [59, 39, 60, 38, 56]. We refer to [55] for
a short survey about the related open questions.

From a probabilistic point of view, it is worth noticing that Theorem 6.1 has been
extended to the case of general convex measures [1].

The interested reader is encouraged to read the upcoming book [27].
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