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Abstract. We consider the complex case of the S-inequality. It con-
cerns the behaviour of Gaussian measures of dilations of convex and ro-
tationally symmetric sets in Cn. We pose and discuss a conjecture that
among all such sets measures of cylinders (i.e. the sets {z ∈ Cn | |z1| ≤
p}) decrease the fastest under dilations.

Our main result in this paper is that this conjecture holds under the
additional assumption that the Gaussian measure of the sets considered
is not greater than some constant c > 0.64.

Let νn be the standard Gaussian measure on Cn, i.e.

νn(B) =
1

(2π)n

∫
j(B)

exp

(
−

n∑
k=1

(x2k + y2k)

)
dx1dy1 . . .dxndyn,

for any Borel set B ⊂ Cn, where j : Cn −→ R2n is the standard isomor-
phism j((x1 + iy1, . . . , xn + iyn)) = (x1, y1, . . . , xn, yn). Denote for any
z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn by ⟨w, z⟩ =

∑n
k=1wkz̄k a scalar

product on Cn and the norm generated by it as ∥z∥ =
√

⟨z, z⟩.
Let A ⊂ Cn be a set, which is

• convex,
• rotationally symmetric, i.e. for any λ ∈ C, |λ| = 1, a ∈ A implies

that λa ∈ A

and P = {z ∈ Cn | |⟨z, v⟩| ≤ p} be a cylinder such that νn(A) = νn(P ),
where v ∈ Cn has length 1 and p ≥ 0 is a radius of P . We ask whether

νn(tA) ≥ νn(tP ), for t ≥ 1,

i.e. whether the measure of dilations of cylinders grows the slowest among
all convex rotationally symmetric sets.

The analogous question in Rn has an affirmative answer which was shown
by R. Lata la and K. Oleszkiewicz [5]. Following their method in the con-
sidered complex case we obtain a partial answer to the question. The main
result is the following

Theorem 1. There exists a constant c > 0.64 such that for any convex
rotationally symmetric set A ⊂ Cn, with measure νn(A) ≤ c, and a cylinder
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P = {z ∈ Cn | |z1| ≤ p} satisfying νn(A) = νn(P ), we have

(∗) νn(tA) ≤ νn(tP ), for 0 ≤ t ≤ 1.

The paper is organized as follows. In Section 1 we give the proof of
the above theorem. In Section 2 we state some remarks concerning this
theorem. Especially, we discuss the possibility of omitting the restriction on
the measure assumed in Theorem 1, but weakening its assertion. Section 3
is devoted to proofs of some auxiliary lemmas which have slightly technical
character.

1. Proof of the main result

Firstly, let us set up some notation. We put |x| =
√

x21 + . . . + x2n for the
standard norm of a vector x = (x1, . . . , xn) ∈ Rn. By γn we denote the stan-
dard Gaussian measure in Rn and by γ+n (A) := limh→0+(γn(Ah)−γn(A))/h

the Gaussian perimeter of A ⊂ Rn, where Ah := {x ∈ Rn | dist(x,A) ≤ h}
is a h-neighbourhood of A. Analogously, we define ν+n (A). Moreover, we
will use the functions

Φ(x) = γ1((−∞, x)) =
1√
2π

∫ x

−∞
e−t2/2dt,

T (x) = 1 − Φ(x).

Following the same procedure as in the real case, presented in detail in
[5], we can reduce a proof of (∗) to some kind of an isoperimetric problem in
R3. However, these estimations turn out to be insufficient and a constraint
involving a boundedness of the measure from above by c appears. For the
sake of the reader’s convenience, that reduction is briefly presented below.

(I) For any measurable set A ⊂ Cn let νA(t) := νn(tA). Then Theorem
1 is equivalent to ν ′A(1) ≥ ν ′P (1), provided that νA(1) = νP (1) ≤ c.
Since P is a cylinder we have ν ′P (1) = pν+n (P ).

(II) Convexity of A gives ν ′A(1) ≥ wν+n (A), where

w := sup{r ≥ 0 | {z ∈ Cn | ∥z∥ < r} ⊂ A}.

The parameter 2w is in some sense the width of the set A.
(III) Rotational symmetry of A gives that A is included in some cylinder

of the radius w. Indeed, by the definition of w there is a point, say a,
from the closure of A such that ∥a∥ = w. Using the convexity of A we
infer the existence of the supporting hyperplane {z ∈ Cn | Re⟨z, a⟩ =
∥a∥2}. Now the rotational symmetry of A comes in and it yields that
A is included in a cylinder. Namely, we have A ⊂ {z ∈ Cn | |⟨z, a⟩| ≤
∥a∥2}. Thanks to the invariance of the Gaussian measure with respect
to unitary transformations we may assume without loss of generality
that a = ∥a∥e1. Then

A ⊂ {z ∈ Cn | |z1| ≤ w}.
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Now we can apply Ehrhard’s symmetrization [1], that is for a given
point z = x+iy with modulus less than w we replace the whole section

Az = {(z2, . . . , zn) ∈ Cn−1 | (z, z2, . . . , zn) ∈ A},
of our set with a real half-line (−∞, f(|z|)) with the same Gaussian
measure as Az. In such a way we obtain a set in R3

Ã =
{

(x, y, t) ∈ R3 | t ≤ f
(√

x2 + y2
)
,
√

x2 + y2 ≤ w
}

where f : [0, w] −→ R ∪ {−∞},

f
(√

x2 + y2
)

:= Φ−1 (νn−1 (Az)) .

The function f is well defined (by the rotational symmetry of A),
and, as A is convex by Ehrhard’s inequality [1], f is concave and

nonincreasing. Clearly, νn(A) = γ3(Ã). The key property of this

symmetrization is that ν+n (A) ≥ γ+3 (Ã). Obviously a symmetrized

cylinder P is a cylinder P̃ = {z ∈ R2 | |z| ≤ p} × R and ν+n (P ) =

pe−p2/2 = γ+3 (P̃ ).

Summing up, in order to prove Theorem 1 it is enough to show

Theorem 2. There exists a constant c > 0.64 with the following property.
Let A ⊂ R3 be a set of the form

A =
{

(x, y, t) ∈ R3 | t ≤ f
(√

x2 + y2
)
,
√

x2 + y2 < w
}
,

where f : [0, w) −→ R is a concave, nonincreasing, smooth function such

that f(x) −−−−→
x→w−

−∞. Let P = {(x, y, t) ∈ R3 |
√

x2 + y2 ≤ p} ⊂ R3 be a

cylinder with the same measure as A, that is, γ3(A) = γ3(P ) = 1 − e−p2/2.
Then

(1) wγ+3 (A) ≥ pγ+3 (P ),

provided that γ3(A) ≤ c.

Proof. Following [5], we define for fixed x ∈ [0, w]

A(x) = A ∪ {z ∈ R2 | |z| < x} × R,
P (x) = {z ∈ R2 | |z| < a(x)} × R,

where the function a(x) is defined by the equation

γ3(A(x)) = γ3(P (x)).

We have ∂A(x) = B1(x) ∪ B2(x), where B1(x) = {(z, t) ∈ R2 × R | |z| =
x, t ≥ f (|z|)}, B2(x) = {(z, t) ∈ R2 × R | |z| > x, t = f (|z|)}. Let

L(x) = wγ+3 (B2(x)) + xγ+3 (B1(x)) − a(x)γ+3 (P (x)), x ∈ [0, w].

Since A(w) is a cylinder with radius w, we have L(w) = 0. Also note
that L(0) = wγ+3 (A) − pγ+3 (P ). Therefore it suffices to prove that L is
nonincreasing.
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We can easily calculate the terms which appear in the definition of L in
order to obtain L′(x). Namely

γ+3 (B2(x)) =
1√
2π

∫ w

x
t exp

(
− t2 + f(t)2

2

)√
1 + f ′(t)2dt,

γ+3 (B1(x)) =
1

√
2π

3

∫ 2π

0

∫ ∞

f(x)
exp

(
−x2 + t2

2

)
x dtdϕ

= xe−x2/2(1 − Φ(f(x))) = xe−x2/2T (f(x)),

γ+3 (A(x)) = a(x)e−a(x)2/2.

Putting these into the definition of L we have

L(x) =
w√
2π

∫ w

x
t exp

(
− t2 + f(t)2

2

)√
1 + f ′(t)2dt + x2e−x2/2T (f(x))

− a(x)2e−a(x)2/2.

Moreover

γ3(A(x)) =γ3
(
{z ∈ R2 | |z| < x} × R

)
+ γ3

(
{(z, t) ∈ R2 × R | |z| > x, t ≤ f(|z|)}

)
=1 − e−x2/2 +

∫ w

x
te−t2/2Φ(f(t))dt.

Thus

1 − e−a(x)2/2 = γ3(P (x)) = γ3(A(x)) = 1 − e−x2/2 +

∫ w

x
te−t2/2Φ(f(t))dt,

and differentiating in x we get

a′(x)a(x)e−a(x)2/2 = xe−x2/2(1 − Φ(f(x))) = xe−x2/2T (f(x)).

This allows us to compute L′. We have

L′(x) = − w√
2π

x exp

(
−x2 + f(x)2

2

)√
1 + f ′(x)2

+ e−x2/2

(
2xT (f(x)) − x2

e−f(x)2/2

√
2π

f ′(x) − x3T (f(x))

)
−
(
2 − a(x)2

)
xe−x2/2T (f(x)).

Hence L′ ≤ 0 iff

w
√

1 + f ′(x)2 + xf ′(x) ≥ (a(x)2 − x2)
√

2πef(x)
2/2T (f(x)), x ∈ [0, w].

Since f ′ ≤ 0 (f is nonincreasing) and inft≤0(w
√

1 + t2 +xt) =
√
w2 − x2 we

will have L′ ≤ 0 if we show that

(2)
√
w2 − x2 ≥ (a(x)2 − x2)

√
2πef(x)

2/2T (f(x)), x ∈ [0, w].
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Estimating a(x)2 − x2 we can prove the above inequality in some special
cases. Notice that monotonicity of f implies A(x) ⊂ {z ∈ R2 | |z| < x} ×
R ∪ {(z, t) ∈ R2 × R | x ≤ |z| ≤ w, t ≤ f(x)}, hence

1 − e−a(x)2/2 = γ3(A(x)) ≤ (1 − e−x2/2) + (e−x2/2 − e−w2/2)Φ(f(x)),

so

(3) a(x)2 − x2 ≤ −2 ln
(
T (f(x)) + Φ(f(x))e−(w2−x2)/2

)
.

By this inequality the proof of (2) reduces to
(4)√

w2 − x2 ≥ −2
√

2πef(x)
2/2T (f(x)) ln

(
T (f(x)) + Φ(f(x))e−(w2−x2)/2

)
.

In general the above inequality is not true. However, Lemma 1, which is
proved in the last section, deals with some particular cases.

Let us introduce functions F : R −→ (0,∞), G : (0,∞) −→ (0,∞) given
by the formulas

F (y) = −
√

2πey
2/2T (y) lnT (y),(5)

G(y) =
y

2(1 − e−y2/2)
.(6)

Note that F is increasing and onto (cf. Lemma 2). We will need the constant

H = F−1
(
G
(√

8/π
))

.

Lemma 1. Let either

(i) u ≤
√

8/π, y ∈ R, or
(ii) u >

√
8/π, y ≤ H.

Then

−2
√

2πey
2/2T (y) ln

(
T (y) + Φ(y)e−u2/2

)
≤ u.

Applying Lemma 1 for u =
√
w2 − x2, y = f(x), we get the desired

inequality (4) for x such that
√
w2 − x2 ≤

√
8/π or

√
w2 − x2 >

√
8/π and

f(x) ≤ H.

Therefore, it remains to prove (2) for x satisfying
√
w2 − x2 >

√
8/π and

f(x) > H. Observe that

(a(x)2 − x2)′ = 2(a(x)a′(x) − x) = 2x
(
e(a(x)

2−x2)/2T (f(x)) − 1
)
,

but thanks to (3) we get

e(a(x)
2−x2)/2 < 1/T (f(x)),

hence
(a(x)2 − x2)′ < 0.

Thus the function [0, w] ∋ x 7−→ a(x)2 − x2 ∈ [0,∞) is decreasing. It yields

sup
x∈[0,w]

(a(x)2 − x2) = a(0)2 = p2.
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Moreover, the function x 7−→ ef(x)
2/2T (f(x)) is nondecreasing on the

interval [0, w] ∩ {x|f(x) > 0} as a composition of the nonincreasing func-

tion f and the decreasing one y 7−→ ey
2/2T (y) for y > 0 ([5, Lemma 1]).

Consequently

sup
{
ef(x)

2/2T (f(x)) | f(x) > H
}

= eH
2/2T (H).

Combining these two observations and using the assumption c ≥ γ3(A) =

γ3(P ) = 1− e−p2/2, that is p2 ≤ −2 ln(1− c), we obtain that (2) holds for x

such that
√
w2 − x2 >

√
8/π and f(x) > H. Indeed

(a(x)2 − x2)
√

2πef(x)
2/2T (f(x)) ≤

√
2πp2eH

2/2T (H)

≤ −2
√

2π ln(1 − c)eH
2/2T (H)

=

√
8

π
<
√

w2 − x2,

where the last equality holds by the definition of the constant c. Namely,
we set

c = 1 − exp

(
− 1

πeH2/2T (H)

)
> 0.64,

which completes the proof. �

Remark 1. It is very easy to verify that c > 0.64. Firstly, we check by
direct computation that G(

√
8/π) > F (0.7), whence H > 0.7 by virtue of

the monotonicity of F . Secondly, we observe that the dependence c on H

is increasing as it was mentioned that y 7−→ ey
2/2T (y) for y > 0 decreases.

Thus

c = 1 − exp

(
− 1

πe0.72/2T (0.7)

)
> 0.64.

From the isoperimetric-like inequality (1) proved in Theorem 2 we have
already inferred (cf. steps (I)-(III) presented at the very beginning of this
section) that

νn(A) = νn(P ) ≤ c implies ν ′A(1) ≥ ν ′P (1).

As it was said, this in turn gives the comparison of the measures of A and of
a cylinder P when we shrink these sets by dilating them — Theorem 1. We
can also use this implication in order to show what happens with measures
when we expand our sets (the simple reasoning which ought to be repeated
may be found in [4])

Corollary 1. For any convex rotationally symmetric set A ⊂ Cn, with
measure νn(A) ≤ c, and a cylinder P satisfying νn(A) = νn(P ), we have

(7) νn(tA) ≥ νn(tP ), for 1 ≤ t ≤ t0,

where t0 ≥ 1 satisfies νn(t0A) = c.
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2. Some remarks

Remark 2. Generally, without the assumption on the measure of a set
A Theorem 2 fails. To see this let us consider a cylindrical frustum A =
{(z, t) ∈ R2×R | |z| ≤ w, t ≤ y} with the radius w and the height y. This is
not exactly a set as in the assumptions of Theorem 2, that is, lying under a
graph of a smooth concave function (there is a problem with smoothness),
but an easy approximation argument will fill in the gap. Take a cylinder
P = {z ∈ R2 | |z| ≤ p} × R with the same measure as A, which means

Φ(y)(1 − e−w2/2) = γ3(A) = γ3(P ) = 1 − e−p2/2.

We show that for some large enough w and y there actually holds the reverse
inequality to the one stated in Theorem 2

wγ+3 (A) < pγ+3 (P ).

Indeed, let us fix the parameters of the cylindrical frustum such that

e−w2/2 = T (y), y > 0.

Thus 1 − e−w2/2 = Φ(y). To simplify some calculations, let us define a
function

g(y) =
1√

2πey2/2T (y)
.

Now, the relation between w and y may be written as w2 = −2 lnT (y) =
y2 + 2 ln

(√
2πg(y)

)
. Furthermore, we have

y < g(y) <
√

y2 + 2, y > 0,

where the left inequality is a standard estimation for T (y) and the right one
follows from [5, Lemma 2]. Therefore

wγ+3 (A) = w

(
we−w2/2Φ(y) +

e−y2/2

√
2π

(1 − e−w2/2)

)

= T (y)

(
w2Φ(y) + wΦ(y)

e−y2/2

√
2πT (y)

)
< T (y)

(
w2Φ(y) + wg(y)

)
< T (y)

(
w2Φ(y) +

√
y2 + 2 ln

(√
2πg(y)

)√
y2 + 2

)
≤ T (y)

(
w2Φ(y) + y2 + ln

(√
2πg(y)

)
+ 1
)

= T (y)
(
w2 (1 + Φ(y)) + 1 − ln

(√
2πg(y)

))
.

Let us choose y such that

1 − ln
(√

2πg(y)
)
< −2(1 + Φ(y)) ln (1 + Φ(y)) .
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Then

wγ+3 (A) < T (y)
(
w2 (1 + Φ(y)) − 2(1 + Φ(y)) ln (1 + Φ(y))

)
= −2T (y) (1 + Φ(y)) ln

(
e−w2/2 (1 + Φ(y))

)
= p2e−p2/2 = pγ+3 (P ),

where the second equation holds since

e−p2/2 = 1 − Φ(y)(1 − e−w2/2) = T (y) + Φ(y)e−w2/2 = T (y) (1 + Φ(y)) .

In the previous remark we have seen that the assumption on the measure
in Theorem 2 is essential. This assumption and the technique which have
been used cause that the restriction on the measure also appears in Theo-
rem 1. We may obtain a weaker version of the inequality (∗) dropping the
inconvenient assumption γ3(A) ≤ c. This result reads as follows

Theorem 3. There exists a constant K = 3 such that for any convex rota-
tionally symmetric set A ⊂ Cn and a cylinder P satisfying νn(A) = νn(P ),
we have

(8) νn((1 + K(t− 1))A) ≥ νn(tP ), for t ≥ 1.

Proof. Let us denote ℓ(t) = 1 + K(t− 1).
It suffices to prove (8) only for sets with big measure, i.e. νn(A) ≥ c,

where c is the constant from Theorem 1. Indeed, assume that (8) holds for
all convex rotationally symmetric sets A such that νn(A) ≥ c. We are going
to show this inequality also for a set A with the measure less than c. Let us
fix such a set and take t0 > 1 such that νn(t0A) = c. From Corollary 1 we
get

νn(tA) ≥ νn(tP ), t ≤ t0.

Now, we are to prove (8) for t > t0. Let Q be a cylinder with the same
measure as t0A. Applying what we have assumed we obtain

(9) νn (ℓ(t)(t0A)) ≥ νn(tQ), t ≥ 1.

One can make two simple observations

ℓ(t)t0 < ℓ(t0t),

νn(Q) = νn(t0A) ≥ νn(t0P ) =⇒ νn(tQ) ≥ νn(tt0P ).

Together with the inequality (9) this yields

νn (ℓ(tt0)A) ≥ νn(tt0P ), t ≥ 1,

which is just the desired inequality.
Henceforth, we are going to deal with the proof of inequality (8) in the

case of νn(A) ≥ c. The idea is to exploit the deep result of Lata la and
Oleszkiewicz concerning dilations in the real case. Namely, from Theorem 1
of [5] we have

νn (ℓ(t)A) ≥ νn (ℓ(t)S) , t ≥ 1,
8



where

S = {(z1, . . . , zn) ∈ Cn | |Rez1| ≤ s},
is a strip of the width 2s chosen so that νn(A) = νn(S) = 1 − 2T (s).
Therefore, we end the proof, providing that we show

νn (ℓ(t)S) ≥ νn(tP ), t ≥ 1.

This inequality in turn can be written more explicitly. We have

νn (ℓ(t)S) = 1 − 2T (ℓ(t)s) ,

and using the relation 1 − e−p2/2 = νn(P ) = νn(A) = νn(S) = 1 − 2T (s) we

get e−p2/2 = 2T (s). Hence

νn(tP ) = 1 − e−(tp)2/2 = 1 − (2T (s))t
2

.

Thus it is enough to show that

(10) (2T (s))t
2

≥ 2T (ℓ(t)s) , t ≥ 1, s ≥ s0,

where s0 is such that a strip with the width 2s0 has the measure c, i.e.
1 − 2T (s0) = c. Since c > 0.64, it follows that T (s0) < 0.18 < T (0.9), so
s0 > 0.9.

Let us deal with the inequality (10). For t close to 1 we will apply the
Prékopa-Leindler inequality [2, Theorem 7.1]. To see this, let us fix s ≥ s0
and t ≥ 1 and consider the functions

f(x) =
2√
2π

e−x2/21[ℓ(t)s,∞)(x),

g(x) =
2√
2π

e−x2/21[0,∞)(x),

h(x) =
2√
2π

e−x2/21[s,∞)(x).

It is not hard to see that the inequality

f(x)1/t
2
g(y)1−1/t2 ≤ h

(
1

t2
x +

(
1 − 1

t2

)
y

)
,

holds for any x, y ∈ R if and only if ℓ(t)s ≥ t2s, or equivalently t ≤ K−1 = 2.
Then, by virtue of Prékopa-Leindler inequality, we obtain

(2T (ℓ(t)s))1/t
2

=

(∫
R
f

)1/t2 (∫
R
g

)1−1/t2

≤
∫
R
h = 2T (s).

Now we are left with the proof of (10) in the case of t > 2 and s ≥ s0. To
handle it, we use the asymptotic behaviour of the function T and perform
some calculations. In accordance with the standard estimate from above of
the tail probability of the Gaussian distribution we get

T (ℓ(t)s) <
1√
2π

1

ℓ(t)s
e−ℓ(t)2s2/2,
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whereas from Lemma 2 in [5]

T (s) >
1√
2π

1√
s2 + 2

e−s2/2.

Therefore, in order to show (10) it is enough to prove(
2√
2π

)t2 1

(s2 + 2)t2/2
e−t2s2/2 ≥ 2√

2π

1

ℓ(t)s
e−ℓ(t)2s2/2,

which is equivalent to the inequality

exp

(
s2

2

(
ℓ(t)2 − t2

))
≥
(√

π

2

)t2−1
(s2 + 2)t

2/2

ℓ(t)s
, s ≥ s0, t ≥ 2.

Taking the logarithm of both sides, putting the definition of ℓ(t) = 1+K(t−
1) = 3t− 2 and simplifying we have to prove(

8s2 − ln
(π

2

(
s2 + 2

)))
t2 − 12s2t + 4s2 + ln

(π
2
s2
)

+ 2 ln (3t− 2) ≥ 0.

Let us call the left hand side by F (s, t). Notice that

∂F

∂t
(s, t) = 2

(
8s2 − ln

(π
2

(
s2 + 2

)))
t− 12s2 +

2

3t− 2

> 2
(

5s2 − ln
(π

2

(
s2 + 2

)))
t > 2

(
5s2 − π

2e
(s2 + 2)

)
t

= 2
((

5 − π

2e

)
s2 − π

e

)
t ≥ 2

((
5 − π

2e

)
s20 −

π

e

)
t

> 2
((

5 − π

2e

)
· 0.81 − π

e

)
t > 0,

where in the first inequality we used only the assumption that t > 2 getting
−12s2 > −6ts2 and neglected the term 2

3t−2 as being positive, while in the
second one we exploit the well-known inequality lnx ≤ x

e . Knowing that
this derivative is positive, we will finish if we check that F (s, 2) > 0. It can
be done by direct computation

F (s, 2) = 4
(

8s2 − ln
(π

2

(
s2 + 2

)))
− 24s2 + 4s2 + ln s2 + ln

π

2
+ 2 ln 4

= 4
(

3s2 − ln
(π

2

(
s2 + 2

)))
+ ln

(
8πs2

)
> 4

((
3 − π

2e

)
s2 − π

e

)
> 0.

The proof is now complete. �

3. Technical lemmas

We are going to prove some rather technical lemmas which will help us
with the proof of Lemma 1.

Lemma 2. The function F , defined in (5), is increasing and onto (0,∞).
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Proof. In order to prove that F is increasing it suffices to show that F is
nondecreasing. Indeed, if F was constant on some interval, it would be
constant everywhere as F is an analytic function.

Clearly, F is nondecreasing iff 1/F is nonincreasing. Notice that

1

F (y)
=

−e−y2/2

√
2π

1

T (y) lnT (y)
=

T ′(y)

T (y) lnT (y)

=
(− lnT (y))′

− lnT (y)
= (ln (− lnT (y)))′ ,

thus 1/F is nonincreasing iff y 7−→ ln (− lnT (y)) is concave, that is for any
x, y ∈ R, λ ∈ (0, 1)

− lnT (λx + (1 − λ)y) ≥ (− lnT (x))λ (− lnT (y))1−λ .

Since limx→−∞(− lnT (x)) = 0, we have

− lnT (x) =

∫ x

−∞
(− lnT (t))′ dt =

∫ x

−∞

e−t2/2

√
2πT (t)

dt,

and the above inequality will hold by virtue of the Prékopa-Leindler inequal-
ity. We only need to check the assumptions, that is to verify whether the

function ln e−t2/2
√
2πT (t)

is concave. Calculating the second derivative one can

easily check that it is non-positive iff

0 ≥ T (t)2 +
e−t2/2

√
2π

tT (t) −

(
e−t2/2

√
2π

)2

=

(
T (t) − e−t2/2

√
2π

√
t2 + 4 − t

2

)(
T (t) +

e−t2/2

√
2π

√
t2 + 4 + t

2

)
, t ∈ R,

which is equivalent to

T (t) ≥ e−t2/2

√
2π

√
t2 + 4 − t

2
, t ∈ R.

For t ≥ 0 this follows from a well-known Komatsu’s estimate (cf. [3], page
17). For t < 0 we have T (t) > 1/2, hence

2T (t)
√

2πet
2/2 + t ≥

√
2π(1 + t2/2) + t > 0,
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and (
2T (t)

√
2πet

2/2 + t
)2

>
(√

2π(1 + t2/2) + t
)2

= 2π

(
1 +

t2

2

)2

+ 2
√

2π

(
1 +

t2

2

)
t + t2

= 2

(
1 +

t2

2

)(π
2
t2 +

√
2πt + π

)
+ t2

> 2

((√
π

2
t + 1

)2

+ π − 1

)
+ t2

> 2(π − 1) + t2 > t2 + 4.

This completes the proof of the monotonicity of F .
F is onto (0,∞) as

F (y) −−−−→
y→−∞

0,

F (y) −−−−→
y→+∞

∞.

�

Lemma 3. The function G, defined in (6), is increasing for u ≥
√

8/π.

Proof. We have

G′(u) =
1 − e−u2/2 − u2e−u2/2

2
(
1 − e−u2/2

)2 ,

so G′(u) > 0 iff eu
2/2 > 1 + u2. This is true for u2 > 8/π since e4/π >

1 + 8/π. �

Proof of Lemma 1. (i) Using the convexity of the function − ln we get

−2
√

2πey
2/2T (y) ln

(
T (y) + Φ(y)e−u2/2

)
≤ 2

√
2πey

2/2T (y)
(
−T (y) ln 1 − Φ(y) ln e−u2/2

)
=

√
2πey

2/2T (y)Φ(y)u2 ≤
√

π

8
u2 ≤ u,

where we use supy∈R
√

2πey
2/2T (y)Φ(y) =

√
π
8 (see Lemma 5 in [5]).

(ii) Since T (y) + Φ(y)e−u2/2 = e−u2/2 + (1 − e−u2/2)T (y), we may also

apply the convexity of − ln to points 1, T (y) with weights e−u2/2, 1− e−u2/2
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and obtain

−2
√

2πey
2/2T (y) ln

(
T (y) + Φ(y)e−u2/2

)
≤ −2

√
2πey

2/2T (y) lnT (y)(1 − e−u2/2)

=
F (y)

G(u)
u ≤ F (H)

G
(√

8/π
)u = u.

�
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