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Abstract. We show that complex hypercontractivity gives better constants than real hypercon-

tractivity in comparison inequalities for (low) moments of Rademacher chaoses (homogeneous

polynomials on the discrete cube).
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Introduction

A Rademacher chaos h of order (degree) d is a d-homogeneous polynomial on the discrete cube

{−1, 1}n for some n ≥ d, that is a function of the form h(x) =
∑

1≤i1<...<id≤n ai1,...,idxi1 · . . . ·xid ,

x = (x1, . . . , xn) ∈ {−1, 1}n, for some, say complex coefficients ai1,...,id . For p > 0, denote by ‖f‖p
the p-th moment (E|f |p)1/p of a function f : {−1, 1}n → C, with the expectation taken against

the uniform probability measure on {−1, 1}n. Let 1 ≤ p ≤ q. We are interested in moment

comparison inequalities: ‖h‖q ≤ Cp,q,d‖h‖p, true for any Rademacher chaos h of degree d with

constants Cp,q,d dependent only on p, q and d (so independent of n and the coefficients ai1,...,id

of h). When d = 1, these are the Khinchin inequalities and sharp values of the constants Cp,q,1

are known in many cases (see for instance [8] for a recent result and further references).

One way of effortlessly obtaining such comparison inequalities is by real hypercontractivity,

which for 1 ≤ p ≤ q gives Cp,q,d =
(
q−1
p−1

)d/2
and Cp,q,d = e(2/p−2/q)d, when additionally q ≤ 2 (see

for example Theorem 5.10 in [4] and Theorems 9.21, 9.22 in [10]). To the best of our knowledge,

these are in fact the best known values of constants Cp,q,d (except for p = 2 and q being an even

integer, where combinatorial arguments give slightly better results – see [2] and Exercise 9.38 in

[10]). The constant
(
q−1
p−1

)d/2
is moreover asymptotically sharp as d goes to infinity with 2 < p < q

fixed (see [7]), in the sense that one cannot replace it by Cd/2 with C < q−1
p−1 as d→∞.

The purpose of this note is to further improve the constants for low moments (p ≤ 2). The key

is an observation that complex hypercontractivity due to Weissler from [12] easily yields better

comparison between p-th and q-th moments than real hypercontractivity for p < 2 < q, which is

the statement of the next theorem.

Theorem 1 (Weissler, [12]). Let 1 < p ≤ 2 ≤ q. Let h : {−1, 1}n → C be a d-homogeneous

polynomial. We have,

‖h‖q ≤ max

{
(q − 1)d/2,

1

(p− 1)d/2

}
‖h‖p.(1)
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We shall recall Weissler’s result and sketch a standard argument leading from hypercontractivity

to moment comparison in the next section. Our main result is obtained by the usual interpolation

of moments, which can be viewed as a self-improvement of (1).

Theorem 2. Let 1 ≤ p ≤ q. Let h : {−1, 1}n → C be a d-homogeneous polynomial. We have,

(2) ‖h‖q ≤ Cp,q,d‖h‖p,

with Cp,q,d =





exp
{(

1
p −

1
q

)
d
}
, if 1 ≤ p ≤ q ≤ 2,

(q − 1)
q−p

p(q−2)
d
2 , if 1 ≤ p ≤ 2 ≤ q and 1

p + 1
q > 1,

(q − 1)
d
2 , if 1 ≤ p ≤ 2 ≤ q and 1

p + 1
q ≤ 1, asymp. sharp as d→∞,

(
q−1
p−1

) d
2

, if 2 < p ≤ q, asymp. sharp as d→∞.

Remark 3. The constant in the first case clearly improves (by the factor of 2 in the exponent)

on the constant e(2/p−2/q)d obtained from real hypercontractivity. It can be checked that the

constant in the second case improves on the constant (p − 1)−d/2 given by (1). The constants

in the third and fourth cases are directly obtained from the complex and real hypercontractivity,

respectively (we stated them for completeness). We also mention in passing that (2) can be seen

as a discrete-cube analogue of the classical Nikolskii type inequalities for polynomials (with the

constant in the first case being of a similar form – see for instance Theorem 2.6 in [3] and [9]) .

Remark 4. Let x = (x1, . . . , xn) ∈ Rn. Given a multi-index α = (α1, . . . , αn) we denote its length

by |α| := α1 + . . .+ αn = d. Let Hα be the Hermite polynomial on Rn, Hα(x) =
∏n
j=1Hαj (xj),

each Hαj
(s) =

∫
R(s + it)αje−t

2/2(2π)−1/2dt is probabilists’ Hermite polynomial on R. It follows

from the result of Janson (see [5]) that given 1 ≤ p ≤ q < ∞ the complex hypercontractivity

in Gauss space ‖
∑

0≤|α|≤N z
|α|cαHα(g)‖q ≤ ‖

∑
0≤|α|≤N cαHα(g)‖p holds for all N ≥ 0, n ≥ 1,

cα ∈ R, where g = (g1, . . . , gn) and gj are i.i.d. standard Gaussians if and only if the triple z, p, q

satisfies condition (6). In particular, repeating the arguments described in the note verbatim

one obtains that Theorem 2 holds with exactly the same constants Cp,q,d where d-homogeneous

polynomials h are replaced by the sum
∑
|α|=d cαHα(g).

Remark 5. The constants in the third and fourth cases are asymptotically sharp as d → ∞.

Indeed, sharpness follows from Remark 4 by choosing n = 1. The asymptotics of Lp norms of

Hermite polynomials are computed in [7]. In fact, it is Theorem 1 that is asymptotically sharp

since (4) below is sharp.

Remark 6. In the case p = 1 and q = 2, we obtain C1,2,d = ed/2. It is widely believed that the best

possible C1,2,d should be 2d/2 (which is attained for h(x) = (x1+x2)(x3+x4)·. . .·(x2d−1+x2d)). For

example, Pe lczyński’s conjecture states that C1,2,2 = 2 (for chaoses with coefficients in arbitrary

normed spaces, see [11]).

Remark 7. It remains an open problem to determine the sharp values of the constants Cp,q,d (even

asymptotically, with d→∞, except for the case 2 ≤ p ≤ q, and 1 ≤ p ≤ 2 ≤ q with 1
p + 1

q ≤ 1).
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Remark 8. Based on arguments from [6] (see Lemma 6.4.1), it is possible to extend the moment

comparison from Theorem 2 to all polynomials of degree (at most) d (that is, to not necessarily

homogeneous polynomials). However, the constants we obtain this way are perhaps far from

optimal.

Complex hypercontractivity and proof of Theorem 1

For x = (x1, . . . , xn) ∈ {−1, 1}n and S ⊆ [n] := {1, 2, . . . , n}, we define the Walsh functions

wS(x) =
∏
j∈S xj . When S = ∅, we set w∅(x) = 1 for all x ∈ {−1, 1}n. These functions form an

orthogonal basis {wS , S ⊂ [n]} in the space of all functions f : {−1, 1}n → C and thus any such

function has the Fourier–Walsh expansion

f(x) =
∑

S∈[n]

aSwS(x),

where aS = EfwS . By |S| we denote the cardinality of the set S. Take any z ∈ C and define the

operator Tz as follows

Tzf(x) =
∑

S∈[n]

z|S|aSwS(x).

Real hypercontractivity tells us that for 1 < p < q and z =
√

q−1
p−1 , the operator Tz is a contraction

from Lp to Lq, that is ‖Tzf‖q ≤ ‖f‖p for all f : {−1, 1}n → C (see for instance [10]).

In what follows q ≥ 2 ≥ p ≥ 1. By the result of Weissler [12] (see also Beckner [1] for dual

exponents p and q), for t ∈ R, we have

‖Titf‖q ≤ ‖f‖p for all f : {−1, 1}n → C(3)

if and only if

|t| ≤ min

{√
p− 1,

1√
q − 1

}
.(4)

In particular, for any d-homogeneous polynomial h : {−1, 1}n → C, it yields

min

{
(p− 1)d/2,

1

(q − 1)d/2

}
‖h‖q ≤ ‖h‖p

(because Tzh = zdh), and this finishes the proof of Theorem 1. �

Remark 9. There is a conjecture of Weissler from [12] that for z ∈ C, |z| ≤ 1 we have

‖Tzf‖q ≤ ‖f‖p for all f : {−1, 1}n → C(5)

if and only if

(q − 2)(<wz)2 + |wz|2 ≤ (p− 2)(<w)2 + |w|2 for all w ∈ C.(6)

The conjecture is partially resolved, with the only case left open being 2 < p < q < 3 and its

dual, i.e., 3/2 < p < q < 2. One cannot improve the bound in Theorem 1 and Theorem 2 even if

one uses (5) and (6) in its full generality instead of (3) and (4), i.e., the particular case of (5), (6)

when z is purely imaginary.
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Self improvement of (1) and proof of Theorem 2
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Figure 1. Inequality ‖h‖q ≤ c‖h‖p for q ≥ p ≥ 1;

Fix a d-homogeneous polynomial h and consider the function ψ(s) = 1
d log ‖h‖1/s on (0, 1],

which is nonincreasing and convex (by Hölder’s inequality). We set s = 1
p and t = 1

q . Define the

region Rs,t = {(x, y), 0 < y ≤ x, x ≤ s, y ≤ t}. By convexity, the slopes of ψ are nondecreasing,

thus

(7)
1

d

1

1/q − 1/p
log
‖h‖q
‖h‖p

=
ψ(t)− ψ(s)

t− s
≥ sup

(x,y)∈Rs,t

ψ(y)− ψ(x)

y − x
.

Define regions where we can use (1): ∆− = {(x, y), 0 < y ≤ 1
2 ≤ x < 1, x + y ≤ 1} and

∆+ = {(x, y), 0 < y ≤ 1
2 ≤ x < 1, x+ y > 1}. It follows from (1) that,

ψ(y)− ψ(x) ≤ 1

2
log(y−1 − 1) on ∆−,

ψ(y)− ψ(x) ≤ −1

2
log(x−1 − 1) on ∆+.

Therefore,

(8) sup
Rs,t

ψ(y)− ψ(x)

y − x
≥ 1

2
max

{
sup

Rs,t∩∆−

log(y−1 − 1)

y − x
, sup
Rs,t∩∆+

− log(x−1 − 1)

y − x

}
.

To compute the right hand side, we shall need the following elementary fact.

Lemma 10. For every 1
2 ≤ s ≤ 1, the function βs(u) = log(u−1−1)

u−s is increasing on (0, s).

Proof. We have, (u− s)2β′s(u) = s−u
u(1−u) − log(u−1− 1), which is positive for u ∈ (0, s) if and only

if s > u + u(1 − u) log(u−1 − 1). The derivative of the right hand side is (1 − 2u) log(u−1 − 1),
4



which is positive, so it suffices to check that s > s+ s(1− s) log(s−1− 1), which is clearly true for

every 1
2 < s < 1. �

In particular, since the function β1/2(u) = log(u−1−1)
u−1/2 satisfies β1/2(1−u) = β1/2(u), it is symmetric

about u = 1
2 , it increases on (0, 1

2 ) and it decreases on ( 1
2 , 1). Moreover, limu→ 1

2
β1/2(u) = −4 and

βu(1− u) = 1
2β1/2(u).

Case 1. 1 ≤ p ≤ q ≤ 2, that is 1
2 ≤ t ≤ s ≤ 1. We have,

sup
Rs,t∩∆−

log(y−1 − 1)

y − x
= sup

1
2≤x≤s
y≤1−x

βx(y) = sup
1
2≤x≤s

βx(1− x) = sup
1
2≤x≤s

1

2
β1/2(x) = −2.

Using the evident monotonicity in y,

sup
Rs,t∩∆+

− log(x−1 − 1)

y − x
= sup

1
2≤x≤s

1−x<y≤ 1
2

− log(x−1 − 1)

y − x
= sup

1
2≤x≤s

1

2
β1/2(x) = −2.

Therefore, by (8), supRs,t

ψ(y)−ψ(x)
y−x ≥ −1, so (7) yields

‖h‖q/‖h‖p ≤ exp

{(
1

p
− 1

q

)
d

}
.

Case 2. 1 ≤ p ≤ 2 ≤ q and 1
p + 1

q > 1, that is t ≤ 1
2 ≤ s ≤ 1 and s+ t > 1. We have,

sup
Rs,t∩∆−

log(y−1 − 1)

y − x
= sup

1
2≤x≤s

y≤1−x,y≤t

βx(y) = max

{
sup

1−t≤x≤s
βx(1− x), sup

1
2≤x≤1−t

βx(t)

}
.

As before,

sup
1−t≤x≤s

βx(1− x) = sup
1−t≤x≤s

1

2
β1/2(x) =

1

2
β1/2(1− t) =

1

2
β1/2(t).

Moreover, by the evident monotonicity in x,

sup
1
2≤x≤1−t

βx(t) = sup
1
2≤x≤1−t

log(t−1 − 1)

t− x
=

log(t−1 − 1)

2t− 1
=

1

2
β1/2(t).

Therefore, supRs,t∩∆−
log(y−1−1)

y−x = 1
2β1/2(t). A similar computation shows that the supremum

over the region ∆+ also gives 1
2β1/2(t). Thus, supRs,t

ψ(y)−ψ(x)
y−x ≥ 1

4β1/2(t) = log(t−1−1)
2(2t−1) , so (7)

yields

‖h‖q/‖h‖p ≤ exp

{
log(q − 1)

2(2/q − 1)

(
1

q
− 1

p

)
d

}
= (q − 1)

q−p
p(q−2)

d
2 .

Case 3. 1 ≤ p ≤ 2 ≤ q and 1
p + 1

q ≤ 1, that is t ≤ 1
2 ≤ s ≤ 1 and s+ t ≤ 1. Here, Rs,t ∩∆+ = ∅

and it can be checked as in the previous cases that the right hand side of (8) gives 1
2

log(t−1−1)
t−s ,

which does not improve on (1).

Case 4. 2 < p ≤ q, that is t ≤ s < 1
2 . Here, Rs,t ∩∆+ = Rs,t ∩∆− = ∅. By real hypercontrac-

tivity, sup(x,y)∈Rs,t

ψ(y)−ψ(x)
y−x ≥ sup(x,y)∈Rs,t

1
2

log(y−1−1)−log(x−1−1)
y−x and, by convexity, this equals

1
2

log(t−1−1)−log(s−1−1)
t−s (no self-improvement). �
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