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Abstract

We consider a constrained version of the shortest path problem on the complete graphs whose edges
have independent random lengths and costs. We establish the asymptotic value of the minimum length
as a function of the cost-budget within a wide range.
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1 Introduction

Let the edges of the complete graph Kn be given independent random edge lengths w(e) and random costs
c(e) for e ∈ En = E(Kn). Suppose further that we are given a budget c0 and we need to find a path P from
vertex 1 to vertex 2 of minimum length w(P ) =

∑
e∈P w(e) whose cost c(P ) =

∑
e∈P c(e) satisfies c(P ) ≤ c0.

More precisely, let P denote the set of paths from 1 to 2 in Kn. We wish to solve

CSP: minimize w(P ) subject to P ∈ P , c(P ) ≤ c0.

This is a well studied problem, at least in the worst-case, see for example Chen and Nie [3], Climaco and
Martins [4], Machuca, Mandow, Pérez de la Cruz and Ruiz-Sepulveda [8], Nielsen, Pretolani and Anderesen
[10], Pascoal, Captivo and Cĺımaco [11].

In this paper we consider the case where w(e), c(e), e ∈ En are independent random variables and we let
Ln = Ln(c0) denote the random minimum length of a within budget shortest path. Also, let Hn denote
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the hop-count (number of edges) in the shortest such path. In particular we will assume that w(e), c(e) are
independent copies of the uniform [0, 1] random variable U . In a recent paper Frieze, Pegden, Sorkin and
Tkocz [5] considered a slightly more general setting, but were only able to bound Ln w.h.p. between two
values. In the simpler setting of this paper we are able to get an asymptotically correct estimate of Ln.

Notation: we say that An . Bn if An ≤ (1 + o(1))Bn as n→∞; An & Bn if An ≥ (1 + o(1))Bn as n→∞;
An ≈ Bn if An . Bn and An & Bn.

We prove the following:

Theorem 1. Suppose that w(e), c(e), e ∈ En are independent copies of a uniform random variable on [0, 1].
Suppose that

1√
2

log2 n

n
≤ c0 ≤

1

2
√

2
. (1)

Then w.h.p.

Ln ≈
log2 n

4c0n
and Hn ≈

log n

2
.

The main new ideas of the paper are in the proof of Theorem 1. With a little effort this theorem can be
generalised to prove the following:

Theorem 2. Suppose now that w(e), c(e), e ∈ En are independent copies of Uγ where 0 < γ ≤ 1. Suppose
that

a1 log2 n

n
≤ c0 ≤ a2 for constants a1, a2 dependent on γ.

Then w.h.p.

Ln ≈
γ log2 n

4Γ
(

1
γ

+ 1
)2

c0nγ
and Hn ≈

γ log n

2
.

2 Outline of paper

We will obtain an estimate of Ln in two distinct ways and combine them to give us what we need. In Section
3 we use the first moment method to get a lower bound and in Section 4 we use Lagrangean Duality to obtain
another bound. We combine the two bounds and finish the proof of Theorem 1 in Section 5. We then give a
sketch proof of Theorem 2 in Section 6.

3 First Moment

The goal of this section is to prove the following lemma about a high probability bound on the product
w(P )c(P ) for every path P ∈ P .

Lemma 3. Suppose that w(e), c(e), e ∈ En are independent copies of U . W.h.p. for every path P ∈ P, we
have

w(P )c(P ) &
log2 n

4n
.
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Corollary 4. For every co, Ln & log2 n
4nc0

w.h.p.

Proof. We have, Ln = min{w(P ) : P ∈ P , c(P ) ≤ c0} ≥ min
{
w(P ) c(P )

c0
: P ∈ P , c(P ) ≤ c0

}
& log2 n

4nc0
.

For the proof of Lemma 3, we need a bound on events that for a fixed path P , we have w(P )c(P ) ≤ t.

Lemma 5. Let S and T be independent copies of U1 + · · ·+Uk, where U1, . . . , Uk are i.i.d. copies of a uniform
random variable on [0, 1]. Then for 0 < t < k2, we have

P (ST ≤ t) ≤ tk

k!2

(
k log

(
k2

t

)
+ 2

k!

kk

)
.

Proof. We have P (S ≤ x) ≤ xk

k!
for every x ≥ 0 (e.g. by looking at the volume of the orthogonal simplex of

side-length x). Moreover, S ≤ k, so P (S ≤ x) = 1 for every x ≥ k. Therefore, using independence,

P (ST ≤ t) = ETPS
(
S ≤ t

T

)
= ET

(
PS
(
S ≤ t

T

)
1
(
t

T
< k

))
+ ET1

(
t

T
≥ k

)
≤ ET

(
1

k!

(
t

T

)k
1
(
T >

t

k

))
+ PT

(
T ≤ t

k

)
. (2)

For the second term, we use again PT
(
T ≤ t

k

)
≤ 1

k!

(
t
k

)k
, whereas for the first one, writing

T−k =

∫ ∞
0

ku−k−11 (u > T ) du

yields

ET

(
1

k!

(
t

T

)k
1
(
T >

t

k

))
=
tk

k!
ET
(∫ ∞

0

ku−k−11
(
T >

t

k
, T < u

)
du

)
≤ tk

k!

∫ ∞
t/k

ku−k−1P (T < u) du

≤ tk

k!

(∫ k

t/k

ku−k−1u
k

k!
du+

∫ ∞
k

ku−k−1du

)
=

tk

k!2

(
k log

(
k2

t

)
+
k!

kk

)
.

Putting these together finishes the proof.

Proof of Lemma 3. For constant β > 0 to be chosen soon, we let

Pβ =

{
P ∈ P : w(P )c(P ) ≤ β log2 n

n

}
.

Then,

E(|Pβ|) ≤
∑

1≤`≤n

n`−1 1

`!2

(
β log2 n

n

)`(
` log

(
`2n

β log2 n

)
+ 2

`!

``

)
. (3)

3



Explanation: we choose the `−1 internal vertices and order them in
(
n
`−1

)
(`−1)! ≤ n`−1 ways to create a path

P of edge-length `. We then use Lemma 5 to bound the probability that w(P )c(P ) ≤ β log2 n
n

, i.e. P ∈ Pβ.

Let u` denote the summand in (3). Note that for large enough n,

` log

(
`2n

β log2 n

)
+ 2

`!

``
≤ ` log

(
n3

β log2 n

)
+ 2 ≤ 3` log n.

Using `! ≥ (`/e)`, putting ` = α log n and ∆ = α(log(β/α2) + 2)− 1, we have

n`−1 1

`!2

(
β log2 n

n

)`
= e∆ logn.

Looking at ∂∆
∂α

= log β
α2 , we see that for a fixed β, ∆ is maximized when α =

√
β, giving ∆ ≤ 2

√
β − 1.

Therefore, we choose β such that, say 2
√
β − 1 = −(log n)−1/2, that is

β =
1

4

(
1− 1√

log n

)2

.

Then ∑
1≤`≤log2 n

u` ≤
∑

1≤`≤log2 n

e−
√

logn · 3` log n ≤ 3 log5 ne−
√

logn = o(1).

It remains to note that for ` > log2 n,

n`−1 1

`!2

(
β log2 n

n

)`
≤ n−1

(
e2β log2 n

`2

)`
≤ n−1

(
e2β log2 n

log4 n

)`
≤ n−1e−` ≤ n−1e− log2 n,

thus ∑
log2 n<`≤n

u` ≤
∑

log2 n<`≤n

n−1e− log2 n · 3` log n ≤ 3n(log n)e− log2 n = o(1).

We conclude that P (|Pβ| > 0) ≤ E|Pβ| = o(1) with β = 1
4

(
1− 1√

logn

)2

.

Remark 1. Corollary 4 can also be obtained by a much simpler first moment argument counting the number

of paths P such that w(P ) ≤ w and c(P ) ≤ c with wc & log2 n
4n

(see [5]). Lemma 3 will be crucial however in
Section 5.

4 The dual

In this section, motivated by the Lagrangean dual to CSP, we consider the following random variable

ψ(λ) = min {w(P ) + λc(P ) : P ∈ P} ,

where λ is a positive parameter chosen later. In words, ψ(λ) is the the minimum length of a path from 1 to
2 in Kn when edge lengths are independent copies of W = W (λ) = U1 + λU2. Here U1, U2 are independent
copies of U . The goal of this section is to establish the following upper bound on ψ(λ) for a specific optimal
choice of λ (see Remark 3 below).

4



Lemma 6. Let c0 satisfy (1). Let λ∗ = log2 n
4c20n

. Then

ψ(λ∗) .
log2 n

2c0n
w.h.p. (4)

We shall need the following result of Bahmidi and van der Hofstadt from [1].

Theorem 7 ([1]). Let s ∈ (0, 1) be a constant. Let Ls,n be the length of a shortest path from 1 to 2 in the
complete graph Kn when edge lengths are independent copies of ξs, where ξ is an exponential mean 1 random
variable. We have the following convergence in distribution

nsLs,n −
1

Γ(1 + 1/s)s
log n

d−→ Z, (5)

for some random variable Z. Moreover, for the hop-count Hs,n,

Hs,n ≈ s log n w.h.p.

In fact, we shall only need the following simple consequence of (5).

Claim. Ls,n ≈ 1
Γ(1+1/s)s

logn
ns

w.h.p.

Proof. For every sequence of numbers an → 0, from (5), we get

an

(
nsLs,n −

1

Γ(1 + 1/s)s
log n

)
→ 0 in probability.

Choosing, say an = (log n)−1/2, we get

P
(

(log n)−1/2

∣∣∣∣nsLs,n − 1

Γ(1 + 1/s)s
log n

∣∣∣∣ > 1

)
→ 0,

or, in other words,

Ls,n =
log n

Γ(1 + 1/s)sns

[
1 + θn(log n)−1/2Γ(1 + 1/s)s

]
with P(|θn| < 1)→ 1.

Heuristically, the idea is that the density of W (λ) near the origin behaves like the density of (2λξ)1/2, hence
ψ(λ) is asymptotic to (2λ)1/2L1/2,n whose asymptotic behaviour is in turn governed by (5). To make this
rigorous, we need the following lemma.

Lemma 8. Let L1/2,n, L̃1/2,n be the length of a shortest path from 1 to 2 in the complete graph Kn when edge

lengths are independent copies of ξ1/2, ξ̃1/2 respectively, where ξ is an exponential mean 1 random variable
and

ξ̃ =

{
ξ, ξ ≤ log2 n

n
,

∞, ξ > log2 n
n
.

Then L1/2,n = L̃1/2,n w.h.p.
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Proof. Now the claim applied with s = 1
2

implies that w.h.p. the shortest path from 1 to 2 has length

. 1√
2

logn√
n

if edge lengths are given by ξ1/2. This clearly implies that w.h.p. the shortest path P from 1 to

2 contains no edge with ξ1/2 > logn√
n

. Replacing ξ by ξ̃ can only increase path lengths and by the previous
sentence, P will w.h.p. still have the same length. This implies the lemma.

We proceed with the proof of Lemma 6.

Proof of Lemma 6. We split the argument into two cases depending on the value of λ∗.

Case 1. λ∗ ≥ 1. For t ≤ 1, we have

P(W ≤ t) = P(U1 + λ∗U2 ≤ t) =
t2

2λ∗
≥ 1− e−

t2

2λ∗ = P
(
(2λ∗ξ)1/2 ≤ t

)
. (6)

Observe that for ξ̃ from Lemma 8, we have

P
(
ξ̃ ≤ t

)
=

{
P (ξ ≤ t) , t ≤ log2 n

n
,

P
(
ξ ≤ log2 n

n

)
, t > log2 n

n
,

for every t ≥ 0. Therefore, the following comparison holds

P(W ≤ t) ≥ P
(

(2λ∗ξ̃)1/2 ≤ t
)
, (7)

for every t ≥ 0 as long as 1
2λ∗
≥ log2 n

n
, equivalently c0 ≥ log2 n

21/2n
, which is assumed in (1). This means that W

is stochastically dominated by (2λ∗ξ̃)1/2. As a result,

ψ(λ∗) ≤
√

2λ∗L̃1/2,n =

√
log2 n

2c2
0n

L1/2,n,

where the equality follows from Lemma 8. The claim made after Theorem 7 gives L1/2,n ≈ logn√
2n

, which finishes
the argument.

Case 2. λ∗ ≤ 1. We repeat the whole argument of Case 1. The only change is that now (6) holds for all

t ≤ λ∗ instead of all t ≤ 1, thus to establish (7) for all t ≥ 0, we need λ∗

2
≥ log2 n

n
, equivalently, c0 ≤ 1

2
√

2
.

Remark 2. An inspection of the proof shows that the implicit o(1) term in (4) does not depend on c0.

Remark 3. The value λ∗ was chosen so as to minimize ψ(λ) − λc0 (the dual lower bound on CSP), where
we put ψ(λ) =

√
λ logn√

n
(heuristically ψ(λ) ≈

√
2λL1/2,n ≈

√
λ logn√

n
).

5 Proof of Theorem 1

In view of Corollary 4, we need to upper bound Ln, or in other words, show that w.h.p. there is a path P
with w(P ) ≤ log2n

4nc0
and c(P ) ≤ c0.
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Let λ∗ = log2 n
4c20n

. By the definition of ψ(λ∗), we get a path P of length w = w(P ) and cost c = c(P ) that w.h.p.

satisfies

wc &
log2 n

4n
from Lemma 3, (8)

w +
log2 n

4c2
0n

c .
log2 n

2c0n
from Lemma 6. (9)

The implicit o(1) terms here do not depend on c0 (which is clear for (8) and is justified by Remark 2 for (9)).
Combining (8) and (9) yields

(1− o(1))
log2 n

4n
≤ wc ≤

[
log2 n

2c0n
(1 + o(1))− log2 n

4c2
0n

c

]
c =

log2 n

4nc0

(
2(1 + o(1))− c

c0

)
c,

thus, in terms of r = c
c0

,

1− o(1) ≤ 2(1 + o(1))r − r2 or 1− ε ≤ 2(1 + ε)r − r2

for some ε = ε(n)→ 0. Re-arranging gives

(r − 1− ε)2 ≤ 3ε+ ε2 and so c ≤ c0(1 + 2ε1/2).

Note now that (9) implies that

w ≤ log2 n

4c0n

(
2 + o(1)− c

c0

)
≈ log2 n

4c0n
. (10)

Now let ĉ0 = c0(1− 2ε1/2) and repeat the above analysis with ĉ0 replacing c0. Then w.h.p. we see that w.h.p.

there is a path of length at most log2 n
4ĉ0n

≈ log2 n
4c0n

and cost at most ĉ0(1 + 2ε1/2) ≤ c0. This completes the proof
of Theorem 1.

6 More general distributions

The goal is to sketch a proof of Theorem 2. We first have to generalise Lemma 5. For this we need the
following lemma.

Lemma 9. Let γ > 0. Let U1, U2, . . . , Uk be independent copies of a uniform random variable on [0, 1]. Then,
for u ≥ 0, we have

P(Uγ
1 + Uγ

2 + · · ·+ Uγ
k ≤ u) ≤

uk/γΓ
(

1
γ

+ 1
)k

Γ
(
k
γ

+ 1
) .

Proof. We have

P(Uγ
1 + Uγ

2 + · · ·+ Uγ
k ≤ u) = Vol

{
x ∈ [0, 1]k :

k∑
i=1

xγi ≤ u

}

≤ Vol

{
x ∈ [0,∞)k :

k∑
i=1

xγi ≤ u

}
= uk/γvk,γ

7



where vk,γ = Vol
{
x ∈ [0,∞)k :

∑k
i=1 x

γ
i ≤ 1

}
. A standard computation leads to a closed expression,

(∫ ∞
0

e−t
γ

dt

)k
=

∫ ∞
0

· · ·
∫ ∞

0

e−x
γ
1−···−x

γ
kdx1 . . . dxk =

∫ ∞
0

· · ·
∫ ∞

0

∫
s>xγ1+···+xγk

e−sdsdx1 . . . dxk

=

∫
s>0

e−sVol

{
x ∈ [0,∞)k :

k∑
i=1

xγi < s

}
ds =

∫
s>0

e−ssk/γvk,γds,

and thus

vk,γ =

(∫∞
0
e−t

γ
dt
)k∫

s>0
e−ssk/γds

=
Γ
(

1
γ

+ 1
)k

Γ(k
γ

+ 1)
.

Given this we have

Lemma 10. Let S and T be independent copies of Uγ
1 + · · · + Uγ

k , where U1, . . . , Uk are i.i.d. copies of a
uniform random variable on [0, 1]. Then for 0 < t < k2, we have

P (ST ≤ t) ≤
tk/γΓ

(
1
γ

+ 1
)2k

Γ
(
k
γ

+ 1
)2

k
γ

log

(
k2

t

)
+ 2

Γ
(
k
γ

+ 1
)

kkΓ
(

1
γ

+ 1
)k
 .

Proof. We repeat the proof of Lemma 5. The bound in (2) becomes

ET


(
t
T

)k/γ
Γ
(

1
γ

+ 1
)k

Γ
(
k
γ

+ 1
) 1

(
T >

t

k

)+

(
t
k

)k/γ
Γ
(

1
γ

+ 1
)k

Γ
(
k
γ

+ 1
)

≤
tk/γΓ

(
1
γ

+ 1
)k

Γ
(
k
γ

+ 1
)

k
γ

Γ
(

1
γ

+ 1
)k

Γ
(
k
γ

+ 1
) log

(
k2

t

)
+

1

kk/γ

+

(
t
k

)k/γ
Γ
(

1
γ

+ 1
)k

Γ
(
k
γ

+ 1
)

=
tk/γΓ

(
1
γ

+ 1
)2k

Γ
(
k
γ

+ 1
)2

k
γ

log

(
k2

t

)
+ 2

Γ
(
k
γ

+ 1
)

kkγΓ
(

1
γ

+ 1
)k
 .

Proof of Theorem 2 (Sketch). We define

Pβ =

{
P ∈ P : w(P )c(P ) ≤ β log2 n

nγ

}
.

Using Lemma 10, (3) becomes,

E(|Pβ|)) ≤
∑
`≥1

n`−1
(β log2 n)`/γΓ

(
1
γ

+ 1
)2`

n`Γ
(
`
γ

+ 1
)2

 `

γ
log

(
`2

t

)
+ 2

Γ
(
`
γ

+ 1
)

``Γ
(

1
γ

+ 1
)`
 .

8



We deduce from this that w.h.p.

w(P )c(P ) &
log2 n

4Γ
(

1
γ

+ 1
)2γ

nγ
. (11)

To consider the dual problem we use that if U1, U2 are independent copies of U , then

P(Uγ
1 + λUγ

2 ≤ t) =
t2/γΓ

(
1
γ

+ 1
)2

λ1/γΓ
(

2
γ

+ 1
)

valid for 0 < t < 1 ≤ λ, see equation (36) of [6].

As in Section 4, thanks to (5) (with s = γ/2) and stochastic dominance (an analogue of Lemma 8), we obtain

ψ(λ) .

√
λ∗ log n

Γ(1 + 1
γ
)γnγ/2

=
log2 n

2c0Γ(1 + 1
γ
)2γnγ

(12)

with λ∗ = 1
4c20Γ(1+ 1

γ
)2γ

log2 n
nγ

(chosen to minimise
√
λ logn

Γ(1+ 1
γ

)γnγ/2
−λc0). Applying the analogous argument in Section

5 to (11), (12) we see finally that w.h.p.

Ln ≈
γ log2 n

4Γ
(

1
γ

+ 1
)2γ

c0nγ
and Hn ≈

γ log n

2
.

A coupling argument of Janson [7] can be used for the case where w(e), c(e) have the distribution function
Fw(t) = P(X ≤ t), of a random variable X, that satisfies F (t) ≈ at1/γ, γ ≤ 1 as t → 0. This argument is
spelled out in detail in Section 4.1 of [6].

7 Final Remarks

We first observe that our proof shows that w.h.p. the duality gap between the maximum dual value and the
optimal value of the solution to the constrained shortest path problem is within o(1) of the optimal value to
the latter problem.

The imposed range (1) on c0 is a by-product of our proof. It is likely off by a factor log n on both sides: a
lower bound on c0 of ≈ logn

n
comes from the unconstrained minimum cost of a path, whereas if c0 ≥ log n,

then w.h.p. the unconstrained minimum length path will be within cost budget.

We would next like to mention the fact that the approach of Beier and Voeking [2] can be applied to solve the
computational problem in polynomial expected time. This paper was the first (and only?) paper to give a
polynomial expected time algorithm for solving random 0-1 knapsack problems. In Theorem 2 of this paper,
they give a significant generalisation which opens the door for solving the constrained shortest path problem.

Theorem 2 of that paper is

Theorem 11. Let S1, S2, . . . , Sm be a fixed but arbitrary sequence of subsets of [N ]. Suppose that profits are
chosen according to the uniform distribution over [0, 1]. Let q denote the number of dominating sets over
S1, S2, . . . , Sm. Then E(q) = O(N3).
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To unpack this, we first observe that q determines the running time of an algorithm of Nemhauser and Ullman
[9] that can be used to solve the knapsack problem. Here q is the number of sets among S1, S2, . . . , Sm that
are not dominated by any other set. Here Si dominates Sj if it has smaller cost and larger profit. To apply
the theorem we let N =

(
n
2

)
and [N ] be associated with the edge set of Kn. Then we let the profit p(e) of

edge e be equal to 1 − w(e). We then apply the theorem separately for each ` = 1, 2, . . . , n − 1 and let the
Si correspond to the set of edges in the `-edge paths from 1 to 2. In this way we can solve the constrained
shortest path problem in O(n7) expected time.

The paper [5] allowed multiple constraints and it is a challenge to tighten the result there to get an asymptotic
result, as we did here.
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